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In this paper, we provide a proof for the Hanson–Wright inequalities for sparse quadratic forms in sub-
gaussian random variables. This provides useful concentration inequalities for sparse subgaussian random
vectors in two ways. Let X = (X1, . . . ,Xm) ∈ Rm be a random vector with independent subgaussian com-
ponents, and ξ = (ξ1, . . . , ξm) ∈ {0,1}m be independent Bernoulli random variables. We prove the large
deviation bound for a sparse quadratic form of (X ◦ ξ)T A(X ◦ ξ), where A ∈ Rm×m is an m × m matrix,
and random vector X ◦ ξ denotes the Hadamard product of an isotropic subgaussian random vector X ∈ Rm

and a random vector ξ ∈ {0,1}m such that (X ◦ ξ)i = Xiξi , where ξ1, . . . , ξm are independent Bernoulli
random variables. The second type of sparsity in a quadratic form comes from the setting where we ran-
domly sample the elements of an anisotropic subgaussian vector Y = HX where H ∈ Rm×m is an m × m

symmetric matrix; we study the large deviation bound on the �2-norm ‖DξY‖2
2 from its expected value,

where for a given vector x ∈ Rm, Dx = diag(x) denotes the diagonal matrix whose main diagonal entries
are the entries of x. This form arises naturally from the context of covariance estimation.
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1. Introduction

In this paper, we explore the concentration of measure results for quadratic forms involving a
sparse subgaussian random vector X ∈ Rm. Sparsity can naturally come from the fact that the
high dimensional vector X ∈ Rm is sparse, for example, when the elements of X are missing at
random, or when we intentionally sparsify the vector X to speed up computation. The purpose
of the paper is to prove the Hanson–Wright type of large deviation bounds for sparse quadratic
forms in Theorems 1.1 and 1.2.

Sparsity comes in two forms. In Theorem 1.1, we randomly sparsify the subgaussian vector X

involved in the quadratic form XT AX, where X = (X1, . . . ,Xm) ∈ Rm is a random vector with
independent subgaussian components, and ξ = (ξ1, . . . , ξm) ∈ {0,1}m consists of independent
Bernoulli random variables. In particular, we first consider (X ◦ ξ)T A(X ◦ ξ), where X ◦ ξ ∈ Rm

denotes the Hadamard product of random vectors X and ξ such that (X ◦ ξ)i = Xiξi and A is an
m × m matrix. The second type of sparsity comes into play when we sample the elements of an
anisotropic subgaussian random vector Y = D0X where X ∈ Rm is as defined in Theorem 1.1
and D0 ∈ Rm×m is an m × m symmetric matrix.

The bound in Theorem 1.2 allows the second type of sparsity in a quadratic form in the fol-
lowing sense. Suppose A0 is an m × m symmetric positive semidefinite matrix and A

1/2
0 is the

unique square root of A0. Suppose we randomly sample the rows or columns of A
1/2
0 to construct
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a quadratic form as follows,

XT A
1/2
0 A

1/2
0 X → XT A

1/2
0 DξA

1/2
0 X. (1)

We state in Theorem 1.2, where we replace A
1/2
0 with D0, a symmetric m × m matrix, the large

deviation bound for the sparse quadratic form on the right-hand side of (1). These questions arise
naturally in the context of covariance estimation problems, where we naturally take A0 and D0

as symmetric positive (semi)definite matrices.
The following definitions correspond to Definitions 5.7 and 5.13 in [17]. For a random variable

Z, the subgaussian (or ψ2) norm of Z denoted by ‖Z‖ψ2 is defined to be [17]:

‖Z‖ψ2 = sup
p≥1

p−1/2(
E|Z|p)1/p

which is the smallest K2

which satisfies
(
E|Z|p)1/p ≤ K2

√
p ∀p ≥ 1;

if E[Z] = 0, then E exp(tZ) ≤ exp
(
Ct2‖Z‖2

ψ2

)
for all t ∈ R.

We use X′ ∼ X, where X,X′ ∈ Rm, to denote that two random vectors follow the same distribu-
tion. For a symmetric matrix A = (aij ) ∈ Rm×m, let λmax(A) and λmin(A) denote the largest and
the smallest eigenvalue of A, respectively. Moreover, we order the m eigenvalues algebraically
and denote them by

λmin(A) = λ1(A) ≤ λ2(A) ≤ · · · ≤ λm(A) = λmax(A).

For a matrix A, the operator norm ‖A‖2 is defined to be
√

λmax(AT A). In particular, we prove
the following theorem.

Theorem 1.1. Let X = (X1, . . . ,Xm) ∈ Rm be a random vector with independent components
Xi which satisfy EXi = 0 and ‖Xi‖ψ2 ≤ K . Let ξ = (ξ1, . . . , ξm) ∈ {0,1}m be a random vector
independent of X, with independent Bernoulli random variables ξi such that E(ξi) = pi . Let
A = (aij ) be an m × m matrix. Then, for every t > 0,

P
(∣∣(X ◦ ξ)T A(X ◦ ξ) −E(X ◦ ξ)T A(X ◦ ξ)

∣∣ > t
)

≤ 2 exp

(
−c min

(
t2

K4(
∑m

k=1 pka
2
kk + ∑

i �=j a2
ijpipj )

,
t

K2‖A‖2

))
,

(2)

where X◦ξ denotes the Hadamard product of random vectors X and ξ such that (X◦ξ)i = Xiξi .

Let ξ be as defined in Theorem 1.1. We now randomly sample entries of a correlated sub-
gaussian random vector Y = D0X and study the large deviation bound on the norm of ‖DξY‖2

2
from its expected value in Theorem 1.2, where for a given x ∈ Rm, Dx = diag(x) denotes the
diagonal matrix whose main diagonal entries are the elements of x. And we write Dx := diag(x)
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interchangeably. Partition a symmetric matrix D0 ∈ Rm×m according to its columns as D0 =
[d1, d2, . . . , dm]. Denote by

A0 := D2
0 =

m∑
i=1

did
T
i = (aij )  0. (3)

The bounds in Theorem 1.1 and Theorem 1.2 reduce to essentially the same type.

Theorem 1.2. Let Dξ be a diagonal matrix with independent elements from the random vector
ξ ∈ {0,1}m, where Eξj = pj , for 0 ≤ pj ≤ 1. Let X be as defined in Theorem 1.1, independent
of ξ . Let A0 = (aij ) = D2

0 . Let Y = D0X. Then, for every t > 0,

P
(∣∣YT DξY −EYT DξY

∣∣ > t
)

=: P(|S| > t
) ≤ 2 exp

(
−c2 min

(
t2

K4(
∑m

i=1 pia
2
ii + ∑

i �=j a2
ijpipj )

,
t

K2‖A0‖2

))
,

where c2,C are some absolute constants.

To illustrate the sparse Hanson–Wright inequalities, we will consider the covariance estimation
problem in the matrix variate model which we now define. A positive semidefinite matrix � is
said to be separable if it can be written as a Kronecker product of two positive semidefinite
matrices A ∈ Rm×m and B ∈ Rn×n, for which we denote by � = A ⊗ B = (aijB), where ⊗
denotes the Kronecker product. We first work with the separable covariance model, however,
now under the much more general subgaussian distribution, where we also model the sparsity in
data with a random mask. Let B0 = (bij ) ∈ Rn×n and A0 = (aij ) ∈ Rm×m be symmetric positive

definite matrices, and B
1/2
0 and A

1/2
0 be the unique square root of B0 and A0 respectively. We

denote the n × m data matrix by

X= [
x1 x2 . . . xm

] = [
y1 y2 . . . yn

]T
with column vectors x1, . . . , xm ∈ Rn and row vectors y1, . . . , yn ∈ Rm. Consider an n × m data
matrix X which is generated from a random matrix Zn×m = (Zij ) as follows:

X= B
1/2
0 ZA

1/2
0 , (4)

where Zij are independent subgaussian random variables with

EZij = 0 and ‖Zij‖ψ2 ≤ K and EZ2
ij = 1 ∀i, j.

Suppose that we now observe for X as defined in (4)

X =U ◦X where U= [
v1 v2 . . . vn

]T ∈ {0,1}n×m, (5)
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where v1, . . . , vn ∼ v ∈ {0,1}m are independent random vectors such that v is composed of in-
dependent Bernoulli random variables with Evk = ζk, k = 1, . . . ,m. Hence, we observe for each
row vector yi of X: ∀i = 1, . . . , n,

vi ◦ yi where vi
k ∼ Bernoulli(ζk), ∀k = 1, . . . ,m. (6)

When Z is a Gaussian random ensemble with i.i.d. N(0,1) entries, we say that random matrix X

follows the matrix-variate normal distribution with a separable covariance structure:

Xn×m ∼Nn,m(0,A0,m×m ⊗ B0,n×n). (7)

See [3,8,19] for characterization and examples. When the data (7) is observed in full, the the-
ory is already in place on estimating matrix variate Gaussian graphical models which encode
the conditional dependency structures in the precision matrices [19]. In particular, sample and
penalized correlation estimators for the correlation matrix ρ(B0) and ρ(A0) can be derived from
the gram matrix XX

T and X
T
X respectively.

We exploit such similar relationships in the present work, which leads to the consideration
of a set of oracle estimators which we present in Section 5. The task we will focus on in the
current paper is limited to presenting the concentration of measure bounds on entries of the
gram matrices XX T and X T X for the subgaussian data matrix generated from the model (4)
and (5). We will show that these estimators possess excellent statistical convergence properties
once the sampling rate is above a certain threshold. We leave the full-fledged development of
graphical model estimation with incomplete data to a follow-up paper [21]. Indeed, beyond the
above mentioned similarities in terms of using the gram matrices as the input to our estimation
procedures, the theory and estimation tasks will depart significantly from the baseline model
in (4) where we observe the full data matrix.

We mention without a proof the following Theorem 1.3, which is a variation upon Theo-
rem 1.2. We use this theorem in the proof of Theorems 5.1 and 5.3. Formally, we have the
following theorem.

Theorem 1.3. Let X = (X1, . . . ,Xm) ∈ Rm be a random vector as defined in Theorem 1.1.
Let X′ ∼ X, where X′,X are independent. Let ξ = (ξ1, . . . , ξm) ∈ {0,1}m be a random vector
independent of X,X′, with independent Bernoulli random variables ξi such that E(ξi) = pi for
0 ≤ pi ≤ 1. Let Dξ be a diagonal matrix with elements from the random vector ξ ∈ {0,1}m.
Partition an m × m symmetric matrix D0 according to its columns as D0 = [d1, d2, . . . , dm]. Let
A0 = (aij ) = D2

0 . Let Y = D0X and Y ′ = D0X
′. Then, for every t > 0,

P
(∣∣YT DξY

′∣∣ > t
) ≤ 2 exp

(
−c2 min

(
t2

K4(
∑m

i=1 pia
2
ii + ∑

i �=j a2
ijpipj )

,
t

K2‖A0‖2

))
,

where c2,C are some absolute constants.

The proof follows from Theorem 1 in [14], where X,X′ are independent and hence the in-
tricate decoupling argument can be entirely avoided. Moreover, we will no longer bound the
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diagonal and the off-diagonal sums separately given that the sum is over decoupled random vec-
tors X,X′. The part which deals with the randomness due to ξ ∈ Rm follows the same line of
arguments as those in Theorem 1.2.

Before we leave this section, we also introduce the following notation. For a random variable
Z, the sub-exponential (or ψ1) norm of Z denoted by ‖Z‖ψ1 is defined to be the smallest K2
which satisfies (

E|Z|p)1/p ≤ K2p ∀p ≥ 1; in other words

‖Z‖ψ1 = sup
p≥1

p−1(
E|Z|p)1/p

.

For two m × n matrices M1,M2, denote by M1 ◦ M2 the Hadamard or Schur product, which is
defined as follows:

(M1 ◦ M2)ij = (M1)ij · (M2)ij .

For a matrix A = (aij ) of size m×n, let ‖A‖∞ = maxi

∑n
j=1 |aij | denote the maximum absolute

row sum of the matrix A and ‖A‖1 = maxj

∑m
i=1 |aij | denote the maximum absolute column

sum of the matrix. The matrix Frobenius norm is given by ‖A‖F = (
∑

i,j a2
ij )

1/2. Let |A|max =
maxi,j |aij | denote the elementwise max norm. Let diag(A) be the diagonal of A. Let offd(A) be
the off-diagonal of A. Let ‖A‖max,offd = ‖offd(A)‖max = maxi �=j |aij | denote the elementwise
max norm on the off-diagonal of A, and ‖A‖max,diag = ‖diag(A)‖max = maxi |aii | denote that
of the diagonal of A. Let tr(A) be the trace of A. For matrix A, r(A) denotes the effective rank
tr(A)/‖A‖2. We use A−T as a shorthand notation for (A−1)T . For two numbers a, b, a ∧ b :=
min(a, b), and a ∨ b := max(a, b). We write a � b if ca ≤ b ≤ Ca for some positive absolute
constants c,C which are independent of n,m or sparsity and sampling parameters. Throughout
this paper C0,C,C1, c, c1, . . . denote positive absolute constants whose value may change from
line to line. For a vector X ∈ Rm, let X	δ denote (Xi)i∈	δ for a set 	δ ⊆ [m].

2. Consequences and related work

In this section, we first compare with the following form of the Hanson–Wright inequality as
recently derived in [14], as well as an even more closely related result in [13]. Such concentration
of measure bounds were originally proved by [9,18]. The bound as stated in Theorem 2.1 is
proved in [14].

Theorem 2.1 ([14]). Let X = (X1, . . . ,Xm) ∈ Rm be a random vector with independent compo-
nents Xi which satisfy EXi = 0 and ‖Xi‖ψ2 ≤ K . Let A be an m × m matrix. Then, for every
t > 0,

P
(∣∣XT AX −EXT AX

∣∣ > t
) ≤ 2 exp

(
−c min

(
t2

K4‖A‖2
F

,
t

K2‖A‖2

))
.

When X is a vector whose coordinates are ±1 Bernoulli random variables, the following
lemma in the same spirit as in Theorem 1.1 is shown in [13].
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Lemma 2.2 ([13]). Let J be a random subset of [m] of size k < m uniformly chosen among
all such subsets. Denote by RJ = ∑

j∈J ej e
T
j the coordinate projection on the set J . Let Y =

(ε1, . . . , εm) be vector whose coordinates are ±1 Bernoulli Random variables. Then for any
m × m matrix A and any t > 0

P
(∣∣YT RJ ARJ Y −EYT RJ ARJ Y

∣∣ > t
)

≤ 2 exp

(
−c min

(
t2

k‖A‖2
2

,
t

‖A‖2

))
.

Other related results include [1,2,6,7,11,12]. We refer to [14] for a survey of these and other
related results.

Clearly, the large deviation bounds in Theorems 1.1 and 1.2 are determined by the following
quantity

M̄ :=
m∑

i=1

pia
2
ii +

∑
i �=j

a2
ijpipj .

We now state some consequences of Theorems 1.1 and 1.2 in Corollaries 2.3 and 2.4.
Lemma 2.2 and Corollaries 2.3 and 2.4 show essentially a large deviation bound at roughly

the same order given that

p
∥∥diag(A)

∥∥2
F

+ p2
∥∥offd(A)

∥∥2
F

≤ pm‖A‖2
2

while k‖A‖2
2 = k

m
m‖A‖2

2.
The following Corollary 2.3 follows from Theorem 1.1 immediately.

Corollary 2.3. Let X,ξ be as defined in Theorem 1.1. Let p1 = p2 = · · · = pm = p. Let A =
(aij ) be an m × m matrix. Then, for every t > 0,

P
(∣∣XT DξADξX −EXT DξADξX

∣∣ > t
)

≤ 2 exp

(
−c min

(
t2

K4(p‖diag(A)‖2
F + p2‖offd(A)‖2

F )
,

t

K2‖A‖2

))
.

Corollary 2.4. Let D0,A0,X, ξ,Y be as defined in Theorem 1.2. Let p1 = p2 = · · · = pm = p.
Then, for every t > 0,

P
(∣∣YT DξY −EYT DξY

∣∣ > t
)

= P
(∣∣‖DξD0X‖2

2 −E‖DξD0X‖2
2

∣∣ > t
)

≤ 2 exp

(
−c min

(
t2

K4(p‖diag(A0)‖2
F + p2‖offd(A0)‖2

F )
,

t

K2‖A0‖2

))
.
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Corollary 2.5. Suppose all conditions in Corollary 2.3 hold. Let A ∈ Rm×m be positive semidef-
inite. Suppose EX2

i = 1 and

logm‖A‖2 = o
(
p tr(A)

)
. (8)

Then with probability at least 1 − 4/m4,∣∣XT DξADξX
∣∣ ≤ p tr(A)

(
1 + o(1)

)
.

Proof. Define

S =
∑
i,j

aij (XiξiXj ξj −EXiξiXj ξj ).

Thus ES = ∑
i aiiEX2

i Eξi = p tr(A). We have under conditions of Theorem 1.1, with probability
at least 1 − 4/m4, for some absolute constant C,

|S| := ∣∣XT DξADξX − p tr(A)
∣∣

≤ CK2 log1/2 m
(
log1/2 m‖A‖2 + √

p
∥∥diag(A)

∥∥
F

+ p
∥∥offd(A)

∥∥
F

) =: t,
where under condition (8), the deviation term is of a small order of the expected value p tr(A);
that is,

t � logm‖A‖2 + log1/2 m
(√

p
∥∥diag(A)

∥∥
F

+ p‖A‖F

) =: I + II = o
(
p tr(A)

)
.

To see this, notice that (8) immediately implies that the first term in t is of o(p tr(A)). Now in
order for the second and third term to be of o(p tr(A)), we need that

√
p‖A‖F log1/2 m � p tr(A) and hence p � logm‖A‖2

F / tr(A)2

which is satisfied by (8) given that ‖A‖2
tr(A)

≥ ‖A‖2
F

tr(A)2 , which in turn is due to ‖A‖2
F ≤ tr(A)‖A‖2. �

Corollary 2.6. Suppose that (8) and all conditions in Corollary 2.4 hold. Assume EX2
i = 1.

Then with probability at least 1 − 4
m4 , |XT D0DξD0X| = p tr(A0)(1 + o(1)).

Proof. First by independence of X and ξ , we have for EX2
i = 1,

EXT AξX = E

m∑
k=1

X2
kAξ,kk =

m∑
k=1

E
(
X2

k

)
E(Aξ,kk)

=
m∑

k=1

EX2
kE

m∑
�=1

ξ�d
2
k� =

m∑
�=1

p�

m∑
k=1

d2
k� =

m∑
�=1

p�a��.
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We have by Corollary 2.4, with probability at least 1 − 4
m4 ,

∣∣XT D0DξD0X
∣∣ ≤

m∑
i=1

aiipi + CK2 log1/2 m
(
log1/2 m‖A0‖2 +

√
M̄

)
≤ p‖D0‖2

F

+ CK2 log1/2 m
(
log1/2 m‖A0‖2 + √

p
∥∥diag(A0)

∥∥
F

+ p
∥∥offd(A0)

∥∥
F

)
for some absolute constants C, where

√
M̄ ≤ √

p‖diag(A0)‖F + p‖offd(A0)‖F . The rest of the
proof for Corollary 2.6 follows from that of Corollary 2.5. �

2.1. Implications when p1, . . . ,pm are not the same

We first need the following sharp statements about eigenvalues of a Hadamard product. See for
example Theorem 5.3.4 [10].

Theorem 2.7. Let A,B ∈ Rm×m be positive semidefinite. Let a∞ := maxm
i=1 aii and b∞ :=

maxm
i=1 bii . Any eigenvalue of λ(A ◦ B) satisfies

λmin(A)λmin(B) ≤
( m

min
i=1

aii

)
λmin(B)

≤ λ(A ◦ B)

≤ a∞λmax(B) ≤ λmax(A)λmax(B).

Corollary 2.8. Suppose all conditions in Theorem 1.2 hold. Suppose EX2
i = 1. Let p =

(p1, . . . , pm). Let |p|1 := ∑m
i=1 pi and ‖p‖2

2 = ∑m
i=1 p2

i . Then with probability at lest 1 − 4/m4,

∣∣XT D0DξD0X
∣∣ ≤

m∑
i=1

pi‖di‖2
2 + CK2 log1/2 m‖D0‖2

(
log1/2 m‖D0‖2 + 2

(
max

i
‖di‖2

)
|p|1/2

1

)
.

Proof. Recall A0 = (aij ) = D2
0  0. Let a∞ := maxm

i=1 aii = maxi‖di‖2
2. Thus, we have a∞ ≤

‖D0‖2
2. Denote by p = (p1, . . . , pm). We have by Theorem 2.7,

M̄ =
m∑

i=1

pia
2
ii +

∑
i �=j

a2
ijpipj ≤

m∑
i=1

pia
2
ii + pT (A0 ◦ A0)p

≤ a2∞|p|1 + λmax(A0 ◦ A0)‖p‖2
2

≤ a2∞|p|1 + a∞‖A0‖2‖p‖2
2 ≤ 2a∞‖A0‖2|p|1,

where ‖p‖2
2 ≤ |p|1. The corollary thus follows immediately from Theorem 1.2. �
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Remark 2.9. Assume that pi ≥ logm
m

and hence |p|1 ≥ logm. Then we have ‖p‖2 ≤ |p|1/2
1 ≤

|p|1. Notice that the second term starts to dominate when |p|1/2
1 � logm while the total deviation

remains to be a small order of the mean
∑m

i=1 pi‖di‖2
2 so long as

|p|1 � logmmaxk‖dk‖2
2‖D0‖2

2

mink‖dk‖4
2

.

We will use examples in Section 5 to elaborate on the lower bound immediately above.

2.2. Preliminary results

Before leaving this section, we provide some preliminary results which are used throughout the
paper. We use the following properties of the Hadamard product [10],

A ◦ xxT = DxADx and

tr
(
DξADξA

T
) = ξT (A ◦ A)ξ

from which a simple consequence is tr(DξADξ ) = ξT (A ◦ I )ξ = ξT diag(A)ξ .
Theorem 2.10 shows a concentration of measure bound on a quadratic form with Bernoulli

random variables where an explicit dependency on pi , for all i, is shown. The setting here is dif-
ferent from Theorem 2.1 as we deal with a quadratic form which involves non-centered Bernoulli
random variables. Theorem 2.10 is crucial in proving Theorem 1.2. The proof of Theorem 2.10
is deferred to Section 6.

Theorem 2.10. Let ξ = (ξ1, . . . , ξm) ∈ {0,1}m be a random vector with independent Bernoulli
random variables ξi such that ξi = 1 with probability pi and 0 otherwise. Let A = (aij ) be an
m × m matrix. Then, for every 0 ≤ λ ≤ 1

104 max(‖A‖1,‖A‖∞)
,

E exp

(
λ

∑
i,j

aij ξiξj

)
≤ exp

(
λ

(
m∑

i=1

aiipi +
∑
i �=j

aijpipj

))
∗ exp

(
1

3
λ

∑
j �=i

|aij |σ 2
i σ 2

j

)

∗ exp

(
C5λ

(
1

2

m∑
i=1

|aii |pi +
∑
j �=i

|aij |pjpj

))
,

where σ 2
i = pi(1 − pi) and C5 ≤ 0.04.

We use the following bounds throughout our paper. For any x ∈ R,

ex ≤ 1 + x + 1

2
x2e|x|. (9)

We need the following result which follows from Proposition 3.4 in [15].
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Lemma 2.11. Let A = (aij ) be an m × m matrix. Let a∞ := maxi |aii |. Let ξ = (ξ1, . . . , ξm) ∈
{0,1}m be a random vector with independent Bernoulli random variables ξi such that ξi = 1 with
probability pi and 0 otherwise. Then for |λ| ≤ 1

4a∞ ,

E exp

(
λ

m∑
i=1

aii(ξi − pi)

)
≤ exp

(
1

2
λ2e|λ|a∞

m∑
i=1

a2
iiσ

2
i

)
,

where σ 2
i = pi(1 − pi).

We need to state Lemma 2.12, which provides an estimate of the moment generating func-
tion for the centered sub-exponential random variable Zk := X2

k − EX2
k for Xk as defined in

Theorem 1.1.

Lemma 2.12. Let X ∈ R be a subgaussian random variable which satisfies EX = 0 and
‖X‖ψ2 ≤ K . Let |τ | ≤ 1

23.5eK2 . Denote by C0 := 38.94. Then

E
(
exp

(
τ
(
X2 −EX2))) ≤ 1 + 38.94τ 2K4 ≤ exp

(
C0τ

2K4).
The proof follows essentially that of Lemma 5.15 in [17]; we provide here explicit constants.
The rest of the paper is organized as follows. In Section 2, we compare our results with those

in the literature. We then prove Theorem 1.1 in Section 3 and Theorem 1.2 in Section 4. In
Section 5, we provide a general theory on concentration inequalities under masks for entries of
the gram matrix X T X and XX T , where X is the observed data from the matrix variate model
(cf. (5)). We prove Theorem 2.10 in Section 6. We leave certain calculations in Appendix A for
the purpose of self-containment, namely, the proof of Lemmas 2.12 and 3.2.

3. Proof of Theorem 1.1

The structure of our proof follows that of Theorem 1.1 by [14]. The problem reduces to estimating
the diagonal and the off-diagonal sums.

Part I: Diagonal sum. Define

S0 :=
m∑

k=1

akkξkX
2
k −E

m∑
k=1

akkξkX
2
k where E

m∑
k=1

akkξkX
2
k =

m∑
k=1

akkpkEX2
k . (10)

Lemma 3.1. Let X and ξ be defined as in Theorem 1.1. Let A be an m × m matrix. Then, for
every t > 0,

P

(∣∣∣∣∣
m∑

k=1

akkξkX
2
k −

m∑
k=1

akkpkEX2
k

∣∣∣∣∣ > t

)

≤ P(S0 > t) + P(S0 < −t) ≤ 2 exp

[
− 1

4e
min

(
t2

3K4
∑m

k=1 a2
kkpk

,
t

K2 maxk|akk|
)]

.
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We prove Lemma 3.1 after we state Lemma 3.2. For the general case where Xk are mean-zero
independent sub-gaussian random variables with ‖Xk‖ψ2 ≤ K , we first state the following bound
on the moment generating function of X2

k .

Lemma 3.2. Suppose that |λ| < 1/(4eK2 maxk|akk|). Then for all k, we have for all akk ∈ R

E exp
(
λakkX

2
k

) − 1 ≤ λakkEX2
k + 16λ2a2

kkK
4. (11)

Proof of Lemma 3.1. We first state some simple fact: maxm
k=1 EX2

i ≤ K2. By independence
of X1, . . . ,Xk and ξ1, . . . , ξk , we bound the moment generating function of S0 as follows: for
|λ| ≤ 1

4eK2 maxk |akk |

E exp(λS0) = E exp

(
λ

m∑
k=1

ξkX
2
kakk − λ

m∑
k=1

pkakkEX2
k

)

=
m∏

k=1

(
E exp(λakkξkX

2
k)

exp(λpkakkEX2
k)

)
=

m∏
k=1

EξEX exp(λakkξkX
2
k)

exp(λpkakkEX2
k)

≤
m∏

k=1

1 + pk(λakkEX2
k + 16λ2a2

kkK
4)

exp(λpkakkEX2
k)

≤
m∏

k=1

exp(λpkakkEX2
k + 16λ2pka

2
kkK

4)

exp(λpkakkEX2
k)

= exp

(
16λ2K4

m∑
k=1

pka
2
kk

)
,

where we used (11) for the first inequality and the fact that 1 + x ≤ ex for the second inequality.
Hence for 0 < λ ≤ 1

4eK2 maxk |akk | , we have

P(S0 > t) ≤ E exp(λS0)

eλt
≤ exp

(
−λt + 16K4λ2

m∑
k=1

pka
2
kk

)

for which the optimal choice of λ is

λ = min

(
t

32K4
∑m

k=1 pka
2
kk

,
1

4eK2 maxk|akk|
)

.

Thus, we have

P

(
m∑

k=1

akkξkX
2
k −

m∑
k=1

akkpkEX2
k > t

)

≤ exp

[
− 1

4e
min

(
t2

3K4
∑m

k=1 pka
2
kk

,
t

K2 maxk|akk|
)]

.
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We note that these constants have not been optimized. Repeating the arguments for −A instead
of A, we obtain for every t > 0, and for S′

0 := ∑m
k=1(−akk)ξkX

2
k − ∑m

k=1(−akk)pkEX2
k

P

(
m∑

k=1

akkξkX
2
k −

m∑
k=1

akkpkEX2
k < −t

)

= P
(
S′

0 > t
) ≤ exp

[
− 1

4e
min

(
t2

3K4
∑m

k=1 pka
2
kk

,
t

K2 maxk|akk|
)]

.

The lemma thus holds. �

Part II: Off-diagonal sum. We now focus on bounding the off-diagonal part of the sum:

Soffd :=
m∑

i �=j

aijXiXj ξiξj ,

where by independence of X and ξ , ESoffd = ∑m
i �=j aijEXiEXjEξiEξj = 0.

We will show that the following large deviation inequality holds for all t > 0,

P
(|Soffd| > t

) ≤ 2 exp

(
−c min

(
t2

K4
∑

i �=j a2
ijpipj

,
t

K2‖A‖2

))
. (12)

First we prove a bound on the moment generating function for the off-diagonal sum Soffd. We
assume without loss of generality that K = 1 by replacing X with X/K . Let C4 be a constant to
be specified. It holds that for all |λ| ≤ 1

2
√

C4‖A‖2

E exp(λSoffd) ≤ exp

(
1.44C4λ

2
∑
i �=j

a2
ijpipj

)
. (13)

Thus we have for 0 ≤ λ ≤ 1
2
√

C4‖A‖2
and t > 0,

P(Soffd > t) ≤ E exp(λSoffd)

eλt
≤ exp

(
−λt + 1.44C4λ

2
∑
i �=j

pipja
2
ij

)
.

Optimizing over λ, we conclude that

P(Soffd > t) ≤ exp

(
−c min

(
t2∑

i �=j a2
ijpipj

,
t

‖A‖2

))
=: q1. (14)

Repeating the arguments for −A instead of A, we obtain for S′ := ∑m
i �=j (−aij )XiXj ξiξj =

−Soffd, 0 ≤ λ ≤ 1
2
√

C4‖A‖2
and t > 0,

P
(
S′ > t

) ≤ E exp(λS′)
eλt

= E exp(−λSoffd)

eλt
≤ exp

(
−λt + 1.44C4λ

2
∑
i �=j

pipja
2
ij

)
≤ q1
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by (13) and (14). Thus we have

P
(|Soffd| > t

) = P(Soffd > t) + P(Soffd < −t) = P(Soffd > t) + P
(
S′ > t

) = 2q1.

Thus (12) holds for all t > 0. The theorem is thus proved by summing up the bad events for
diagonal sum and the non-diagonal sum while adjusting the constant c in (2).

The proof of (13) follows essentially from the decoupling and reduction arguments in [14]
and thus omitted from the main body of the paper. For completeness, we include the full proof
in Appendix C. See, for example, [4,5] for comprehensive discussions on modern decoupling
methods. �

4. Proof of Theorem 1.2

Let X,ξ , D0 and Dξ be defined as in Theorem 1.2. We assume without loss of generality that
K = 1 by replacing X with X/K . Denote by ξ = (ξ1, . . . , ξm) ∈ {0,1}m a random vector with
independent Bernoulli random variables ξi such that ξi = 1 with probability pi and 0 otherwise.

We will bound the diagonal and the off-diagonal sums separately. Let D0 = [d1, d2, . . . , dm]
be a symmetric matrix. Recall that we need to estimate

q := P
(∣∣XT AξX −EXT AξX

∣∣ > t
)

where Aξ = D0DξD0 =: (̃aij ).

We first separate the diagonal sum from the off-diagonal sum as follows:

∣∣XT AξX −EXT AξX
∣∣ ≤

∣∣∣∣∑
i �=j

XiXjAξ,ij

∣∣∣∣ +
∣∣∣∣∣

m∑
k=1

X2
kAξ,kk −E

(
X2

k

)
E(Aξ,kk)

∣∣∣∣∣
=: |Soffd| + |Sdiag|,

where Soffd and Sdiag denote the following random variables:

Soffd :=
∑
i �=j

XiXjAξ,ij =
∑
i �=j

XiXj ãij and

Sdiag :=
m∑

k=1

X2
kAξ,kk −E

(
X2

k

)
E(Aξ,kk).

To prove Lemma 4.5, we need the following bounds on moment generating functions for the
diagonal sum in Sdiag in Lemma 4.1 and the off-diagonal sum Soffd in Lemma 4.4. Let A0 =
D2

0 = (aij )  0. The constants in the expression for N (and M) are not being optimized:

N = 82
m∑

i=1

a2
iipi + 108

∑
i �=j

a2
ijpipj . (15)
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Lemma 4.1. For all |λ| ≤ 1
128‖A0‖2

,

E exp(λSdiag) ≤ exp
(
λ2N

)
and E exp(−λSdiag) ≤ exp

(
λ2N

)
.

To prove Lemma 4.1, first we write Sdiag = S0 + S� where

S0 :=
m∑

k=1

(
X2

k −E
(
X2

k

))
Aξ,kk =

m∑
k=1

(
X2

k −E
(
X2

k

))( m∑
�=1

d2
k�ξ�

)
, (16)

S� :=
m∑

k=1

E
(
X2

k

)
Aξ,kk −E

(
X2

k

)
E(Aξ,kk) =

m∑
k=1

E
(
X2

k

)( m∑
�=1

d2
k�(ξ� −Eξ�)

)
, (17)

where recall

Aξ = D0DξD0 where D0 = [d1, . . . , dm]. (18)

We now state the following bounds on the moment generating functions of S0 and S� in
Lemmas 4.2 and 4.3, respectively. The estimate on the moment generating function stated in
Lemma 4.1 then follows immediately from the Cauchy–Schwarz inequality, in view of Lem-
mas 4.2 and 4.3.

Lemma 4.2. Let aii = ‖di‖2
2 for di as defined in (18). Let a∞ = maxi‖di‖2

2. Then for |λ| < 1
4a∞ ,

E exp(λS�) ≤ exp

(
1

2
λ2e|λ|a∞

m∑
i=1

a2
iiσ

2
i

)
where E

(
X2

k

) ≤ ‖Xk‖ψ2 = 1.

Proof. We have by independence of X and ξ and by definition of S� in (17)

S� =
m∑

k=1

E
(
X2

k

) m∑
i=1

d2
ki(ξi − pi) =

m∑
i=1

(
m∑

k=1

E
(
X2

k

)
d2
ki

)
(ξi − pi) =:

m∑
i=1

a′
ii (ξi − pi),

where by assumption, we have E(X2
k) ≤ ‖Xk‖ψ2 ≤ K = 1 and hence

0 ≤ a′
ii :=

m∑
k=1

E
(
X2

k

)
d2
ki ≤ aii and thus max

i

∣∣a′
ii

∣∣ ≤ a∞.

The bound on the mgf of S� follows from Lemma 2.11. For |λ| < 1
4a∞ , we have

E exp(λS�) = E exp

(
λ

m∑
i=1

a′
ii (ξi − pi)

)
≤ exp

(
1

2
λ2e|λ|a∞

m∑
i=1

(
a′
ii

)2
σ 2

i

)

≤ exp

(
1

2
λ2e|λ|a∞

m∑
i=1

a2
iiσ

2
i

)
.

�
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Lemma 4.3. Denote by aij = 〈di, dj 〉 for all i �= j and aii = ‖di‖2
2 for di as defined in (18).

Denote by a∞ := maxi aii . Let C0 = 38.94. Then for |λ| ≤ 1
64‖A0‖2

≤ 1
64a∞ ,

E exp(λS0) ≤ exp

(
λ2

(
40

m∑
j=1

pja
2
jj + 54

∑
i �=j

pipja
2
ij

))
. (19)

Lemma 4.4. Let A0 = (aij ) = D2
0 . For all |λ| ≤ 1

58C‖A0‖2
for some constant C

E exp(λSoffd) ≤ E exp
(
λ2C2ξ

T (A0 ◦ A0)ξ
) ≤ exp

(
λ2M

)
,

E exp(−λSoffd) ≤ exp
(
λ2M

)
,

where C2 = 32C2 and M = 11C2(3
∑m

i=1 pia
2
ii + 4

∑
i �=j a2

ijpipj ).

We defer the proof of Lemma 4.4 to Section 4.2 and Lemma 4.3 to Section 4.1. We are now
ready to state the large deviation inequalities for the diagonal sum Sdiag, followed by that for the
off-diagonal sum Soffd.

Lemma 4.5. Let A0 = (aij ) = D2
0 . For all t > 0 and N as defined in (15),

P
(|Sdiag| > t/2

) ≤ 2 exp

(
− 1

16
min

(
t2

N
,

t

32‖A0‖2

))
.

For the off-diagonal sum, we now state the following large deviation bound as in Lemma 4.6.

Lemma 4.6. Suppose all conditions in Lemma 4.4 hold. For all t > 0, and some large enough
absolute constant C,

P
(|Soffd| > t/2

) ≤ 2 exp

(
− 1

16
min

(
t2

M
,

t

15C‖A0‖2

))
,

where M = 11C2(3
∑m

i=1 pia
2
ii + 4

∑
i �=j a2

ijpipj ).

The theorem is thus proved by summing up the two bad events:

q = P
(|Sdiag + Soffd| > t

) ≤ P
(|Soffd| > t/2

) + P
(|Sdiag| > t/2

)
while adjusting the constant c in (2).

It remains to prove Lemmas 4.1, 4.5 and 4.6.

Proof of Lemma 4.1. Suppose that |λ| ≤ 1
128‖A0‖2

. By Lemmas 4.3 and 4.2,

E
1/2 exp(2λS�) ≤ exp

(
λ2e2|λ|a∞

m∑
j=1

σ 2
j a2

jj

)
,
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E
1/2 exp(2λS0) ≤ exp

(
80λ2

m∑
j=1

pja
2
jj

)
exp

(
108λ2

∑
i �=j

a2
ijpipj

)
.

Now we have by the Cauchy–Schwarz inequality,

E exp(λSdiag) = E exp
(
λ(S0 + S�)

) ≤ E
1/2 exp(2λS0)E

1/2 exp(2λS�)

≤ exp

(
82λ2

m∑
j=1

σ 2
j a2

jj

)
exp

(
108λ2

∑
i �=j

a2
ijpipj

)
.

�

Proof of Lemma 4.5. Lemma 4.5 follows from Lemma 4.1 immediately. Let EX and Eξ denote
the expectation with respect to random variables in vectors X and ξ , respectively.

First, by the Markov’s inequality, we have for 0 < λ ≤ 1
128‖A0‖2

P(Sdiag > t/2) = P(λSdiag > λt/2) = P
(
exp(λSdiag) > exp(λt/2)

)
≤ E exp(λSdiag)

eλt/2
≤ exp

(−λt/2 + Nλ2).
Optimizing over λ, for which the optimal choice of λ is λ = t

4N
. Thus, we have for t > 0,

P(Sdiag > t/2) ≤ exp

(
−min

(
t2

16N
,

t

4 ∗ 128‖A0‖2

))

≤ exp

(
− 1

16
min

(
t2

N
,

t

32‖A0‖2

))
=: qd .

Repeating the argument for −Aξ instead of Aξ , we now consider

S′
diag :=

m∑
k=1

(
X2

k(−Aξ,kk) +E
(
X2

k

)
E(Aξ,kk)

) = −Sdiag.

By Lemma 4.1, we have for all |λ| ≤ 1
128‖A0‖2

E exp
(
λS′

diag

) = E exp(−λSdiag) ≤ exp
(
λ2N

)
.

Thus, we have for t > 0 and 0 < λ ≤ 1
128‖A0‖2

,

P
(
S′

diag > t/2
) ≤ E exp(λS′

diag)

eλt/2
≤ exp

(−λt/2 + Nλ2) ≤ qd.

The lemma is thus proved, given that for t > 0

P(Sdiag < −t/2) = P
(
S′

diag > t/2
) ≤ qd,

P
(|Sdiag| > t/2

) = P(Sdiag > t/2) + P(Sdiag < −t/2) ≤ 2qd. �
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Proof. Proof of Lemma 4.6 Lemma 4.6 follows immediately from Lemma 4.4. We have for
0 < λ ≤ 1

58C‖A0‖2
and S := Soffd,

P(S > t/2) = P
(
exp(λS) > exp(λt/2)

) ≤ E exp(λS)

eλt/2
≤ exp

(−λt/2 + Mλ2)
for which the optimal choice of λ is λ = t

4M
. Thus we have for t > 0,

P(S > t/2) ≤ exp
(−λt/2 + Mλ2)

≤ exp

(
− 1

16
min

(
t2

M
,

t

15C‖A0‖2

))
=: qoffd.

Similarly, we have for λ, t > 0,

P(S < −t/2) = P(−S > t/2) = P
(
exp

(
λ(−S)

)
> exp(λt/2)

)
≤ E exp(λ(−S))

eλt/2
≤ exp

(−λt/2 + Mλ2) ≤ qoffd.

The lemma is thus proved using the union bound. �

The theorem is thus proved. �

The plan is to first bound the moment generating function for the S0 in the diagonal sum in
Section 4.1. We then bound the moment generating function for the off-diagonal sum as stated
in Lemma 4.4 in Section 4.2.

4.1. Proof of Lemma 4.3

Recall Aξ = D0DξD0 = (̃aij ) = (dT
i Dξdj ). Then for ãkk = dT

k Dξdk = ∑m
i=1 d2

kiξi

S0 :=
m∑

k=1

(
X2

k −EX2
k

)
Aξ,kk =

m∑
k=1

(
X2

k −EX2
k

)̃
akk.

To estimate the moment generating function of S0, we first consider ξ as being fixed and thus
treat ãij as fixed coefficients. The bound on the moment generating function of S0 as in (16) will
involve the following symmetric matrices A1 and A2 which we now define:

A1 := D0 ◦ D0 = [d1 ◦ d1, . . . , dm ◦ dm],
A2 = (

a′′
ij

) = A2
1 = (d1 ◦ d1, . . . , dm ◦ dm)(d1 ◦ d1, . . . , dm ◦ dm)T (20)

=
m∑

k=1

(
dkd

T
k

) ◦ (
dkd

T
k

) =
m∑

k=1

(dk ◦ dk)(dk ◦ dk)
T  0.

Thus, we have both A0,A2 being positive semidefinite, while in general A1 is not positive
semidefinite unless D0  0 by the Schur Product theorem. See Theorem 5.2.1 [10].
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Lemma 4.7. Suppose all conditions in Lemma 4.3 hold. Let C0 = 38.94. Then for |λ| ≤
1

64‖A0‖2
≤ 1

64a∞ ,

E exp(λS0) ≤ E exp
(
C0λ

2ξT A2ξ
) ≤ E exp

(
C0λ

2
∥∥diag(Aξ )

∥∥2
F

)
. (21)

Proof. We first compute the moment generating function for S0 when ξ is fixed. Conditioned on
ξ , ãkk,∀k are considered as fixed coefficients. Indeed, for |λ| ≤ 1

64a∞ , by independence of Xi

E
(
exp(λS0)|ξ

) = EX exp

(
λ

m∑
k=1

ãkk

(
X2

k −EX2
k

)) =
m∏

k=1

EX exp
(
λ̃akk

(
X2

k −EX2
k

))

≤
m∏

k=1

exp
(
38.94λ2ã2

kk

) = exp

(
C0λ

2
m∑

k=1

ã2
kk

)
,

where the inequality follows from Lemma 2.12 with τ := λ̃akk in view of (22):

∀k,∀ξ, |λ̃akk| ≤ 1

64
≤ 1

23.5e
where |̃akk| ≤ 〈dk, dk〉 = akk ≤ a∞. (22)

Now

m∑
k=1

ã2
kk =

m∑
k=1

(
dT
k Dξdk

)2 =
m∑

k=1

tr
(
dT
k Dξdkd

T
k Dξdk

)
=

m∑
k=1

tr
(
Dξdkd

T
k Dξdkd

T
k

) =
m∑

k=1

ξT
((

dkd
T
k

) ◦ dkd
T
k

)
ξ =: ξT A2ξ,

where A2 = (a′′
ij ) = (D0 ◦ D0)

2 is as defined in (20). Thus

EX exp(λS0) ≤ exp
(
C0λ

2ξT A2ξ
) = exp

(
C0λ

2
∥∥diag(Aξ )

∥∥2
F

)
(23)

and (21) is thus proved by taking expectation on both sides of (23) with respect to random
variables in vector ξ . �

To prove (19) in the lemma statement, notice that for all ξ ∈ {0,1}m,

m∑
k=1

ã2
kk = ∥∥diag(Aξ )

∥∥2
F

≤ ‖Aξ‖2
F .

Thus, we have for |λ| ≤ 1
64‖A0‖2

,

E exp(λS0) ≤ E exp
(
C0λ

2
∥∥diag(Aξ )

∥∥2
F

) ≤ E exp
(
C0λ

2‖Aξ‖2
F

) = E exp
(
C0λ

2ξT (A0 ◦ A0)ξ
)
,

where A0 = (aij ). Finally, we invoke Corollary 4.8 to finish the proof of Lemma 4.3.
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Corollary 4.8. Let A0, ξ be as defined in Theorem 1.2. Then for |λ| ≤ 1
64‖A0‖2

and C0 ≤ 38.94

E exp

(
C0λ

2
∑
i,j

a2
ij ξiξj

)
≤ exp

(
λ2N

)
,

where N = (40
∑m

j=1 pja
2
jj + 54

∑
i �=j pipja

2
ij ).

The proof of Corollary 4.8 follows exactly that of Corollary 4.11 in view of Theorem 2.10 and
is thus omitted. The lemma is thus proved. �

Remark 4.9. An alternative bound can be stated as follows: for λ ≤ 1
64a∞ ,

E exp(λS0) ≤ exp

(
41λ2

m∑
j=1

σ 2
j a2

jj + 52λ2‖A1p‖2
2

)
,

where p = [p1, . . . , pm] and σ 2
j = pj (1 − pj ). The proof follows from a direct analysis based

on the quadratic form ξT A2ξ on the RHS of (21), which is omitted from the present paper. This
bound may lead to a slight improvement upon the final bound in (19). We do not pursue this
improvement here because the bound in (19) is sufficient for us to obtain the final large deviation
bound as stated in Theorem 1.2.

4.2. Proof of Lemma 4.4

Let EX and Eξ denote the expectation with respect to random variables in vectors X and ξ ,
respectively. Recall

Soffd =
∑
i �=j

XiXj (Aξ,ij ) =:
∑
i �=j

ãijXiXj where ãij = dT
i Dξdj =

m∑
k=1

dikξkdjk.

To estimate the moment generating function of Soffd, we first consider ξ as being fixed and thus
treat ãij as fixed coefficients. Lemma 4.10 reduces the original problem of estimating the moment
generating function of Soffd to the new problem of estimating the moment generating function of
S := ξT (A0 ◦A0)ξ , which involves a new quadratic form with independent non-centered random
variables ξ1, . . . , ξm ∈ {0,1} and the symmetric matrix (A0 ◦ A0) as shown in (24). Lemma 4.10
follows from the proof of Theorem 1 [14] directly. We omit the proof in this paper.

Lemma 4.10. Consider ξ ∈ {0,1}m as being fixed and denote by Aξ = D0DξD0 and A0 = D2
0 =

(aij ). Then, for some constant C and |λ| ≤ 1
12C‖A0‖2

and C2 = 32C2,

EX exp(λSoffd) ≤ exp
(
C2λ

2‖Aξ‖2
F

) = exp
(
C2λ

2ξT (A0 ◦ A0)ξ
)
. (24)
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Note that ‖DξD0‖2 ≤ ‖D0‖2 and hence by symmetry

‖Aξ‖2 = ‖D0DξDξD0‖2 = ‖DξD0‖2
2 ≤ ‖Dξ‖2

2‖D0‖2
2 = ‖A0‖2,

‖Aξ‖2
F = tr(A0DξA0Dξ) = ξT (A0 ◦ A0)ξ.

In order to estimate the moment generating function Soffd, we now take expectation with respect
to ξ on both sides of (24). Thus, we have for |λ| ≤ 1

12C‖A0‖2

EξEX exp(λSoffd) ≤ E exp
(
C2λ

2‖Aξ‖2
F

) = E exp
(
C2λ

2ξT (A0 ◦ A0)ξ
)
. (25)

Corollary 4.11. Then for |λ| ≤ 1
58C‖A0‖2

and t := C2λ
2, where C2 = 32C2 and C is a large

enough absolute constant,

E exp

(
t
∑
i,j

a2
ij ξiξj

)
≤ exp

(
λ2M

)
,

where M := C2(33
∑m

i=1 a2
iipi + 44

∑
i �=j a2

ijpipj ).

Combining Lemma 4.10, (25) and Corollary 4.11, we have for |λ| ≤ 1
58C‖A0‖2

E(λSoffd) ≤ E exp
(
C2λ

2‖Aξ‖2
F

) = E exp

(
t
∑
i,j

a2
ij ξiξj

)
≤ exp

(
λ2M

)
.

Lemma 4.4 thus holds. �

Corollary 4.11 follows from Theorem 2.10 immediately, which is derived in the current paper
for estimating the moment generating function of S′ := ξT Aξ where A is an arbitrary matrix and
ξ is a Bernoulli random vector with independent elements as defined in Theorem 1.2.

Proof of Corollary 4.11. Clearly for the choices of t and λ,

t = C2λ
2 ≤ 32C2

582C2‖A0‖2
2

≤ 1

104‖A0‖2
2

≤ 1

104‖A0 ◦ A0‖1 ∨ ‖A0 ◦ A0‖∞
,

where we use the fact that for symmetric A0,

‖A0 ◦ A0‖1 = ‖A0 ◦ A0‖∞

= max
1≤i≤m

m∑
j=1

a2
ij = max

1≤i≤m
‖A0ei‖2

2 ≤ ‖A0‖2
2.
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Thus we can apply Theorem 2.10 with B := (A0 ◦ A0) to obtain for 0 < t ≤ 1
104(‖A‖1∨‖A‖∞)

,

E exp

(
t
∑
i,j

a2
ij ξiξj

)
≤ exp

(
1.02t

m∑
j=1

pja
2
jj

)
exp

(
1.373t

∑
i �=j

a2
ijpipj

)

≤ exp

(
C2λ2

(
33

m∑
j=1

pja
2
jj + 44

∑
i �=j

pipja
2
ij

))
.

�

5. Application to covariance estimation in a matrix variate
model

In the current paper, we focus on presenting the concentration of measure bounds for entries in
the gram matrices for (4) and (5) rather than estimators for A0 � 0 ∈ Rm×m and B0 � 0 ∈ Rn×n.
In particular, the large deviation bounds in Theorems 5.1 and 5.3 can be used to design a set of
entrywise unbiased estimators for A0 and B0, up to a scaling factor, as well as penalized estima-
tors which achieve convergence in the operator and the Frobenius norm in the spirit of [19]. In
this section, we narrowly focus on the baseline concentration of measure bounds on gram matri-
ces XX T and X T X evolving around the relationship (29) and (30). Without loss of generality,
we assume that n ≤ m and n/m → r for some r ∈ (0,1].

Recall that we observe the matrix variate data under a mask:

X =U ◦X where X= B
1/2
0 ZA

1/2
0 is as defined in (4),

and U is a mask with entries being either zero or 1. We denote U ∈ {0,1}n×m by

U = [
u1 u2 . . . um

] = [
v1 v2 . . . vn

]T where ∀i, v1, . . . , vn ∼ v ∈ {0,1}m

are independent random vectors such that v is composed of independent Bernoulli random vari-
ables and

Ev =: ζ = (ζ1, . . . , ζm), the vector of sampling probabilities. (26)

Theorem 5.1 justifies the consideration of (29) as an entrywise unbiased estimator of A0 and
ρ(A0); for the sake of proper normalization, we present our bounds using entries of ρij (A0).

Theorem 5.1. Consider the data generating model as in (4) and (5). Then for t > 0, for each i,

P

(
1

aii

∣∣〈ui ◦ xi, ui ◦ xi
〉 − ζi tr(B0)

∣∣ > τ

)

≤ 2 exp

(
−c2 min

(
τ 2

4K4(ζi‖diag(B0)‖2
F + ζ 2

i ‖offd(B0)‖2
F )

,
τ

2K2‖B0‖2

))
,
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and for i �= j ,

P

(∣∣∣∣ 〈ui ◦ xi, uj ◦ xj 〉√
aiiajj

− ρij (A0) tr(B0)ζiζj

∣∣∣∣ > τ

)

≤ 6 exp

(
−c2 min

(
τ 2

4K4(ζiζj‖diag(B0)‖2
F + ζ 2

i ζ 2
j ‖offd(B0)‖2

F )
,

τ

2K2‖B0‖2

))
.

Theorem 5.2 follows from Theorem 5.1 and the analysis of Corollary 2.5. The proof is thus
omitted.

Theorem 5.2. Consider the data generating model as in (4) and (5). Let Njj = tr(B0)ζj ,∀j and
Nij := ζiζj tr(B0) for all i �= j . Then, with probability at least 1 − 2

m2 , we have

∀j,

∣∣∣∣‖uj ◦ xj‖2
2

Njj

− ajj

∣∣∣∣ ≤ C1K
2ajj logm

‖B0‖2

tr(B0)ζj

+ C3 log1/2 majj

(‖diag(B0)‖F

tr(B0)ζ
1/2
j

+ ‖offd(B0)‖F

tr(B0)

)
,

(27)

and for all i �= j ,∣∣∣∣ 1√
aiiajjNij

〈
ui ◦ xi, uj ◦ xj

〉 − ρij (A0)

∣∣∣∣
≤ C2K

2 logm‖B0‖2

ζiζj tr(B0)
+ C4K

2 log1/2 m

(‖diag(B0)‖F√
ζiζj tr(B0)

+ ‖offd(B0)‖F

tr(B0)

)
,

(28)

where C1,C2,C3 and C4 are some absolute constants chosen so that the probability holds.

Some consequences on correlation estimation. For ρ(B0), we have a rather nice matrix entry-
wise max norm bound as we will show in Theorem 5.4; For ρ(A0), this bound very much depends
on the sampling probabilities in ζ = (ζ1, . . . , ζm) as shown in Theorem 5.2. In particular, in order
for both terms on the RHS (27) to be of o(ajj ), we require that for all j ,

ζj = �

(
logm‖B0‖2

tr(B0)

)
, and similarly ∀i �= j ζiζj = �

(
logm‖B0‖2

tr(B0)

)
is needed so that both terms on the RHS of (28) will be of o(1). In the context of estimating
ρ(B0), we will discuss what happens when the sampling rate is below a certain threshold.

First, we assume that we know the parameters tr(B0) and ζ as defined in (26), Theorems 5.1
and 5.2 show that in order to estimate A0, we may consider the following oracle estimators for
entries of A0 and ρ(A0) with the gram matrix X T X :

Ã0 = X T X �N where N := tr(B0)Evi ⊗ vi (29)
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and

Nij = tr(B0)

{
ζi if i = j,

ζiζj if i �= j,

where � denotes entrywise division. Clearly, one can take advantage of the bounds as derived
in (27) and (28) and consider Ã0,ij /(Ã0,ii Ã0,jj )

1/2 in order to estimate ρij (A0) for each i �= j .
We leave the presentation of such estimators and their statistical properties for future work [21],
where we will discuss the estimation of elements in M, ζ and their concentration of measure
properties. In order to estimate B0, we first exploit the following relationship

B̃0 =XX T �M where Mij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m∑
k=1

akkζk if i = j,

m∑
k=1

akkζ
2
k if i �= j.

(30)

Theorem 5.3. Consider the data generating random matrices as in (4) and (5). Then for t > 0,
for each i,

P

(
1

bii

∣∣∣∣〈vi ◦ yi, vi ◦ yi
〉 − ∑

k=1

ζkakk

∣∣∣∣ > t

)

≤ 2 exp

(
−c2 min

(
t2

4K4(
∑m

k=1 ζka
2
kk + ∑

k �=� a2
k�ζkζ�)

,
t

2K2‖A0‖2

))
,

(31)

and

∀i �= j, P

(∣∣∣∣∣ 〈vi ◦ yi, vj ◦ yj 〉√
biibjj

− ρij (B0)

m∑
k=1

akkζ
2
k

∣∣∣∣∣ > t

)

≤ 6 exp

(
−c2 min

(
t2

4K4(
∑m

k=1 a2
kkζ

2
k + ∑

k �=� a2
k�ζ

2
k ζ 2

� )
,

t

2K2‖A0‖2

))
.

(32)

Theorem 5.4 follows from Theorem 5.3 and the analysis of Corollary 2.8. The proof is thus
omitted.

Theorem 5.4. Consider the data generating random matrices as in (4) and (5). Let Mii =∑m
k=1 akkζk for all i. We have with probability at least 1 − 1

m2 , for all i,

∣∣∣∣ 〈vi ◦ yi, vi ◦ yi〉
Mii

− bii

∣∣∣∣ ≤ CK2bii

Mii

(
logm‖A0‖2 + log1/2 m

√
a∞‖A0‖2

√√√√ m∑
k=1

ζk

)
, (33)
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and for all i �= j and Mij = ∑m
k=1 akkζ

2
k ,

∣∣∣∣ 〈vi ◦ yi, vj ◦ yj 〉√
biibjjMij

− ρij (B0)

∣∣∣∣ ≤ C′K2

Mij

(
logm‖A0‖2 + log1/2 m

√
a∞‖A0‖2

√√√√ m∑
i=1

ζ 2
k

)
, (34)

where C,C′ are chosen so that the probability holds.

Remarks. Let us now elaborate on the choices of ζ = [ζ1, . . . , ζm], which are the sampling
probabilities as defined in (26) to make sense of the relative errors in estimating entries of the
covariance matrix B0. Denote by ζmin = mink ζk and ζmax = maxk ζk . Let A0 = (aij ) and a∞ =
maxn

i=1 aii and amin = minn
i=1 aii . To ease the discussion, we assume that K = 1 w.l.o.g. First,

we focus on the diagonal entries. Recall that for all i, E〈vi ◦ yi, vi ◦ yi〉 = bii〈Dζ ,diag(A0)〉,
where Dζ = diag(ζ1, . . . , ζm).

Case 1: Suppose that
∑m

k=1 ζk = O(logm). In this regime, the linear in t term in (31) would
be smaller than the quadratic one for all non-trivial values of t : given that

M =
m∑

i=1

ζia
2
ii +

∑
i �=j

a2
ij ζiζj ≤ 2a∞‖A0‖2

m∑
k=1

ζk

following the analysis in Corollary 2.8; and hence for t ≥ 4a∞
∑m

k=1 ζk ,

min

(
t2

4(
∑m

i=1 ζia
2
ii + ∑

k �=� a2
k�ζkζ�)

,
t

2‖A0‖2

)

≥ min

(
t2

8a∞‖A0‖2
∑m

k=1 ζk

,
t

2‖A0‖2

)
= t

2‖A0‖2
.

Thus we would not see the two-phase behavior of Hanson–Wright inequality when
we set t ≥ 4 logm‖A0‖2, which is necessary for us to obtain probability error bound
in the order of 1

md for some d ≥ 2. Moreover, the large deviation bound we obtain
through (31) is not tight enough for our purpose, in the sense that the RHS of (33) is
�(bii) for all i, when we set t � logm‖A0‖2.

Case 2: Suppose that all sampling rates are at the same order and

ζmax � ζmin � p = �

(
logm‖A0‖2

tr(A0)

)
.

Following the analysis of Corollary 2.5, we have with probability at least 1 − 1
m2 ,∣∣∣∣ 〈vi ◦ yi, vi ◦ yi〉∑m

i=1 aiiζi

− bii

∣∣∣∣ ≤ bii log1/2 m

ζmin tr(A0)

(
log1/2 m‖A0‖2 + ζ

1/2
max‖A0‖F

) = o(1).
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Case 3: There is no reason to assume a limit on ζmax. Suppose instead, we assume that

m∑
k=1

ζk = �

(
a∞‖A0‖2 logm

a2
min

)
(35)

for a∞ := maxi aii and amin = (mini aii), which would imply that ζmin =
�(

a∞‖A0‖2 logm

ma2
min

). This in turn is slightly stronger than the lower bound on ζmin =
�(

logm‖A0‖2
tr(A0)

) in Case 2, given that a∞
a2

min
≥ m

tr(A0)
since a∞ tr(A0) ≥ ma2

min. However,

when we assume that aii � 1, for example, when we deal with a correlation matrix,
then (35) is an overall weaker condition than that in Case 2. In general, condition
(35) is needed for the following upper bound to go through. With probability at least
1 − 1

m3 , for all i, by (33),∣∣∣∣ 〈vi ◦ yi, vi ◦ yi〉∑m
i=1 aiiζi

− bii

∣∣∣∣ ≤ O(bii)

(
logm‖A0‖2

ζmin tr(A0)
+ log1/2 m

√
a∞‖A0‖2

amin

√∑m
i=1 ζk

)
= o(bii),

where the last step holds in view of (35).

Now we exam the rate of convergence for the off-diagonal entries.

Case 1: For i �= j , assume that
∑m

k=1 ζ 2
k = O(logm); In this regime, the linear in t term

in (32) would be smaller than the quadratic one for all non-trivial values of t , fol-
lowing the same reasoning for the diagonal case, except that the effective sampling
rate becomes

∑m
k=1 ζ 2

k . Hence, we would not see the two-phase behavior of Hanson–
Wright when we set t ≥ 4 logm‖A0‖2. Moreover, the large deviation bound we obtain
through the expression on the RHS of (34) is not tight enough for our purpose, as

logm‖A0‖2∑m
k=1 akkζ

2
k

+
log1/2 m

√
a∞‖A0‖2

√∑m
i=1 ζ 2

k∑m
k=1 akkζ

2
k

= �(1).

In order to obtain convergence in estimating ρij (B0), we need to impose the following
conditions.

Case 2: Suppose all sampling rate are at the same order:

ζ 2
max � ζ 2

min � p = �

(
logm‖A0‖2

tr(A0)

)
. (36)

Following the analysis of Corollary 2.5, we have with probability at least 1 − 1
m2 ,∣∣∣∣ 〈vi ◦ yi, vj ◦ yj 〉√

biibjjMij

− ρij (B0)

∣∣∣∣ ≤ log1/2 m∑m
k=1 ζ 2

k akk

O
(
log1/2 m‖A0‖2 + ζmax‖A0‖F

)
= o(1).
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Case 3: In general, there is no reason to impose any condition on ζmax except that by defini-
tion, it is larger than ζmin. Hence in general, we assume that

m∑
k=1

ζ 2
k = �

(
a∞‖A0‖2 logm

a2
min

)
(37)

which implies that ζ 2
min = �(

a∞‖A0‖2 logm

ma2
min

) which is slightly stronger than the lower

bound on ζ 2
min as stated in (36). Finally, we have with probability at least 1 − 1

m2 ,
RHS of (34) = o(1) for all i �= j .

The proof of Theorem 5.1 is similar to the proof of Theorem 5.3 and thus is omitted. We now
sketch the proof of Theorem 5.3.

Proof of Theorem 5.3. Recall that we observe for each row vector yi of data matrix X:

vi ◦ yi, where vi
k ∼ Bernoulli(ζk),∀k = 1, . . . ,m,∀i = 1, . . . , n. (38)

Let ξ = (ξ1, . . . , ξm), where ξk := vi
kv

j
k are independent Bernoulli random variables such that

Eξk = ζk if i = j and else Eξk = ζ 2
k . First, observe that when i = j , the random vector (y

j
k )mk=1

involved in the sum is of size m, with covariance being bjjA0. Without loss of generality, we

write (y
j
k )mk=1 = (bjjA0)

1/2(g1, . . . , gm)T , where g1, . . . , gm i.i.d. ∼ Y where

EY = 0, ‖Y‖ψ2 ≤ K and EY 2 = 1 (39)

and replace the inner product with a random quadratic form

gT A
1/2
0 DξA

1/2
0 g −EgT A

1/2
0 DξA

1/2
0 g,

where Dξ follows the same distribution as diag(vj ) for vj ∼ v as defined in (26), with

Ev
j
k = ζk for k = 1, . . . ,m. The first inequality (31) in the theorem thus follows immediately

from Theorem 1.2. For i �= j , we exploit the decorrelation idea in Theorem 13.1 [19,20], and
Theorems 1.2 and 1.3 in the present work, for which we now have Dξ = diag(vi ⊗ vj ) in the
random quadratic forms, which explains the difference in the quadratic form in the second in-
equality (32) versus the first. Due to its significant length, we omit it from the current work and
leave it in [21]. �

In summary, we have shown that the entries of estimators Ã0 and B̃0 presented in this section
are tightly concentrated around their mean while the diagonal entries have a tighter concentration
than that for the off-diagonal entries of A0 and B0; the proof exploits the sparse Hanson–Wright
type of inequalities, namely, Theorem 1.2 and its corollaries, as well as the decorrelation ideas
in [19,20]. In an ongoing work [21], we consider fully automated estimators for A0 and B0
and their statistical convergence properties, where no population parameters are assumed to be
known; indeed, the factor such as tr(B0) appearing in (29) should not matter as we only aim to
estimate A0 and B0 up to a certain factor.
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6. Proof of Theorem 2.10

We first state the following Theorem 6.1 from a note by Vershynin [16]; we state its consequence
as follows.

Theorem 6.1. Let A be an m × m matrix. Let X = (X1, . . . ,Xm) be a random vector with
independent mean zero coefficients. Then, for every convex function F ,

EF

(∑
i �=j

aijXiXj

)
≤ EF

(
4
∑
i �=j

aijXiX
′
j

)
, (40)

where X′ is an independent copy of X.

Let Zi := ξi − pi . Denote by σ 2
i = pi(1 − pi). For all Zi , we have |Zi | ≤ 1, EZi = 0 and

EZ2
i = (1 − pi)

2pi + p2
i (1 − pi) = pi(1 − pi) = σ 2

i , (41)

E|Zi | = (1 − pi)pi + pi(1 − pi) = 2pi(1 − pi) = 2σ 2
i . (42)

Proof of Theorem 2.10. Let Zi = ξi −pi . Denote by ăi := ∑
j �=i (aij +aji)pj +aii . We express

the quadratic form as follows:

m∑
i=1

aii(ξi − pi) +
∑
i �=j

aij (ξiξj − pipj ) =
∑
i �=j

aijZiZj +
m∑

j=1

Zj ăi =: S1 + S2.

We first state the following bounds on the moment generating functions of S1 and S2 in (45) and
(46). The estimate on the moment generating function for

∑
i,j aij ξiξj then follows immediately

from the Cauchy–Schwarz inequality in view of (45) and (46).
Bounding the moment generating function for S1. In order to bound the moment generating

function for S1, we start by a decoupling step following Theorem 6.1. Let Z′ be an independent
copy of Z.

Decoupling. Now consider random variable S1 := ∑
i �=j aij (ξi − pi)(ξj − pj ) =∑

i �=j aijZiZj and

S′
1 :=

∑
i �=j

aijZiZ
′
j , we have E exp(2λS1) ≤ E exp

(
8λS′

1

) =: f

by (40). Thus we have by independence of Zi ,

f := EZ′EZ exp

(
8λ

m∑
i=1

Zi

∑
j �=i

aijZ
′
j

)
= EZ′

m∏
i=1

E
(
exp(8λZiãi)

)
. (43)

First consider Z′ being fixed. Let us define

ti := 8λ̃ai where ãi :=
∑
j �=i

aijZ
′
j .
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Hence for all 0 ≤ λ ≤ 1
104‖A‖∞ and C4 := 4

13e1/13, and any given fixed Z′ by (9)

E exp(8λ̃aiZi) := E exp(tiZi) ≤ 1 + 1

2
t2
i EZ2

i e
|ti | ≤ exp

(
1

2
t2
i EZ2

i e
|ti |

)
≤ exp

(
4

13
e1/13λ|̃ai |σ 2

i

)
=: exp

(
C4λ|̃ai |σ 2

i

)
,

(44)

where Zi,∀i satisfies: |Zi | ≤ 1, EZi = 0 and EZ2
i = σ 2

i ,

|ti | = |8λ̃ai | ≤ 8λ
∑
j �=i

|aij |
∣∣Z′

j

∣∣ ≤ 8λ‖A‖∞ ≤ 1

13
and

1

2
t2
i ≤ 4

13
λ|̃ai |.

Denote by |āj | := ∑
i �=j |aij |σ 2

i . Thus by (43) and (44)

f ≤ EZ′
m∏

i=1

exp
(
C4λ|̃ai |σ 2

i

) ≤ EZ′ exp

(
C4λ

m∑
i=1

σ 2
i

∑
j �=i

|aij |
∣∣Z′

j

∣∣)

=
m∏

j=1

E exp

(
C4λ

∣∣Z′
j

∣∣ m∑
i �=j

|aij |σ 2
i

)
=:

m∏
j=1

E exp
(
C4λ|āj |

∣∣Z′
j

∣∣),
where we have by the elementary approximation (9) and t̆j := C4λ|āj |

E exp
(
C4λ|āj |

∣∣Z′
j

∣∣) =: E exp
(
t̆j

∣∣Z′
j

∣∣)
≤ 1 +E

(
t̆j

∣∣Z′
j

∣∣) + 1

2
(t̆j )

2
E

(
Z′

j

)2
e|t̆j |

≤ exp

(
2t̆j σ

2
j + 1

2
(t̆j )

2σ 2
j e0.0008

)
≤ exp

(
2.0005t̆j σ

2
j

)
≤ exp

(
2.0005C4λ|āj |σ 2

j

) ≤ exp

(
2

3
λσ 2

j

∑
i �=j

|aij |σ 2
i

)
,

where E(Z′
i )

2 = σ 2
i and E|Z′

i | = 2σ 2
i following (41) and (42), and for 0 < λ ≤ 1

104 max(‖A‖1,‖A‖∞)
,

t̆j := C4λ|āj | = 4

13
e1/13λ

∑
i �=j

|aij |σ 2
i

≤ 4

13
e1/13 1

4

∑
i |aij |

104‖A‖1
≤ 1

13
e1/13 1

104
< 0.0008.
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Thus for every 0 ≤ λ ≤ 1
104 max(‖A‖1,‖A‖∞)

,

E exp(λ2S1) ≤ exp

(
2

3
λ

∑
i �=j

|aij |σ 2
i σ 2

j

)
. (45)

Bounding the moment generating function for S2. Recall

S2 :=
m∑

i=1

Zi

(∑
j �=i

(aij + aji)pj + aii

)
=:

m∑
i=1

Ziăi .

Let a∞ := maxi |ăi | ≤ ‖A‖∞ + ‖A‖1. Thus we have by Lemma 2.11

g := E exp(2λS2) = E exp

(
2λ

m∑
i=1

Ziăi

)

≤ exp

(
2λ2e2|λ|a∞

m∑
i=1

ă2
i σ

2
i

)
≤ exp

(
C5|λ|

m∑
i=1

|ăi |pi

)
,

where e2λa∞2λ|ăi | ≤ 1
26e1/26 =: C5 ≤ 0.04 given that for all |λ| ≤ 1

52(‖A‖∞+‖A‖1)

2λ|ăi | ≤ 2(‖A‖∞ + ‖A‖1)

52(‖A‖∞ + ‖A‖1)
≤ 1

26
for all i.

Thus we have for 0 < λ ≤ 1
52(‖A‖∞+‖A‖1)

,

E exp(λ2S2) ≤ exp

(
0.02 ∗ 2λ

m∑
i=1

pi |ăi |
)

. (46)

Hence by the Cauchy–Schwarz inequality, for all 0 < λ ≤ 1
104(‖A‖∞∨‖A‖1)

,

E exp

(
λ

(
m∑

i=1

aii(ξi − pi) +
∑
i �=j

aij (ξiξj − pipj )

))

= E exp
(
λ(S1 + S2)

) ≤ E
1/2 exp(2λS1)E

1/2 exp(2λS2).

The theorem is thus proved by multiplying exp(λ(
∑m

i=1 aiipi + ∑
i �=j aijpipj )) on both sides

of the above inequality. �



1632 S. Zhou

Appendix A: Proof of Lemma 2.12

Let Z := X2 − EX2 and Y := Z/‖Z‖ψ1 . Then Y and Z are both centered sub-exponential ran-
dom variables with ‖Y‖ψ1 = 1 and

‖Z‖ψ1 = ∥∥X2 −EX2
∥∥

ψ1
≤ 2

∥∥X2
∥∥

ψ1
≤ 4‖X‖2

ψ2
≤ 4K2

which follows from the triangle inequality and Lemma 5.14 of [17].
Now set t := τ‖X2 −EX2‖ψ1 , where for |τ | ≤ 1

23.5eK2 ,

e|t | = e|τ |∥∥X2 −EX2
∥∥

ψ1
≤ 4K2

23.5K2
<

8

47

and 2(e|t |)3 ≤ (e|t |)2. By Lemma 5.15 of [17], we have for all k,

E exp(tY ) = 1 + tEY +
∞∑

p=2

tpEYp

p! ≤ 1 +
∞∑

p=2

|t |pE|Y |p
p!

≤ 1 +
∞∑

p=2

|t |ppp

p! ≤ 1 +
∞∑

p=2

|t |pep

√
2πp

.

Thus

E exp(tY ) ≤ 1 + (te)2

2
√

π
+ 1√

6π

∞∑
p=3

(
e|t |)p

≤ 1 + |t |2e2

2
√

π
+ 1√

6π

(e|t |)3

1 − e|t | ≤ 1 + |t |2e2

2
√

π
+ 8(e|t |)2

39
√

6π

< 1 + e2τ 2
∥∥X2 −EX2

∥∥2
ψ1

(
1

2
√

π
+ 8

39
√

6π

)
≤ 1 + 38.94|τ |2K4,

where we used the following form of Stirling’s approximation for all p ≥ 2,

1

p! ≤ ep

pp

1√
2πp

≤ ep

pp

1

2
√

π
.

The lemma is thus proved given that

E exp τ
(
X2 −EX2) = E exp

(
τ
∥∥X2 −EX2

∥∥
ψ1

Y
) = E exp(tY ). �

Appendix B: Proof of Lemma 3.2

Note that the following holds by Lemma 5.14 [17],

‖Xi‖2
ψ2

≤ ∥∥X2
i

∥∥
ψ1

≤ 2‖Xi‖2
ψ2

= 2K2.



Sparse Hanson–Wright inequalities 1633

For all k, let Yk := X2
k/‖X2

k‖ψ1 . By definition, Yk is a sub-exponential random variable with
‖Yk‖ψ1 = 1. We now set tk := λakk‖X2

k‖ψ1 . Following the proof of Lemma 2.12, we first use the
Taylor expansions to obtain for all k,

E exp(tkYk) := E exp
(
λakkX

2
k

) = 1 + tkEYk +
∞∑

p=2

t
p
k EY

p
k

p!

≤ 1 + tkEYk +
∞∑

p=2

|tk|pE|Yk|p
p!

≤ 1 + λakkEX2
k + |tk|2e2

2
√

π
+ 1√

6π

∞∑
p=3

(
e|tk|

)p

≤ 1 + λakkEX2
k + |tk|2e2

2
√

π
+ 1√

6π
2
(
e|tk|

)3

< 1 + λakkEX2
k + e2(λakk

∥∥X2
k

∥∥
ψ1

)2
(

1

2
√

π
+ 1√

6π

)
≤ 1 + λakkEX2

k + 16|λakk|2K4,

where

e|tk| ≤ |akk|‖X2
k‖ψ1

4K2 maxk|akk| ≤ 1

2

and 2(e|tk|)3 ≤ (e|tk|)2. The lemma is thus proved. �

Appendix C: Proof of (13)

The proof structure follows from the proof of Theorem 2.1 [14]. Recall S := ∑m
i �=j aijXiXj ξiξj .

We start with a decoupling step.
Step 1. Decoupling. Let δ = (δ1, . . . , δm) ∈ {0,1}m be a random vector with independent

Bernoulli random variables with Eδi = 1/2, which is independent of X and ξ . Let X	δ de-
note (Xi)i∈	δ for a set 	δ := {i ∈ [m] : δi = 1}. Let EX , Eξ and Eδ denote the expectation with
respect to random variables in X, ξ and δ respectively. Now consider random variable

Sδ :=
∑
i,j

δi(1 − δj )aijXiXj ξiξj and hence S = 4EδSδ.

By Jensen’s inequality, for all λ ∈ R,

E exp(λS) = EξEX exp(Eδ4λSδ) ≤ EξEXEδ exp(4λSδ), (47)

where the last step holds because eax is convex on R for any a ∈ R.
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Consider 	δ := {i ∈ [m] : δi = 1}. Denote by f (ξ, δ,X	δ ) the conditional moment generating
function of random variable 4Sδ :

f (ξ, δ,X	δ ) := E
(
exp(4λSδ)|ξ, δ,X	δ

)
.

Conditioned upon X	δ for a fixed realization of ξ and δ, we rewrite Sδ

Sδ :=
∑

i∈	δ,j∈	c
δ

aijXiXj ξiξj =
∑
j∈	c

δ

Xj

(
ξj

∑
i∈	δ

aijXiξi

)

as a linear combination of mean-zero subgaussian random variables Xj , j ∈ 	c
δ , with fixed coef-

ficients. Thus the conditional distribution of Sδ is subgaussian with ψ2 norm being upper bounded
by the �2 norm of the coefficient vector (ξj

∑
i∈	δ

aijXiξi)j∈	c
δ

[17] (cf. Lemma 5.9).
Thus, conditioned upon ξ, δ and X	δ ,

‖Sδ‖ψ2 ≤ C0σδ,ξ where σ 2
δ,ξ =

∑
j∈	c

δ

ξj

(∑
i∈	δ

aijXiξi

)2

. (48)

Thus, we have for some large absolute C > 0

f (ξ, δ,X	δ ) = E
(
exp(4λSδ)|ξ, δ,X	δ

) ≤ exp
(
Cλ2‖Sδ‖2

ψ2

) ≤ exp
(
C′λ2σ 2

δ,ξ

)
. (49)

Taking the expectations of both sides with respect to X	δ and ξ , we obtain

EξEX	δ
f (ξ, δ,X	δ ) = EξEX	δ

E
(
exp(4λSδ)|ξ, δ,X	δ

)
≤ EξEX	δ

exp
(
C′λ2σ 2

δ,ξ

) =: f̃δ.
(50)

Step 2. Reduction to normal random variables. Let δ, ξ and X	δ be a fixed realization of the
random vectors defined as above. Let g = (g1, . . . , gn), where gi i.i.d. ∼ N(0,1). Let Eg denote
the expectation with respect to random variables in g. Consider random variable

Z :=
∑
j∈	c

δ

gj

(
ξj

∑
i∈	δ

aijXiξi

)
.

By the rotation invariance of normal distribution, for a fixed realization of random vectors ξ, δ,X,
the conditional distribution of Z follows N(0, σ 2

δ,ξ ) for σ 2
δ,ξ as defined in (48). Thus we obtain

the conditional moment generating function for Z denoted by

Eg

(
exp(tZ)

) := E
(
exp(tZ)|ξ, δ,X	δ

) = exp
(
t2σ 2

δ,ξ /2
)
.

Choose t = C1λ where C1 = √
2C′, we have

Eg

(
exp(C1λZ)

) = exp
(
C′λ2σ 2

δ,ξ

)
which matches the RHS of (49).
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Hence for a fixed realization of δ, we can calculate f̃δ using Z as follows:

f̃δ := EξEX exp
(
C′λ2σ 2

δ,ξ

) = EξEXEg

(
exp(C1λZ)

) = E
(
exp(C1λZ)|δ). (51)

Conditioned on δ, ξ and g, we can re-express Z:

Z =
∑
i∈	δ

Xi

(
ξi

∑
j∈	c

δ

aij gj ξj

)

as a linear combination of subgaussian random variables Xi, i ∈ 	δ with fixed coefficients, which
immediately imply that

E
(
exp(C1λZ)|δ, ξ, g

) ≤ exp

(
C3λ

2
∑
i∈	δ

ξi

( ∑
j∈	c

δ

aij gj ξj

)2)
.

Let Pδ denote the coordinate projection of Rm onto R	δ . Then conditioned on δ, we have by
definition of f̃δ as in (51) and the bounds on the conditional moment generating function of Z

immediately above,

f̃δ = E
(
exp(C1λZ)|δ) = Eξ,gE

(
exp(C1λZ)|δ, ξ, g

)
≤ E

[
exp

(
C3λ

2
∑
i∈	δ

ξi

( ∑
j∈	c

δ

aij gj ξj

)2)
|δ

]

= E
[
exp

(
C3λ

2
∥∥DξPδA(I − Pδ)Dξg

∥∥2
2

)|δ]
= E

[
exp

(
C3λ

2‖Aδ,ξ g‖2
2

)|δ],
(52)

where we denote by Aδ,ξ := DξPδA(I − Pδ)Dξ . We will integrate g out followed by ξ in the
next two steps.

Step 3. Integrating out the normal random variables. Conditioned upon δ and ξ and by the
rotation invariance of g, the random variables ‖Aδ,ξg‖2

2 follows the same distribution as
∑

i s
2
i g2

i

where si denote the singular values of Aδ,ξ , with

max
i

si =
√

λmax
(
AT

δ,ξAδ,ξ

) =: ‖Aδ,ξ‖2 ≤ ‖A‖2, and∑
i

s2
i = ‖Aδ,ξ‖2

F = tr
(
Aδ,ξA

T
δ,ξ

)
= tr

(
DξPδA(I − Pδ)DξA

T PδDξ

) = tr
(
DξPδA(I − Pδ)DξA

T
)

(53)

=
∑
i∈	δ

ξi

∑
j∈	c

δ

a2
ij ξj .
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First we note that g2
i ,∀i follow the χ2 distribution with one degree of freedom, and E exp(tg2) =

1√
1−2t

≤ e2t for t < 1/4. Thus, we have for a fixed realization of δ, ξ , and for all |λ| ≤ 1
2
√

C3‖A‖2
,

E
[
exp

(
C3λ

2s2
i g2

i

)|δ, ξ] = 1√
1 − 2C3λ2s2

i

≤ exp
(
2C3λ

2s2
i

)
.

Hence for any fixed δ and ξ , and for C4 = 2C3 and |λ| ≤ 1
2
√

C3‖A‖2
, we have by independence of

g1, g2, . . . ,

E
[
exp

(
C3λ

2‖Aδ,ξ g‖2
2

)|δ, ξ] = E

[
exp

(
C3λ

2
∑

i

s2
i g2

i

)∣∣∣δ, ξ]
=

∏
i

E
[
exp

(
C3λ

2s2
i g2

i

)|δ, ξ]
≤

∏
i

exp
(
2C3λ

2s2
i

)
.

(54)

Thus we have by (52), (53) and (54)

f̃δ ≤ EξE
[
exp

(
C3λ

2‖Aδ,ξg‖2
2

)|δ, ξ]
≤ E

[
exp

(
2C3λ

2
∑

i

s2
i

)∣∣∣δ]

= E

[
exp

(
C4λ

2
∑
i∈	δ

ξi

∑
j∈	c

δ

a2
ij ξj

)∣∣∣δ].

(55)

The key observation here is we are dealing with a quadratic form on the RHS of (55) which is
already decoupled thanks to the decoupling Step 1.

Step 4. Integrating out the Bernoulli random variables. For any given realization of δ, we now
need to bound the moment generating function for the decoupled quadratic form on the RHS of
(55), which is the content of Lemma C.1 where we take t = C4λ

2 and conclude that for all δ and
for all |λ| ≤ 1

2
√

C4‖A‖2
,

f̃δ ≤ exp

(
1.44C4λ

2
∑
i �=j

a2
ijpipj

)
.

Lemma C.1. Let 0 < τ ≤ 1
4‖A‖2

2
. For any fixed realization of δ, we have

E

[
exp

(
τ

∑
i∈	δ

ξi

∑
j∈	c

δ

a2
ij ξj

)∣∣∣δ] ≤ exp

(
1.44τ

∑
i �=j

a2
ijpipj

)
.
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Proof. As mentioned, we are dealing with a quadratic form which is already decoupled. Thus,
we integrate out ξi for all i ∈ 	δ followed by those in 	c

δ . Recall for any realization of δ and
0 < τ ≤ 1

4‖A‖2
2

we have by independence of ξ1, ξ2, . . . ,

fδ := E

[
exp

(
τ

∑
i∈	δ

ξi

∑
j∈	c

δ

a2
ij ξj

)∣∣∣δ]

= Eξ	c
δ
E

[
exp

(
τ

∑
i∈	δ

ξi

∑
j∈	c

δ

a2
ij ξj

)∣∣∣ξ	c
δ
, δ

]

= Eξ	c
δ

∏
i∈	δ

E

[
exp

(
τξi

∑
j∈	c

δ

a2
ij ξj

)∣∣∣ξ	c
δ
, δ

]
.

(56)

We will use the following approximation twice in our proof:

ex − 1 ≤ 1.2x which holds for 0 ≤ x ≤ 0.35. (57)

First notice that for all realizations of δ and ξ , we have for 0 < τ ≤ 1
4‖A‖2

2

0 ≤ τ
∑
j∈	c

δ

a2
ij ξj ≤ τ

∑
j

a2
ij ≤ τ‖A‖2

2 ≤ 1/4

given that the maximum row �2 norm of A is bounded by the operator norm of matrix AT :
‖AT ‖2 = ‖A‖2 = √

λmax(AT A). Hence, we have for |λ| ≤ 1
2
√

C4‖A‖2
, (57) and the fact that 1 +

x ≤ ex ,

E

[
exp

(
τξi

∑
j∈	c

δ

a2
ij ξj

)∣∣∣ξ	c
δ
, δ

]
= pi exp

(
τ

∑
j∈	c

δ

a2
ij ξj

)
+ (1 − pi)

≤ pi

(
1.2τ

∑
j∈	c

δ

a2
ij ξj

)
+ 1 ≤ exp

(
1.2τpi

∑
j∈	c

δ

a2
ij ξj

)
.

(58)

Thus we have by independence of ξ1, ξ2, . . . , (56) and (58)

fδ ≤ Eξ	c
δ

∏
i∈	δ

exp

(
1.2τpi

∑
j∈	c

δ

a2
ij ξj

)
= Eξ	c

δ
exp

(∑
i∈	δ

1.2τpi

∑
j∈	c

δ

a2
ij ξj

)

= Eξ	c
δ

exp

(
1.2τ

∑
j∈	c

δ

ξj

∑
i∈	δ

a2
ijpi

)
=

∏
j∈	c

δ

Eξj
exp

(
1.2τξj

∑
i∈	δ

a2
ijpi

)

=
∏

j∈	c
δ

pj exp

(
1.2τ

∑
i∈	δ

a2
ijpi

)
+ (1 − pj ),

(59)
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where for all δ and 0 < τ ≤ 1
4‖A‖2

2
, we have by the approximation in (57)

exp

(
1.2τ

∑
i∈	δ

a2
ijpi

)
− 1 ≤ 1.44τ

∑
i∈	δ

a2
ijpi (60)

given that the column �2 norm of A is bounded by the operator norm of A, and thus

1.2τ
∑
i∈	δ

a2
ijpi ≤ 1.2τ

m∑
i=1

a2
ijpi ≤ 1.2

m∑
i=1

a2
ij /

(
4‖A‖2

2

) ≤ 0.3.

Now by (59), (60) and the fact that x + 1 ≤ ex

fδ ≤
∏

j∈	c
δ

pj

[
exp

(
1.2τ

∑
i∈	δ

a2
ijpi

)
− 1

]
+ 1

≤
∏

j∈	c
δ

pj

(
1.44τ

∑
i∈	δ

a2
ijpi

)
+ 1 ≤

∏
j∈	c

δ

exp

(
1.44τpj

∑
i∈	δ

a2
ijpi

)

= exp

( ∑
j∈	c

δ

1.44τpj

∑
i∈	δ

a2
ijpi

)
≤ exp

(
1.44τ

∑
i �=j

a2
ijpipj

)
.

The lemma thus holds. �

Step 5. Putting things together. By Jensen’s inequality (47), definition of f (ξ, δ,X	δ ) in (49)
and (50), we have for all |λ| ≤ 1

2
√

C4‖A‖2

E exp(λS) ≤ EδEξEX exp(4λSδ)

= EδEξEX	δ
E

(
exp(4λSδ)|ξ, δ,X	δ

)
= EδEξEX	δ

f (ξ, δ,X	δ )

≤ Eδf̃δ ≤ exp

(
1.44C4λ

2
∑
i �=j

a2
ijpipj

)
.

Thus, (13) holds. �
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