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We consider a collection of Euclidean random balls in R
d generated by a determinantal point process

inducing inhibitory interaction into the balls. We study this model at a macroscopic level obtained by a
zooming-out and three different regimes – Gaussian, Poissonian and stable – are exhibited as in the Poisso-
nian model without interaction. This shows that the macroscopic behaviour erases the interactions induced
by the determinantal point process.

Keywords: determinantal point processes; generalized random fields; limit theorem; point processes; stable
fields

Introduction

A random balls model is a collection B of random Euclidean balls B(x, r) = {y ∈ R
d : ‖y −x‖ ≤

r} whose centers x ∈ R
d and radii r ∈ R+ are generated by a stationary point process � in

R
d × R+. Such models are used to represent a variety of situations. Let us mention a few of

them. In dimension one, B can represent the traffic in a communication network. In this case, the
(half-)balls are intervals [x, x + r] and represent sessions of connection to the network, x being
the date of connection and r the duration of connection. Such a model is investigated in [19] in
a Poissonian setting, see also [14]. In dimension two, B can represent a wireless network with x

being the location of a base station emitting a signal with a range r so that B(x, r) represents the
covering area of the station x and the collection B gives the overall covering of the network, cf.
[25]. The two-dimensional model is used also in imagery to represent Black and White pictures.
In dimension three, such models are again used to represent porous media, for instance bones can
be modeled in this way and an analysis of the model allows in this case to investigate anomalies
such as osteoporosis, see [2]. Such random balls model is also known as germ-grain model with
spherical grains in stochastic geometry, see the reference book [5].

In general in these models, one can think of at least two kinds of question. First, we can
describe the geometrical – or morphological – aspect of the collection B of balls and the cor-
responding continuum percolation problem can be investigated; we refer to [18] for this line of
work. The second question deals with scaling limits of aggregative functionals of the model and
is the subject of this paper. Such aggregative functionals, that we shall call contributions in the
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sequel, can be for instance the number of balls covering a site y ∈R
d :

#
{
B(x, r) ∈ B : y ∈ B(x, r)

} =
∑
B∈B

δy(B) =
∫
Rd×R+

δy

(
B(x, r)

)
�(dx,dr), (1)

where, for any set A, δy(A) = 1A(y) defines a Dirac measure. Typically in the imagery setting
(d = 2), such a quantity gives the level of grey of pixel y ∈ R

2, see [2]. Another example of
contribution is given by the sum of the volumes of the balls in restriction to some window W∫

Rd×R+

∣∣B(x, r)
∣∣
W

�(dx, dr), (2)

where | · |W stands for the Lebesgue measure restricted to W ∈ B(Rd). Typically in dimension
d = 1, such a quantity represents the cumulative workload of some communication network, see
[14,19] when � is a Poisson point process. More generally, replacing δy or | · |W in the above
integrals (1), (2) by a finite measure μ gives the so-called contribution of the model B into μ.
This shot-noise type functional writes

M(μ) =
∫
Rd×R+

μ
(
B(x, r)

)
�(dx,dr), (3)

and will be the basic object of interest of this paper.
So far, these models have been investigated with a Poissonian generating mechanism, that is,

� is a (homogeneous) Poisson point process (PPP) with moreover center and radii behaviours
being independent. In addition to the above references, let mention also [13] and [3] where the
d-dimensional model is investigated, and [4] where weights are attached to the balls. A slight
generalization is introduced in [9] where, still in a Poissonian paradigm, but non-homogeneous,
the behaviours of the centers and of the radii are no more independent. Let us also mention [11,
15] and [16] for asymptotics in related model for shot-noise processes.

In the present paper, we go beyond the Poissonian setting and consider random balls generated
by a stationary determinantal point process. As far as we know, except for the preliminary study
[10] where Ginibre point process (a special case of determinantal point process) is considered
to generate the collection B and which is the very origin of this paper, this article presents the
first study of a random balls model generated by a determinantal point process, the so-called
determinantal random balls. From a wireless network point of view, such a random mechanism
is legitimate since it makes sense to install the stations not too close from one another. The repul-
siveness of determinantal point processes justly realizes such a characteristic. From a modeling
point of view, this choice has been recently explored in [7,20] or [17]. In particular, it is shown
in [7] that a thinned Ginibre point process is capable of modeling many of the actual cellular
networks. See also [21] for general determinantal point process used in this context.

Let us now be more specific about the macroscopic analysis provided in the sequel: we are
interested in the behaviour of M(μ) in (3) when a zoom-out is performed in the model. This
zooming-out scheme offers at the limit a distant view of the model, erasing the local specificities
to make emerge only global characteristics. The scaling performed consists in r �→ ρr (with rate
ρ > 0) changing the ball B(x, r) into B(x,ρr) and the zooming-out is performed with ρ → 0.
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Obviously, for the model not to vanish under such a scaling, the intensity, say λ, of the point
process � generating the balls has to be tuned accordingly into λ(ρ) → +∞. In the sequel, this
is done by considering a family of point processes �ρ , ρ ∈]0,1], interpreted as a balls model
with ρ-scaled radii and λ(ρ)-boosted centers, see details in Section 2. A first-level description of
the resulting contribution Mρ(μ) in μ is then given by its mean value

E
[
Mρ(μ)

] =
∫
Rd×R+

μ
(
B(x, r)

)
nρ(dx, dr),

where nρ is the intensity measure of �ρ . A finer analysis is given by the fluctuations of Mρ(μ)

with respect to its mean value, i.e. the limit of

Mρ(μ) −E[Mρ(μ)]
n(ρ)

(4)

for a proper normalization n(ρ) when ρ → 0. The limit above is investigated in distribution
for each (suitable) measure μ, or, equivalently, because of the linear structure of (3) and thanks
to the Cramér–Wold device, in the finite-dimensional distributions (fdd) sense. The relative be-
haviours of the scaling rate ρ and of the balls intensity λ(ρ) will be responsible of the different
possible macroscopic regimes. A similar study has been done for the Poissonian random balls
model, in which three different regimes – Gaussian, Poissonian and stable – appear at the limit,
see [3,13]. Our study will justify that these regimes prevail for the determinantal random balls
model, exhibiting thus a kind of robustness of these regimes. Actually, since Poisson point pro-
cesses are the universal limits of stationary and ergodic point processes undergoing standard
operations (independent thinning, dilatation), it is not surprising to recover similar asymptotics
as the ones for the Poissonian model. We can even expect for these limits to be, in some way,
universal.

The article is organized as follows. Section 1 gives a detailed presentation of the model in-
vestigated. The main results with the macroscopic behaviours (Theorems 2.7, 2.12, 2.15) are
stated and proved in Section 2. Several final comments are gathered in Section 3 on zoom-in
asymptotics, α-determinantal/permanental processes and non-stationary random balls model. Fi-
nally, Appendix provides a very brief account on determinantal point processes with the required
results for our analysis.

1. Determinantal random balls model

The model considered is a collection B of random (Euclidean) balls B(x, r) = {y ∈ R
d :

‖y − x‖ ≤ r} whose centers x ∈ R
d and radii r ∈ R+ are generated by a marked stationary

determinantal point process (DPP) � on R
d × R+. In this section, we describe thoroughly the

model and we refer to the Appendix for more details on DPPs, in particular see its definition
in Def. A.2. First, consider a stationary DPP φ with a kernel K with respect to the Lebesgue
measure | · | satisfying K(x,y) = K(x − y) (for simplicity, we use the same letter K for two dif-
ferent functions), moreover we assume that the map K given for all f ∈ L2(Rd , dx) and x ∈ R

d
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by

Kf (x) =
∫
Rd

K(x, y)f (y) dy (5)

satisfies the following hypothesis

Hypothesis 1. The map K in (5) is a bounded symmetric integral operator K from L2(Rd , dx)

into L2(Rd , dx) with spectrum included in [0,1[. Moreover, K is locally trace-class, i.e. for all
compact � ⊂ E, the restriction K� of K on L2(�,λ) is of trace-class.

This point process φ generates the centers of the balls and as a DPP exhibits repulsiveness
between its particles. To obtain balls, we attach to each center x a (positive) mark interpreted
as a radius r , this is done independently and these radii are identically distributed according to
a distribution F , assumed to admit a probability density f . The collection of these marks and
of the DPP φ forms a marked DPP �. According to Proposition A.7, � is still a DPP but on
R

d ×R+ and with kernel

K̂
(
(x, r), (y, s)

) = √
f (r)K(x, y)

√
f (s),

with respect to the Lebesgue measure. In the sequel, we shall use the notation � both for
the marked DPP (i.e. the random locally finite collection of points (Xi,Ri)) and for the
associated random measure

∑
(X,R)∈� δ(X,R). We consider the contribution of the model in

any suitable (signed) measure μ on R
d given by the following measure-indexed random

field:

M(μ) =
∫
Rd×R+

μ
(
B(x, r)

)
�(dx,dr). (6)

Note that from a mathematical point of view, it is not required for the measure μ to be positive
and signed measures can be considered. However, in order to ensure that M(μ) in (6) is well
defined, we restrain to measures μ with finite total variation (see below Proposition 1.1). In
the sequel, Z(Rd) stands the set of signed (Borelian) measures μ on R

d with finite total vari-
ation ‖μ‖var(R

d) < +∞. Moreover as in [13], assume the following assumption on the radius
behaviour, for d < β < 2d ,

f (r) ∼
r→+∞

Cβ

rβ+1
, rβ+1f (r) ≤ C0. (7)

Since β > d , condition (7) implies that the mean volume of the random ball is finite:

vd

∫ +∞

0
rdf (r) dr < +∞, (8)

where vd = |B(0,1)| = πd/2/�(d/2 + 1) is the Lebesgue measure of the unit ball of R
d .

On the contrary, β < 2d implies that F does not admit a moment of order 2d and the vol-
ume of the balls has an infinite variance. This is responsible of some kind of long-range de-
pendence in the model, see [13], p. 530, and is in line with communication network models
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which exhibit interference. The asymptotics condition in (7) is of constant use in the follow-
ing.

Proposition 1.1. Assume (7) is in force. For all μ ∈ Z(Rd), E[|M(μ)|] < +∞. As a conse-
quence, M(μ) in (6) is almost surely well defined for all μ ∈Z(Rd).

Proof. Using properties of functionals of random measures (see Section 9.5 in [6]), we have:

E
[∣∣M(μ)

∣∣] =
∫
Rd×R+

∣∣μ(
B(x, r)

)∣∣K̂(
(x, r), (x, r)

)
dx dr.

Since K̂((x, r), (x, r)) = K(0)f (r), writing μ(B(x, r)) = ∫
Rd 1B(y,r)(x)μ(dy), we have

E
[∣∣M(μ)

∣∣] ≤
∫
Rd×R+

∫
Rd

1B(y,r)(x)|μ|(dy)K(0)f (r) dx dr

≤ K(0)

∫
Rd

∫ +∞

0

(∫
Rd

1B(y,r)(x) dx

)
f (r) dr|μ|(dy)

≤ K(0)
∣∣B(0,1)

∣∣ ∫ +∞

0
rdf (r) dr

∫
Rd

|μ|(dy)

≤ vd‖μ‖varK(0)

(∫ +∞

0
rdf (r) dr

)
.

This concludes the proof thanks to condition (8), due to (7). �

Example 1.2. Typical examples of DPPs are given by Bessel point processes and Ginibre point
processes.

1. Bessel process. In our real framework, the Bessel-type process is a DPP φB with kernel

KB(x, y) =
√

�(d/2 + 1)

πd/4

Jd/2(2
√

π�(d/2 + 1)1/d‖x − y‖)
‖x − y‖d/2

, x, y ∈R
d, (9)

with respect to the Lebesgue measure, where Jd/2 stands for the Bessel function of the first kind.
For instance, for d = 1 we have:

KB(x, y) = sin(π‖x − y‖)
π‖x − y‖ .

2. Ginibre process. In our real framework, the Ginibre-type point process φG is a DPP with
kernel

KG(x, y) = exp

(
−1

2
‖x − y‖2

)
, x, y ∈ R

d,

with respect to the Lebesgue measure. Such processes have been used recently to model wireless
networks of communication, see [7,20].
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2. Asymptotics

We now detail our zooming-out procedure. This procedure acts accordingly both on the centers
and on the radii (equivalently on the volume of the balls). First, a scaling Sρ : r �→ ρr of rate
ρ ≤ 1 changes balls B(x, r) into B(x,ρr); this scaling changes the distribution F of the radius
into Fρ = F ◦ S−1

ρ . Second, the intensity of the centers is simultaneously adapted; to do this, we
introduce actually a family of new kernels Kρ , ρ ∈]0,1], that we shall refer to as scaled kernels,
and we denote by φρ the DPP with kernel Kρ (with respect to the Lebesgue measure). In order
to be in line with the scaling procedure investigated in the previous balls models (see [3,4,9,13]),
we introduce λ(ρ) given by

Kρ(0) = λ(ρ)K(0) (10)

with limρ→0 λ(ρ) = +∞. Using (41) in Prop. A.6, we have for any ρ > 0,∫
Rd

∣∣Kρ(x)
∣∣2

dx =
ρ→0

O
(
λ(ρ)

)
. (11)

Remark 2.1. The quantity λ(ρ) introduced in (10) can be interpreted as the intensity of (centers
of) the balls. Then λ(ρ) → +∞ indicates that there are more and more balls while the volumes
of the balls are shrunk to (ρ → 0), so that the zooming-out procedure consists of two competitive
effects. The property (11) gives a control of Kρ(x) for x �= 0 and, roughly speaking, means that
the correlation of the centers of the balls is suitably controlled by the intensity of the centers.

In summary, the zoom-out procedure consists in considering a new marked DPP �ρ on R
d ×

R+ with kernel:

K̂ρ

(
(x, r), (y, s)

) =
√

f (r/ρ)

ρ
Kρ(x, y)

√
f (s/ρ)

ρ
,

with respect to the Lebesgue measure. The so-called scaled version of M(μ) is then the field

Mρ(μ) =
∫
Rd×R+

μ
(
B(x, r)

)
�ρ(dx, dr).

In the sequel, we are interested in the fluctuations of Mρ(μ) with respect to its expectation

E
[
Mρ(μ)

] =
∫
Rd×R+

μ
(
B(x, r)

)
Kρ(0)

f (r/ρ)

ρ
dx dr

and we introduce

M̃ρ(μ) = Mρ(μ) −E
[
Mρ(μ)

] =
∫
Rd×R+

μ
(
B(x, r)

)
�̃ρ(dx, dr), (12)

where �̃ρ stands for the compensated random measure associated to �ρ .
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Example 2.2. Continuing Example 1.2, we introduce the following family:

1. In the Bessel case, we consider the family of Bessel point processes φB
ρ , ρ ∈]0,1], with

kernels:

KB
ρ (x, y) =

√
λ(ρ)�(d/2 + 1)

πd/4

Jd/2(2
√

π�(d/2 + 1)1/dλ(ρ)1/d‖x − y‖)
‖x − y‖d/2

(13)

with respect to the Lebesgue measure, where λ : R+ → R+ is a decreasing function with
limρ→0 λ(ρ) = +∞. In this context, the property (11) easily follows from the following asymp-
totics of the Bessel functions of the first kind (see [1]):

Jα(r) ∼
r→0

1

�(α + 1)

(
r

2

)α

,

Jα(r) ∼
r→+∞

√
2

πr
cos

(
r − απ

2
− π

4

)
.

2. In the Ginibre case, we consider the family of Ginibre point processes φG
ρ , ρ ∈]0,1], with

kernels:

KG
ρ (x, y) = λ(ρ) exp

(
−λ(ρ)

2
‖x − y‖2

)
, x, y ∈R

d , (14)

with respect to the Lebesgue measure, where λ : R+ → R+ is a decreasing function with
limρ→0 λ(ρ) = +∞, so that (11) is satisfied.

3. We can also consider the thinned and re-scaled Ginibre point process φG,α (or α-Ginibre
point process, see [20]) with kernel:

KG,α(x, y) = exp

(
−‖x − y‖2

2α

)
,

where 0 < α ≤ 1. Such a process is obtained by retaining independently each point of the Gini-
bre point process with probability α and then applying a scaling to conserve the density (mean
number of points by volume unit) of the initial Ginibre point process. This so-called α-Ginibre
point process bridges smoothly between the Ginibre point process (α = 1) and the Poisson point
process (α → 0). For the scaled version, replace (14) by

KG,α
ρ (x, y) = λ(ρ) exp

(
−λ(ρ)

2α
‖x − y‖2

)
.

Heuristics

The asymptotic behaviour of M̃ρ(μ) when ρ → 0 depends on how the scaling rate ρ and the
intensity λ(ρ) are tuned. Roughly speaking, three regimes appear according to ρ → 0 faster,
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slower or well-balanced with respect to λ(ρ) → +∞. Heuristically, the key quantity ruling these
regimes is the mean number of large balls, say balls of radii larger than 1 and, say, containing 0:

E
[
#
{
(x, r) ∈ �ρ : 0 ∈ B(x, r), r > 1

}]
=

∫
{(x,r):0∈B(x,r),r>1}

K̂ρ

(
(x, r), (x, r)

)
dx dr =

∫ +∞

1

∫
B(0,r)

Kρ(x, x)
f (r/ρ)

ρ
dx dr

=
∫ +∞

1/ρ

∫
B(0,ρu)

λ(ρ)K(0) dxf (u)du ∼ vdK(0)λ(ρ)ρd

∫ +∞

1/ρ

u−1−β+d du

∼ vdK(0)

β − d
λ(ρ)ρβ

using both (10), (7). Thus, the balance between ρ → 0 and λ(ρ) → +∞ is ruled by λ(ρ)ρβ and
the three scaling regimes are the following when ρ → 0:

• Large-balls scaling: λ(ρ)ρβ → +∞. Roughly speaking, large balls prevail at the limit and
they shape the limit according to some kind of central limit theorem (CLT). Moreover, since
the large balls overlap, this regime yields dependence at the limit. In other words, the limit
λ(ρ)ρβ → +∞ acts as if λ(ρ) → +∞ first and ρ → 0 next; the first limit (λ(ρ) → +∞)
corresponds to the superposition of a large number of (overlapping) balls, which in line with
a CLT argument, produces a Gaussian limit (with dependence), the second limit (ρ → 0)
only shapes the covariance of the Gaussian field. In this context, the proper normalization
will be n(ρ) = √

λ(ρ)ρβ . See Section 2.1.
• Intermediate scaling: λ(ρ)ρβ → a ∈]0,+∞[. Roughly speaking, there is a proper balance

between large and small balls and somehow the limit is incompletely taken and it only
consists in an alteration of the generating point process with a dissolving of the interaction
resulting in a Poisson point process. In this context, the proper normalization will just be a
constant. See Section 2.2.

• Small-balls scaling: λ(ρ)ρβ → 0. Roughly speaking, small balls prevail. In other words,
the limit λ(ρ)ρβ → 0 acts as if ρ → 0 first and λ(ρ) → +∞ next. The first limit ρ → 0 is
a scaling killing the overlapping and thus producing independence at the limit. Next, with
the second limit (λ(ρ) → +∞) the heavy-tails of F enter the picture: the contribution of
the non-overlapping balls are in the domain of attraction of a stable distribution producing
a stable regime. Moreover, the index of stability γ can be heuristically derived as follows:
for a smooth measure μ, we have μ(B(x, r))  crd with (β/d)-regular tails under (7) and
this is responsible for the index of stability γ = β/d . See Section 2.3.

General strategy

For the three regimes, the proofs will follow the same idea in Sections 2.1, 2.2, and 2.3 below, and
the general strategy is presented. The main tool to study the so-called determinantal integrals (6)
or (12) (integrals with respect to a determinantal random measure) is the Laplace transform given
in Theorem A.4. However, this result applies for compactly supported integrands which is not
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the case in our setting with (x, r) �→ μ(B(x, r)) (since when r → +∞, μ(B(x, r)) → μ(Rd)).
As a consequence, we consider the following auxiliary truncated process:

MR
ρ (μ) =

∫
Rd×R+

μ
(
B(x, r)

)
1{r≤R}�ρ(dx, dr), (15)

and the associated compensated determinantal integral M̃R
ρ (μ). Then, for a positive compactly

supported measure μ, the application (x, r) �→ μ(B(x, r))1{r≤R} is indeed a compactly sup-
ported function. In the following, we thus restrain Z(Rd) to Z+

c (Rd) the set of positive com-
pactly supported Borelian measures on R

d with finite total variation. The relevance in introduc-
ing this auxiliary process appears in the following result:

Proposition 2.3. Assume (7) and (10). For all μ ∈Z+
c (Rd) and for all ρ > 0, MR

ρ (μ) converges

in L1 when R → +∞ to Mρ(μ). Moreover, in the intermediate and the small-balls scalings,
there exists a constant ρ1 > 0, independent of R, such that this convergence is uniform in ρ for
ρ ∈]0, ρ1[.

Proof. Let μ ∈ Z+
c (Rd). By the monotone convergence theorem MR

ρ (μ) ↗ Mρ(μ) when R →
+∞ and by the dominated convergence theorem MR

ρ (μ) → Mρ(μ) in L1. Next, we have

Mρ(μ) − MR
ρ (μ) =

∫
Rd×R+

μ
(
B(x, r)

)
1{r>R}�ρ(dx, dr)

and

E
[∣∣Mρ(μ) − MR

ρ (μ)
∣∣] = E

[∫
Rd×R+

μ
(
B(x, r)

)
1{r>R}�ρ(dx, dr)

]
=

∫
Rd×R+

μ
(
B(x, r)

)
1{r>R}K̂ρ

(
(x, r), (x, r)

)
dx dr

=
∫
Rd

∫ +∞

R

μ
(
B(x, r)

)
Kρ(x, x)

f (r/ρ)

ρ
dx dr

= λ(ρ)K(0)

∫
Rd

∫ +∞

R

μ
(
B(x, r)

)f (r/ρ)

ρ
dx dr.

But with Fubini theorem and a change of variables∫
Rd

∫ +∞

R

∫
Rd

1B(x,r)(y)
f (r/ρ)

ρ
μ(dy)dx dr =

∫
Rd

∫ +∞

R

vdrd f (r/ρ)

ρ
drμ(dy)

= vdμ
(
R

d
)
ρd

∫ +∞

R/ρ

udf (u)du.
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From (7), we have f (u) ≤ C0/u
β+1 and when ρ < 1,

ρd

∫ +∞

R/ρ

udf (u)du ≤ ρd

∫ +∞

R/ρ

ud C0

u1+β
du = C0

β − d
Rd−βρβ

so that

E
[∣∣Mρ(μ) − MR

ρ (μ)
∣∣] ≤ C0

β − d
Rd−βλ(ρ)ρβK(0)vdμ

(
R

d
)
,

which goes to 0 uniformly in ρ ∈]0,1[ under the intermediate and small scalings since λ(ρ)ρβ

is bounded in these case. �

This uniform convergence is crucial in order to interchange the limit in ρ and the limit in R

whenever limρ→0 M̃R
ρ (μ) exists:

lim
ρ→0

L
(
M̃ρ(μ)

) = lim
ρ→0

lim
R→+∞L

(
M̃R

ρ (μ)
) = lim

R→+∞ lim
ρ→0

L
(
M̃R

ρ (μ)
)
. (16)

The strategy is now clear to obtain limρ→0 M̃ρ(μ): (i) first, take limρ→0 M̃R
ρ (μ) and (ii) next

take the limit in R → +∞. In order to realize (i), we use the Laplace transform of a DPP (39)
and the expansion (37) of the corresponding Fredholm determinant. In this expansion, the first
term (for n = 1) is identified as a Poissonian term for which the asymptotics of the Poissonian
model applies and the remaining terms (n ≥ 2) are shown to be asymptotically negligible. Next,
(ii) properly shapes the limit with R → +∞.

However in order to realize (i), it is required to investigate the convergence of M̃R
ρ (μ) when

ρ → 0 on a restricted class of measures μ that we introduce now.

Definition 2.4. The set M+
β consists of positive measures μ ∈ Z+

c (Rd) such that there exist two
real numbers p and q with 0 < p < β < q ≤ 2d and a positive constant Cμ such that∫

Rd

μ
(
B(x, r)

)2
dx ≤ Cμ

(
rp ∧ rq

)
, (17)

where a ∧ b = min(a, b).

The controls in (17) by both rp and rq are required to ensure that our quantities are well
defined (see Proposition 2.5(i)); however in the sequel, only the control by rq will be used.
This definition is reminiscent of M2,β in [4]. It is immediate that Dirac measures do not belong
to M+

β . However absolutely continuous measures with respect to the Lebesgue measure, with

density ϕ ∈ L2(Rd) with compact support, do belong to M+
β and will play an important role

in the small-balls scaling. In this case, we shall abusively write μ ∈ L2
c(R

d) (here, the index c

stands for compact support). Recall the following properties on M+
β from Propositions 2.2 and

2.3 from [4].
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Proposition 2.5. (i) The set M+
β is an affine subspace and, for all μ ∈M+

β ,∫
Rd×R+

μ
(
B(x, r)

)2
r−β−1 dx dr < +∞.

(ii) If d < β < 2d , then L2
c(R

d) ⊂M+
β and for all μ ∈ L2

c(R
d):∫

Rd

μ
(
B(x, r)

)2
dx ≤ Cμ

(
rd ∧ r2d

)
.

Moreover, M+
β is closed under translations, rotations and dilatations and is included in the

subspace of diffuse measures, see Proposition 2.3 and Proposition 2.4 in [4] for details. See also
[13], Section 2.2, for a sufficient condition to belong to M+

β in terms of the Riesz energy of a
measure.

Poissonian asymptotics

Since our strategy consists in identifying, in our functional, Poissonian terms to which well-
known asymptotics are applied, we recall these Poissonian asymptotics from [13] but with our
current notations, see also [3,4].

Theorem 2.6 (Poissonian asymptotics, [3,4] or [13]). Let � be a marked PPP in (6) and (12)
with compensator K(0) dxF (dr) with F having density f satisfying (7) for d < β < 2d .

(i) Large-balls scaling: Assume λ(ρ)ρβ → +∞. Then, for n(ρ) = (λ(ρ)ρβ)1/2, M̃ρ(·)/n(ρ)

converges in the fdd sense on M+
β to W where

W(μ) =
∫
Rd×R+

μ
(
B(x, r)

)
M2(dx, dr)

and M2 is a centered Gaussian random measure with control measure K(0)Cβr−β−1 dx dr .
(ii) Intermediate scaling: Assume λ(ρ)ρβ → ad−β ∈]0,+∞[. Then, for n(ρ) = 1, M̃ρ(·)/

n(ρ) converges in the fdd sense on M+
β to P̃ ◦ Da where

P̃ (μ) =
∫
Rd×R+

μ
(
B(x, r)

)
�̃(dx, dr)

with �̃ a (compensated) PPP with compensator measure K(0)Cβr−β−1 dx dr and Da is the
dilatation defined by (Daμ)(B) = μ(a−1B).

(iii) Small-balls scaling: Assume λ(ρ)ρβ → 0. Then, for n(ρ) = (λ(ρ)ρβ)1/γ with γ = β/d ∈
]1,2[, M̃ρ(·)/n(ρ) converges in the fdd sense in L1(Rd) ∩ L2(Rd) to Z where

Z(μ) =
∫
Rd

φ(x)Mγ (dx) for μ(dx) = φ(x)dx with φ ∈ L1(
R

d
) ∩ L2(

R
d
)
,
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with Mγ a γ -stable measure with control measure σγ dx where

σγ = K(0)Cβv
γ

d

d

∫ +∞

0

1 − cos(r)

r1+γ
dr,

and with unit skewness.

Here, and in the sequel, we follow the notations of the standard reference [23] for stable
random variables and integrals.

2.1. Large-balls scaling

In this section, we first investigate the behaviour of M̃R
ρ (μ) in (15) under the large-balls scaling

λ(ρ)ρβ → +∞ when ρ → 0. In this section, set n(ρ) = (λ(ρ)ρβ)1/2.
As explained previously, the superposition due to λ(ρ) → +∞ acts firstly producing a Gaus-

sian field WR with a CLT type argument. Next, let R → +∞ to obtain the asymptotic behaviour
of M̃ρ(μ) according to (16). The field obtained is given by a Gaussian integral similar to that of
Theorem 2.6 (see also Theorem 2(i) in [13]).

Theorem 2.7 (Large-balls scaling asymptotics). Assume (7) and the kernels Kρ satisfy (10)
and Hypothesis 1 for their associated operators Kρ in (5). Suppose λ(ρ)ρβ → +∞ when ρ → 0,
then the field n(ρ)−1M̃ρ(·) converges in finite-dimensional distributions sense to W(·) in the
space M+

β where

W(μ) =
∫
Rd×R+

μ
(
B(x, r)

)
M2(dx, dr),

with a centered Gaussian random measure M2 with control measure K(0)Cβr−β−1 dx dr .

Following our strategy, we start with the asymptotics of M̃R
ρ (μ):

Proposition 2.8. Suppose λ(ρ)ρβ → +∞ when ρ → 0. Then, for all fixed R > 0 and for all
μ ∈M+

β , n(ρ)−1M̃R
ρ (μ) converges in distribution when ρ → 0 to

WR(μ) =
∫
Rd×R+

μ
(
B(x, r)

)
1{r≤R}M2(dx, dr),

uniformly in R, where M2 is the same centered Gaussian random measure as in Theorem 2.7.

Proof. The convergence in distribution of M̃R
ρ (μ) for μ ∈ M+

β is shown by the convergence of
its Laplace transform: for θ ≥ 0

E
[
exp

(−θn(ρ)−1M̃R
ρ (μ)

)] = exp
(
θE

[
n(ρ)−1MR

ρ (μ)
])
E

[
exp

(−θn(ρ)−1MR
ρ (μ)

)]
. (18)
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Since MR
ρ given in (15) is a determinantal integral with a compactly supported (say in �R

μ )
integrand gR

μ(x, r) := μ(B(x, r))1{r≤R}, and the kernel Kρ satisfying Hypothesis 1, its Laplace
transform is given by Theorem A.4:

E
[
exp

(−θn(ρ)−1MR
ρ (μ)

)] = Det
(
I − K̂ρ

[
1 − e−θn(ρ)−1gR

μ
])

(19)

= exp

(
−

∑
n≥1

1

n
Tr

(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]n))

,

where K̂ρ[1 − e−θn(ρ)−1gR
μ ] is the bounded operator of L2(Rd ×R+) given in (40). We compute

the first trace in the sum in (19) with Proposition A.5 applied with the DPP �ρ with kernel K̂ρ on

R
d ×R+ restricted on the compact �R

μ and the function 1 − e−θn(ρ)−1gR
μ (see Proposition A.5):

Tr
(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]) = E

[∫
Rd×R+

(
1 − e−θn(ρ)−1gR

μ
)
�ρ(dx, dr)

]
=

∫
Rd×R+

(
1 − e−θn(ρ)−1μ(B(x,r))1{r≤R})Kρ(x, x)

f (r/ρ)

ρ
dx dr.

With (10), this term for n = 1 combines with the factor exp(θE[n(ρ)−1MR
ρ (μ)]) of (18) into

exp

(∫
Rd×R+

ψ
(
θn(ρ)−1gR

μ

)
λ(ρ)K(0)

f (r/ρ)

ρ
dx dr

)
,

with ψ(u) = e−u − 1 + u. The Laplace transform of n(ρ)−1M̃R
ρ (μ) in (18) thus rewrites

E
[
exp

(−θn(ρ)−1M̃R
ρ (μ)

)] = exp

(∫
Rd×R+

ψ
(
θn(ρ)−1gR

μ

)
λ(ρ)K(0)

f (r/ρ)

ρ
dx dr

)
(20)

× exp

(
−

∑
n≥2

1

n
Tr

(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]n))

.

First, we deal with the first exponential term in (20): the key point is that this is the Laplace
transform of n(ρ)−1P̃ R

ρ (μ) with

P̃ R
ρ (μ) =

∫
Rd×R+

μ
(
B(x, r)

)
1{r≤R}�̃ρ(dx, dr), (21)

where �̃ρ is a compensated Poisson random measure on R
d ×R+ with intensity

λ(ρ)K(0)
f (r/ρ)

ρ
dx dr.

From (i) in Theorem 2.6 (Theorem 2(i) in [13]), (21) converges in distribution when ρ → 0 to
the Gaussian integral WR(μ). We show now that this convergence is actually uniform in R, to
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that way, consider the difference of the log-Laplace transform of n(ρ)−1P̃ R
ρ (μ) and of WR(μ):∣∣log

(
E

[
exp

(
n(ρ)−1P̃ R

ρ (μ)
)]) − log

(
E

[
exp

(
WR(μ)

)])∣∣
≤

∣∣∣∣∫
Rd×R+

ψ
(
n(ρ)−1μ

(
B(x, r)

)
1{r≤R}

)
λ(ρ)K(0)

f (r/ρ)

ρ

− μ(B(x, r))2

2
1{r≤R}

CβK(0)

rβ+1
dx dr

∣∣∣∣ (22)

≤
∫
Rd×R+

∣∣∣∣ψ(
n(ρ)−1μ

(
B(x, r)

)
1{r≤R}

)
λ(ρ)K(0)

f (r/ρ)

ρ

− μ(B(x, r))2

2
1{r≤R}

CβK(0)

rβ+1

∣∣∣∣dx dr.

Since ψ(u) ∼ u2

2 when u → 0 and since n(ρ) = (λ(ρ)ρβ)1/2 → +∞ when ρ → 0, using the
tails behaviour (7), we have:

ψ
(
n(ρ)−1μ

(
B(x, r)

))
λ(ρ)K(0)

f (r/ρ)

ρ
∼

ρ→0

μ(B(x, r))2

2n(ρ)2
λ(ρ)K(0)

Cβρβ

rβ+1

= μ(B(x, r))2

2
K(0)

Cβ

rβ+1
,

proving that the integrand in (22) converges to 0. Moreover, using (7) and ψ(x) ≤ x2/2, for all r

and for all ρ > 0, we have:∣∣∣∣ψ(
n(ρ)−1μ

(
B(x, r)

))
λ(ρ)K(0)

f (r/ρ)

ρ
− μ(B(x, r))2

2

CβK(0)

rβ+1

∣∣∣∣
≤ μ(B(x, r))2

2n(ρ)2
λ(ρ)K(0)

f (r/ρ)

ρ
+ μ(B(x, r))2

2

CβK(0)

rβ+1

≤ K(0)(C0 + Cβ)
μ(B(x, r))2

2rβ+1
,

which is integrable over Rd ×R+ according to Proposition 2.5. Then, the dominated convergence
theorem ensures that (22) converges to 0 when ρ → 0. Moreover, since it does not depend on R,
the convergence of n(ρ)−1P̃ R

ρ (μ) to WR(μ) is uniform in R.
Next, we deal with the other second exponential terms in (20) and show that they converge to

1 proving that for all n ≥ 2,

lim
ρ→0

Tr
(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]n) = 0.

More precisely, the convergence of (20) to 1 will derive from the following lemmas. Recall
gR

μ(x, r) = μ(B(x, r))1{r≤R} and μ ∈ M+
β ; in particular gR

μ is bounded with compact support.
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Since Kρ satisfies Hypothesis 1, Proposition A.8 first ensures K̂ρ satisfies also Hypothesis 1

and Proposition A.10 next ensures that K̂ρ[1 − e−θn(ρ)−1gR
μ ] is the kernel of an Hilbert–Schmidt

operator in (5).

Lemma 2.9. For all n ≥ 2, we have

Tr
(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]n) ≤ Tr

(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]2)n/2

.

Lemma 2.10. Assume Condition (8), and consider μ ∈ M+
β . Then there is ρ∗ > 0 and a constant

CK ∈]0,+∞[ such that for all ρ ∈]0, ρ∗[, uniformly in R,

Tr
(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]2) ≤ CKCμCf θ2 λ(ρ)ρq

n(ρ)2
,

with Cf = (
∫ +∞

0 rq/2f (r) dr)2.

As a consequence of both Lemmas 2.9 and 2.10, we have∣∣∣∣−∑
n≥2

1

n
Tr

(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]n)∣∣∣∣ ≤

∑
n≥1

1

n

(√
Tr

(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]2))n

(23)

= − ln
(
1 −

√
Tr

(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]2))

.

Next, since (8) holds true under (7), Lemma 2.10 applies and the bound (23) goes to 0 when
ρ → 0 since λ(ρ)ρq/n(ρ)2 = ρq−β with q > β . As a consequence,

lim
ρ→0

exp

(
−

∑
n≥2

1

n
Tr

(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]n)) = 1,

and the limit in (20) writes

lim
ρ→0

E
[
exp

(−θn(ρ)−1M̃R
ρ (μ)

)] = E
[
exp

(−θWR(μ)
)]

,

achieving the proof of Proposition 2.8. �

It remains to prove Lemma 2.9 and Lemma 2.10.

Proof of Lemma 2.9. Recall that for a Hilbert–Schmidt operator T with operator norm ‖T ‖ and
Hilbert–Schmidt norm ‖T ‖2, we have ‖T ‖ ≤ ‖T ‖2 (see for instance Theorem 1(ii) in [8] or [22]
for details). Then, we have

Tr
(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]n) ≤ ∥∥K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]∥∥n−2

Tr
(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]2)

≤ ∥∥K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]∥∥n−2

2 Tr
(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]2)

.
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Moreover, we have:∥∥K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]∥∥2

2

=
∫

(Rd×R+)2

∣∣K̂ρ

[
1 − e−θn(ρ)−1gR

μ
](

(x, r), (y, s)
)∣∣2

dx dy dr ds

=
∫

(Rd×R+)2

(
1 − e−θn(ρ)−1gR

μ (x,r)
)
K̂ρ

(
(x, r), (y, s)

)2

× (
1 − e−θn(ρ)−1gR

μ (y,s)
)
dx dy dr ds

= Tr
(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]2)

,

and thus, we obtain, for every n ≥ 2:

Tr
(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]n) ≤ Tr

(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]2)n/2

. �

Proof of Lemma 2.10. The operator K̂ρ[1 − e−θn(ρ)−1gR
μ ]2 is an integral operator with kernel

K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]2(

(x, r), (y, s)
)

=
√

1 − e−θn(ρ)−1gR
μ (x,r)

√
f (r/ρ)

ρ

×
(∫

Rd×R+

(
1 − e−θn(ρ)−1gR

μ (z,t)
)f (t/ρ)

ρ
Kρ(x, z)Kρ(z, y) dz dt

)

×
√

1 − e−θn(ρ)−1gR
μ (y,s)

√
f (s/ρ)

ρ
.

Its trace is thus given by:

Tr
(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]2) =

∫
Rd×R+

K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]2(

(x, r), (x, r)
)
dx dr

=
∫

(Rd×R+)2

(
1 − e−θn(ρ)−1gR

μ (x,r)
)(

1 − e−θn(ρ)−1gR
μ (z,t)

)
(24)

× f (r/ρ)

ρ

f (t/ρ)

ρ

∣∣Kρ(x, z)
∣∣2

dx dzdr dt.

Since μ has a compact support, the function gR
μ has also a compact support and gR

μ(x, r) = 0
for, say, ‖x‖ ≥ M . Thus, the integrand in (24) is a positive function with compact support (for

θ or ρ small enough). Dealing first with the integral over Rd ×R
d , since 1 − e−θn(ρ)−1gR

μ (x,r) ≤
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θn(ρ)−1μ(B(x, r))1{r≤R}, we have∫
Rd×Rd

(
1 − e−θn(ρ)−1gR

μ (x,r)
)(

1 − e−θn(ρ)−1gR
μ (z,t)

)∣∣Kρ(x, z)
∣∣2

dx dz

=
∫

B(0,M)×B(0,M)

(
1 − e−θn(ρ)−1gR

μ (x,r)
)(

1 − e−θn(ρ)−1gR
μ (z,t)

)∣∣Kρ(x, z)
∣∣2

dx dz

≤
∫

B(0,M)×B(0,M)

(
θ

n(ρ)

)2

μ
(
B(x, r)

)
μ

(
B(z, t)

)
1{r≤R}1{t≤R}Kρ(x − z)2 dx dz (25)

≤ θ2

n(ρ)2
1{r≤R}1{t≤R}

(∫
B(0,M)×B(0,M)

μ
(
B(x, r)

)2
Kρ(x − z)2 dx dz

)1/2

×
(∫

B(0,M)×B(0,M)

μ
(
B(z, t)

)2
Kρ(x − z)2 dx dz

)1/2

,

using the Cauchy–Schwarz inequality. But, with the Fubini theorem, we have∫
Rd×Rd

μ
(
B(x, r)

)2
Kρ(x − z)2 dx dz ≤

∫
Rd

μ
(
B(x, r)

)2
(∫

Rd

Kρ(x − z)2 dz

)
dx

(26)
≤ CKλ(ρ)Cμ

(
rp ∧ rq

)
,

since μ ∈ M+
β and using condition (11). Plugging into (25), (26) and a similar bound for the

second integral in (25), we have∫
Rd×Rd

(
1 − e−θn(ρ)−1gR

μ (x,r)
)(

1 − e−θn(ρ)−1gR
μ (z,t)

)∣∣Kρ(x, z)
∣∣2

dx dz

≤ CKθ2 λ(ρ)

n(ρ)2
1{r≤R}1{t≤R}Cμrq/2tq/2.

As a consequence, the bound (24) continues as follows

Tr
(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]2)

≤ CKθ2 λ(ρ)

n(ρ)2

∫
(R+)2

1{r≤R}1{t≤R}Cμrq/2tq/2 f (r/ρ)

ρ

f (t/ρ)

ρ
dr dt

= CKCμθ2 λ(ρ)

n(ρ)2

(∫ R

0
rq/2 f (r/ρ)

ρ
dr

)2

= CKCμθ2 λ(ρ)ρq

n(ρ)2

(∫ R/ρ

0
rq/2f (r) dr

)2

.

But since f is integrable and q ≤ 2d (Definition 2.4) the finite volume condition (8) entails∫ R/ρ

0
rq/2f (r) dr ≤ Cf :=

∫ +∞

0
rq/2f (r) dr < +∞. �
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We continue following the strategy exposed page 1575. Since the convergence in ρ in Propo-
sition 2.8 is uniform in R, the interchange (16) applies and we obtain:

lim
ρ→0

L
(
n(ρ)−1M̃ρ(μ)

) = lim
ρ→0

lim
R→+∞L

(
n(ρ)−1M̃R

ρ (μ)
) = lim

R→+∞L
(
WR(μ)

)
.

It remains now to identify limR→+∞ WR(μ), this is done in the following proposition:

Proposition 2.11. For all μ ∈M+
β , WR(μ) converges in probability when R → +∞ to

W(μ) =
∫
Rd×R+

μ
(
B(x, r)

)
M2(dx, dr),

where M2 is the same centered Gaussian random measure as in Theorem 2.7.

Proof. Since WR(μ) and W(μ) are both integral with respect to the same Gaussian measure
M2, we have:

W(μ) − WR(μ) =
∫
Rd×R+

μ
(
B(x, r)

)
1{r>R}M2(dx, dr),

whose log-Laplace transform is

log
(
E

[
exp

(
W(μ) − WR(μ)

)]) = 1

2

∫
Rd×R+

μ
(
B(x, r)

)21{r>R}K(0)r−β−1 dx dr. (27)

The integrand in (27) converges to 0 when R → +∞ and is bounded by

μ
(
B(x, r)

)2
K(0)r−β−1,

which, thanks to Proposition 2.5, is integrable for μ ∈ M+
β . The dominated convergence theorem

thus ensures that (27) converges to 0, i.e. W(μ) − WR(μ) ⇒ 0 and WR(μ)
P−→ W(μ), R →

+∞, which is Proposition 2.11. �

So far, all the intermediate results are obtained to prove Theorem 2.7:

Proof of Theorem 2.7. The one-dimensional convergence is obtained by the combination of
(16) with Proposition 2.3, Proposition 2.8 and Proposition 2.11. Now, remark that the fields M̃ρ

and W are both linear on M+
β . Thus, using the Cramér–Wold device and the linear structure

of Mβ , we have immediately the convergence of the finite-dimensional distributions from the
one-dimensional convergence. �

2.2. Intermediate scaling

This section investigates the asymptotic behaviour of M̃ρ in (12) under the intermediate scaling,
when limρ→+∞ λ(ρ)ρβ = a ∈]0,+∞[. In this section, set n(ρ) = 1.
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Theorem 2.12 (Intermediate scaling asymptotics). Assume (7) and the kernels Kρ satisfy (10)
and Hypothesis 1 for their associated operators Kρ in (5). Suppose λ(ρ)ρβ → ad−β ∈]0,+∞[
when ρ → 0, then M̃ρ(·) converges in the finite-dimensional distributions sense to P̃ ◦ Da(·) in
the space M+

β , where

P̃ (μ) =
∫
Rd×R+

μ
(
B(x, r)

)
�̃(dx, dr),

with �̃ a compensated Poisson random measure on R
d ×R+ with intensity measure K(0)Cβ ×

r−β−1 dx dr and Da standing for the dilatation defined by (Daμ)(B) = μ(a−1B).

Following the same strategy as previously (see page 1575), first investigate the asymptotic
behaviour of M̃R

ρ (μ) in (15) when ρ → 0 and next let R → +∞ in the obtained limit. Roughly
speaking, as in the Poissonian case (see (ii) in Theorem 2.6, or Theorem 2(ii) in [13]), the limit
corresponds to take the limit in the intensity of the underlying random measure. The result states
as follows:

Proposition 2.13. Suppose λ(ρ)ρβ → a ∈]0,+∞[ when ρ → 0. Then, for all μ ∈ M+
β and

R > 0, M̃R
ρ (μ) converges in distribution to

(
P̃ R ◦ Da

)
(μ) =

∫
Rd×R+

(Daμ)
(
B(x, r)

)
1{r≤R}�̃(dx, dr),

where �̃ is the same compensated Poisson random measure as in Theorem 2.12.

Proof. The proof follows the same scheme as for Proposition 2.8. Recall that in this context,
n(ρ) = 1 is set. The Laplace transform of M̃R

ρ (μ) is given by (20), that is,

E
[
exp

(−θM̃R
ρ (μ)

)] = exp

(∫
Rd×R+

ψ
(
θμ

(
B(x, r)

)
1{r≤R}

)
Kρ(x, x)

f (r/ρ)

ρ
dx dr

)
(28)

× exp

(
−

∑
n≥2

1

n
Tr

(
K̂ρ

[
1 − e−θgR

μ
]n))

.

The first exponential in (28) is the Laplace transform of

P̃ R
ρ (μ) =

∫
Rd×R+

μ
(
B(x, r)

)
1{r≤R}�̃ρ(dx, dr),

where �̃ρ is a compensated Poisson random measure on R
d × R+ with intensity measure

λ(ρ)K(0)
f (r/ρ)

ρ
dx dr . From (ii) in Theorem 2.6 (see also Theorem 2(i) in [13]), under Con-

dition (7), when limρ→0 λ(ρ)ρβ = ad−β ∈]0,+∞[, this process converges to

(
P̃ R ◦ Da

)
(μ) =

∫
Rd×R+

(Daμ)
(
B(x, r)

)
1{r≤R}�̃(dx, dr),
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where �̃ is a compensated Poisson random measure on R
d × R+ with intensity measure

K(0)r−β−1 dx dr . In particular, we have:

lim
ρ→0

exp

(∫
Rd×R+

ψ
(
θμ

(
B(x, r)

)
1{r≤R}

)
Kρ(x, x)

f (r/ρ)

ρ
dx dr

)
= E

[
exp

(−θ
(
P̃ R ◦ Da

)
(μ)

)]
.

The proof is completed by showing that the second exponential term in (28) converges to 1.
Proceeding as in the proof of Proposition 2.8, with n(ρ) = 1, Lemma 2.10 entails

Tr
(
K̂ρ

[
1 − e−θgR

μ
]2) ≤ CKCμCf θ2λ(ρ)ρq,

which goes to 0 since limρ→0 λ(ρ)ρq = 0 for q > β . As a consequence

lim
ρ→0

Tr
(
K̂ρ

[
1 − e−θgR

μ
]2) = 0.

Then, with Lemma 2.9, we still have for every n ≥ 2

Tr
(
K̂ρ

[
1 − e−θgR

μ
]n) ≤ Tr

(
K̂ρ

[
1 − e−θgR

μ
]2)n/2

,

and the second exponential term in (28) converges to 1, as in the proof of Proposition 2.8,
page 1582, this concludes the proof of Proposition 2.13. �

Combining Proposition 2.13 with the interchange (16), we have:

lim
ρ→0

L
(
M̃ρ(μ)

) = lim
R→+∞ lim

ρ→0
L

(
M̃R

ρ (μ)
) = lim

R→+∞L
(
P̃ R(μ)

)
.

It remains now to identify limR→+∞ P̃ R(μ), this is done in the following proposition:

Proposition 2.14. For all μ ∈M+
β , P̃ R(μ) converges in L1 when R → +∞ to

P̃ (μ) =
∫
Rd×R+

μ
(
B(x, r)

)
�̃(dx, dr),

where �̃ is the same compensated Poisson random measure as in Theorem 2.12.

Proof. Since P̃ R(μ) and P̃ (μ) are Poissonian integrals with respect to the same measure �̃, we
have: ∣∣P̃ R(μ) − P̃ (μ)

∣∣
=

∣∣∣∣∫
Rd×R+

μ
(
B(x, r)

)
1{r>R}�̃(dx, dr)

∣∣∣∣,



1588 J.-C. Breton, A. Clarenne and R. Gobard

and

E
[∣∣P̃ R(μ) − P̃ (μ)

∣∣] ≤ 2
∫
Rd×R+

μ
(
B(x, r)

)
1{r>R}K(0)r−β−1 dx dr

≤ 2vdμ
(
R

d
)
K(0)

∫ +∞

R

rd−β−1 dr

= 2vdμ(Rd)K(0)

(β − d)Rβ−d
−→ 0, R → +∞. �

So far, all the intermediate results are obtained to prove Theorem 2.12:

Proof of Theorem 2.12. The one-dimensional convergence is obtained by the combination of
(16) with Proposition 2.3, Proposition 2.13 and Proposition 2.14. Since the fields M̃ρ and P̃ are
both linear on M+

β , using the Cramér–Wold device and the linear structure of Mβ , we have
immediately the convergence of the finite-dimensional distributions from the one-dimensional
convergence. �

2.3. Small-balls scaling

This section investigates the asymptotics of M̃R
ρ (μ) under the small-balls scaling, that is, when

limρ→0 λ(ρ)ρβ = 0. In this section, set n(ρ) = (λ(ρ)ρβ)1/γ with γ := β/d ∈]1,2[. We deal
first with the limit in ρ of the truncated field M̃R

ρ (μ). In this case, the obtained limit does not
depend on R, roughly speaking this is due to the fast decreasing of the rescaled radii ρr since
ρ → 0 very fast in this regime. The limiting field thus obtained is a stable integral similar to the
one obtained for the Poissonian model in (iii) of Theorem 2.6 (cf. also Theorem 2(iii) in [13]
and cf. [23] for notations on stable integrals). In this case, the limit is driven by small balls and
this requires to consider smooth measure μ(dx) = ϕ(x)dx. Roughly speaking, if the measure μ

were, for instance, atomic, there will be a possibility for the small balls driving the asymptotics
to not charge μ and M(μ) would vanish.

Theorem 2.15. Assume (7) and the kernels Kρ satisfy (10) and Hypothesis 1 for their associated
operators Kρ in (5). Suppose λ(ρ)ρβ → 0 when ρ → 0. Then, the field n(ρ)−1M̃ρ(·) converges
in the finite-dimensional distributions sense when ρ → 0 to Z(·) in L2

c(R
d) where

Z(μ) =
∫
Rd

ϕ(x)Mγ (dx), for μ(dx) = ϕ(x)dx,

with Mγ a γ -stable measure with control measure σγ dx where

σγ = K(0)Cβv
γ

d

d

∫ +∞

0

1 − cos(r)

r1+γ
dr,

and constant unit skewness.
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First, we have the following proposition.

Proposition 2.16. Suppose λ(ρ)ρβ → 0 when ρ → 0 and set n(ρ) = (λ(ρ)ρβ)1/γ . Then, for all
R > 0 and for all μ ∈ L1(Rd) ∩ L2(Rd), writing μ(dx) = ϕ(x)dx, n(ρ)−1M̃R

ρ (μ) converges in
the finite-dimensional distributions sense when ρ → 0 to

Z(μ) =
∫
Rd

ϕ(x)Mγ (dx),

where Mγ is the same γ -stable measure as in Theorem 2.15.

Proof. Recall the Laplace transform of M̃R
ρ (μ) is given in (20):

E
[
exp

(−θn(ρ)−1M̃R
ρ (μ)

)] = exp

(∫
Rd×R+

ψ
(
θn(ρ)−1gR

μ

)
Kρ(x, x)

f (r/ρ)

ρ
dx dr

)
× exp

(
−

∑
n≥2

1

n
Tr

(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]n))

.

The first exponential term is still the Laplace transform of n(ρ)−1P̃ρ(μ) where P̃ρ(μ) is the
compensated Poissonian integral (21). With the change of variable r = n(ρ)1/ds, this log-Laplace
transform becomes: ∫

Rd×R+
ψ

(
θn(ρ)−1μ

(
B

(
x,n(ρ)1/ds

))
1{s<n(ρ)−1/dR}

)
(29)

× λ(ρ)K(0)n(ρ)1/d f (sn(ρ)1/d/ρ)

ρ
dx ds.

For μ(dx) = ϕ(x)dx with ϕ ∈ L2
c(R

d), then the following Lemma from [13] entails

lim
ρ→0

θn(ρ)−1μ
(
B

(
x,n(ρ)1/ds

))
1{s<n(ρ)−1/dR} = θϕ(x)vdsd,

dx-almost everywhere and

x �→ sup
r>0

(
μ(B(x, r))

vdrd

)
∈ L2(

R
d
)
.

Lemma 2.17 (Lemma 4 in [13]). Let C be a bounded Borelian set in R
d with Lebesgue measure

|C| = 1.

(i) If ϕ ∈ L1, then limv→0 v−1
∫
x+v1/dC

ϕ(y) dy = ϕ(x) for dx-almost all x.
(ii) If ϕ ∈ L1, then ϕ∗(x) := supv>0 v−1

∫
x+v1/dC

|ϕ(y)|dy < +∞ for dx-almost all x.
(iii) Moreover if ϕ ∈ Lp for some p > 1 then ϕ∗ ∈ Lp .
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Then, using the very argument of the proof of Theorem 2 in [13] (see also the proof of Theo-
rem 2.16 in [4])∫

Rd×R+
ψ

(
θn(ρ)−1μ

(
B

(
x,n(ρ)1/dr

))
1{r<n(ρ)−1/dR}

)
× λ(ρ)K(0)n(ρ)1/d f (rn(ρ)1/d/ρ)

ρ
dx dr (30)

∼
ρ→0

λ(ρ)K(0)

∫
Rd×R+

ψ
(
θϕ(x)vdrd

)
n(ρ)1/d f (rn(ρ)1/d/ρ)

ρ
dx dr.

Using now the proof of Theorem 2 in [13] under the small-ball scaling, the right-hand side in (29)
converges to the Laplace transform of Z(μ). This implies that the random variable n(ρ)−1P̃ρ(μ)

converges in distribution to Z(μ).
The proof is completed by showing that the second exponential term in (29) converges to 1.

Using the same conclusion as in the proof of Proposition 2.8 page 1582 with Lemma 2.9, it is
enough to show that for this regime we still have

lim
ρ→0

Tr
(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]2) = 0.

Since we consider μ ∈ L2
c(R

d), we have also μ ∈ L1(Rd) and Proposition 2.5(ii) ensures that we
can take here q = 2d and then Lemma 2.10 writes with n(ρ) = (λ(ρ)ρβ)1/γ :

Tr
(
K̂ρ

[
1 − e−θn(ρ)−1gR

μ
]2) ≤ CKCμCf θ2 λ(ρ)ρ2d

n(ρ)2
= CKCμCf θ2λ(ρ)(β−2d)/β,

which goes to 0 when ρ → 0 since β < 2d . �

So far, all the intermediate results are obtained to finish the proof of Theorem 2.15 as for
Theorem 2.7 and Theorem 2.12.

3. Comments

3.1. Zoom-in asymptotics

For the Poisson random balls model, the study of the microscopic fluctuations obtained in [2]
by zooming-in instead of zooming-out, leads to very similar results to those obtained in the
macroscopic behaviour in [13] under the large-ball scaling and the intermediate scaling. This
similarity is the origin of the unified approach for both types of scaling in [3], used also in the
weighted model in [4]. In the microscopic point of view, this is the behaviour of small balls which
matters and this is encapsulated in [3] in the following condition on small radii:

f (r) ∼r→0
1

rβ+1
.
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In this case, f cannot be a probability density nor be integrable. Consequently, we cannot study
a determinantal random balls model under a zoom-in procedure. Indeed, even if we were to
consider a marked DPP on R

d ×R+ with kernel

K̂
(
(x, r), (y, s)

) = √
f (r)K(x, y)

√
f (s), (31)

where K is a determinantal kernel on R
d and f is a function on R+ satisfying condition (7), this

DPP would have no chance to satisfy Hypothesis 1 when f is not integrable.

3.2. α-determinantal and α-permanental processes

The DPPs actually belong to a larger class of point processes, the so-called α-determinan-
tal/permanental processes. When α > 0, such processes exhibit attraction between their par-
ticles, and when α < 0, they exhibit repulsiveness. When α = −1, the (usual) DPPs are re-
covered while the case α = 1 corresponds to permanental processes. The definitions of α-
determinantal/permanental processes follow the same lines as in Def. A.2 but with the deter-
minant replaced by an α-determinant. Recall that for a matrix A = (ai,j )1≤i,j≤n and α ∈ R, its
α-determinant is defined by

detαA =
∑

σ∈Sn

αn−ν(σ )

n∏
i=1

ai,σ (i), (32)

where Sn is the symmetric group of permutation of {1, . . . , n} and ν(σ ) is the number of cycles
in σ ∈Sn. When α = −1 (resp. α = 1), (32) defines the (standard) determinant (resp. permanent)
of A: det−1A = detA, det1A = perm A.

The following result from [24] extends Theorem A.4 and proves the existence of such pro-
cesses for some α’s and it gives their Laplace transform:

Theorem 3.1 (Th. 1.2 in [24]). Let E be a Polish space equipped with a diffuse Radon measure
λ and K be a bounded symmetric integral operator on L2(E,λ) satisfying Hypothesis 1. Then
for α ∈ {2/m : m ∈ N} ∪ {−1/m : m ∈N}, there exists a unique point process φ such that

E

[
exp

(
−

∫
f (x)φ(dx)

)]
= Det

(
I + αK

[
1 − e−f

])−1/α
, (33)

for each compactly supported measurable f : E → R+ where K[1 − e−f ] still stands for the
kernel (40). Moreover, φ is a simple point process whose joint intensities are given by

ρn,α,K(x1, x2, . . . , xn) = detα
((

K(xi, xj )
)

1≤i,j≤n

)
.

Like for (38) below in the Appendix (for α = −1), for a trace-class operator T with ‖αT ‖ < 1,
the Fredholm determinant of I − αT expands in terms of α-determinant

Det(I − αT )−1/α =
+∞∑
n=0

1

n!
∫

En

detα
((

T (xi, xj )
)

1≤i,j≤n

)
λ⊗n(dx1, . . . , dxn).
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Using the expansion (37) of the Fredholm determinant of the Laplace transform (33), our
arguments can be carried out similarly for α-determinantal/permanental processes. Indeed, since
|α| ≤ 1, the terms for n ≥ 2 can be similarly bounded and are still asymptotically negligible while
the term n = 1 is obviously the same Poissonian term. As a consequence, Theorems 2.7, 2.12,
2.15 have natural generalizations to α-determinantal/permanental processes.

3.3. Non-stationary determinantal random balls model

With slight modifications, our main results remain true for non-stationary determinantal random
balls models. Consider a determinantal process φ with kernel K(x,y) still satisfying Hypothe-
sis 1 but also

x �−→ K(x,x) ∈ L∞(
R

d
)
. (34)

The zoom-out procedure consists now in introducing the family of DPPs φρ , ρ ∈]0,1], with
kernels Kρ with respect to the Lebesgue measure satisfying

Kρ(x, x) ∼
ρ→0

λ(ρ)K(x, x),

with limρ→0 λ(ρ) = +∞. We also replace (10) by

sup
x∈Rd

Kρ(x, x) ≤ λ(ρ) sup
x∈Rd

K(x, x), (35)

and observe that with (34), (35) and (41), we can replace (11) by

sup
x∈Rd

∫
Rd

∣∣Kρ(x, y)
∣∣2

dy =
ρ→0

O
(
λ(ρ)

)
. (36)

In this non-stationary context, Theorem 2.7, 2.12, 2.15 have the following counterparts:

Theorem 3.2. Assume (7) and φρ is a DPP with kernel satisfying (34), (35) and Hypothesis 1
for its associated operator Kρ in (5).

(i) Large-balls scaling: Assume λ(ρ)ρβ → +∞ and set n(ρ) = (λ(ρ)ρβ)1/2. Then,
M̃ρ(·)/n(ρ) converges in the fdd sense on M+

β to W where

W(μ) =
∫
Rd×R+

μ
(
B(x, r)

)
M2(dx, dr),

and M2 is a centered Gaussian random measure with control measure K(x,x)Cβr−β−1 dx dr .
(ii) Intermediate scaling: Assume λ(ρ)ρβ → ad−β ∈]0,+∞[ and set n(ρ) = 1. Then,

M̃ρ(·)/n(ρ) converges in the fdd sense on M+
β to P̃ ◦ Da where

P̃ (μ) =
∫
Rd×R+

μ
(
B(x, r)

)
�̃(dx, dr),
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with �̃ a (compensated) PPP with compensator measure K(x,x)Cβr−β−1 dx dr and Da is the
dilatation defined by (Daμ)(B) = μ(a−1B).

(iii) Small-balls scaling: Suppose λ(ρ)ρβ → 0 when ρ → 0 and set n(ρ) = (λ(ρ)ρβ)1/γ with
γ = β/d . Then, the field n(ρ)−1M̃ρ(·) converges in the finite-dimensional distributions sense
when ρ → 0 to Z(·) in L2

c(R
d) where

Z(μ) =
∫
Rd

ϕ(x)Mγ (dx), for μ(dx) = ϕ(x)dx,

with Mγ a γ -stable measure with control measure σγ K(x, x) dx where

σγ = Cβv
γ

d

d

∫ +∞

0

1 − cos(r)

r1+γ
dr,

and constant unit skewness.

In this non-stationary case, the proof follows the same general strategy as in page 1575 but with
technical details requiring (34), (35), (36). Roughly speaking, the limits are driven by the term
n = 1 in (19) while the other terms (n ≥ 2) are still negligible. Note that, in this non-stationary
setting, the Poissonian limits for n = 1 come now from [9] (with G = δ1 therein) instead of [13].
Details are left to the interested readers.

Appendix: (Marked) determinantal point processes

In this section, we give a short presentation of determinantal point processes (DPPs). For a gen-
eral reference on point processes, we refer to the two volumes book [6] and for a specific ref-
erence on DPPs, we refer to [12] and references therein. DPPs form a special class of point
processes that exhibit repulsiveness between their points. Recall that, by definition, a point pro-
cess ξ is a random locally finite collection of points. As it is customary done, we identify such
random collection ξ with the corresponding random counting measure

∑
x∈ξ δx . Below, we con-

sider a point process ξ in, say, some Polish space E. In the sequel, to avoid any ambiguity, the
points of the process are called particles. In the following, simple point processes, for which
almost surely its particles are all distinct, are considered. Considering a reference Borel measure
μ on E, the distribution law of ξ is, in general, characterized by its joint intensities.

Definition A.1. Let ξ be a point process on a Polish space E equipped with a measure μ. If there
are functions ρk : E → [0,+∞[, k ≥ 1, such that for any family of mutually disjoint Borelian
subsets D1, . . . ,Dk of E:

E

[
k∏

i=1

ξ(Di)

]
=

∫
∏k

i=1 Di

ρk(x1, . . . , xk)μ(dx1) · · ·μ(dxk),

we call them joint intensities with respect to μ. Moreover, we require ρk(x1, . . . , xk) = 0 when-
ever xi = xj for some i �= j .
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Roughly speaking, ρk(x1, . . . , xk) can be interpreted as the (infinitesimal) probability for ξ to
have particles in each x1, . . . , xk . For example, for a homogeneous Poisson point process (PPP),
the joint intensities are constant while for a general (but diffuse) PPP with intensity function
λ, we have ρk(x1, . . . , xk) = λ(x1) · · ·λ(xk). For a DPP, the joint intensities are given by a cer-
tain determinant of a measurable function K : E2 → R, called its kernel and characterizing the
process, hence its name.

Definition A.2. A point process ξ on E is said to be a determinantal point process with kernel
K if it is simple and its joint intensities write for all k ≥ 1 and all x1, . . . , xk ∈ E:

ρk(x1, . . . , xk) = det
(
K(xi, xj )

)
1≤i,j≤k

:= det[K](x1, . . . , xk).

See Theorem A.4 below for conditions ensuring the existence of such processes. Observe
that the repulsiveness exhibited by a DPP can be read on its joint intensity of second order.
Indeed, if K is continuous and x1, x2 ∈ E, the more they will be close to each other, the more
the determinant of (K(xi, xj ))1≤i,j≤2 will be close to 0. Thus, ρ2(x1, x2) ≈ 0 whenever x1 ≈ x2.
This implies that, if there is a particle of the process in x1, the probability that there is another
particle in the close vicinity of x1 is small. For a homogeneous PPP, the constant intensities show
that the particles are independently drawn.

An important class of DPPs is the class of those whose kernel satisfies special properties
(see Hypothesis 2 below). Note that Hypothesis 1 – the basic hypothesis of our setting – is a
specialization of Hypothesis 2 in our setting (E =R

d , μ = dx). For that purpose, recall that, for
a compact operator T on a separable Hilbert space H equipped with the scalar product 〈·, ·〉, its
trace is given by

Tr(T ) =
+∞∑
n=1

〈T en, en〉,

where (en)n≥1 is (any) complete orthonormal (CONB in shorts) system of H . In particular, T is
said to be a trace-class operator if

‖T ‖1 := Tr
(|T |) < +∞,

where |T | = √
T ∗T . The hypothesis on the kernel K writes (see Assumption 4.2.3 in [12] or

Condition A in [24]):

Hypothesis 2. The Polish space E is equipped with a Radon σ -finite measure λ. The map K is
an operator from L2(E,λ) into L2(E,λ) satisfying the following conditions:

(i) K is a bounded symmetric integral operator on L2(E,λ) with kernel K , i.e., for any
x ∈ E and any f ∈ L2(E,λ),

Kf (x) =
∫

E

K(x, y)f (y)λ(dy).

(ii) The spectrum of K is included in [0,1[.



Macroscopic analysis of determinantal random balls 1595

(iii) The map K is locally trace-class, i.e. for all compact � ⊂ E, the restriction K� of K on
L2(�,λ) is of trace-class.

Remark A.3. If K is the kernel of a map K satisfying Hypothesis 2, then x �→ K(x,x) is
nonnegative.

In our argument, the limit in distribution of quantities (4) is investigated by considering the
Laplace transform of a DPP. It is given in Theorem A.4 below from [24] and expressed in terms
of Fredholm determinant. Recall that if T is a trace-class operator with ‖T ‖ < 1, the Fredholm
determinant of I + T is given by

Det(I + T ) = exp

(+∞∑
n=1

(−1)n−1

n
Tr

(
T n

))
(37)

(see [24], Lemma 2.1 iii)). Moreover, the following expansion ([24], Th. 2.4) in terms of deter-
minants hold:

Det(I + T ) =
+∞∑
n=0

1

n!
∫

En

det
((

T (xi, xj )
)

1≤i,j≤n

)
λ⊗n(dx1, . . . , dxn). (38)

Theorem A.4 (Th. 1.2 in [24]). Let E be a Polish space equipped with a diffuse Radon measure
λ and K be a bounded symmetric integral operator on L2(E,λ) satisfying Hypothesis 2. Then
there exists a unique DPP φ as in Definition A.2 and its Laplace transform is given for each
compactly supported measurable f : E → R+ by

E

[
exp

(
−

∫
f (x)φ(dx)

)]
= Det

(
I − K

[
1 − e−f

])
, (39)

where K[1 − e−f ] stands for the kernel

K
[
1 − e−f

]
(x, y) =

√
1 − exp

(−f (x)
)
K(x,y)

√
1 − exp

(−f (y)
)
. (40)

The following result is obtained by differentiation of the Laplace transform.

Proposition A.5. Let φ be a DPP on a Polish space E with kernel K satisfying Hypothesis 2
with respect to a measure λ on E. For any compact set � of E and any non-negative function f

defined on E, we have

E

[∫
�

f dφ

]
=

∫
�

f (x)K(x, x)λ(dx) = Tr
(
K�[f ]).

The following control of the kernel K has some importance in our setting (see (11) above).
For the shake of completeness, we provide its proof (see also Lemma 3.2 in [21]).
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Proposition A.6. Let φ be a DPP with kernel K satisfying Hypothesis 2. Then, for all x ∈ E,∫
E

∣∣K(x,y)
∣∣2

λ(dy) ≤ K(x,x). (41)

Proof. Let x ∈ E be fixed and C a compact set containing x. The restriction of KC of K on C

has the following spectral expansion:

KC(y, z) =
+∞∑
i=1

κC,iϕC,i(y)ϕC,i(z), y, z ∈ E,

where κC,i ∈ [0,1[ and ϕC,i , i ≥ 1, are the non-zero eigenvalues and corresponding orthonormal
eigenfunctions of the trace-class operator KC (Hyp. 2). Then, we have∫

C

∣∣K(x,y)
∣∣2

λ(dy) =
+∞∑
i=1

κ2
C,iϕC,i(x)2 ≤

+∞∑
i=1

κC,iϕC,i(x)2 = KC(x, x) = K(x,x),

using both κC,i ∈ [0,1[ and x ∈ C. The conclusion (41) follows by convergence monotone when
C ↑ E. �

In Section 1, marked determinantal point processes are considered and, for that purpose some
useful results on marked DPPs are given in the rest of this section. First, the following classical
result on PPPs (see for instance Lemma 6.4.VI in [6]) is easily extended: If ξ = {Xi}i≥1 is a PPP
on a Polish space E with intensity λ ∈ R+ and (Ri)i≥1 is a family of i.i.d. random variables
with distribution F on a Polish space E′ (independent of ξ ), then ξ ′ = (Xi,Ri)i≥1 is a PPP on
E × E′ with intensity λ ⊗ F . In the determinantal case, we have the following proposition.

Proposition A.7. Let φ = (Xi)i≥1 be a determinantal point process on a Polish space E with
kernel K , with respect to a Radon measure λ, and let (Ri)i≥1 be a family of i.i.d. random vari-
ables on R+, independent of (Xi)i≥1, with probability density f . Let � = {(Xi,Ri)}i≥1. Then,
� is a determinantal point process on E ×R+ with kernel

K̂
(
(x, r), (y, s)

) = √
f (r)K(x, y)

√
f (s), (42)

with respect to the measure λ(dx)dr .

The result still holds true for marks with values in a Polish space but in the sequel, only positive
marks are used (i.e., Ri ∈R+).

Proof. To prove that � is a DPP with kernel K̂ , the joint intensities are shown to write

ρ̂n

(
(x1, r1), . . . , (xn, rn)

) = det
(
K̂

(
(xi, ri), (xj , rj )

)
1≤i,j≤n

)
.

For all n ≥ 1 and all set A, the symbol
∑�=

a1,...,an∈A will stand for the sum over all n-tuples
(a1, . . . , an) ∈ A with pairwise distinct ai (ai �= aj for i �= j in {1, . . . , n}). Let n ≥ 1 and h a
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Borel function from (E ×R+)n to R+. We have:

E

[ �=∑
(x1,r1),...,(xn,rn)∈�

h
(
(x1, r1), . . . , (xn, rn)

)]

= E

[ �=∑
x1,...,xn∈φ

h
(
(x1,R1), . . . , (xn,Rn)

)]

= E

[
E

[ �=∑
x1,...,xn∈φ

h
(
(x1,R1), . . . , (xin ,Rin)

)|φ]]

= E

[∫
(R+)n

�=∑
x1,...,xn∈φ

h
(
(x1, r1), . . . , (xn, rn)

) ∏
1≤i≤n

f (ri) dri

]

= E

[ �=∑
x1,...,xn∈φ

∫
(R+)n

h
(
(x1, r1), . . . , (xn, rn)

) ∏
1≤i≤n

f (ri) dri

]

=
∫

(E×R+)n
h
(
(x1, r1), . . . , (xn, rn)

) ∏
1≤i≤n

f (ri)ρn(x1, . . . , xn)λ(dx1) dr1 . . . λ(dxn) drn,

where ρn(x1, . . . , xn) = Det[K](x1, . . . , xn) is the joint intensity of order n of the DPP φ. Now,
note that ∏

1≤i≤n

f (ri)Det[K](x1, . . . , xn) = Det[K̂]((x1, r1), . . . , (xn, rn)
)
,

where K̂ is given in (42). Then

E

[ �=∑
(x1,r1),...,(xn,rn)∈�

h
(
(x1, r1), . . . , (xn, rn)

)]

=
∫

(E×R+)n
h
(
(x1, r1), . . . , (xn, rn)

)
Det[K̂]((x1, r1), . . . , (xn, rn)

) ∏
1≤i≤n

λ(dxi) dri,

and, according to Definition A.1 and Definition A.2, � is a DPP on E ×R+ with kernel K̂ with
respect to the measure λ(dx)dr . �

Next, in the case where K satisfies Hypothesis 2, the operator K̂ associated to K̂ defined in
(42) above inherits these properties.

Proposition A.8. Let K be an operator on L2(E,λ) satisfying Hypothesis 2 and K̂ be the inte-
gral operator with kernel (42) with probability density f . Then, K̂ satisfies Hypothesis 2.
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Proof. We show that each point of Hypothesis 2 is satisfied.

(i) K̂ is obviously a symmetric integral operator and it is bounded since it is an Hilbert–
Schmidt operator.

(ii) Let γ ∈ [0,1[ be in the spectrum of K̂ and gγ an associated eigenfunction. Then,

γgγ (x, r) = K̂gγ (x, r)

=
∫

E×R+

√
f (r)K(x, y)

√
f (s)gγ (y, s)λ(dy)ds

= √
f (r)

∫
E

K(x, y)

∫
R+

√
f (s)gγ (y, s) dsλ(dy)

= √
f (r)K

(∫
R+

√
f (s)gγ (·, s) ds

)
(x).

Thus, since f is a probability density,

γ

∫
R+

√
f (r)gγ (x, r) dr =

∫
R+

f (r)K

(∫
R+

√
f (s)gγ (·, s) ds

)
(x) dr

=
∫
R+

f (r) drK

(∫
R+

√
f (s)gγ (·, s) ds

)
(x)

= K

(∫
R+

√
f (s)gγ (·, s) ds

)
(x),

proving that γ is in the spectrum of K (associated to the eigenfunction x �→ ∫
R+

√
f (r)gγ (x,

r) dr) and obviously γ ∈ [0,1[.
(iii) First, let � = �E × �R+ be a compact of E × R+ and K̂� be the restriction of K̂

on �. In order to compute the trace of K̂�, consider a complete orthogonal basis (CONB) of
L2(�,λ(dx)dr). Let (en)n≥1, resp. (bn)n≥1, be a CONB of L2(�E,λ), resp. of L2(�R+ , dr).
Then (hn,k)n,k≥1,with hn,k(x, r) = en(x)bk(r) is a CONB of L2(�,λ(dx)dr) (see [22]) and

Tr(K̂�) =
∑

n,k≥1

〈K̂�hn,k, hn,k〉L2(�,λ(dx)dr),

with for n, k ≥ 1:

〈K̂�hn,k, hn,k〉L2(�,λ(dx)dr)

=
∫

�2
hn,k(x, r)K̂�hn,k(x, r)λ(dx)dr

=
∫

�2
en(x)bk(r)

√
f (r)K(x, y)

√
f (s)en(y)bk(s)λ(dy)dsλ(dx)dr
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=
(∫

�R+

√
f (r)bk(r) dr

)2(∫
�2

E

en(x)K(x, y)en(y)λ(dx)λ(dy)

)
≤ 〈√f ,bk〉2

L2(R+)
〈Ken, en〉L2(�E),

with the Fubini theorem. As a consequence, with the Bessel inequality, Tr(K̂�) ≤
‖√f ‖2

L2(R+)
Tr(K�E

) < +∞, and K̂� is locally trace-class. Note that it is still true for sub-
set � of the form �E ×R+.

Next, for a general compact set � of E ×R+, we have � ⊂ �E ×�R+ for compact sets �E of
E and �R+ of R+. Using the reunion (mn)n≥1 = (cn)n≥1 ∪ (dn)n≥1 of orthonormal basis (cn)n≥1

of L2(�,λ(dx)dr) and (dn)n≥1 of L2(�E ×�R+ \�,λ(dx)dr), we have an orthonormal basis
of L2(�E × �R+ , λ(dx)dr) and by the first part

Tr(K̂�E×�R+ ) =
∑
n≥1

〈K̂mn,mn〉L2(�E×�R+ ,λ(dx)dr)

=
∑
n≥1

〈K̂cn, cn〉L2(�,λ(dx)dr)

+
∑
n≥1

〈K̂dn, dn〉L2(�E×�R+\�,λ(dx)dr)

= Tr(K̂�) + Tr(K̂�E×�R+\�).

Since all the summands are positive, we have Tr(K̂�) < +∞. �

Remark A.9. Straightforwardly, Proposition A.8 is still true for f ∈ L1(R+) but with condition
(ii) replaced by: (ii’) The spectrum of K̂ is included in [0,‖f ‖−1

1 [.

Proposition A.10. Let K be a kernel satisfying Hypothesis 2 and g : E → [0+∞[ be a bounded
function with compact support. Then K[g] given by

K[g](x, y) = √
g(x)K(x, y)

√
g(y)

is the kernel of an Hilbert–Schmidt operator.

Proof. The Hilbert–Schmidt property is shown by proving∫
E×E

K[g](x, y)2 dx dy < +∞.

Let B be the compact support of g, using ρ2(x1, x2) = det(K(xi, xj )1≤i,j≤2) ≥ 0, we have∫
E×E

K[g](x, y)2λ(dx)λ(dy) =
∫

E×E

g(x)K(x, y)2g(y)λ(dx)λ(dy)
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≤ ‖g‖2∞
∫

B×B

K(x, x)K(y, y)λ(dx)λ(dy)

= ‖g‖2∞
(∫

B

K(x, x)λ(dx)

)2

,

which is finite since K is locally trace-class (Hypothesis 2). �
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