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Let Lt be the longest gap before time t in an inhomogeneous Poisson process with rate function λt propor-
tional to tα−1 for some α ∈ (0,1). It is shown that λtLt − bt has a limiting Gumbel distribution for suitable
constants bt and that the distance of this longest gap from t is asymptotically of the form (t/ log t)E for an
exponential random variable E. The analysis is performed via weak convergence of related point processes.
Subject to a weak technical condition, the results are extended to include a slowly varying term in λt .
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1. Introduction and main results

Let (Nt )t≥0 be an inhomogeneous Poisson process with rate λt such that �(t) = ∫ t

0 λs ds < ∞
for all t > 0. The epochs of N , in increasing order, are denoted by Ti , i = 1,2, . . . , so that the
gaps are given by Ri = Ti − Ti−1 with T0 = 0. The objects of study of the present paper are the
longest gap, Lt , before time t and its right-end position, σt :

Lt = max
i≥1

{Ri : Ti ≤ t}, (1.1)

σt = min
i≥1

{Ti : Ri = Lt }. (1.2)

Note that the definition does not include the gap straddling time t , but this is in fact unimportant
for our asymptotic results, see Remark 1.3.

In the homogeneous case, the discrete time analogue of the longest gap is the longest run, Ln,
of ones before time n in a Bernoulli(p) sequence. The study of the longest run has a long history
going back to, among others, [10,23]; a recent survey is in [5]. A main result is that Ln is of order
log1/p n. In the homogeneous Poisson case, λt ≡ λ, there is a neat analogue of this:

λLt − log(λt)
D−→ G as t → ∞, (1.3)

where G is Gumbel with cumulative distribution function (cdf) P(G ≤ x) = exp(−e−x). The
proof is equally neat: with M±

t = maxi≤λt (1±ε) Ri for ε > 0 one has M−
t ≤ Lt ≤ M+

t for large
t with high probability. Further, by standard extreme value theory, the random variables λM±

t −
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log{λt(1 ± ε)} have Gumbel limits as t → ∞, so one can just let first t tend to infinity and next
ε tend to 0. We provide some further comments and references in Remark 1.5 below.

As mentioned above, our interest is in time inhomogeneity. This may occur in at least two
ways. First, one may consider fluctuations around a long-term average which is conveniently
modelled in a hidden Markov setting, see [1,4,11]. Secondly, the rates λt may exhibit a system-
atic deterministic trend. The only reference here seems to be [3] (though cf. also [18]), continuing
a study of [2] related to problems from computer reliability. The results in [3] are of large devia-
tions type, giving asymptotic estimates of P(Lt < �) in the rare-event setting where t → ∞ with
� fixed. Our concern here is the typical behaviour, that is, analogues of (1.3).

As in [3], the quantitative form of λt is crucial both for the form of the results and the difficulty
of the analysis. First, we concentrate on what is maybe the simplest form, a power function
λt = λ1t

α−1, and then provide extensions to regularly varying functions. The power function is
a rather natural choice with which to start the analysis, and already this case presents substantial
challenges. The case α = 1 is settled by (1.3) and the behaviour when α > 1 or α ≤ 0 is easily
resolved, see Remark 1.6 below. Thus what is left for analysis is the case 0 < α < 1, and here
our result is the following theorem.

Theorem 1.1. Let (Nt )t≥0 be an inhomogeneous Poisson process with rate λt = λ1t
α−1 with

λ1 > 0 and α ∈ (0,1). For Lt and σt as in (1.1) and (1.2), we have
(

λtLt − bt ,
t − σt

t
log t

)
D−→ (G,Eα(1−α)) as t → ∞,

where bt = α log t − log log t − log(α(1 − α)/λ1) and G,Eα(1−α) are independent random vari-
ables: G is Gumbel and Eα(1−α) is exponential with rate α(1 − α).

In fact, we prove a much more general result establishing weak convergence of a sequence
of point processes, from which Theorem 1.1 easily follows. Here and as usual, convergence
in distribution of point processes is with respect to the vague topology in the space of Radon
measures on (−∞,∞]2.

Theorem 1.2. Under the assumptions of Theorem 1.1 consider the point process ξt on
(−∞,∞]2 consisting of the points

(
λtRi − bt ,

t − Ti

t
log t

)
, i = 1,2, . . .

Then ξt
D−→ ξ as t → ∞, where ξ is a Poisson point process with intensity measure

μ(dx,dz) = e−x dx × α(1 − α)e−α(1−α)z dz.

Importantly, in Theorem 1.1, we consider the compactified Euclidean plane (−∞,∞]2 so that
the set [x,∞] × [−z,∞] is compact. The points of ξt in this set are affine transformations of
couples (Ri, Ti) such that Ri ≥ (x+bt )/λt and Ti ≤ t (1+z/ log t). Hence, our result concerns all
large enough gaps of N up to the time t + O(t/ log t). Furthermore, since vague convergence of
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point measures implies convergence of the respective points in any compact set [21], Prop. 3.13,
we conclude that the map

∑
i

δ(xi ,zi ) �→ (x, z), x = max{xi : zi ≥ 0}, z = max{zi : xi = x}

is continuous apart from possible discontinuities at point measures with xi = xj or zi = 0 for
some i 	= j . Since ξ is not of such form a.s., the continuous mapping theorem gives that (λtLt −
bt , (1 − σt/t) log t)

D−→ (X,Z), where (X,Z) has the distribution arising from the application of
the above map to ξ . A standard calculation reveals that for z > 0 we have

P(X ∈ dx,Z ∈ dz) = P
(
ξ(dx × dz) = 1, ξ

(
(x,∞) × (0,∞)

) = 0
)

= μ(dx,dz) exp
{−μ

(
(x,∞) × (0,∞)

)}
(1.4)

= μ(dx,dz) exp
(−e−x

)
,

proving Theorem 1.1; see also the light-gray region in Figure 1.

Remark 1.3. In order to give a feeling for some further results, we consider the first gap exceed-
ing Lt and its time of occurrence: (L+

t , σ+
t ) = (Ri+t , Ti+t ), where i+t = min{i ≥ 1 : Ri > Lt } is

the corresponding index. From Theorem 1.2 and the continuous mapping theorem applied to the
appropriate map, we find that

(
λtLt − bt , λtL

+
t − bt ,

t − σt

t
log t,

σ+
t − t

t
log t

)
D−→ (

X,X+,Z,Z+)
,

Figure 1. The points (x, z) and (x+,−z+) and the associated empty regions (x,∞) × (0,∞) in (1.4)
(light-gray) and (x,∞) × (−z+,0) in (1.5) (dark-gray), respectively.
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where the conditional distribution of X+,Z+ is easily identified to be

P
(
X+ ∈ dx+,Z+ ∈ dz+ | X = x,Z = z

)
= P

(
ξ
(
dx+ × (−dz+)) = 1, ξ

(
(x,∞) × (−z+,0

)) = 0
)

= μ
(
dx+,−dz+)

exp
(−e−x

(
eα(1−α)z+ − 1

))
(1.5)

for x+ > x and z+ > 0; see the dark-grey region in Figure 1. In particular, we find after some

computation that Z+ D= Eα(1−α)
D= Z. One may proceed even further and obtain convergence of

extremal processes (on the Skorokhod space of two-sided paths) identifying the record gaps and
their times, see [21], Prop. 4.20, for the classical setting.

Finally, note that L+
t = op(t/ log t) and so P(σ+

t −L+
t > t) → 1, showing that the correspond-

ing gap does not straddle time t in the limit.

When trying to adapt the above proof of (1.3), with scale constant λ1 = α say, one quite easily
gets Nt ≈ tα , which gives a rough estimate of Lt in terms of maxi<tα Ri . The difficulty is that
these interarrival times Ri are no longer independent nor exponentially distributed. Nevertheless,
the Ri are not too far from exponential random variables with rates λTi

≈ αi(α−1)/α , because
Ti ≈ i1/α for large i. Hence, our first step is to consider extreme value theory for sequences
of i.i.d. random variables equipped with weights. Some references in that direction are [7,9,12,
22] and, of particular relevance for us, [25], Thm. 4.1, from which the following result can be
extracted.

Proposition 1.4. Let X1,X2, . . . be independent unit exponential random variables and let γ ∈
(0,∞). Then with Mn = maxi=1,...,n{iγ Xi} we have

Mn

nγ
− βn

D−→ G, as n → ∞,

where βn = log(n/γ ) − log logn and G is a Gumbel random variable.

Our analysis supplements this result by identifying the location of the maximum and providing
the analogue of Theorem 1.2. This location is trivially uniform for i.i.d. sequences or homoge-
neous Poisson processes, but has an interesting limiting distribution in the nonhomogeneous
case. We also give an extension to weights in Proposition 1.4 and rates in Theorem 1.1 which
are regularly varying rather than of simple power form. Such an extension is of course expected,
but the proof is surprisingly complicated, and in fact, we need some regularity conditions on the
slowly varying function.

Remark 1.5. Despite its simplicity, (1.3) does not seem to have been formulated in the longest
run/gap literature. Note that its analogue fails in the Bernoulli setting, because the extreme value
behaviour of geometric random variables is more complicated than the one of exponential ran-
dom variables, cf. [19], pp. 24–25.

However, as pointed out by an associate editor and a referee, there are a number of related
results in the stochastic geometry literature. Most of these are more general and go deeper, but
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(1.3) can be deduced after some reformulation. For example, consider the probability of full
coverage of the interval [0,1] in the Boolean model [14] on R with deterministic segments of
length r(t) = (x + log(λt))/(λt) arriving at the rate λ(t) = λt . By rescaling time we find that

P
(
λLt − log(λt) ≤ x

) = P
(
Lt/t ≤ r(t)

)
= P

(t)
(
full coverage of [0,1]) + o(1) as t → ∞,

which converges to exp(−e−x) according to [14], Thm. 2.5. For related results in the nonuniform
setting see [13,15] and [20] for more recent work. Furthermore, (1.3) also follows from [8],
(2c), specifying the limit behaviour of the maximal circumscribed radius of a Poisson–Voronoi
tessellation.

Remark 1.6. When α > 1, [3] gives that the increasing process Lt has a proper limiting distri-
bution, of L∞, say. That is, from (7) in [3] it follows that P(L∞ ≥ �) → 0 as � → ∞. The case
α < 0 is trivial since then

∫ ∞
1 λt dt < ∞, so that the number of epochs in [1,∞) is finite with

probability 1. The boundary case α = 0 is also easy: if λt = λ1/t for some scale constant λ1 > 0,
then (

Lt

t
,
σt

t

)
D= (L1, σ1). (1.6)

Indeed, fix t > 0 and define the time-changed process N ′ by N ′
x = Ntx for x ≥ 0. Its intensity

measure, �′, satisfies �′(x, y) = �(tx, ty) = λ1 log((ty)/(tx)) = �(x,y) for any 0 < x < y. It
follows that N ′ has the same distribution as N , and it is then clear that (Lt/t, σt /t) has the same
distribution as (L1, σ1).

Finally, observe that t − σt is of order t when α = 0 or 1, the two boundary cases in Theo-
rem 1.1. In contrast, Theorem 1.1 gives the smaller order t/ log t when α ∈ (0,1). Therefore, it
is intuitive that the limiting random variable Eα(1−α) must increase to ∞ as α approaches 0 or 1.
This is indeed the case.

2. Weighted exponentials

As in Proposition 1.4, we consider a sequence X1,X2, . . . of independent, unit exponential ran-
dom variables. We fix γ > 0 and let

Mn = max
i=1,...,n

{
iγ Xi

}
and τn = min

{
i = 1, . . . , n : iγ Xi = Mn

}
, (2.1)

denote the partial maximum of the weighted sequence (iγ Xi)i≥1 and the location of that max-
imum, respectively. In the i.i.d. case, γ = 0, the random variable τn is uniformly distributed on
{1, . . . , n}. Since the weights iγ increase to infinity, one would expect that τn/n → 1 as n → ∞.
The following proposition makes this precise.

Proposition 2.1. For Mn and τn as in (2.1), we have(
Mn

nγ
− βn,

n − τn

n
logn

)
D−→ (G,Eγ ) as n → ∞,
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where βn = log(n/γ ) − log log(n) and where G,Eγ are independent random variables: G is
Gumbel and Eγ is exponential with rate γ .

We start by proving a lemma which is basic for the proof of Proposition 2.1 and the associated
point process result given in Proposition 2.3.

Lemma 2.2. For every z ∈R, we have

M�n(1−z/ logn)

nγ

− βn
D−→ G − γ z, as n → ∞,

where G is a Gumbel random variable.

Proof. Letting Mn(z) = M�n(1−z/ logn)
 we find from Proposition 1.4 that

Gn = Mn(z)

�n − nz/ logn
γ
− β�n−nz/ logn


D−→ G, as n → ∞.

Further,

Mn(z)

nγ
− βn = (Gn + β�n−nz/ logn
)

�n − nz/ logn
γ

nγ
− βn.

An elementary calculation yields

β�n−nz/ logn

�n − nz/ logn
γ

nγ
− βn → −γ z, as n → ∞. (2.2)

The result follows by Slutsky’s lemma and the fact that �n − nz/ logn
γ ∼ nγ , where an ∼ bn

means that an/bn → 1 as n → ∞. �

The following result establishing convergence of the underlying point processes is close in
spirit to, for example, [24], Thm. 1, and it serves as the basis for Theorem 1.2.

Proposition 2.3. The point process ξ̂n on (−∞,∞]2 consisting of the points

(
iγ Xi

nγ
− βn,

n − i

n
logn

)
, i = 1,2, . . .

converges in distribution as n → ∞ to the Poisson point process ξ̂ with mean measure

μ̂(dx,dz) = e−x dx × γ e−γ z dz.
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Proof. Let Yn,i = iγ Xi/nγ − βn. According to the result of Grigelionis, see, for example, [17],
Thm. 16.18, applied to a null array of single points, it is only required to show that

sup
i≥1

P
{(

Yn,i , (1 − i/n) logn
) ∈ B

} → 0,

∑
i≥1

P
{(

Yn,i , (1 − i/n) logn
) ∈ B

} → μ̂(B),

for any finite union B of rectangles in (∞,∞]2. In our setting, it is sufficient to check the above
limits for B = [x,∞] × [z,∞]. The first limit result follows from the monotonicity of (i/n)γ

and

P(Yn,�n(1−z/ logn)
 ≥ x) = exp
{−(x + βn)

(
1 + o(1)

)} → 0.

Using this and Lemma 2.2, we also find that

∑
i≥1

(1−i/n) logn≥z

P(Yn,i ≥ x)

= −(
1 + o(1)

)
log

∏
i≥1

(1−i/n) logn≥z

P(Yn,i < x)

= −(
1 + o(1)

)
logP

(
M�n−nz/ logn
/nγ − βn < x

) → − logP(G − γ z < x)

= e−x−γ z = μ̂
([x,∞] × [z,∞]),

as required. �

Proof of Proposition 2.1. It follows by the continuous mapping theorem applied to Proposi-
tion 2.3 in the same way as Theorem 1.1 follows from Theorem 1.2.

Alternatively, one may proceed directly by identifying the limit distribution:

max
{
iγ Xi : i ∈N, n(1 − z/ logn) < i ≤ n

}
/nγ − βn

D−→ G + log
(
1 − e−γ z

)
,

and then expressing the distribution of interest using M�n−nz/ logn
/nγ −βn and the above quan-
tity. �

3. Gaps of an inhomogeneous Poisson process

Let 0 < T1 < T2 < · · · be the points of a Poisson process N = (Nt )t≥0 with rate λt = αtα−1 for
some 0 < α < 1 and with cumulative rate function �(t) = ∫ t

0 λs ds = tα . Note that we assume
that λ1 = α; the case λt = λ1t

α−1 for general λ1 > 0 follows by the time change argument, but
see also Section 4. Recall that Ri = Ti − Ti−1 for integer i ≥ 1, where T0 = 0.
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Define T ′
i = T α

i for integer i ≥ 0, so that 0 < T ′
1 < T ′

2 < · · · are the points of a unit-rate
homogeneous Poisson process (N ′

t )t≥0. Let Xi = T ′
i − T ′

i−1 be its interarrival times, for integer
i ≥ 1. The random variables X1,X2, . . . are independent unit exponentials. Put

γ = (1 − α)/α ∈ (0,∞).

The following result provides the basic approximation.

Lemma 3.1. We have as i → ∞ that∣∣∣∣ Ti

i1/α
− 1

∣∣∣∣ ∨
∣∣∣∣ αRi

iγ Xi

− 1

∣∣∣∣ = o(1/ log i) a.s. (3.1)

Proof. Since (T ′
i )i is the partial sum process of a sequence of independent unit exponentials, the

law of the iterated logarithm states that

lim sup
i→∞

T ′
i / i − 1√

i−1 log log i
= √

2 a.s.,

which further implies ∣∣T ′
i / i − 1

∣∣ log i → 0 a.s. (3.2)

But then

Ti/i1/α − 1 = (
T ′

i / i
)1/α − 1 = (

T ′
i / i − 1

)(
1 + o(1)

)
/α a.s.

and so |Ti/i1/α − 1| log i → 0 a.s. as required.
Concerning the second part, we write using the mean-value theorem

Ri = Ti − Ti−1 = (
T ′

i

)1/α − (
T ′

i−1

)1/α = (
T ′

i

)1/α − (
T ′

i − Xi

)1/α = α−1θ
γ

i Xi (3.3)

with T ′
i−1 < θi < T ′

i . Hence, it is left to show that |(θi/i)γ − 1| log i → 0 a.s., which again
follows from (3.2). �

In the following, we relate the points of the point process ξt in Theorem 1.2 to the correspond-
ing points of the process ξ̂�tα� in Proposition 2.3 with rescaled second component.

Lemma 3.2. Let B = [x1, x2] × [z1, z2] and put

ui(t) = (
λtRi − bt , (1 − Ti/t) log t

)
,

vi(t) = (
iγ Xi/nγ − βn, (1 − i/n) log(n)/α2)

with n = n(t) = �tα�. Then

sup
i

{∥∥ui(t) − vi(t)
∥∥

1 : vi(t) ∈ B or ui(t) ∈ B
} → 0 a.s.

as t → ∞ with the convention that sup∅ = 0.
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Proof. Letting Iv(t) = {i ≥ 1 : vi(t) ∈ B} we see that i/n → 1 and hence also i/tα → 1 uni-
formly in i ∈ Iv(t) as t → ∞. Now according to Lemma 3.1, for all i ∈ Iv(t), we have

αRi = iγ Xi

(
1 + η′

i

)
, Ti = i1/α

(
1 + η′′

i

)
(3.4)

where |η′
i | ∨ |η′′

i | = o(1/ log t) as t → ∞ a.s. So we have a.s.

λtRi − bt ≤ iγ Xi/tαγ
(
1 + o(1/ log t)

) − bt

= (
iγ Xi/nγ − βn

)(
1 + o(1/ log t)

) + o(1),
(3.5)

where in the last line we used the facts: �tα�γ /tαγ = 1 + o(1/ log t) and bt = βtα + o(1) =
βn + o(1). This and the analogous lower bound imply that

sup
i∈Iv(t)

∣∣(λtRi − bt ) − (
iγ Xi/nγ − βn

)∣∣ → 0

as t → ∞ a.s., because |iγ Xi/nγ − βn| is bounded for the indices of interest. Upon recalling
that i/tα − 1 → 0 uniformly in i ∈ Iv(t), for all such i we find that

α2(1 − Ti/t) log t ≤ α2(1 − i1/α
(
1 + o(1/ log t)

)
/t

)
log t

= α
(
1 − (

i/tα
)1/α)

log
(
tα

) + o(1)

= (
1 − i/tα

)
log

(
tα

)(
1 + o(1)

) + o(1)

= (1 − i/n) log(n)
(
1 + o(1)

) + o(1).

(3.6)

This and the analogous lower bound yield

sup
i∈Iv(t)

∣∣α2(1 − Ti/t) log t − (1 − i/n) logn
∣∣ → 0

as t → ∞ a.s., because now |1 − i/n| logn is bounded for the indices of interest.
Next, consider the set of indices Iu(t) = {i ≥ 1 : ui(t) ∈ B}. In this case, we use the fact that

Ti/t → 1 uniformly in i ∈ Iu(t). Furthermore, with probability 1 as t → ∞ the corresponding
indices i converge to ∞ too, and since Ti ∼ i1/α we must have that i/tα → 1 uniformly in
i ∈ Iu(t). Thus, (3.5) holds true and hence also

iγ Xi/nγ − βn ≥ (λtRi − bt )
(
1 + o(1/ log t)

) + o(1). (3.7)

The corresponding upper bound, as well as the bounds on (1 − i/n) log(n)/α2 stemming from
(3.6), complete the proof, because |λtRi − bt | and |(1 − Ti/t) log t | are bounded for all i ∈
Iu(t). �

Remark 3.3. The point process
∑

i δvi (n) with vi(n) defined in Lemma 3.2 is a rescaled version
of ξ̂n in Proposition 2.3, and the proof of the latter easily yields that

∑
i δvi (n) converges in
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distribution to a Poisson point process with intensity measure for the set [x,∞] × [z,∞] given
by

μ̂
([x,∞] × [

α2z,∞]) = e−x−α(1−α)z = μ
([x,∞] × [z,∞]).

That is, the corresponding limit is ξ .

The following lemma shows that compact sets of the form [x,∞] × [z,∞] can be truncated
to finite rectangles.

Lemma 3.4. For any ε > 0 and z, x < ∞ there exist z′ > z and x′ > x such that

lim sup
t→∞

P
(
ξt

(([x,∞] × [z,∞]) \ ([
x, x′] × [

z, z′])) > 0
)
< ε.

Proof. Put n = �tα� and observe using (3.3) that

max
i≤n/2

αRi ≤ max
i≤n/2

(
T ′

i

)γ
Xi ≤ (

T ′�n/2�
)γ max

i≤n/2
Xi = (n/2)γ logn

(
1 + op(1)

)
,

where in the last equality we used the law of large numbers applied to T ′
i and the fact that

maxi=1,...,k Xi − log(k) is asymptotically Gumbel. But then

λt max
i≤n/2

Ri − bt ≤ 2−γ α log(t)
(
1 + op(1)

) − bt → −∞

in probability. Thus, it is sufficient to restrict our attention to the indices i > n/2, in which case
we have (3.4) for all such i a.s.

Observe that for i > n/2 the bound (3.7) is still true. Letting I (t, z) be the set of indices i such
that (1 − Ti/t) log t ∈ [z, z + 1] or (1 − i/n) log(n)/α2 ∈ [z, z + 1], we see from the proof of
Lemma 3.2 that i/tα − 1 → 0 uniformly in i ∈ I (t, z), and also that

sup
i∈I (t,z)

∣∣(1 − Ti/t) log t − (1 − i/n) log(n)/α2
∣∣ → 0 as t → ∞ a.s.

Hence for any fixed δ > 0 with arbitrarily high probability the following is true for large enough
t : if for some i > n/2 it is true that

λtRi − bt ≥ x and (1 − Ti/t) log t ≥ z

then

iγ Xi/nγ − βn ≥ x − δ and (1 − i/n) log(n)/α2 ≥ z − δ,

because for i /∈ I (t, z) the monotonicity of Ti implies (1 − i/n) log(n)/α2 > z+ 1. Thus it is left
to apply Proposition 2.3 and to note that μ̂(B1), μ̂(B2) → 0 with

B1 = [x − δ,∞] × [
α2(z′ − δ

)
,∞]

, B2 = [
x′ − δ,∞] × [

α2(z − δ),∞]

as x′, z′ → ∞, which implies that P(ξ̂ (Bi) > 0) → 0. �
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Proof of Theorem 1.2. According to [16], Thm. 1, it is sufficient to show that

lim
t→∞P

(
ξt (B) = 0

) = P
(
ξ(B) = 0

)
, (3.8)

lim sup
t→∞

P
(
ξt (K) > 1

) ≤ P
(
ξ(K) > 1

)
, (3.9)

where K is a compact rectangle in (−∞,∞]2 and B is a finite union of such rectangles. Accord-
ing to Lemma 3.4 we may choose x1 < x2, z1 < z2 such that

0 ≤ P
(
ξt

(
B ′) = 0

) − P
(
ξt (B) = 0

) ≤ P
(
ξt

(
B \ ([x1, x2] × [z1, z2]

))
> 0

)
< ε

for B ′ = B ∩ ([x1, x2] × [z1, z2]) and all t large enough. Furthermore, we may additionally
ensure that 0 ≤ P(ξ(B ′) = 0) − P(ξ(B) = 0) ≤ ε. A similar observation holds true with respect
to P(ξt (B) > 1) − P(ξt (B

′) > 1) and the corresponding difference for the process ξ . Hence,
it is sufficient to prove (3.8) and (3.9) for any finite rectangle K and a finite union B of such
rectangles.

Fix δ > 0 and define the δ-enlarged set Bδ+ = {v : d(v,B) < δ} and δ-narrowed set Bδ− = {v :
d(v,Bc) > δ}, where d is the Euclidean distance. According to Lemma 3.2 with the respective
rectangle chosen to cover B , we have

P
(
#
{
i : vi(t) /∈ Bδ+

} = 0
) − ε ≤ P

(
ξt (B) = 0

)
≤ P

(
#
{
i : vi(t) /∈ Bδ−

} = 0
) + ε

for all t large. Noting that μ(∂B) = 0 we obtain (3.8) from Remark 3.3 based on Proposition 2.3.
In a similar way, we also find that P(ξt (K) > 1) → P(ξ(K) > 1). The proof is complete. �

4. Extensions to regular variation

Let RVρ denote the set of measurable functions f : R+ → R+ which are regularly varying at
∞ with index ρ ∈ R, i.e., satisfying f (ut)/f (t) → uρ as t → ∞ for all u > 0. Any such f

can be represented as f (t) = tρ�(t) with � ∈ RV0 a slowly varying function. Regularly varying
functions are thus a generalization of the power functions considered above. Let us also recall
the basic theorem concerning regularly varying functions f ∈ RVρ , the Uniform Convergence
Theorem [6], Thm. 1.5.2:

f (ut)/f (t) → uρ, uniformly in u (UCT)

on intervals [a, b] with 0 < a ≤ b < ∞ for ρ ≤ 0, and on intervals (0, b] for ρ > 0 if f is locally
bounded.

Assume that the rate function t �→ λt is in RVα−1 for some α ∈ (0,1), so that � ∈ RVα . Let
V (t) = �−1(t) be the inverse function of � and let v(t) = dV (t)/dt be its derivative. Then V ∈
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RV1/α and v = 1/(λ◦V ) ∈ RVγ with γ = (1−α)/α. The point process N ′
t =NV (t) is a unit-rate

homogenous Poisson process with epochs T ′
i = �(Ti). We generalize our main results imposing

just one condition on the slowly varying function � associated with v, that is, v(t) = tγ �(t);
see Condition 4.2 below. The basis of our analysis will be the approximation Ri = V (T ′

i ) −
V (T ′

i−1) ≈ v(i)Xi inspired by the mean-value theorem applied to V and the strong law of large
numbers applied to the partial sum sequence T ′

i . Therefore, we first study the behaviour of the
maximum of the weighted exponentials v(i)Xi .

4.1. Weighted exponentials

Let X1,X2, . . . be a sequence of i.i.d. unit exponentials and let v ∈ RVγ with γ > 0. Write
v(t) = tγ �(t) with � ∈ RV0. We consider the maximum of the weighted exponentials v(i)Xi and
the location of that maximum:

M∗
n = max

i=1,...,n

{
v(i)Xi

}
and τ ∗

n = min
{
i = 1, . . . , n : v(i)Xi = M∗

n

}
.

Lemma 4.1. We have

M∗
n

v(n)

/Mn

nγ
= 1 + op(1),

τ ∗
n

n
= 1 + op(1)

as n → ∞.

Proof. Let 0 < h < 1. First, we prove that P(τ∗
n /n > h) → 1 as n → ∞, or equivalently, that

lim
n→∞P

(
M∗�nh
 < M∗

n

) = 1. (4.1)

On the one hand, we have

M∗�nh

v(n)

= max
i=1,...,�nh


v(i)

v(n)
Xi ≤ max

i=1,...,�nh

v(i)

v(n)
max

i=1,...,�nh

Xi.

But v ∈ RVγ can be assumed to be locally bounded [otherwise redefine v by v(t) = v(�t
)], and
so by (UCT) it follows that

lim
n→∞ max

i=1,...,�nh

v(i)

v(n)
= max

u∈[0,h]
uγ = hγ .

Since X1,X2, . . . are i.i.d. unit exponentials, we have maxi=1,...,�nh
 Xi = log�nh
 + Op(1) =
log(n){1 + op(1)} and thus

M∗�nh

v(n)

≤ hγ log(n)
{
1 + op(1)

}
as n → ∞.
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On the other hand, let g ∈ (h,1). By a similar argument as in the previous paragraph, we find

M∗
n

v(n)
≥ max

i=�ng
,...,n
v(i)

v(n)
Xi ≥ min

i=�ng
,...,n
v(i)

v(n)
max

i=�ng
,...,nXi

= gγ log(n)
{
1 + op(1)

}
as n → ∞.

Since hγ < gγ , we obtain (4.1), as required.
Concerning the first statement, observe from above and Proposition 2.1 that with arbitrarily

high probability

M∗
n = max

i=�ng
,...,n �(i)iγ Xi, Mn = max
i=�ng
,...,n iγ Xi

for large enough n. Hence, it is sufficient to show that

max
i=�ng
,...,n �(i)/�(n) − 1 → 0 as n → ∞ (4.2)

and the same for min, which again follows from (UCT). �

In order to generalize Proposition 1.4 we need a stronger statement than the readily available
(4.2), and so we assume the following additional condition on the slowly varying function �.

Condition 4.2. Whenever 0 < ε(t) → 0 as t → ∞, we have

log(t)

(
�([1 + ε(t)]t)

�(t)
− 1

)
→ 0.

In Section 4.3, we provide a simple sufficient criterion under which Condition 4.2 holds. It is
important to realize that Condition 4.2 is equivalent to a seemingly stronger condition stated in
the following lemma.

Lemma 4.3. Condition 4.2 is equivalent to

log(t) sup
−ε(t)≤x≤ε(t)

∣∣∣∣�((1 + x)t)

�(t)
− 1

∣∣∣∣ → 0 (4.3)

for any 0 < ε(t) → 0.

Proof. Given in the Appendix. �

Recall βn = log(n/γ ) − log log(n).

Lemma 4.4. Assuming Condition 4.2 we have M∗
n/v(n) − βn

D−→ G.
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Proof. Since (τ ∗
n ∧ τn)/n = 1 + op(1) as n → ∞ by Lemma 4.1 and Proposition 2.1, we can

find εn > 0 such that εn → 0 and P[τ ∗
n ∧ τn > n(1 − εn)] → 1 as n → ∞. Hence with arbitrarily

high probability, we have
∣∣∣∣ M∗

n

v(n)
− Mn

nγ

∣∣∣∣ =
∣∣∣∣ max
n(1−εn)<i≤n

{
iγ �(i)

nγ �(n)
Xi

}
− max

n(1−εn)<i≤n

{
iγ

nγ
Xi

}∣∣∣∣
≤ max

n(1−εn)<i≤n

{∣∣∣∣ �(i)

�(n)
− 1

∣∣∣∣ iγ

nγ
Xi

}
≤ Mn

nγ
sup

−εn<x≤0

∣∣∣∣�(n(1 + x))

�(n)
− 1

∣∣∣∣.
Lemma 4.3 and Lemma 2.2 show that M∗

n/v(n) = Mn/nγ + op(1) completing the proof. �

Proposition 4.5. Let v ∈ RVγ for some γ > 0 and put �(t) = t−γ v(t). If � satisfies Condition 4.2
then Proposition 2.1 and Proposition 2.3 hold with M∗

n , τ ∗
n , v(i), v(n) in place of Mn,τn, i

γ , nγ .

Proof. One may follow the same steps as in the original proofs. In addition, for the analogue of
(2.2) we use Lemma A.1, whereas the extension of Proposition 2.3 requires showing that

sup
1≤i≤n(1−z/ logn)

exp
(−(x + βn)v(n)/v(i)

) → 0,

which follows from (UCT) applied to the function v(�t
). �

4.2. Gaps of a Poisson process

Let (Nt )t≥0 be an inhomogenous Poisson process as in the beginning of this section. As a con-
sequence of Lemma 4.3, we have that

0 < δ(t) = o(1/ log t) as t → ∞ implies

lim
t→∞ log(t) sup

−δ(t)≤x≤δ(t)

∣∣∣∣v((1 + x)t)

v(t)
− 1

∣∣∣∣ = 0,
(4.4)

because (1 ± δ(t))γ − 1 = o(1/ log t).
Let us now provide a generalization of Lemma 3.1.

Lemma 4.6. If � satisfies Condition 4.2, then
∣∣∣∣ Ti

V (i)
− 1

∣∣∣∣ ∨
∣∣∣∣ Ri

v(i)Xi

− 1

∣∣∣∣ = o(1/ log i) a.s.

as i → ∞.

Proof. From the monotonicity of V and from (3.2), we find that a.s.

Ti/V (i) − 1 = V
(
T ′

i

)
/V (i) − 1 ≤ V

(
i
(
1 + o(1/ log i)

))
/V (i) − 1,
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which is o(1/ log i) by Lemma A.1. A similar bound from below completes the proof of the first
part.

For the second part, we write

Ri = Ti − Ti−1 = V
(
T ′

i

) − V
(
T ′

i−1

) =
∫ T ′

i

T ′
i−1

v(t)dt, (4.5)

so that

Ri − v(i)Xi =
∫ T ′

i

T ′
i−1

{
v(t) − v(i)

}
dt.

But then

∣∣∣∣ Ri

v(i)Xi

− 1

∣∣∣∣ ≤ 1

Xi

∫ T ′
i

T ′
i−1

∣∣∣∣v(t)

v(i)
− 1

∣∣∣∣dt ≤ sup
T ′

i−1/i−1≤x≤T ′
i / i−1

∣∣∣∣v(i(1 + x))

v(i)
− 1

∣∣∣∣.

From (3.2) and (4.4), we find that the last term is o(1/ log i) a.s. as required. �

Theorem 4.7. If the rate function λ ∈ RVα−1, where α ∈ (0,1), is such that � satisfies Condi-
tion 4.2, then Theorem 1.1 and Theorem 1.2 hold with such λt and

bt = log�(t) − log log t − log(1 − α).

Proof. In this more general setting, we use n = ��(t)� and so logn ∼ α log t . Concerning the
generalization of Lemma 3.2 we only need to show that (3.5) and (3.6) hold when adapted ac-
cording to Lemma 4.6. That is,

λtv(i)Xi

(
1 + o(1/ log t)

) − bt = (
v(i)Xi/v(n) − βn

)(
1 + o(1/ log t)

) + o(1),

α2 log(t)
(
1 − V (i)/t

) = log(n)(1 − i/n)
(
1 + o(1)

) + o(1).

This hinges on the following: (i) λtv(n) = 1 + o(1/ log t), (ii) bt = βn + o(1), and (iii) α(1 −
V (i)/t) = (1 − i/n)(1 + o(1))+ o(1/ log t) uniformly in i ∈ Iv(t). Identity (i) holds, because by
(4.4)

λtv
(⌈

�(t)
⌉) = v(��(t)�)

v(�(t))
= 1 + o(1/ log t), as t → ∞, (4.6)

where, indeed, |��(t)�/�(t) − 1| < 1/�(t) = o(1/ log t). Identity (ii) is rather obvious, whereas
concerning (iii) we have

α
(
1 − V (i)/t

) = α
(
1 − V (i)/V

(
�(t)

)) = α
(
1 − V (i)/V (n)

)(
1 + o(1)

) + o(1/ log t),

but 1 − V (n(1 + i/n − 1))/V (n) = (1 − i/n)(1 + o(1))/α by a slight extension of Lemma A.1
upon noting that i/n − 1 = o(1) uniformly in i concerned.



390 S. Asmussen, J. Ivanovs and J. Segers

It is left to show that Lemma 3.4 still holds, and the only non-trivial step is to show that

λt max
i≤n/2

Ri − bt → −∞ (4.7)

in probability and hence a.s., which we obtain in the following. Observe from (4.5) that

max
i≤n/2

Ri ≤ max
i≤n/2

Xi sup
T ′

i−1≤t≤T ′
i

v(t) ≤ max
i≤n/2

Xi sup
t≤T ′�n/2�

v(t),

where maxi≤n/2 Xi = logn(1 + Op(1)) and concerning the latter term we have

sup
t≤T ′�n/2�

v(t)/v(n) = sup
t≤n/2(1+o(1))

v(t)

v(n)
→ 2−γ a.s.

by (UCT), provided that v is locally bounded. This shows that maxi≤n/2 Ri/v(n) ≤ 2−γ logn(1+
Op(1)) and hence (4.7) holds in view of (4.6). In general, however, we only have that v is
bounded on [a, b] for some a and all b. With arbitrarily high probability, we may choose an
index j such that T ′

j > a, and then the above steps can be repeated for maxj<i≤n/2 Ri , whereas
obviously Tj/v(n) → 0 a.s. �

4.3. Comments on the assumed condition

Let us note that virtually all standard examples of slowly varying functions, for example,
logu t, u ∈ R and log log t , satisfy Condition 4.2. This can be easily checked using the following
result.

Lemma 4.8. Condition (4.2) holds true if � ∈ RV0 is eventually differentiable and

t�′(t)
�(t)

= O(1/ log t), as t → ∞. (4.8)

Proof. Using the mean value theorem, we have
∣∣�([1 + ε(t)

]
t
) − �(t)

∣∣ ≤ tε(t) sup
t≤s≤[1+ε(t)]t

∣∣�′(s)
∣∣.

Moreover,

sup
t≤s≤[1+ε(t)]t

∣∣�′(s)
∣∣ ≤ sup

t≤s≤[1+ε(t)]t

∣∣∣∣ s�
′(s) log s

�(s)

∣∣∣∣ sup
t≤s≤[1+ε(t)]t

∣∣∣∣ �(s)

s log s

∣∣∣∣,
where the first term on the right-hand side is O(1) according to (4.8). Hence, Condition (4.2)
holds if

sup
t≤s≤[1+ε(t)]t

t log(t)�(s)

s log(s)�(t)
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is bounded for large t , but this term tends to 1 by (UCT) applied to the regularly varying function
(t log(t))−1�(t). �

Concerning Theorem 4.7 it is more useful to express the sufficient condition of Lemma 4.8
using the slowly varying function associated with the rate function λt instead of that associated
with v(t), which is the content of the next result.

Proposition 4.9. Let λt = tα−1�λ(t) with α ∈ (0,1) and �λ ∈ RV0. If �λ is eventually continu-
ously differentiable and if

t�′
λ(t)

�λ(t)
= O(1/ log t), as t → ∞,

then Condition 4.2 is satisfied and the result of Theorem 4.7 holds true.

Proof. First, we show that (4.8) is equivalent to

�(t)λ′
t

λ2
t

= −γ + O(1/ log t). (4.9)

Since v(t) = tγ �(t) and v(t) = 1/λV (t) we find that

t�′(t)
�(t)

= −γ − tλ′
V (t)/λ

2
V (t).

Plugging in t = �(t) and noting that log�(t) ∼ α log t , we confirm the equivalence.
Thus it is sufficient to establish that

λ′
t t

λt

= α − 1 + O(1/ log t),
�(t)

λt t
= 1/α + O(1/ log t).

The left statement is a result of a simple calculation, and so we concentrate on the right statement.
Using integration by parts, we find

�(t) =
∫ t

c

xα−1�λ(x)dx = 1

α
tα�λ(t) + O(1) − 1

α

∫ t

c

xα�′
λ(x)dx

for all t > c and some level c (to be fixed high enough). Hence, it is left to show that
∫ t

c
xα�′

λ(x)dx

tα�λ(t)
log t = O(1). (4.10)

From our assumption we see that |�′
λ(x)| ≤ C�λ(x)/(x logx) for large enough x. Finally, by

Karamata’s theorem [6], Prop. 1.5.8, we have
∫ t

c
xαC�λ(x)/(x logx)dx

tα�λ(t)/ log t
→ Cα,

because �λ(t)/ log t ∈ RV0, and so (4.10) follows. �
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As mentioned above, virtually all standard examples of slowly varying functions satisfy the
assumption of Proposition 4.9. In particular, so do �λ(t) = a logu t and �λ(t) = a log log t for
a > 0, u ∈ R. Hence, λt = atα−1 logu t and λt = atα−1 log log t are examples of rate functions
to which the asymptotic results in this work apply. For a simple example that does not satisfy

the assumption of Proposition 4.9, consider �λ(t) = e(log log t)2 = (log t)log log t . Indeed, this is a
slowly varying function for which log(t)t�′

λ(t)/�λ(t) = 2 log log t is unbounded.

Appendix

Proof of Lemma 4.3. It is clearly sufficient to show that Condition 4.2 implies (4.3). First, from
Condition 4.2, we have that

log t

(
�([1 − ε(t)]t)

�(t)
− 1

)
= − log t

(
�([1 + ε̂(t̂ )]t̂ )

�(t̂)
− 1

)
�([1 − ε(t)]t)

�(t)
→ 0,

where t̂ = (1 − ε(t))t and ε̂(t̂ ) = ε(t)/(1 + ε(t)). Next, for any ε > 0 and any large t we can
choose x(t) ∈ [−ε(t), ε(t)] such that

∣∣∣∣�([1 + x(t)]t)
�(t)

− 1

∣∣∣∣ + ε/ log t > sup
−ε(t)≤x≤ε(t)

∣∣∣∣�([1 + x]t)
�(t)

− 1

∣∣∣∣.

But the term on the left when multiplied by log t must converge to ε, because x(t) → 0. The
limit result in (4.3) follows since ε > 0 is arbitrary. �

The following technical result concerning regularly varying functions may well exist in the
literature.

Lemma A.1. Let f be a positive, increasing, and absolutely continuous function such that its
Radon–Nikodym derivative f ′ is in RVτ−1 for some τ > 0. If xt → 0 as t → ∞, then

f (t (1 + xt ))

f (t)
− 1 = τxt

{
1 + o(1)

}
, as t → ∞.

Proof. We have

f (t (1 + xt )) − f (t)

tf ′(t)
− xt =

∫ 1+xt

1

(
f ′(zt)
f ′(t)

− 1

)
dz

and thus ∣∣∣∣f (t (1 + xt )) − f (t)

tf ′(t)
− xt

∣∣∣∣ ≤ |xt | sup
|z−1|≤|xt |

∣∣∣∣f
′(zt)

f ′(t)
− 1

∣∣∣∣.
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But then∣∣∣∣f (t (1 + xt ))

f (t)
− 1 − τxt

∣∣∣∣ =
∣∣∣∣ tf

′(t)
f (t)

f (t (1 + xt )) − f (t)

tf ′(t)
− τxt

∣∣∣∣
≤ tf ′(t)

f (t)

∣∣∣∣f (t (1 + xt )) − f (t)

tf ′(t)
− xt

∣∣∣∣ +
∣∣∣∣ tf

′(t)
f (t)

− τ

∣∣∣∣|xt |

≤
{

tf ′(t)
f (t)

sup
|z−1|≤|xt |

∣∣∣∣f
′(zt)

f ′(t)
− 1

∣∣∣∣ +
∣∣∣∣ tf

′(t)
f (t)

− τ

∣∣∣∣
}
|xt |.

The term in curly brackets converges to zero by (UCT) applied to f ′, the fact that limt→∞ xt = 0,
and the direct half of Karamata’s theorem, see, for example, Theorem 1.5.11 in [6]. �
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