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We consider the problem of estimating the number of hidden states (the order) of a nonparametric hidden
Markov model (HMM). We propose two different methods and prove their almost sure consistency without
any prior assumption, be it on the order or on the emission distributions. This is the first time a consistency
result is proved in such a general setting without using restrictive assumptions such as a priori upper bounds
on the order or parametric restrictions on the emission distributions. Our main method relies on the min-
imization of a penalized least squares criterion. In addition to the consistency of the order estimation, we
also prove that this method yields rate minimax adaptive estimators of the parameters of the HMM – up to
a logarithmic factor. Our second method relies on estimating the rank of a matrix obtained from the distri-
bution of two consecutive observations. Finally, numerical experiments are used to compare both methods
and study their ability to select the right order in several situations.
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1. Introduction

1.1. Context and motivation

Hidden Markov models (HMM in short) are powerful tools to study time-evolving processes
on heterogeneous populations. Nonparametric HMMs – that is, hidden Markov models where
the parameters are not restricted to a finite-dimensional space – have proved useful in a wide
range of applications, see, for instance, Couvreur and Couvreur [9] for voice activity detection,
Lambert, Whiting and Metcalfe [22] for climate state identification, Lefèvre [24] for automatic
speech recognition, Shang and Chan [31] for facial expression recognition, Volant et al. [34] for
methylation comparison of proteins, Yau et al. [35] for copy number variants identification in
DNA analysis.

In practice, the hidden states often have an interpretation in the modelling of the phenomenon.
It is thus important to be able to infer the right order in addition to the parameters when dealing
with hidden Markov models. However, this task is notoriously difficult: Gassiat and Keribin [17]
show that the likelihood ratio statistic is unbounded even in the simple case where one wants to
test if a HMM has 1 or 2 hidden states. As far as we know, no consistency result has been proved
about order selection for nonparametric HMMs. Even for parametric HMMs, no estimator has
been proved to be consistent in a general setting without assuming that an a priori upper bound
on the order is known beforehand.
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Not only is the order estimation useful in order to interpret the model, it is also necessary to
ensure stability. This is because over estimating the order causes a loss of identifiability: there are
several ways to add one state to a HMM without changing its distribution. The spectral estimators
(Anandkumar, Hsu and Kakade [3], de Castro, Gassiat and Le Corff [11]) are especially sensitive
to this problem, as shown by Lehéricy [25] and Figure 6: as soon as the HMM becomes close to
a HMM with fewer hidden states, the estimators give absurd results. Thus, estimating the right
order is crucial for such methods to be effective.

Formally, a hidden Markov model is a markovian process (Xt , Yt )t≥1 taking value in X × Y .
(Xt )t≥1 is a Markov chain and the observations Yt depend only on the associated Xt (i.e., the
(Yt )t≥1 are independent conditionally on (Xt )t≥1). The states (Xt )t≥1 are assumed to be hidden,
so that one has only access to the observations (Yt )t≥1. When the number of hidden states |X |
(which we call the order of the HMM) is finite, the model is completely defined by its order,
the initial distribution and the transition matrix of the hidden Markov chain, and the possible
distributions of an observation Yt conditionally to the values of its hidden state Xt , which we call
the emission distributions. The goal of the estimation procedures is to recover these parameters
by using only the observations (Yt )t≥1.

Up to now, most theoretical results on hidden Markov models dealt with the parametric frame-
work, that is, with a finite number of parameters. However, it is not always possible to restrict the
model to such a convenient finite-dimensional space. Theoretical results in the nonparametric
framework were only developed recently and do not address the order estimation problem. de
Castro, Gassiat and Lacour [10] propose a least squares method, that is, minimax adaptive up to
a logarithmic factor. de Castro, Gassiat and Le Corff [11] and Robin, Bonhomme and Jochmans
[29] study spectral methods. The latter is also proved to reach the minimax convergence rate
but is not adaptive: it requires the regularity of the emission distributions to be known. All these
methods require the order of the HMM to be known.

Our work is novel on three points. First, it deals with the nonparametric setting: we need no
parametric or regularity assumption on the emission densities. Note that all our results also apply
to parametric settings or even to finite observation spaces, since these are just special cases of
nonparametric estimation. Secondly, we do not require any a priori upper bound on the order, an
assumption that is often made in earlier works, both frequentist and bayesian. Finally, our least
squares method yields estimators of all model parameters at the same time, without requiring any
prior information. Oracle inequalities show that these estimators are rate minimax adaptive up to
a logarithmic factor.

1.2. Related works

The first step to obtain theoretical results was to understand when hidden Markov models are
identifiable. This challenging issue was only solved a few years ago, see Gassiat, Cleynen and
Robin [16] (following Allman, Matias and Rhodes [2] and Hsu, Kakade and Zhang [20]) and with
weaker assumptions Alexandrovich, Holzmann and Leister [1]. Both proved that under generic
assumptions, the parameters of the HMM can be recovered from the distribution of a finite num-
ber of consecutive observations, thus paving the way for guarantees on parameter estimation.

HMM inference is generally decomposed in two parts. The first one is the estimation of the
order, and the second one is the estimation of the parameters once the order is known.
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From a theoretical point of view, the order estimation problem remains widely open in the
HMM framework. One can distinguish two kinds of results. The first kind does not need an a
priori upper bound on the order, but is only applicable to restrictive cases. For instance, using
tools from coding theory, Gassiat and Boucheron [15] introduced a penalized maximum like-
lihood order estimator for which they prove strong consistency without a priori upper bound
on the order of the HMM. Nevertheless, their result is restricted to a finite observation space
and they have to use heavy penalties that grow as a power of the order. For the special case of
Gaussian or Poisson emission distributions, Chambaz, Garivier and Gassiat [8] showed that the
penalized maximum likelihood estimator is strongly consistent without any a priori upper bound
on the order. The second kind of results is more general but requires an a priori upper bound
of the order just to get weak consistency of order estimators, for penalized likelihood criterion
(Gassiat [14]) as well as Bayesian approaches (Gassiat and Rousseau [18], van Havre et al. [33]).

On a practical side, several order estimation methods using penalized likelihood criterion have
been studied numerically, see, for instance, Volant et al. [34] when emission distributions are a
mixture of parametric densities or Celeux and Durand [7] for parametric HMMs. The latter also
introduced cross-validation procedures that aimed for circumventing the lack of independance
of the observations. In the case of nonparametric HMMs, Langrock et al. [23] studied a method
using P-splines with a custom penalization.

Then comes the question of estimating the parameters of the HMM once its order is known.
In the parametric setting, the asymptotic behaviour of the maximum likelihood estimator is
rather well understood (see, for instance, Bickel et al. [5] or Douc et al. [13] using techniques
from Le Gland and Mevel [27]), but so far the question of its nonasymptotic behaviour remains
open. Hsu, Kakade and Zhang [20] and Anandkumar, Hsu and Kakade [3] proposed a spectral
method for parametric HMMs based on joint diagonalization of a set of matrices and controlled
its nonasymptotic error. Robin, Bonhomme and Jochmans [29] and de Castro, Gassiat and Le
Corff [11] extended this method to the nonparametric setting, and de Castro, Gassiat and Lacour
[10] used the latter to obtain an estimator of the transition matrix of the hidden chain for a least
squares estimator of the emission densities, that is, minimax adaptive up to a logarithmic factor.
Our least squares estimation method is a generalization of their procedure that is able to deal
with all parameters at once and does not require auxiliary estimators.

1.3. Contribution

The aim of our paper is twofold. First, we introduce two estimators of the order for nonparametric
HMMs and show that both converge almost surely to the right order under minimal assumptions.
Second, we numerically assess their ability to select the right order and compare their efficiency.

Our first and main method is the penalized least squares estimator. This method is based on
estimating the projection of the emission distributions onto a family of nested parametric sub-
spaces. Our results hold for any Hilbert space, including parametric sets of emission densities
and finite observation spaces. Then, for each subspace and for each possible value K of the or-
der, we look for the HMM with K hidden states and with emission distributions in the chosen
subspace that matches the observations “best” – where “best” means minimizing the empirical
equivalent of an L2 distance. This step provides an empirical distance between the observations
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and the model, which is then penalized in order to counterbalance the overfitting phenomenon
that occurs when considering large models. Our first main result is that for a suitable choice of
the penalty, choosing the model (i.e., the order and the subspace) which minimizes this penalized
distance leads to a strongly consistent estimator of the order, see Corollary 5.

In addition, this method also provides estimators of the other parameters of the HMM for free,
by taking the parameters of the HMM corresponding to the selected model. We prove an oracle
inequality on the L2 risk of these estimators, which shows that they achieve the minimax adaptive
rate of convergence, up to a logarithmic factor, see Theorem 10 and Corollary 11.

Our second estimator comes from spectral methods. Just like for our least squares procedure,
we consider a nested family of parametric subspaces of a Hilbert space. Let us choose one of
them, and denote by (ϕa)a an orthonormal basis of this subspace. Then, consider the matrix N
defined by

N(a, b) := E
[
ϕa(Y1)ϕb(Y2)

]
.

This matrix contains the coordinates of the density of (Y1, Y2) in the orthonormal basis (ϕa ⊗
ϕb)a,b . It is proved in Section 4 that the rank of N is exactly equal to the order of the HMM as
soon as the subspace is large enough. Therefore, finding its rank means finding the number of
hidden states. However, in practice, one only has access to an empirical version of this matrix.
The difficulty comes from the fact that this noisy version will almost surely have full rank. Thus,
the key point is to recover the order of the true matrix given its empirical (full rank) counterpart.
We achieve this by thresholding the spectrum of the empirical matrix. Notice that other methods
exist to estimate the rank of a matrix based on a noisy observation, see, for instance, Kleibergen
and Paap [21] and references therein. Unfortunately, most can not be applied directly to our
setting since they require an invertibility condition on the covariance matrix of the matrix entries.
The CRT statistics from Robin and Smith [30] is a notable exception, however their test of rank
also requires to calibrate a tuning parameter in order to be weakly consistent.

Then, we run an implementation of these two methods and compare their efficiency on sim-
ulated data. The difficulty at this stage comes from the fact that both methods involve a tuning
parameter: the constant of the penalty for the least squares method and the constant of the thresh-
old for the spectral method. This is a common issue that appears in every model selection method
in one form or another, and many heuristics have been proposed to circumvent this difficulty.

For the least squares estimator, we compare two methods which have been both proved to
be theoretically valid in simple cases and empirically validated in a large variety of situations:
the slope heuristics (see for instance Baudry, Maugis and Michel [4] and references therein)
and the dimension jump heuristics (introduced and proved to lead to an optimal penalization in
the gaussian model selection framework by Birgé and Massart [6]). Both behave well with our
estimator and lead to a satisfying calibration of the penalty.

For the spectral estimator, we introduce a custom heuristics based on the fact that the small-
est singular values of the empirical version of the matrix N decrease in a simple manner. It is
thus possible to calibrate an entirely data-driven threshold to distinguish “significant” singular
values – that is, the ones corresponding to non-zero singular values of the real N – from noise.

The numerical validation shows that our least squares method performs well in almost any
situation. It is able to select the right order accurately with notably fewer observations than the
spectral estimator, and is easier to calibrate. On the other hand, the spectral method is very fast,
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which allows to take more observations into account. This allows to obtain satisfying estimators
in a short amount of time.

Regarding the inference of the other parameters, our least squares estimator offers several ad-
vantages when compared to previous methods. First, it does not need a preliminary estimation
of the transition matrix or of the order, unlike de Castro, Gassiat and Lacour [10] who used the
transition matrix given by spectral estimators. Nevertheless, our method still reaches the adaptive
minimax convergence rate for the estimation of the emission densities, up to a logarithmic factor.
This is especially useful to avoid the cases where their auxiliary estimator fails. For instance,
the spectral method that de Castro, Gassiat and Lacour [10] used is unreliable when the order
is over estimated or where the states are almost linearly dependent, see, for instance, Lehéricy
[25] or Figure 6. Then, our least squares method is robust to an overestimation of the order,
both theoretically and numerically, thanks to the iterative initialization procedure that we intro-
duce. This initialization method consists in using estimators from smaller models as initial point
for the minimization algorithm in order to avoid getting stuck in suboptimal local extrema. We
believe it can be of practical interest since it produces robust estimators and can also be used in
other settings, for instance as initialization for expectation maximization algorithm for maximum
likelihood estimators.

1.4. Outline of the paper

Our paper is organized as follows.
Section 2 is devoted to the notations, the model and the assumptions.
Our main procedure, the penalized least squares method, is introduced in Section 3. We first

state an identifiability proposition which we use to prove strong consistency of the estimator of
the order. This is done in two steps. First, we control the probability to underestimate the order
with Proposition 1. This gives an exponential bound on the probability of error, see Theorem 3.
Second, we control the probability to overestimate the order, see Theorem 4. For this, we intro-
duce a general condition on the penalty, which we use to prove a bound with polynomial rate of
decrease on the probability of error, and illustrate how to easily satisfy this condition. Finally,
we state oracle inequalities on the estimators of the density of L consecutive observations and
on the parameters of the hidden Markov model under a generic assumption, see Theorem 10 and
Corollary 11, which shows that they reach the minimax convergence rate up to a logarithmic
factor.

In Section 4, we introduce the spectral algorithm and propose a strongly consistent estimator
of the order. This is done by thresholding the spectrum of the empirical version of the matrix N,
which describes the projection of the distribution of two observations onto an orthonormal basis,
see Theorem 13.

In Section 5, we propose practical algorithms to apply both methods and compare them. First,
we set the parameters on which we will test both procedures. Second, we compare their results
and discuss their performance. Last, we introduce and discuss the heuristics we used to practi-
cally implement both methods.

Our main technical result, Lemma 16, can be found at the beginning of Section 6. It is used
extensively for both the consistency of the estimator of the order and the oracle inequalities on
the HMM parameters. The rest of this section is dedicated to the proofs of the results.
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Supplement A (Lehéricy [26]) is organized as follows. Appendix A contains the spectral algo-
rithm from de Castro, Gassiat and Le Corff [11] and de Castro, Gassiat and Lacour [10] that we
use in our simulations. Appendix B gathers the proofs of Section 3.4, which deals with the oracle
inequalities for the least squares method. Finally, Appendix C contains the proof of Lemma 16,
and Appendix D contains miscellaneous lemmas and proofs.

2. Definitions and assumptions

We will use the following notations throughout the paper.

• N
∗ = {1,2, . . . } is the set of positive integers.

• For k ∈ N
∗, [k] is the set {1, . . . , k}.

• If f1 and f2 are two functions, we denote by f1 ⊗ f2 their tensor product, defined by
f1 ⊗ f2(x1, x2) = f1(x1)f2(x2).

• Span(�) is the linear space spanned by the family �.
• ProjE is the orthogonal projection operator onto a linear space E.
• If E1 and E2 are two linear spaces, we denote by E1 ⊗ E2 their tensor product, that is, the

linear space spanned by the tensor products of their elements: E1 ⊗E2 = Span(f1 ⊗f2|f1 ∈
E1, f2 ∈ E2).

• �K = {π ∈ [0,1]K |∑K
k=1 πk = 1} is the simplex in dimension K . It will be seen as the set

of probability measures on a finite set of size K .
• QK ⊂R

K×K is the set of irreducible transition matrices of size K .
• IdK is the identity matrix of size K .
• L2(A, ν) is the Hilbert space of square integrable functions on A with respect to the mea-

sure ν.
• The notation C ≡ C(a, b, . . . ) for a constant C will mean that the value of C depends on

the specified parameters a, b, . . . For several constants depending on the same parameters,
we will write (C,D) ≡ (C,D)(a, b, . . . ).

In the following, L is a positive integer which will denote the number of consecutive observa-
tions used for the estimation procedure.

2.1. Hidden Markov models

Let (Xj )j≥1 be a Markov chain with finite state space X of size K∗ with transition matrix Q∗
and initial distribution π∗. Without loss of generality, we can set X = [K∗].

Let (Yj )j≥1 be random variables on a measured space (Y,μ) with μ σ -finite such that condi-
tionally on (Xj )j≥1 the Yj ’s are independent with a distribution depending only on Xj . Let ν∗

k be
the distribution of Yj conditionally to {Xj = k}. Assume that ν∗

k has density f ∗
k ∈ L2(Y,μ) with

respect to μ. We call (ν∗
k )k∈X the emission distributions and f∗ = (f ∗

1 , . . . , f ∗
K∗) the emission

densities.
Then (Xj ,Yj )j≥1 is a hidden Markov model with parameters (π∗,Q∗, f∗,K∗). The hidden

chain (Xj )j≥1 is assumed to be unknown, so that the estimator only has access to the observa-
tions (Yj )j≥1.
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For K ∈ N
∗, π ∈R

K , Q ∈ R
K×K and f ∈ (L2(Y,μ))K , let

gπ,Q,f,K =
K∑

k1,...,kL=1

π(k1)

L∏
i=2

Q(ki−1, ki)

L⊗
i=1

fki
.

When π is a probability distribution on [K], Q a K × K transition matrix and f a K-uple of
probability densities, gπ,Q,f,K is the density of the first L observations of a HMM with parame-
ters (π,Q, f,K).

For the sake of readability, we will drop the dependence in K in the following and write gπ,Q,f

instead of gπ,Q,f,K . Moreover, if Q is irreducible with stationary distribution π , we simply write
gQ,f, and we write the true density g∗ := gπ∗,Q∗,f∗ .

2.2. Assumptions

Let F be a subset of L2(Y,μ) and (PM)M∈M⊂N be a sequence of nested subspaces of L2(Y,μ)

such that PM has dimension M for all M ∈M and their union is dense in L2(Y,μ). (PM)M∈M
will be the subspaces onto which the projections of the emission densities will be estimated.

We will need the following assumptions.

[HX] (Xk)k≥1 is a stationary ergodic Markov chain with parameters (π∗,Q∗);
[HidA] Q∗ is invertible, L ≥ 3 and the family f∗ is linearly independent;
[HidB] Q∗ is invertible, L ≥ (2K∗ + 1)((K∗)2 − 2K∗ + 2) + 1 and the emission densities

(f ∗
k )k∈X are all distinct;

[HF] f∗ ∈ FK∗
, F is closed under projection onto PM for all M and

∀f ∈ F,

{
‖f ‖∞ ≤ CF ,∞,

‖f ‖2 ≤ CF ,2

with CF ,∞ and CF ,2 larger than 1.

The ergodicity assumption in [HX] is completely standard in order to obtain convergence
results. In this case, the initial distribution is forgotten exponentially fast, so that the HMM
will essentially behave like a stationary process. In order to simplify the proofs, we assume
the Markov chain to be stationary. One can check that our results are essentially the same when
the initial distribution is not the stationary one.

[HidA] appears in spectral methods, with the hypothesis that π∗ > 0 elementwise, see, for
instance, Hsu, Kakade and Zhang [20]. [HidA] and [HidB] also appear in identifiability issues,
possibly combined with the stationarity hypothesis, see Alexandrovich, Holzmann and Leister
[1] and Gassiat, Cleynen and Robin [16]. Note that the condition on L in [HidB] only involves
the real order K∗.

Even though [HidB] appears less restrictive than [HidA] about the emission densities, it is del-
icate to use here. The problem lies in the condition on the number of consecutive observations L.
For [HidB], one has to take L larger than an increasing function of the order, so it requires to
have an a priori upper bound on the order to choose L. This is less interesting than [HidA],
which can work without prior bound since it only requires L = 3 for any value of the order.
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3. Least squares estimation

In this section, we introduce our penalized least squares estimator and study its asymptotic prop-
erties.

3.1. Approximation spaces and estimators

We want to estimate the density of L consecutive observations g∗ by minimizing the quadratic
loss t �→ ‖t − g∗‖2

2 − ‖g∗‖2
2. We thus take the corresponding empirical loss

γn(t) = ‖t‖2
2 − 2

n

n∑
s=1

t (Zs),

where Zs = (Ys, . . . , Ys+L−1) for an observation sequence (Yt )1≤t≤n+L−1 of length n + L − 1
coming from a single HMM (Xt , Yt )t≥1.

Define for all K ∈ N
∗, M ∈M:

SK,M := {gQ,f,Q ∈ QK, f ∈ (F ∩PM)K
}
,

SK := {gQ,f,Q ∈ QK, f ∈FK
}
,

where F and (PM)M∈M are defined in Section 2.2. In the following, we will always implicitly
consider M ∈ M.

Comment. For all M ∈ M, (SK,M)K≥1 is a sequence of nested subspaces. Indeed, it is possible
to add one state to any hidden Markov model without changing anything to the distribution of
L consecutive observations while keeping the same emission densities and ensuring that the
transition matrix remains irreducible (see function DUPL of Algorithm 2 in Appendix A for an
example). The same holds for (SK)K≥1.

Likewise, for all K ∈N
∗, (SK,M)M∈M is a sequence of nested subspaces.

For all K and M , we define the corresponding estimators

ĝK,M = gQ̂K,M,f̂K,M ∈ arg min
t∈SK,M

γn(t),

where we dropped the dependency in n for ease of notation. Then, we select the parameters using
the penalized empirical loss:

(K̂l.s., M̂) ∈ arg min
K≤n,M≤n

{
γn(ĝK,M) + pen(n,M,K)

}
which leads to the estimators

ĝ := ĝ
K̂l.s.,M̂

,
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Q̂ := Q̂
K̂l.s.,M̂

,

f̂ := f̂
K̂l.s.,M̂

.

3.2. Underestimation of the order

Note that the distribution of the HMM remains unchanged under permutation of the hidden states.
We will therefore use a pseudo-distance dperm that is invariant by permutation on the set of
parameters.

We define it as follows. Let K ≥ 1, π1,π2 ∈ �K , Q1 and Q2 transition matrices of size K ,
f1, f2 ∈ (L2(Y,μ))K . Let S(X ) be the set of permutations of X . For all τ ∈ S(X ), define the
swapped parameters τπ1, τQ1 and τ f1 by

(τπ1)(k) := π1
(
τ(k)

)
,

(τQ1)(k, l) := Q1
(
τ(k), τ (l)

)
,

(τ f1)k := f1,τ (k)

and finally

dperm
(
(π1,Q1, f1), (π2,Q2, f2)

) := inf
τ∈S(X )

(
‖τπ1 − π2‖2

2

+ ‖τQ1 − Q2‖2
F +

K∑
k=1

∥∥(τ f1)k − f2,k

∥∥2
2

)1/2

.

The following properties will be of use to prove the consistency of the order estimator, but we
think it can also be of independent interest to better understand the identifiability of the model.
The first one is a generalization of previous identifiability results from Alexandrovich, Holzmann
and Leister [1], Gassiat, Cleynen and Robin [16], de Castro, Gassiat and Lacour [10].

Proposition 1. Let K ≥ 1, π ∈ �K such that πk > 0 for all k ∈ X , Q transition matrix of size
K and f ∈ (L2(Y,μ))K such that [HidA] or [HidB] hold for the order K . Then, for all K ′ ≥ 1,
for all π ′ ∈ �K ′ , for all transition matrix Q′ of size K ′ and all f′ ∈ (L2(Y,μ))K

′
, the following

holds: (
gπ,Q,f = gπ ′,Q′,f′ and K ′ ≤ K

)
⇒ (

K = K ′ and dperm
(
(π,Q, f),

(
π ′,Q′, f′

))= 0
)
.

Comment. This property does not require two assumptions that appear in Alexandrovich, Holz-
mann and Leister [1] and Gassiat, Cleynen and Robin [16]: that f is a family of probability
densities and that the Markov chain is stationary.

In particular, the fact that f may not be a family of probability densities is crucial in the proof
of Corollary 2, which is necessary to prove the strong consistency of the estimator of the order.
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Proof. Assume [HidA]. The spectral algorithm from de Castro, Gassiat and Le Corff [11] ap-
plied on the linear space spanned by both sets of densities allows to retrieve the order from two
consecutive observations and the parameters from three consecutive observations. Their proof
works when the emission densities are not probability densities and when the chain is not sta-
tionary.

Assume [HidB]. A careful reading of the proofs of Alexandrovich, Holzmann and Leister
[1] shows that their result can be extended to general observation spaces and do not require the
measures to be probabilities. �

The second property is the following corollary, which states that the L2 distance between the
actual model and the models where the order is underestimated is positive. It is worth noting that
we do not need F to be compact.

Corollary 2. Assume [HX], ([HidA] or [HidB]) and [HF] hold. Then, for all K < K∗:

dK := inf
t∈SK

∥∥t − g∗∥∥
2 > 0

Proof. Proof in Section 6.2. �

Our first theorem shows that the probability to underestimate the order decreases exponentially
with the number of observations. This comes from Corollary 2: since the empirical criterion con-
verges to the L2 distance (plus some constant that does not depend on the model), the penalized
error will eventually become larger for orders under K∗ than for orders over K∗, which means
that we won’t underestimate the real order. The exponential decrease rate brings to mind the one
studied in Gassiat and Boucheron [15]: in both cases, the exponents involve the distance between
the actual model and models with underestimated orders, as can be seen in our proof.

Theorem 3. Assume [HX], ([HidA] or [HidB]) and [HF] hold. There exists positive constants
ρ ≡ ρ(CF ,2,CF ,∞,Q∗,L) and β ≡ β(CF ,2,CF ,∞,Q∗, (dK)K<K∗ ,L) such that the following
holds.

Assume that

∀n,∀M,∀K, pen(n,M,K) ≥ ρ
(
MK + K2 − 1

) log(n)

n
,

and

∀M,∀K, pen(n,M,K) −→
n→∞ 0

then there exists n0 such that for all n ≥ n0,

P
(
K̂l.s. < K∗)≤ e−βn.

Proof. Proof in Section 6.3. �
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3.3. Overestimation of the order and consistency

Our second theorem controls the probability to overestimate the order. It consists in overpenaliz-
ing large models so that the estimated order remains small.

We will need the following technical condition on the penalty:

Condition ([Hpen](α,ρ)). The penalty function pen satisfies

∃n1,∀n ≥ n1,∀M ≤ n,∀K ≤ n s.t. K > K∗,

pen(n,M,K) − pen
(
n,M,K∗)≥ ρ

(
MK + K2 − 1

) log(n)

n
+ α

log(n)

n
.

We can now state the theorem and its corollary proving the strong consistency of our estimator
of the order. Note that it does not require any identifiability assumption. In particular, this means
that in a non-identified situation, the estimator will select a representation of the HMM with
minimal possible number of hidden states.

Theorem 4. Assume [HX] and [HF] hold. There exists positive constants (ρ,β) ≡ (ρ,β)(CF ,2,

CF ,∞,Q∗,L) such that the following holds.
Assume [Hpen](α,ρ) holds for some α ≥ 0, then there exists n0 such that for all n ≥ n0,

P
(
K̂l.s. > K∗)≤ n−βα.

Proof. Proof in Section 6.3. �

Corollary 5. Assume [HX], [HF] and ([HidA] or [HidB]) hold. There exists positive constants
(ρ,β) ≡ (ρ,β)(CF ,2,CF ,∞,Q∗,L) such that the following holds.

Assume that the penalty function satisfies⎧⎨⎩∀n,∀M ≤ n,∀K ≤ n, pen(n,M,K) ≥ ρ
(
MK + K2 − 1

) log(n)

n
,

∀M,∀K, pen(n,M,K) −→
n→+∞ 0

and [Hpen](α/β,ρ) holds for some α > 1, then

P
(
K̂l.s. �= K∗)= O

(
n−α

)
.

In particular, K̂l.s. −→ K∗ almost surely.

Let us comment on the condition [Hpen] when using a penalty of the form pen(n,M,K) =
C(MK + K2 − 1) log(n)/n where C may depend on n.

• If one has an a priori bound on the order, that is, if K∗ ≤ K0 for some known K0, then direct
computations show that for all α, ρ, there exists C ≥ 0 depending on K0 (for instance, C =
2ρ(1 + K2

0 ∨ α
ρ
) works) such that [Hpen](α,ρ) holds for all K∗ ≤ K0 (instead of K ≤ n).
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This means that if one has an a priori bound K0 on the order, then by taking a constant C

large enough and K̂l.s. ≤ K0, the estimator K̂l.s. > K∗ is almost surely consistent.
• If one does not have an a priori bound on K∗, taking a constant C does not allow to get

[Hpen](α,ρ) for all possible K∗, which means we can’t apply Corollary 5. However, by
taking C as a sequence indexed by n that tends to infinity, we get that for all K∗ and α, ρ,
[Hpen](α,ρ) holds. This implies consistency with polynomial decrease of the probability
of error, at the cost of overpenalizing.

Overpenalizing is actually necessary if one wants to satisfy [Hpen] for all K∗. This is
stated in the following proposition.

Proposition 6. Let ρ > 0 and pen be a positive penalty such that for all K∗, [Hpen](0, ρ)

holds, then there exists a sequence (un)n≥1 −→ ∞ such that for all n ≥ 1, M ≤ n and K ≤ n,
pen(n,M,K) ≥ un(MK + K2 − 1) log(n)/n.

Proof. Proof in Appendix D.1 of Lehéricy [26]. �

3.4. Oracle inequalities

The results and proofs of this section use similar techniques to the ones in de Castro, Gassiat
and Lacour [10]. While they focus on the estimation of the emission densities when the order is
known and when one has a preliminary estimator of the transition matrix, our results hold when
both the order and the transition matrix are estimated along with the emission densities. A first
consequence is our penalty, which now depends on the order K . We also show that not knowing
the order does not change the convergence rates for the density of several observations and only
adds a logarithmic factor when estimating the emission densities.

Our first result is an oracle inequality on the density of L consecutive observations for the least
squares estimator.

Theorem 7. Assume [HX] and [HF] hold. Then there exists positive constants (n0, ρ,A) ≡
(n0, ρ,A)(CF ,2,CF ,∞,Q∗,L) such that if the penalty satisfies

∀n,∀M ≤ n,∀K ≤ n, pen(n,M,K) ≥ ρ
(
MK + K2 − 1

) log(n)

n

then for all n ≥ n0, for all x > 0, it holds with probability larger than 1 − e−x that∥∥ĝ − g∗∥∥2
2 ≤ 4 inf

K≤n,M≤n

{∥∥g∗
K,M − g∗∥∥2

2 + pen(n,M,K)
}+ 4A

x

n
,

where g∗
K,M is the orthogonal projection of g∗ onto Span(SK,M).

Proof. Proof in Section 6.4. �

Comment. The constant 4 before the infimum can be replaced by any constant κ > 1, at the cost
of changing the constants n0, ρ and A.
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We would like to deduce an oracle inequality on the parameters of the HMM from this result.
Using Cauchy-Schwarz inequality, it is easy to upper bound the error on the density g∗ by the
error on the parameters: for all probability distributions π1 and π2 on [K], for all transition
matrices Q1 and Q2 of size K and for all f1, f2 ∈FK ,∥∥gπ1,Q1,f1 − gπ2,Q2,f2

∥∥
2 ≤ CL

F ,2

√
LKdperm

(
(π1,Q1, f1), (π2,Q2, f2)

)
(1)

as soon as [HF] holds. The proof of this equation is detailed in Appendix B.1 of Lehéricy [26].
Thus, all we need to deduce an oracle inequality on the parameters is to lower bound the error

on g∗ by the error on the parameters. Let C ⊂R
K∗ ×R

K∗×K∗ ×R
K∗×K∗

be the set of parameters
(p, q,A) such that ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∀i ∈X ,
∑
j∈X

q(i, j) = 0,

∀j ∈ X ,
∑
i∈X

A(i, j) = 0.
(2)

Note that C can be identified with the set

Cred := {((pi)i≥2,
(
q(i, j)

)
i,j≥2,

(
A(i, j)

)
i≥2,j

)|(p, q,A) ∈ C
}

=R
K∗−1 ×R

K∗×(K∗−1) ×R
K∗×(K∗−1).

These assumptions are natural since they are necessary (but not sufficient) to ensure that if
(p, q,A) ∈ C and π is a probability distribution, Q a transition matrix and f a vector of probabil-
ity densities, then π + p is also a probability distribution, Q + q a transition matrix and f + Af a
vector of probability densities.

The first step in order to get a lower bound along the same lines as equation (1) is to control
the behaviour of the difference near the true parameters, which comes down to proving that the
quadratic form M derived from the second-order expansion of

N : (p, q,A) ∈ R
K∗ ×R

K∗×K∗ ×R
K∗×K∗ �−→ ∥∥gπ+p,Q+q,f+Af − gπ,Q,f∥∥2

2

is positive definite on C for (π,Q, f) = (π∗,Q∗, f∗). One can write the coefficients of the matrix
of this quadratic form as polynomials in the coefficients of π , Q and of the Gram matrix G(f) :=
(〈fi, fj 〉)i,j∈X . However, this matrix may not be invertible: one has to consider its restriction to
the space C, which is equivalent to considering the quadratic form MC defined on Cred by the
second-order expansion of x ∈ Cred �−→ N(IC(x)) where IC is the natural linear injection from
Cred to C (note that IC is bijective and bicontinous under [HF]). Since the quadratic form MC is
always nonnegative, we only need its determinant to be non zero in order for the quadratic form
M to be positive definite on C.

Thus, let H be determinant of the matrix of this quadratic form. H is also a polynomial in the
coefficients of π , Q and G(f). The following lemma shows that there exists some parameters π ,
Q and f satisfying the conditions for which H is not zero.

Lemma 8. There exists some parameters (π,Q, f) satisfying the conditions [HX] and [HidA]
such that H(π,Q,G(f)) �= 0.
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Proof. Proof in Section 6.5. �

What should be retained from this lemma is that H is a polynomial which is not identically
zero on the set of parameters satisfying the identifiability conditions. This means that one can
generically assume it to be different from zero, which corresponds to the assumption

[Hdet] H(π∗,Q∗,G(f∗)) �= 0.

Since we assumed π∗ to be the stationary distribution of Q∗, its coefficients – and by extension
H – can be expressed as a rational function of the coefficients of Q∗. Taking H1 as the numerator
of the rational function deduced from H , one gets another polynomial in the coefficients of Q∗
and G(f∗) which is also non-zero. Thus, the following assumption – which we will need to lower
bound the error on the density g∗ by the error on the parameters – is generically satisfied.

[HdetStat] H1(Q∗,G(f∗)) �= 0.

Note that [Hdet] and [HdetStat] are equivalent under the assumption [HX].

Theorem 9. Assume [HidA] and [Hdet] hold. Then there exists a positive constant c(π∗,Q∗, f∗)
such that for all π ∈ �K∗ , for all transition matrix Q of size K∗ and for all h ∈ FK∗

such that∫
hi dμ = 1 for all i ∈ [K∗],∥∥gπ,Q,h − gπ∗,Q∗,f∗∥∥2

2 ≥ c
(
π∗,Q∗, f∗

)
dperm

(
(π,Q,h),

(
π∗,Q∗, f∗

))2
.

Proof. Proof in Appendix B.2 of Lehéricy [26]. �

The following theorem is a direct consequence of the above results. It provides an oracle
inequality on the parameters conditionally to the fact that the order has been correctly estimated.

Theorem 10. Assume [HX], [HidA], [HF] and [Hdet] hold. Also assume that for all f ∈ F ,∫
f dμ = 1.
Then there exists positive constants (n0, ρ,A) ≡ (n0, ρ,A)(CF ,2,CF ,∞,Q∗,L) such that if

the penalty satisfies

∀n,∀M ≤ n,∀K ≤ n, pen(n,M,K) ≥ ρ
(
MK + K2 − 1

) log(n)

n

then for all n ≥ n0, for all x > 0, conditionally to {K̂l.s. = K∗}, with probability larger than
1 − e−x :

dperm
(
(π̂ , Q̂, f̂),

(
π∗,Q∗, f∗

))≤ 4CL
F ,2

√
LK∗

c(Q∗, f∗)

×
[

inf
M≤n

{
K∗∑
k=1

∥∥f ∗
M,k − f ∗

k

∥∥2
2 + pen

(
n,M,K∗)}+ A

x

n

]
,

where f ∗
M,k is the orthogonal projection of f ∗

k onto PM .
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It is now possible to get the convergence rate of the estimators of the parameters. In order to
take the event where K̂l.s. �= K∗ into account, we agree that the distance between the parameters
of two HMMs with different orders is bounded by some constant Cerr. Note that Cerr could even
be taken as a power of n without changing anything to our result.

Corollary 11. Assume [HX], [HidA], [HF] and [Hdet] hold. Also assume that for all f ∈ F ,∫
f dμ = 1, and that the penalty satisfies

∀n,∀M ≤ n,∀K ≤ n, pen(n,M,K) = (MK + K2 − 1
) log(n)2

n
.

Then there exists a positive constant A ≡ A(CF ,2,CF ,∞,Q∗,L) such that for all β > 1, there
exists a positive constant n0 ≡ n0(CF ,2,CF ,∞,Q∗,L,β) such that for all n ≥ n0 and for all
Cerr > 0,

E
[
1
K̂ �=K∗Cerr + 1

K̂=K∗dperm
(
(π̂ , Q̂, f̂),

(
π∗,Q∗, f∗

))]
≤ 4CL

F ,2

√
LK∗

c(Q∗, f∗)

× inf
M≤n

{
K∗∑
k=1

∥∥f ∗
M,k − f ∗

k

∥∥2
2 + pen

(
n,M,K∗)}+ A

c(Q∗, f∗)n
+ Cerr

nβ
,

and P(K̂l.s. �= K∗) = O(n−β).

Let us discuss what this corollary implies. The approximation error
∑K∗

k=1 ‖f ∗
M,k −f ∗

k ‖2
2 can be

bounded in a standard way by O(M−2s/D) where s > 0 is the regularity of the emission densities,
see for instance DeVore and Lorentz [12]. One can obtain a trade-off between approximation
error and penalty by choosing M ≈ (n/ log(n)2)D/(2s+D), which leads to the optimal rate of
convergence (n/ log(n)2)−2s/(2s+D), up to a logarithmic factor. This shows that our estimators
are minimax adaptive up to a logarithmic factor and converge almost surely to the right number
of states, all at the same time.

4. Spectral estimation

In this section, we introduce our spectral order estimator. We will assume [HX] and [HidA] hold.
The idea of this method is to use the matrix containing the coordinates of the density of two

consecutive observations in an orthonormal basis. Take M ∈M and let �M = (ϕ
(M)
1 , . . . , ϕ

(M)
M )

be an orthonormal basis of PM . For ease of notation, we will drop the dependency in M and
write ϕa instead of ϕ

(M)
a . Let us introduce the matrice NM and its empirical estimator, defined by

∀a, b ∈ [M], NM(a, b) := E
[
ϕa(Y1)ϕb(Y2)

]
,

∀a, b ∈ [M], N̂M(a, b) := 1

n

n∑
s=1

ϕa(Ys)ϕb(Ys+1).
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NM contains the coordinates of the density of (Y1, Y2) with respect to μ⊗2 on the basis �M . It
holds that

NM = OM Diag
(
π∗)Q∗O�

M, (3)

with OM the coordinates of the emission densities on the orthonormal basis:

∀m ∈ [M],∀k ∈ X , OM(m,k) := E
[
ϕm(Y1)|X1 = k

]= ∫ ϕmf ∗
k dμ.

When the emission densities are linearly independent, OM has full rank for M large enough.
The key remark for our method is that NM contains explicit information about the order of the

HMM, as stated in the following lemma:

Lemma 12. There exists M0 ≡ M0(Q∗,�M, f∗) such that for all M ≥ M0, NM has rank K∗.

In the following, we will assume M ≥ M0 for M0 given by this lemma.
In practice, one only has access to the matrix N̂M , which can be seen as a noisy version of NM .

In particular, there is no reason for it to have only K∗ nonzero singular values. On the contrary,
the spectrum becomes noisy, and when some singular values of NM are too small, they can be
masked by this noise. As seen in equation (3), this can occur when Q∗ or OM are close to not
having full rank, which means for OM that the emission densities are almost linearly dependent.

Denote by σ1(A) ≥ σ2(A) ≥ · · · the singular values of the matrix A. We can now state the
theorem proving the consistency of the spectral order estimator:

Theorem 13. Let K̂sp.(C) = #{i|σi(N̂M) > C
√

log(n)/n}.
There exists C0 ≡ C0(Q∗,�M) and n0 ≡ n0(Q∗,�M,O∗

M) such that for all C ≥ C0 and n ≥
n0C

2(1 + log(C)),

P
(
K̂sp.(C) �= K∗)≤ n−2

so that K̂sp.(C) −→ K∗ almost surely.

Comment. It is possible to take M −→ ∞, n0 constant and C0 depending on M in an ex-
plicit way as long as M grows slowly enough, that is, η2(�M) ≤ cst ·√n/ log(n) and C0 =
cst · η2(�M) where η2(�M) is defined in Lemma 14.

Proof. We control the difference between the spectra of NM and N̂M using the following lemma
from Appendix E of de Castro, Gassiat and Le Corff [11].

Lemma 14. There exists some constant C∗ depending only on Q∗ such that for any positive u,
M and n,

P

[
‖NM − N̂M‖F ≥ η2(�M)C∗√

n
(1 + u)

]
≤ e−u2

,
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where

η2
2(�M) = sup

y,y′∈Y2

M∑
a,b=1

(
ϕa(y1)ϕb(y2) − ϕa

(
y′

1

)
ϕb

(
y′

2

))2
.

In particular, taking u =√2 log(n) and assuming u > 1 and n ≥ 2, one has with probability
1 − n−2 that

σ1(NM − N̂M) ≤ C

√
log(n)

n

for all C ≥ C0 := 2
√

2η2(�M)C∗, using that for any matrix A, one has σ1(A) ≤ ‖A‖F .
Let C ≥ C0. We will need Weyl’s inequality (a proof may be found in Stewart and Sun [32]

for instance):

Lemma 15 (Weyl’s inequality). Let A, B be p × q matrices with p ≥ q , then for all i =
1, . . . , q , ∣∣σi(A + B) − σi(A)

∣∣≤ σ1(B).

Using this inequality, one gets that with probability at least 1 − n−2, for all 1 ≤ i ≤ K∗,
σi(N̂M) > σK∗(NM) − C

√
log(n)/n and for all i > K∗, σi(N̂M) < C

√
log(n)/n.

In particular, if 2C
√

log(n)/n < σK∗(NM), then with probability at least 1 − n−2, the order is
exactly the number of singular values of N̂M which are larger than C

√
log(n)/n. Finally, observe

that under the condition n ≥ n0C
2(1 + log(C)),

C

√
log(n)

n
≤
√

2 log(C) + log(1 + log(C))

n0(1 + log(C))

≤
√

3

n0

√
log(C)

1 + log(C)
,

since one can assume without loss of generality that C0 ≥ 1. By taking n0 = 12/σK∗(NM)2, this
concludes the proof. �

5. Numerical experiments

In this section, we show the results of our estimators on simulated data. The simulation param-
eters are introduced in Section 5.1. We show the numerical results and discuss their ability to
select the right order in practice in Section 5.2, and we present the data-driven methods and
heuristics we used for the numerical implementation in Section 5.3.
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5.1. Simulation parameters

We will consider Y = [0,1] with μ being the Lebesgue measure. We will use a trigonometric
basis on L2([0,1]) to generate the approximation spaces (PM)M . More precisely, define

ϕ0(t) = 1,

ϕa(t) = √
2 cos(πat)

for all t ∈ [0,1] and a ∈ N
∗. We take PM = Span({ϕa|0 ≤ a < M}) the spaces induced by the

trigonometric basis.

Comment. Taking the same vectors in all bases is not mandatory to ensure theoretical consis-
tency, but in practice it allows us to take an additional initial point for the minimization step and
improves the stability of the algorithm (see Step 1 below).

We will assume f∗ to be linearly independent, so that one only needs L = 3 observations to
recover the parameters of the HMM.

In order to assess the performances of the different procedures, we generate n observations of
a HMM of order 3 for several values of n, using the following parameters:

• Emission distributions: Beta distributions with two possible sets of parameters: [(1.5;5),
(7;2) and (6;6)] or [(2;5), (4;2) and (4;4)];

• Markov chain parameters:

Q∗ =
⎛⎝ 0.8 0.1 0.1

0.2 0.7 0.1
0.07 0.13 0.8

⎞⎠ ,

π∗ =
(

47

120

11

40

1

3

)
≈ (0.3917 0.2750 0.3333).

Finally, we take Mmax = 50 the maximum value of M and two possible values for Kmax, the
maximum value of K for which we will compute the estimators : Kmax = 5 and Kmax = 10. We
took limited values for Kmax in order to reduce the computational cost of the estimation, however
there is no objection to taking larger values in practice.

The simulation codes are available at https://www.normalesup.org/~llehericy/HMM_order_
simfiles/.

5.2. Numerical results

Figure 1 summarizes the results of both procedures. Both select the right order as soon as the
number of observations is sufficient.

https://www.normalesup.org/~llehericy/HMM_order_simfiles/
https://www.normalesup.org/~llehericy/HMM_order_simfiles/
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n P(K̂l.s. = K∗) P(K̂sp. = K∗)
999 0.2 0

3000 1 0
9999 1 1

19 998 1 1

Beta parameters (1.5;5), (7;2) and (6;6)

for Kmax = 5

n P(K̂l.s. = K∗) P(K̂sp. = K∗)
7500 0.3 0

19 998 0.9 0
30 000 1 0
49 998 1 0.1

Beta parameters (2;5), (4;2) and (4;4) for
Kmax = 5

n P(K̂l.s. = K∗)
999 0.8

3000 0.9

Beta parameters (1.5;5), (7;2) and (6;6)

for Kmax = 10

n P(K̂l.s. = K∗)
7500 0.5

19 998 0.9

Beta parameters (2;5), (4;2) and (4;4) for
Kmax = 10

Figure 1. Probability to select the right order for the two methods (K̂l.s. for the least squares method and
K̂sp. for the spectral method). 10 simulations have been done for each n. Parameters for spectral selection
are M = 40, Mreg = 35 and τ = 1.5 (see Section 5.3.2 for the definition of these parameters).

The spectral method is easily put in practice and runs extremely fast. It doesn’t need a time-
consuming contrast minimization step or an initial point. However, the thresholding of the sin-
gular values is a delicate issue, and if the order is incorrect, then the theoretical results about the
spectral estimators of the parameters don’t hold and this method may behave poorly.

The performances of the least squares method are much better and improve for larger values
of Kmax (see Figure 1 for comparing the order estimators and de Castro, Gassiat and Lacour
[10] for comparing the emission densities estimators). In addition, the model selection step is
easy to handle and gives an estimator of the order that we proved to be consistent, estimators
of the HMM parameters that we proved to be minimax up to a logarithmic factor and a way to
check whether the model fits the data well (see Section 5.3.1), all at the same time. However,
the minimization of the (non-convex) empirical contrast is a time-consuming step, especially for
large samples and large models.

Choosing the right method is thus a question of computational power and amount of available
data. For small datasets where one wants to get accurate results, the least squares method is best.
Conversely, on large datasets and large models, the spectral method is a good choice in order to
obtain many estimators in a reasonable amount of time.

5.3. Practical implementation

5.3.1. Least squares method

The first issue that one encounters when trying to minimize the least squares criterion γn is that
it is not convex. Several algorithms have been proposed to overcome this difficulty. We chose to
use CMA-ES (for Covariance Matrix Adaptation Estimation Strategy, see Hansen [19]) in order



Nonparametric HMM order estimation 483

to find a minimizer. This estimator is easy to use and works well in many situations, but – like all
approximate minimization algorithms – it requires a good initial point since it might otherwise
remain stuck in local minima.

One part of our method consists in using previous estimates as initial points for further steps
to counter this phenomenon, since it is likely that this way the estimators stay near the real mini-
mizer. More precisely, to obtain ĝK,M , we compute several minimizers of γn using the previously
computed estimators ĝK−1,M where one state has been duplicated and ĝK,M−1 extended to the
space P

⊗L
M , and keep the best one. This procedure is detailed in Appendix A, see Algorithm 2.

The underlying heuristcs of this initialization procedure is that when the order is underesti-
mated, then several states are “merged” together. Duplicating a merged state will allow to sepa-
rate them effectively while still taking advantage of the computations done up to now. It is meant
to avoid having to recalculate all states at the same time (which could get us stuck in sub-optimal
local minima) when the best solution is likely to be a small modification of the previous estima-
tor. In addition, when the order is overestimated, it allows to make sure the empirical criterion is
indeed decreasing with the dimension of the model by giving an estimator that performs at least
as well as those from smaller models. This makes our method robust to an overestimation of the
order.

The last practical issue is a very common one in the model selection setting: the constant ρ of
the penalty is unknown and has to be estimated before one can select the right model. Several
data-driven estimators have been proposed to circumvent this difficulty, for instance dimension
jump heuristics, slope heuristics, bootstrap or cross validation. We focus on the first two, which
have several advantages in our setting. First, they are easy to use, are proved to be theoretically
valid in many settings and work well in a wide range of applications (see, for instance, Baudry,
Maugis and Michel [4] and references therein). Second, they take advantage of the structure of
our problem and both give a qualitative way to check whether the choice of penalty is valid or
not, and by extension whether the model is misspecified or not.

Dimension jump heuristics. In this paragraph, we study the selected parameters

ρ �−→ (
M̂(ρ), K̂(ρ)

) ∈ arg min
{
γn(ĝK,M) + ρ penshape(n,M,K)

}
and the selected complexity

ρ �−→ Comp(ρ) = M̂(ρ)K̂(ρ) + K̂(ρ))
[
K̂(ρ)) − 1

]
with penshape(n,M,K) = (MK + K2 − 1) log(n)/n.

Assume that there exists κ such that κ penshape is a minimal penalty, that is, a penalty such
that as n tends to infinity, for all ρ > κ , the size of the model chosen for penalty ρ penshape
remains small in some sense and for all ρ < κ , the size of the model becomes huge. Then, for
n large enough, this will appear on the graph of the selected model complexity as a “dimension
jump”: around some constant ρjump, the complexity will abruptly drop from large models to small
models. This is clearly the case in Figure 2. Figure 3 shows the behaviour of M̂ and K̂ with ρ.
A dimension jump also occurs with these functions. It is most visible for M̂ .

Finally, once the dimension jump location ρjump has been estimated, we take ρ̂ = 2ρjump to
select the final parameters.
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Figure 2. Graph of ρ �→ Comp(ρ) for 10 sets of n consecutive observations. Here, the parameters of the
Beta distribution are (2;5), (4;2) and (4;4), and Kmax = 5.

It is worth noting that this jump method also gives a qualitative way to check whether the
choice of parameters is sensible: if no clear jump can be identified, then either one didn’t consider
enough models to make the jump clear, or the penalty isn’t the right one, or the model cannot
approximate the data distribution well.

Slope heuristics. This heuristics relies on the fact that when penshape is a minimal penalty, then
the empirical contrast function is expected to behave like ρmin penshape for large models and for
some constant ρmin. This gives both a way to calibrate the constant of the penalty and to check if
the chosen penalty has the right shape (see Baudry, Maugis and Michel [4]). The final penalty is
then taken as 2ρ̂min penshape.

Figure 4 shows the graph of the empirical contrast depending on penshape. The slope heuristics
works well in this situation, suggesting that our penalty has the right shape.

Figure 3. Graph of ρ �→ M̂(ρ) and ρ �→ K̂(ρ) for 10 sets of n consecutive observations. Here, the param-
eters of the Beta distribution are (2;5), (4;2) and (4;4), and Kmax = 5.
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Figure 4. Empirical constrast and calibrated penalty for n = 49 998. Here, the parameters of the Beta
distribution are (2;5), (4;2) and (4;4), and Kmax = 5.

5.3.2. Spectral method

The idea of the spectral order estimation is to recover the rank of the matrix NM . However, this
is not always possible: if one singular value of NM is smaller than the noise (which is the case
when OM is close from not being invertible, i.e., when the emission densities are close from
being linearly dependent, and when there are only few observations), then this method will not
be able to “see” the corresponding hidden state.

Figure 5 – and in particular Figure 5a – illustrates this problem: the third singular value is
smaller than several noisy singular values, which means it won’t be possible to recover it. Even
if one knows the right order, the fact that the singular value is smaller than the noise can make it
impossible for spectral methods to recover the true parameters. Figure 6 shows the result when
trying to estimate the densities in the situation of Figure 5a: when the singular value is drowned
by the noise, the output of the spectral estimator is aberrant. Notice that it is not a fatality: in
the same situation, the least squares method manages to give sensible estimators of the emission
densities. This is an intrinsic limitation of the spectral method.

Therefore, what we need is a way to threshold the parameters in order to distinguish noise from
significant singular values. The estimator K̂sp.(C) is one way to achieve this, but the calibration
of C is a tricky problem, since the right choice of C depends on the parameters of the HMM.
We will use a different method, which relies on the same idea: identifying the noisy singular
values which stand out from the others and saying they correspond to nonzero singular values of
NM . Our heuristics relies on the fact that when one sorts the singular values in decreasing order,
then the smallest ones approximately follow an affine relation with respect to their index. This
tendency is shown in Figure 7.

We proceed as follows. Let M and Mreg be two positive integers such that Mreg ≤ M ≤ Mmax.
We estimate the affine dependance of the singular values of N̂M with respect to their index with
a linear regression using its Mreg smallest singular values. Then, we set a thresholding parameter
τ > 1. We say a singular value is significant if it is above τ times the value that the regression
predicts for it. Lastly, we take K̂sp. as the number of consecutive significant singular values
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Figure 5. Spectrum of the empirical matrix N̂M and the theoretical matrix NM for M = 40 and 10 simu-
lations. The first singular values are too large to appear here.

starting from the largest one. This heuristics seems to work as soon as τ is large enough, for
example, τ = 1.5.

6. Proofs

6.1. Main technical result

The following lemma is the main technical result of this paper. It is the key for both the strong
consistency and the oracle inequalities. It allows to control the difference between the empirical
criterion γn and the theoretical L2 loss for all models at the same time.
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Figure 6. Estimators of the emission densities for n = 19 998 and Beta parameters (2;5), (4;2) and (4;4).
We took K = K̂l.s. = 3 and M = M̂ = 13. The bad behaviour of the spectral algorithm (presented in Ap-
pendix A of Lehéricy [26]) when the emission densities are poorly separated is clearly visible on the third
emission distribution.

Figure 7. Spectrum of NM for M = 40 and n = 49 998 for Beta parameters (2;5), (4;2) and (4;4). The
regression (green line) has been performed on the 35 smallest singular values. The two largest singular
values are too large to appear here.
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Define ν : t �−→ 1
n

∑n
s=1 t (Zs) − ∫ tg∗, so that

∀t ∈ L2(YL,μ⊗L
)
, γn(t) + ∥∥g∗∥∥2

2 = ∥∥t − g∗∥∥2
2 − 2ν(t). (4)

Let

s = (sK,M)K,M ∈ S :=
∏

K∈N∗,M∈M

(⋃
K

SK

)
�−→ (

ZK,M(s)
)
K,M

:=
(

sup
t∈SK,M

[ |ν(t − sK,M)|
‖t − sK,M‖2

2 + x2
K,M

])
K,M

.

(5)

Comment. It is not necessary to assume that sK,M ∈ SK,M . In particular, one can take sK,M = g∗
for all K , M . In that case, we will simply write ZK,M(g∗).

Lemma 16. Assume [HX] and [HF] hold. Then there exists a sequence (xK,M)K,M ≡
(xK,M)K,M(CF ,2,CF ,∞,Q∗,L) and positive constants (n0, ρ,A) ≡ (n0, ρ,A)(CF ,2,CF ,∞,

Q∗,L) such that if the penalty p̃en satisfies

∀n,∀M ≤ n,∀K ≤ n, p̃en(n,M,K) ≥ ρ
(
MK + K2 − 1

) log(n)

n

then for all s ∈ S, n ≥ n0 and x > 0, one has with probability larger than 1 − e−x :⎧⎪⎪⎨⎪⎪⎩
sup

K ′≤n,M ′≤n

ZK ′,M ′(s) ≤ 1

4
,

sup
K ′≤n,M ′≤n

(
2ZK ′,M ′(s)x2

K ′,M ′ − p̃en
(
n,M ′,K ′))≤ A

x

n
.

Comment. One can replace the constant 1/4 in the first upper bound by any ε > 0, at the cost
of changing the constants n0, ρ and A.

The structure of the proof follows the usual method to control empirical processes, see for in-
stance Massart [28], Chapter 6, adapted to the HMM structure by de Castro, Gassiat and Lacour
[10]. The novelty and main difficulty of the proof comes from the generalization to both non-
parametric densities and an unknown number of states: we had to introduce a much finer control
of the constants and of the bracketing entropy of the models in order to take the dependency in
the order of the HMM into account.

The details of the proof can be found in Appendix C of Lehéricy [26].

6.2. Proof of Corollary 2

Since the union of (PM)M∈M is dense in F , we can take M such that [HidA] or [HidB] holds
for f∗M = (f ∗

M,k)k∈X := (ProjPM
f ∗

k )k∈X .
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We will need the following lemma.

Lemma 17.

∀π ∈ R
K,∀Q ∈R

K×K,∀f ∈ FK,∀M, Proj
P

⊗L
M

(
gπ,Q,f)= g

π,Q,ProjPM
(f)

Proof. By linearity of the projection operator, it is enough to prove that for all (t1, . . . , tL) ∈
(L2(Y,μ))L,

Proj
P

⊗L
M

(t1 ⊗ · · · ⊗ tL) = ProjPM
(t1) ⊗ · · · ⊗ ProjPM

(tL)

which is easy to check. �

We will make a proof by contradiction. Assume that inft∈SK
‖t − g∗‖2 = 0 for some K < K∗.

Then there exists a sequence (gn)n≥1 = (gπn,Qn,fn)n≥1 such that gn −→ g∗ in L2(YL,μ⊗L),
with πn ∈ �K , Qn a transition matrix of size K and fn ∈FK .

The orthogonal projection onto P
⊗L
M is continuous, so by using Lemma 17, one gets that

g
πn,Qn,ProjPM

(fn) −→ gπ∗,Q∗,f∗M .

Then, using the compactness of �K and of the set of transition matrices of size K and the
relative compactness of (F ∩ PM)K (which is a bounded subset of a finite dimension linear
space), one gets (up to extraction of a subsequence) that there exists π∞ ∈ �K , Q∞ a transition
matrix of size K and f∞ ∈ (PM)K such that πn −→ π∞, Qn −→ Q∞ and ProjPM

(fn) −→ f∞.
Finally, using the continuity of the function (π,Q, f) �−→ gπ,Q,f and the uniqueness of the

limit, one gets

gπ∞,Q∞,f∞ = gπ∗,Q∗,f∗M .

Then Proposition 1 contradicts the assumption K < K∗, which is enough to conclude.

6.3. Consistency proofs

The definition of K̂l.s. is equivalent to the following one:

K̂l.s. ∈ arg min
K≤n

{
γn(ĝK,M̂K

) + pen(n, M̂K,K)
}
,

where

M̂K ∈ arg min
M≤n

{
γn(ĝK,M) + pen(n,M,K)

}
.

Choosing K rather than K∗ means that K is better than K∗, that is,

{K̂l.s. = K} ⊂
{

0 ≥ inf
M≤n

{
γn(ĝK,M) + pen(n,M,K)

}
− inf

M≤n

{
γn(ĝK∗,M) + pen

(
n,M,K∗)}}.
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Let

Dn,K := inf
M≤n

{
γn(ĝK,M) + pen(n,M,K)

}
− inf

M≤n

{
γn(ĝK∗,M) + pen

(
n,M,K∗)}

= γn(ĝK,M̂K
) + pen(n, M̂K,K)

− inf
M≤n

{
inf

t∈SK∗,M

γn(t) + pen
(
n,M,K∗)}.

Then

{K̂l.s. = K} ⊂ {Dn,K ≤ 0}.
We will thus control the probability of the latter event for all K < K∗ in the first case and K > K∗
in the second case.

Proof of Theorem 3. Let M0 ∈ M. We will choose a suitable value for this integer later in the
proof. Assume n ≥ M0. Then by definition of Dn,K and of ν (equation (4)),

Dn,K ≥ γn(ĝK,M̂K
) + pen(n, M̂K,K) − γn

(
g∗

K∗,M0

)− pen
(
n,M0,K

∗))
= ∥∥g∗ − ĝ

K,M̂K

∥∥2
2 − ∥∥g∗ − g∗

K∗,M0

∥∥2
2 − 2ν

(
ĝ

K,M̂K
− g∗

K∗,M0

)
+ pen(n, M̂K,K) − pen

(
n,M0,K

∗).
Using the definition of ZK,M (equation (5)), one gets that∣∣ν(ĝ

K,M̂K
− g∗

K∗,M0

)∣∣≤ ∣∣ν(ĝ
K,M̂K

− g∗)∣∣+ ∣∣ν(g∗ − g∗
K∗,M0

)∣∣
≤ Z

K,M̂K

(
g∗)(∥∥g∗ − ĝ

K,M̂K

∥∥2
2 + x2

K,M̂K

)
+ ZK∗,M0

(
g∗)(∥∥g∗ − g∗

K∗,M0

∥∥2
2 + x2

K∗,M0

)
.

Let n0, ρ and A be as in Lemma 16. We can assume that n0 ≥ K∗ so that K∗ ≤ n. Let us introduce
the function p̃en(n,M,K) = ρ(MK + K2 − 1)

log(n)
n

. Let n ≥ n0 and x > 0 and assume we are
in the event of probability 1 − e−x of Lemma 16. Then, for all K ≤ n:∣∣ν(ĝ

K,M̂K
− g∗

K∗,M0

)∣∣≤ 1

4

∥∥g∗ − ĝ
K,M̂K

∥∥2
2 + 1

2
A

x

n
+ 1

2
p̃en(n, M̂K,K)

+ 1

4

∥∥g∗ − g∗
K∗,M0

∥∥2
2 + 1

2
A

x

n
+ 1

2
p̃en
(
n,M0,K

∗)
and

Dn,K ≥ 1

2

∥∥g∗ − ĝ
K,M̂K

∥∥2
2 − 3

2

∥∥g∗ − g∗
K∗,M0

∥∥2
2 − 2A

x

n
+ pen(n, M̂K,K)

− pen
(
n,M0,K

∗)− p̃en(n, M̂K,K) − p̃en
(
n,M0,K

∗).
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We assumed pen ≥ p̃en, so that

Dn,K ≥ 1

2

∥∥g∗ − ĝ
K,M̂K

∥∥2
2 − 3

2

∥∥g∗ − g∗
K∗,M0

∥∥2
2 − 2A

x

n
− 2 pen

(
n,M0,K

∗).
Corollary 2 ensures that

d := inf
K<K∗ inf

t∈SK

∥∥t − g∗∥∥
2 > 0,

so that for all K < K∗,

Dn,K ≥ d2

2
− 3

2

∥∥g∗ − g∗
K∗,M0

∥∥2
2 − 2A

x

n
− 2 pen

(
n,M0,K

∗).
By denseness of (PM)M∈M in F , one gets that

inf
M

∥∥g∗
K∗,M − g∗∥∥

2 = 0

so that there exists M0 such that ‖g∗ − g∗
K∗,M0

‖2
2 ≤ d2/6. If we choose this M0, we get that

Dn,K ≥ d2

4
− 2A

x

n
− 2 pen

(
n,M0,K

∗).
Which implies that Dn,K > 0 as soon as 2Ax/n < d2/4 − 2 pen(n,M0,K

∗), that is,

x <

(
d2

8
− pen

(
n,M0,K

∗)) n

A
.

To conclude, note that there exists ñ0 ≥ max(n0,M0) such that for all n ≥ ñ0, pen(n,M0,K
∗) ≤

d2

16 . Then, letting β = d2

16A
, one has for all n ≥ ñ0, with probability 1 − e−βn, for all K < K∗,

Dn,K > 0, which implies that K̂l.s. �= K . �

Proof of Theorem 4. For all K ≥ K∗,

Dn,K ≥ γn(ĝK,M̂K
) + pen(n, M̂K,K) − γn

(
g∗

K∗,M̂K

)− pen
(
n, M̂K,K∗)

and

γn(ĝK,M̂K
) − γn

(
g∗

K∗,M̂K

)= ∥∥ĝ
K,M̂K

− g∗∥∥2
2 − ∥∥g∗

K∗,M̂K
− g∗∥∥2

2 − 2ν
(
ĝ

K,M̂K
− g∗

K∗,M̂K

)
.

First, note that g∗
K∗,M̂K

= g∗
K,M̂K

. Indeed, g∗
K,M was defined as the orthogonal projection of

g∗ onto Span(SK,M) ⊂ P
⊗L
M . Lemma 17 ensures that g

π∗,Q∗,ProjPM
(f∗) is the orthogonal pro-

jection of g∗ onto P
⊗L
M and since it is in Span(SK∗,M), one has g∗

K∗,M = g
π∗,Q∗,ProjPM

(f∗)

for all M . Then, we use the fact that (SK,M)K≥1 is a sequence of nested subspaces, so that
g∗

K∗,M ∈ Span(SK,M) for all K ≥ K∗, and since Span(SK,M) ⊂ P
⊗L
M and g∗

K∗,M is the orthogo-
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nal projection of g∗ onto P
⊗L
M , it is also the orthogonal projection of g∗ onto Span(SK,M). Thus,

g∗
K∗,M = g∗

K,M for all K ≥ K∗ and M .

Then, one has ĝ
K,M̂K

∈ S
K,M̂K

⊂P
⊗L

M̂K
, so that, using the Pythagorean theorem,∥∥ĝ

K,M̂K
− g∗∥∥2

2 − ∥∥g∗
K∗,M̂K

− g∗∥∥2
2 = ∥∥ĝ

K,M̂K
− g∗

K∗,M̂K

∥∥2
2.

Let n0, ρ and A be as in Lemma 16. We can assume that n0 ≥ K∗ so that K∗ ≤ n. Let us introduce
the function p̃en(n,M,K) = ρ(MK + K2 − 1)

log(n)
n

. Let n ≥ n0 and x > 0 and assume we are
in the event of probability 1 − e−x of Lemma 16. Then, for all K ≤ n such that K ≥ K∗:∣∣ν(ĝ

K,M̂K
− g∗

K∗,M̂K

)∣∣= ∣∣ν(ĝ
K,M̂K

− g∗
K,M̂K

)∣∣
≤ Z

K,M̂K

((
g∗

K ′,M ′
)
K ′,M ′

)∥∥ĝ
K,M̂K

− g∗
K,M̂K

∥∥2
2

+ Z
K,M̂K

((
g∗

K ′,M ′
)
K ′,M ′

)
x2
K,M̂K

≤ 1

4

∥∥ĝ
K,M̂K

− g∗
K,M̂K

∥∥2
2 + 1

2
A

x

n
+ 1

2
p̃en(n, M̂K,K),

which implies

γn(ĝK,M̂K
) − γn

(
g∗

K∗,M̂K

)≥ 1

2

∥∥ĝ
K,M̂K

− g∗
K,M̂K

∥∥2
2 − A

x

n
− p̃en(n, M̂K,K)

≥ −A
x

n
− p̃en(n, M̂K,K)

so that for all K ≤ n such that K ≥ K∗:

Dn,K ≥ pen(n, M̂K,K) − pen
(
n, M̂K,K∗)− p̃en(n, M̂K,K) − A

x

n
.

Now, assume that [Hpen](α,ρ) holds for some α > 0 and the above constant ρ. Then there exists
n1 such that for all n ≥ n1 and for all K ≤ n such that K ≥ K∗,

Dn,K ≥ α
log(n)

n
− A

x

n
,

which is strictly positive as soon as x < α log(n)/A. Thus, letting β = 1/(2A), one has for all
n ≥ max(n0, n1,K

∗), with probability 1 − n−βα , for all K ≤ n such that K > K∗, Dn,K > 0,
which implies that K̂l.s. �= K . This concludes the proof. �

6.4. Proof of the oracle inequality (Theorem 7)

Let K ≤ n and M ≤ n. Then

γn(ĝ) + pen(n, M̂, K̂l.s.) ≤ γn(ĝK,M) + pen(n,M,K)

≤ γn

(
g∗

K,M

)+ pen(n,M,K),
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where the first inequality comes from the definition of (K̂l.s., M̂) and the second from the defini-
tion of ĝK,M . Therefore,

γn(ĝ) − γn

(
g∗

K,M

)≤ pen(n,M,K) − pen(n, M̂, K̂l.s.).

By definition of ν (equation (4)),

γn(t1) − γn(t2) = ∥∥t1 − g∗∥∥2
2 − ∥∥t2 − g∗∥∥2

2 − 2ν(t1 − t2)

so that∥∥ĝ − g∗∥∥2
2 ≤ ∥∥g∗

K,M − g∗∥∥2
2 + pen(n,M,K) − pen(n, M̂, K̂l.s.) + 2ν

(
ĝ

M̂,K̂l.s.
− g∗

K,M

)
.

Now we want to control the ν term. By linearity,

ν
(
ĝ

K̂l.s.,M̂
− g∗

K,M

)= ν
(
ĝ

K̂l.s.,M̂
− g∗)+ ν

(
g∗ − g∗

K,M

)
.

Using the definition of ZK,M (equation (5)), we get that{∣∣ν(ĝ
K̂l.s.,M̂

− g∗)∣∣≤ Z
K̂l.s.,M̂

(
g∗)(∥∥ĝ

K̂l.s.,M̂
− g∗∥∥2

2 + x2
K̂l.s.,M̂

)
,∣∣ν(g∗

K,M − g∗)∣∣≤ ZK,M

(
g∗)(∥∥g∗

K,M − g∗∥∥2
2 + x2

K,M

)
so that, using Lemma 16, for all n ≥ n0 and x > 0, with probability larger than 1 − e−x , for all
M ≤ n and K ≤ n,∣∣ν(ĝ

K̂l.s.,M̂
− g∗

K,M

)∣∣≤ 1

4

∥∥ĝ − g∗∥∥2
2 + 1

4

∥∥g∗
K,M − g∗∥∥2

2 + A
x

n

+ 1

2
pen(n, M̂, K̂l.s.) + 1

2
pen(n,M,K)

so that ∥∥ĝ − g∗∥∥2
2 ≤ ∥∥g∗

K,M − g∗∥∥2
2 + 2 pen(n,M,K)

+ 1

2

∥∥ĝ − g∗∥∥2
2 + 1

2

∥∥g∗
K,M − g∗∥∥2

2 + 2A
x

n
,

which means that

1

2

∥∥ĝ − g∗∥∥2
2 ≤ 3

2

∥∥g∗
K,M − g∗∥∥2

2 + 2 pen(n,M,K) + 2A
x

n

and finally ∥∥ĝ − g∗∥∥2
2 ≤ 4 inf

K≤n,M≤n

{∥∥g∗
K,M − g∗∥∥2

2 + pen(n,M,K)
}+ 4A

x

n

which is the expected inequality.
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6.5. Proof of Lemma 8

In the following, we will identify the quadratic form M derived from the second order expansion
of x �→ N(x) and its matrix. Likewise, we will identify the quadratic form MC derived from the
second order expansion of x �→ N(IC(x)) with its matrix. Without loss of generality, one can
assume L = 3.

Choice of parameters and expression of M

Let π ∈ �K∗ be the uniform distribution on X , Q = IdK∗ and f such that 〈fi, fj 〉 = F1i=j

for some constant F > 0. For instance, the fi ’s are F times the indicating functions of distinct
measurable sets with same measure 1

F
for μ. In that case, (fi/

√
F)i is an orthonormal basis,

and the quantity gπ+p,Q+q,f+Af − gπ,Q,f can be broken down into three order one terms in p, q

and A:

• the term in p:
∑

i pifi ⊗ fi ⊗ fi ;
• the term in q:

∑
i,k q(i, k)fi ⊗ (fi + fk) ⊗ fk ;

• the term in A:
∑

i ((Af )i ⊗ fi ⊗ fi + fi ⊗ (Af )i ⊗ fi + fi ⊗ fi ⊗ (Af )i).

Now we can make the list of all second-order terms in the expansion of the quantity
‖gπ+p,Q+q,f+Af − gπ,Q,f‖2

2:

• p and p: F 3∑
i p

2
i ;

• p and q: 2F 3∑
i piq(i, i);

• p and A: 3F 3∑
i piAi,i ;

• q and q: 2F 3∑
i,k q(i, k)2 + 2F 3∑

i q(i, i)2;
• q and A: F 3∑

i,k q(i, k)Ak,i + F 3∑
i,k q(i, k)Ai,k + 4F 3∑

i q(i, i)Ai,i ;
• A and A: 6F 3∑

i A
2
i,i + 3F 3∑

i,k A2
i,k .

We can now write the matrix M . In order to clarify the structure of this matrix, let us swap the
components of the parameters (p, q,A) and consider the new parameters (Adiag,Aelse,p, qdiag,

qelse), where Adiag (resp. qdiag) is a vector of size K∗ containing the diagonal coefficients of A

(resp. q) and Aelse (resp. qelse) contains its other coefficients. Then the matrix is:

Mswapped = F 3

⎛⎜⎜⎜⎜⎜⎝
9IdK∗ 0 3IdK∗ 6IdK∗ 0

0 3IdK∗(K∗−1) 0 0 X

3IdK∗ 0 IdK∗ 2IdK∗ 0

6IdK∗ 0 2IdK∗ 4IdK∗ 0
0 X 0 0 2IdK∗(K∗−1)

⎞⎟⎟⎟⎟⎟⎠ ,

where X[(Ai,j )i �=j ] = (Ai,j + Aj,i)i �=j .

Kernel of M

Subtracting the first block of lines to the third and fourth blocks of lines and then the first block
of columns to the third and fourth blocks of columns does not change the rank and leads to the
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matrix

F 3

⎛⎜⎜⎜⎜⎜⎝
9IdK 0 0 0 0

0 3IdK(K−1) 0 0 X

0 0 0 0 0

0 0 0 0 0
0 X 0 0 2IdK(K−1)

⎞⎟⎟⎟⎟⎟⎠ .

Thus dim(Ker(M)) ≥ 2K , where Ker(M) is the kernel of M and dim denotes the dimension. If
one takes away the lines and columns corresponding to p and qdiag, one gets the matrix

F 3

⎛⎝9IdK∗ 0 0
0 3IdK∗(K∗−1) X

0 X 2IdK∗(K∗−1)

⎞⎠ .

This matrix is invertible. Therefore, dim(Ker(M)) = 2K . Now, for all i ∈ [K∗], let e1
i and e2

i be
the vectors defined as ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
e1
i

)
pk

= 0 for all k,(
e1
i

)
Ak,l

= 0 for all (k, l) �= (i, i),(
e1
i

)
q(k,l)

= 0 for all (k, l) �= (i, i),(
e1
i

)
Ai,i

= 2,(
e1
i

)
q(i,i)

= −3

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
e2
i

)
pk

= 0 for all k �= i,(
e2
i

)
Ak,l

= 0 for all (k, l) �= (i, i),(
e2
i

)
q(k,l)

= 0 for all (k, l),(
e2
i

)
Ai,i

= 1,(
e2
i

)
pi

= −3.

One can easily check that these vectors are linearly independent and are all in Ker(M). Thus,
they are a basis of the kernel of M : Ker(M) = Span({e1

i , e
2
i |i ∈ [K]}).

Nondegeneracy of M restricted on C

Since M is symmetric, and thus diagonalisable in an orthonormal basis,

M = P �
Ker(M)⊥MKer(M)⊥PKer(M)⊥, (6)

where PKer(M)⊥ is the orthogonal projection onto the space of vectors orthogonal to Ker(M) and
MKer(M)⊥ is a symmetric positive definite matrix, whose smallest eigenvalue will be written c0
in the following. The last step to conclude will require the two following lemmas:
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Lemma 18. Ker(M) ∩ C = {0}.

Proof. Let x ∈ Ker(M) ∩ C, then x =∑i (λie
1
i + μie

2
i ) because (e1

i , e
2
i )i is a basis of Ker(M).

Since x ∈ C, one gets λi = 0 for all i because of the conditions on q . Then, the conditions on A

imply μi = 0 for all i, so that x = 0. �

Lemma 19. There exists a constant κ > 0 such that for all x ∈ C,

‖PKer(M)⊥x‖2
F ≥ κ‖x‖2

F . (7)

Proof. PKer(M)⊥ is continuous. By compactness, the quantity

κ := inf
{‖PKer(M)⊥x‖2

F |x ∈ C,‖x‖2
F = 1

}
is reached for some x0 ∈ C \ {0}. If κ = 0, then x0 ∈ Ker(M), but this is impossible because of
Lemma 18. Therefore κ > 0. �

Finally, for all x ∈ C,

x�Mx = x�P �
Ker(M)⊥MKer(M)⊥PKer(M)⊥x

= (PKer(M)⊥x)�MKer(M)⊥(PKer(M)⊥x)

≥ c0‖PKer(M)⊥x‖2
F

≥ c0κ‖x‖2
F .

Therefore, the quadratic form with matrix M is nondegenerate on C, which shows that H is
non-zero for these (π,Q, f). To conclude, observe that H is continuous and that our choice of
parameters can be approximated by parameters satisfying [HX] and [HidA].
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