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Hawkes process is a class of simple point processes that is self-exciting and has clustering effect. The in-
tensity of this point process depends on its entire past history. It has wide applications in finance, insurance,
neuroscience, social networks, criminology, seismology, and many other fields. In this paper, we study lin-
ear Hawkes process with an exponential kernel in the asymptotic regime where the initial intensity of the
Hawkes process is large. We establish large deviations for Hawkes processes in this regime as well as the
regime when both the initial intensity and the time are large. We illustrate the strength of our results by
discussing the applications to insurance and queueing systems.
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1. Introduction

Let N be a simple point process on R and let F−∞
t := σ(N(C),C ∈ B(R),C ⊂ (−∞, t]) be

an increasing family of σ -algebras. Any nonnegative F−∞
t -progressively measurable process λt

with

E
[
N(a,b

]|F−∞
a ] = E

[∫ b

a

λs ds

∣∣∣F−∞
a

]
almost surely,

for all intervals (a, b] is called an F−∞
t -intensity of N . We use the notation Nt := N(0, t] to

denote the number of points in the interval (0, t].
A Hawkes process is a simple point process N admitting an F−∞

t -intensity

λt := λ

(∫ t−

−∞
φ(t − s) dNs

)
, (1.1)

where λ(·) : R+ → R
+ is locally integrable, left continuous, φ(·) : R+ → R

+ and we always
assume that ‖φ‖L1 = ∫ ∞

0 φ(t) dt < ∞. In (1.1),
∫ t−
−∞ φ(t − s) dNs stands for

∑
τ<t φ(t − τ),

where τ are the occurrences of the points before time t . In the literature, φ(·) and λ(·) are usually
referred to as exciting function (or sometimes kernel function) and rate function respectively.
A Hawkes process is linear if λ(·) is linear and it is nonlinear otherwise.
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The linear Hawkes process was first introduced by A.G. Hawkes in 1971 [17,18]. It naturally
generalizes the Poisson process and it captures both the self-exciting1 property and the cluster-
ing effect. In addition, Hawkes process is a very versatile model which is amenable to statistical
analysis. These explain why it has wide applications in insurance, finance, social networks, neu-
roscience, criminology and many other fields. For a list of references, we refer to [30].

Throughout this paper, we assume an exponential exciting function φ(t) := αe−βt where
α,β > 0, and a linear rate function λ(z) := μ + z where the base intensity μ ≥ 0. That is, we
restrict ourselves to the linear Markovian Hawkes process. To see the Markov property, we define

Zt :=
∫ t

−∞
αe−β(t−s) dNs = Z0 · e−βt +

∫ t

0
αe−β(t−s) dNs.

Then, the process Z is Markovian and satisfies the dynamics:

dZt = −βZt dt + α dNt ,

where N is a Hawkes process with intensity λt = μ + Zt− at time t . In addition, the pair (Z,N)

is also Markovian. For simplicity, we also assume Z0 = Z0−, that is, there is no jump at time
zero.

In this paper, we consider an asymptotic regime where Z0 = n, and n ∈ R
+ is sent to infinity.

This implies the initial intensity λ0 = μ + Z0 is large for fixed μ. Our main contribution is to
provide the large deviations analysis of Markovian Hawkes processes in this asymptotic regime
as well as the regime when both Z0 and the time are large. The rate functions are found explicitly.
Our large deviations analysis here complement our previous results in [13], where we establish
functional law of large numbers and functional central limit theorems for Markovian Hawkes
processes in the same asymptotic regimes.

For simplicity, the discussions in our paper are restricted to the case when the exciting func-
tion φ is exponential, that is the Markovian case. Indeed, all the results can be extended to the
case when the exciting function φ is a sum of exponential functions. For the non-Markovian
case, we know that any continuous and integrable function φ can be approximated by a sum of
exponential functions, see, for example, [36]. In this respect, the Markovian setting in this paper
is not too restrictive. From the application point of view, the exponential exciting function and
thus the Markovian case, together with the linear rate function, is the most widely used due to
the tractability of the theoretical analysis as well as the simulations and calibrations. See, for
example, [1,7,17] and the references therein.

To illustrate the strength of our results, we apply them to two examples. In the first example,
we develop approximations for finite-horizon ruin probabilities in the insurance setting where
claim arrivals are modeled by Hawkes processes. Here, the initial arrival rate of claims could be
high, say, right after a catastrophe event. In the second example, we rely on our large deviations
results to approximate the loss probability in a multi-server queueing system where the traffic
input is given by a Hawkes process with a large initial intensity. Such a queueing system could

1Self-exciting refers the phenomenon that the occurrence of one event increases the probability of the occurrence of
further events.
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be relevant for modeling large scale service systems (e.g., server farms with thousands of servers)
with high-volume traffic which exhibits clustering.

We now explain the difference between our work and the existing literature on limit theorems
of Hawkes processes, especially the large deviations. The large-time large deviations of Hawkes
processes have been extensively studied in the literature, that is the large deviation principle for
P(Nt/t ∈ ·) as t → ∞. Bordenave and Torrisi [5] derived the large deviations when λ(·) is linear
and obtained a closed-form formula for the rate function. When λ(·) is nonlinear, the lack of
immigration-birth representation [17] makes the study of large deviations much more challenging
mathematically. In the case when φ(·) is exponential, the large deviations were obtained in Zhu
[36] by using the Markovian property, and λ(·) is assumed to be sublinear so that a delicate
application of minmax theorem can match the lower and upper bounds. For the general non-
Markovian case, that is, general φ(·), the large deviations was obtained at the process-level in
Zhu [35]. The large deviations for extensions of Hawkes processes have also been studied in
the literature, see, for example, Karabash and Zhu [22] for the linear marked Hawkes process,
and Zhu [34] for the Cox–Ingersoll–Ross process with Hawkes jumps and also Zhang et al. [29]
for affine point processes. Other than the large deviations, the central limit theorems for linear,
nonlinear and extensions of Hawkes processes have been considered in, e.g., [3,33,34]. Recently,
Torrisi [25,26] studied the rate of convergence in the Gaussian and Poisson approximations of the
simple point processes with stochastic intensity, which includes as a special case, the nonlinear
Hawkes process. The moderate deviations for linear Hawkes processes were obtained in Zhu
[32], that fills in the gap between the central limit theorem and large deviations. Also, the large-
time limit theorems for nearly unstable, or nearly critical Hawkes processes have been considered
in Jaisson and Rosenbaum [20,21]. The large-time asymptotics for other regimes are referred to
Zhu [30]. The limit theorems considered in Bacry et al. [3] hold for the multidimensional Hawkes
process. Indeed, one can also consider the large dimensional asymptotics for the Hawkes process,
that is, mean-field limit, see, for example, Delattre et al. [8].

We organize our paper as follows. In Section 2, we will state the main theoretical results in our
paper,that is, the large deviations for the linear Markovian Hawkes processes with a large initial
intensity. We will then discuss the applications of our results to two examples in Section 3. We
prove Theorems 1 and 2 in Section 4. Technical proofs for additional results will be presented in
the supplemental article [14] due to space considerations.

2. Main results

In this section, we state our main results. First, let us introduce the notation that will be used
throughout the paper and introduce the definition and the contraction principle in the large devi-
ations theory that will be used repeatedly in the paper.

2.1. Notation and background of large deviations theory

We define R
+ = {x ∈ R : x > 0} and R≥0 = {x ∈ R : x ≥ 0}. We fix T > 0 throughout this paper.

Let us first define the following spaces:

• D[0, T ] is defined as the space of càdlàg functions from [0, T ] to R≥0.
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• ACx[0, T ] is defined as the space of absolutely continuous functions from [0, T ] to R≥0
that starts at x at time 0.

• AC+
x [0, T ] is defined as the space that consists of all the non-decreasing functions f ∈

ACx[0, T ].
We also define Bε(x) as the Euclidean ball centered at x with radius ε > 0.
Before we proceed, let us give a formal definition of the large deviation principle and state the

contraction principle. We refer readers to Dembo and Zeitouni [9] or Varadhan [27] for general
background of large deviations and the applications.

A sequence (Pn)n∈N of probability measures on a topological space X satisfies the large devi-
ation principle with the speed an and the rate function I : X → [0,∞] if I lower semicontinuous
and for any measurable set A, we have

− inf
x∈Ao

I (x) ≤ lim inf
n→∞

1

an

logPn(A) ≤ lim sup
n→∞

1

an

logPn(A) ≤ − inf
x∈A

I (x).

Here, Ao is the interior of A and A is its closure. The rate function I is said to be good if for any
m, the level set {x : I (x) ≤ m} is compact.

The contraction principle concerns the behavior of large deviation principle under continuous
mapping from one space to another. It states that if (Pn)n∈N satisfies a large deviation principle
on X with a good rate function I (·), and F is a continuous mapping from the Polish space X to
another Polish space Y , then the family Qn = PnF

−1 satisfies a large deviation principle on Y

with a good rate function J (·) given by

J (y) = inf
x:F(x)=y

I (x).

2.2. Large deviation analysis for large initial intensity

In this section, we state a set of results on large deviations behavior of Markovian Hawkes pro-
cesses when Z0 = n is sent to infinity. Note that processes Z and N both depend on the initial
condition Z0 = n and we use Zn,Nn to emphasize the dependence on Z0 = n. We consider the
process Zn first.

Theorem 1. P({ 1
n
Zn

t ,0 ≤ t ≤ T } ∈ ·) satisfies a sample-path large deviation principle on
D[0, T ] equipped with uniform topology with the speed n and the good rate function

IZ(g) =
∫ T

0

βg(t) + g′(t)
α

log

(
βg(t) + g′(t)

αg(t)

)
−

(
βg(t) + g′(t)

α
− g(t)

)
dt, (2.1)

if g ∈ AC1[0, T ] and g′ ≥ −βg, and IZ(g) = ∞ otherwise. Moreover, P( 1
n
Zn

T ∈ ·) satisfies a
scalar large deviation principle on R

+ with the good rate function

J (x;T ) = inf
g(T )=x

IZ(g) (2.2)

= sup
θ∈R

{
θx − A(T ; θ)

}
, (2.3)
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Figure 1. This figure plots the rate function J (x;T ) in (2.3). The parameters are given by: α = β = 1.

where A(t; θ) satisfies the ODE (Ordinary Differential Equation):

A′(t; θ) = −βA(t; θ) + eαA(t;θ) − 1, (2.4)

A(0; θ) = θ. (2.5)

Four remarks are in order.

(a) When g(t) = e(α−β)t for t ∈ [0, T ], one immediately verifies from (2.1) that IZ(g) = 0.
This is consistent with the functional law of large numbers for { 1

n
Zn

t ,0 ≤ t ≤ T } in [13].
(b) Note that g′(t) = −βg(t) for any 0 ≤ t ≤ T corresponds to Zn

t = Zn
0e−βt = ne−βt for any

0 ≤ t ≤ T , which is equivalent to Nn
T = 0. We can compute that P(Nn

T = 0|Zn
0 = n) =

e− ∫ T
0 (μ+ne−βt ) dt , which gives − limn→∞ 1

n
logP(Zn

t = ne−βt ,0 ≤ t ≤ T ) = ∫ T

0 e−βt dt

which is consistent with IZ(g) = ∫ T

0 e−βt dt for g′(t) = −βg(t) for any 0 ≤ t ≤ T .
(c) We have used A(t; θ) instead of A(t) to emphasize that A takes value θ at time zero, and

the derivative in (2.4) is taken with respect to t .
(d) We have two equivalent expressions for the rate function J : the first expression (2.2) is

directly implied by the sample-path large deviation principle together with the contraction
principle, and the second expression (2.3) is obtained via Gärtner–Ellis Theorem. See
Section 4 for more details. In general, there are no analytical formulas for A and the
rate function J . But one can easily numerically solve the ODE for A (e.g., Runge–Kutta
methods) and then solve the optimization problem in (2.3) to obtain the rate function J .
An illustrative example is given in Figure 1.
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Next, we proceed to state a large deviation principle for P({ 1
n
Nn

t ,0 ≤ t ≤ T } ∈ ·). To gain
some intuition about the result, we note that

dZt = −βZt dt + α dNt ,

which implies that

Nt = Zt − Z0

α
+ β

α

∫ t

0
Zs ds.

Given Z0 = n, equivalently we have

1

n
Nn

t = 1

α
·
(

Zn
t

n
− 1

)
+ β

α

∫ t

0

Zn
s

n
ds. (2.6)

Now if we define for t ∈ [0, T ],

h(t) = g(t) − 1

α
+ β

α

∫ t

0
g(s) ds,

then one readily verifies that the map g 
→ h is a continuous map from D[0, T ] to D[0, T ] under
the uniform topology. Therefore, by Theorem 1 and the contraction principle, we can obtain the
following result. The details of the proof is left to Section 4.

Theorem 2. P({ 1
n
Nn

t ,0 ≤ t ≤ T } ∈ ·) satisfies a sample-path large deviation principle on
D[0, T ] equipped with uniform topology with the speed n and the good rate function

IN(h) =
∫ T

0
h′(t) log

(
h′(t)

e−βt + e−βt
∫ t

0 αeβsh′(s) ds

)
(2.7)

−
(

h′(t) − e−βt − e−βt

∫ t

0
αeβsh′(s) ds

)
dt,

if h ∈ AC+
0 [0, T ], and IN(h) = ∞ otherwise. Moreover, P(Nn

T /n ∈ ·) satisfies a scalar large
deviation principle on R≥0 with the good rate function

H(x;T ) = inf
h:h(T )=x

IN(h) (2.8)

= sup
θ∈R

{
θx − C

(
T ; θ

α

)
+ θ

α

}
, (2.9)

where C(t; θ
α
) solves the ODE

C′
(

t; θ

α

)
= −βC

(
t; θ

α

)
+ eα·C(t; θ

α
) − 1 + βθ

α
, (2.10)

C

(
0; θ

α

)
= θ

α
. (2.11)
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Figure 2. This figure plots the rate function H(x;T ) in (2.9). The parameters are given by: α = β = 1.

Four remarks are in order.

(a) Notice that IN(h) = ∫ T

0 R(h′(t), e−βt + e−βt
∫ t

0 αeβsh′(s) ds) dt , where R(x, y) :=
x log( x

y
) − x + y, for any x, y > 0. It is easy to see that R(x, y) ≥ 0 and R(x, y) = 0 if

and only if x = y. Therefore, IN(h) = 0 if and only if h′(t) = e−βt + e−βt
∫ t

0 αeβsh′(s) ds

for any 0 ≤ t ≤ T . Together with h′(0) = 1, we get h′(t) = e(α−β)t . With the initial con-

dition h(0) = 0, we get h(t) = ∫ t

0 e(α−β)s ds = t if α = β and e(α−β)t−1
α−β

if α �= β . This is

consistent with the functional law of large numbers for { 1
n
Nn

t ,0 ≤ t ≤ T } in [13].
(b) Note that h ≡ 0 corresponds to Nn

T = 0. We can compute that P(Nn
T = 0|Zn

0 = n) =
e− ∫ T

0 (μ+ne−βt ) dt , which gives − limn→∞ 1
n

logP(Nn
T = 0|Zn

0 = n) = ∫ T

0 e−βt dt , which

is consistent with IN(h) = ∫ T

0 e−βt dt for h ≡ 0.
(c) Similar as in Theorem 1, we use C(t; θ

α
) instead of C(t) to emphasize that C takes value

θ
α

at time zero. The derivative in (2.10) is taken with respect to t .
(d) Similar as in Theorem 1, we have two equivalent expressions for the rate function H . In

general, there is no analytical formula for H . But one can easily numerically solve the
ODE for C (e.g., Runge–Kutta methods) and then solve the optimization problem in (2.9)
to obtain the rate function H . An illustrative example is given in Figure 2.

2.2.1. Most likely paths

In this section, we compute the most likely paths to rare events for Hawkes processes with large
initial intensities. More precisely, we are interested to find the minimizer to the variational prob-
lems in (2.2) and (2.8).
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Fix x ∈ R
+. Let θ∗ be the unique maximizer to the optimization problem (2.3).2

Proposition 3. The minimizer to the variational problem (2.2) is given by

g∗(t) = exp

(∫ t

0
αeαA(s;θ∗) ds − βt

)
, (2.12)

for 0 ≤ t ≤ T , where A(s; θ∗) solves the ODE (2.4) with an initial condition A(0; θ∗) = θ∗.

Next, we consider the variational problem (2.8). Let θ̂∗ be the unique maximizer to the opti-
mization problem (2.9).3

Proposition 4. The minimizer to the variational problem (2.8) is given by

h∗(t) =
∫ t

0
exp

(
α · C

(
T − s; θ̂∗

α

)
+ α

∫ s

0
eαC(T −u; θ̂∗

α
) du − βs

)
ds, (2.13)

for any 0 ≤ t ≤ T , where C(s; θ̂∗
α

) solves the ODE (2.10) with the initial condition C(0; θ̂∗
α

) = θ̂∗
α

.

The proofs of these two propositions are relegated to the supplemental article [14].

2.3. Large deviation analysis for large initial intensity and large time

This section is devoted to a set of results on large deviations behavior of Markovian Hawkes
processes in the asymptotic regime where both Z0 = n and the time go to infinity. The proofs of
these results are relegated to the supplemental article [14].

When the time is sent to infinity, Hawkes processes behave differently depending on the value
of ‖φ‖L1 (see, e.g., Zhu [30]). In our case, the exciting function is exponential: φ(t) = αe−βt .
So we have the following three different cases: (1) critical: α = β; (2) super-critical: α > β; and
(3) sub-critical: α < β . We study each case separately.

2.3.1. Critical case

We first consider the critical case, that is, α = β > 0.

Theorem 5. Assume that α = β > 0. Let tn be a positive sequence that goes to infinity as n → ∞
and limn→∞ tn

n
= 0.

2It will be clear from the Proof of Theorem 1 that A(T ; θ) = limn→∞ 1
n logE[eθZT |Z0 = n] if the limit exists. So one

readily verifies that A(T ; θ) is convex in θ , and in fact strictly convex in θ from (2.4). Hence, there is a unique optimal
θ∗ for the optimization problem (2.3).
3It will be clear from the Proof of Theorem 2 that C(T ; θ

α ) − θ
α = limn→∞ 1

n logE[eθNT |Z0 = n] is always convex in

θ if the limit exists. Indeed, from the ODE (2.10), the limit must be strictly convex. Hence, there is a unique optimal θ̂∗
for the optimization problem (2.9).
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(i) For any T > 0, P(
Zn

tnT

n
∈ ·) satisfies a large deviation principle on R with the speed n

tn
and

the rate function

ÎZ(x) = 2(
√

x − 1)2

α2T
if x ≥ 0,

and +∞ otherwise.

(ii) For any T > 0, P(
Nn

tnT

ntn
∈ ·) satisfies a large deviation principle on R with the speed n

tn
and

rate function

ÎN (x) = sup
θ∈R

{
θx − 
(θ)

}
,

where


(θ) =

⎧⎪⎪⎨
⎪⎪⎩

√−2θ

α
tanh

(−α√
2

√−θT

)
, if θ ≤ 0,

√
2θ

α
tan

(
α√
2

√
θT

)
, if θ > 0.

The proof of this result relies on Gärtner–Ellis theorem and Gronwall’s inequality for nonlin-
ear ODEs (see, e.g., [[10], Theorem 42]) which arise from the characterization of the moment
generating functions of Zt and Nt .

2.3.2. Super-critical case

We next state the result for the super-critical case where α > β > 0. Below, we use the convention
that ∞ · 0 = 0.

Theorem 6. Assume that α > β > 0 and 0 < T < 1. Let tn = logn
α−β

. Then,

(i) P(
Zn

tnT

n1+T ∈ ·) satisfies a large deviation principle on R
+ with the speed nT and the rate

function ĨZ(x) = 0·1x=1 + ∞ · 1x �=1.

(ii) P(
Nn

tnT

n1+T ∈ ·) satisfies a large deviation principle on R≥0 with the speed nT and the rate

function ĨN (x) = 0·1
x= 1

α−β
+ ∞ · 1

x �= 1
α−β

.

We remark that the sequence {tn} in Theorem 6 can be taken to be more general. We choose
this particular {tn} for simplicity. Note that when Z0 = n → ∞, the initial intensity is μ + n

which is of the same order as n, and assuming μ = 0, we have E[Zn
t ] = ne(α−β)t . Thus choosing

tn = logn
α−β

gives E[Zn
tnT ] = n1+T , which is notation-wise concise.

2.3.3. Sub-critical case

Finally, we state the large deviations results for the sub-critical case, i.e., β > α > 0. Given
Z0 = z where z is a fixed constant and under the assumption β > α > 0, it is well known that
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as t → ∞, Nt

t
→ μ

1− α
β

almost surely and P(Nt

t
∈ ·) satisfies a large deviation principle, see, for

example, [5]. So for Z0 = n, it is natural to study the large deviations for
Nn

nT

n
.

Theorem 7. Assume that β > α > 0. For any T > 0, P(
Nn

nT

n
∈ ·) satisfies a scalar large deviation

principle on R with the speed n and the rate function

I (x) = x log

(
βx

αx + 1 + μβT

)
− x + αx + 1 + μβT

β
, (2.14)

for x ≥ 0 and I (x) = +∞ otherwise.

The proof of this result rely on Gärtner–Ellis theorem and asymptotic behavior of the solu-
tions of certain nonlinear ODEs which arise from the characterization of the moment generating
function of Nt .

Remark 8. We discuss the connections with existing results on large-time large deviations of
Hawkes processes here. Since the dependence on the initial condition should be self-evident
here, we omit the superscript n for the processes Z and N . As we have discussed in [13], when
Z0 = n, we can decompose Nt = N

(0)
t +N

(1)
t , where N(0) is a simple point process with intensity

Z(0), where

dZ
(0)
t = −βZ

(0)
t dt + α dN

(0)
t ,

with Z
(0)
0 = n and N(1) is a simple point process with intensity

λ
(1)
t := μ +

∫ t

0
αe−β(t−s) dN(1)

s .

That is, we can decompose the Hawkes process N into the sum of N(0) and N(1), where N(0) is a
linear Markovian Hawkes process with zero base intensity and initial intensity Z

(0)
0 = n and N(1)

is a linear Markovian Hawkes process with nonzero base intensity μ > 0 and empty history, that
is, N(1)(−∞,0] = 0. This decomposition is valid due to the immigration-birth representation of
linear Hawkes processes [19]. One of the key results from the immigration-birth representation
is that the two processes N(0) and N(1) are independent of each other.

By letting μ = 0 in Theorem 7, P(
N

(0)
nT

n
∈ ·) satisfies a large deviation principle with the rate

function

I (0)(x) = x log

(
βx

αx + 1

)
− x + αx + 1

β
.

On the other hand, from Bordenave and Torrisi [5], P(
N

(1)
nT

n
∈ ·) satisfies a large deviation principle

with the rate function

I (1)(x) = T

[
x

T
log

( x
T

μ + x
T

α
β

)
− x

T
+ x

T

α

β
+ μ

]
.
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Since N(0) and N(1) are independent, we conclude that P(
NnT

n
∈ ·) satisfies a large deviation

principle with the rate function

I (x) = inf
y+z=x

{
I (0)(y) + I (1)(z)

}
.

Notice that I (1)(x) = μT I (0)( x
μT

) + μT (1 − 1
β
) and I (0)(x) is convex in x. Hence, by Jensen’s

inequality, we conclude that

I (x) = inf
0≤y≤x

{
I (0)(x − y) + μT I (0)

(
y

μT

)}
+ μT

(
1 − 1

β

)

= (1 + μT ) inf
0≤y≤x

{
1

1 + μT
I(0)(x − y) + μT

1 + μT
I(0)

(
y

μT

)}
+ μT

(
1 − 1

β

)

= (1 + μT )I (0)

(
1

1 + μT
(x − y) + μT

1 + μT

y

μT

)
+ μT

(
1 − 1

β

)

= (1 + μT )I (0)

(
x

1 + μT

)
+ μT

(
1 − 1

β

)
,

which can be easily verified to be consistent with (2.14).

The next result is complementary to Theorem 7.

Theorem 9. Assume that β > α > 0 and μ > 0. Let tn be a positive sequence that goes to infinity
as n → ∞.

(i) If limn→∞ tn
n

= 0, then, for any T > 0, P(
Nn

tnT

n
∈ ·) satisfies a large deviation principle on

R≥0 with the speed n and the rate function

I (0)(x) = x log

(
βx

αx + 1

)
− x + αx + 1

β
.

(ii) If limn→∞ tn
n

= ∞, then, for any T > 0, P(
Nn

tnT

tn
∈ ·) satisfies a large deviation principle

on R≥0 with the speed tn and the rate function

I (1)(x) = T

[
x

T
log

( x
T

μ + x
T

α
β

)
− x

T
+ x

T

α

β
+ μ

]
.

Let us give some intuition behind the results of Theorem 9. Recall the decomposition Nt =
N

(0)
t + N

(1)
t from Remark 8. Notice that N

(1)
tnT is of order tn and that is because of the large-

time law of large numbers of the linear Hawkes process with a fixed initial intensity μ and
empty history. Also notice that N

(0)
tnT is of order n. Let us explain. Notice that from Z

(0)
0 = n

we obtain E[N(0)
tnT ] = ∫ tnT

0 E[Z(0)
s ]ds = n

∫ tnT

0 e(α−β)s ds. As n → ∞, we have tnT → ∞. But∫ ∞
0 e(α−β)s ds = 1

β−α
< ∞ for β > α. Thus, N

(0)
tnT is of order n. Hence, when limn→∞ tn

n
= 0,
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N(0) “dominates” and we have result (i), and when limn→∞ tn
n

= ∞, N(1) “dominates” and we
obtain (ii).

So far we have discussed the large deviations for the process Nn in the sub-critical case. We
next consider the large deviations for the process Zn in the regime where Z0 = n and the time
are both sent to infinity. Below, we use the convention that 0 · ∞ = 0.

Theorem 10. Assume that β > α > 0, 0 < γ < 1, and tn := logn
β−α

. For any 0 < T < 1 − γ ,

P(
Zn

tnT

n1−T ∈ ·) satisfies a scalar large deviation principle on R
+ with the speed n1−γ−T and the

rate function

ĪZ(x) = 0 · 1x=1 + ∞ · 1x �=1.

We remark that similar as in Theorem 6, here the sequence {tn} in Theorem 10 can be taken to
be more general. We choose this particular {tn} for the simplicity of notation.

3. Examples and applications

This section is devoted to two examples that apply the large deviations principle that we have
developed in the previous sections. The first example is on ruin probabilities in the insur-
ance setting, and the second example is on the finite-horizon maximum of queue lengths in
an infinite-server queue. We assume Markovian Hawkes processes can adequately model the
clustering behavior of events occurring in each application. While this assumption may not be
completely realistic, it enables us to illustrate the potential strength of our large deviations anal-
ysis. Throughout this section, we write an = o(n) as n → ∞ if the sequence of numbers an

satisfies limn→∞ an/n = 0.

3.1. Example 1: Ruin probability in insurance risk theory

In this example, we apply our large deviations results to approximate the finite horizon ruin
probability in a risk model in insurance mathematics.

Hawkes processes have been applied to insurance settings to accommodate the clustering ar-
rival of claims observed in practice, see, for example, [6,24,31]. When a natural disaster such
as an earthquake occurs, the claims typically will not be reported following a constant intensity
as in a homogeneous Poisson process. Instead, we expect clustering effect in the claim arrivals
after a catastrophe. In addition, the arrival rate of claims is typically high right after a catastro-
phe event. So one might use Hawkes processes with large initial intensities to model such claim
arrival processes, and it is of interest to study the finite horizon ruin probability in a risk model
where the claim arrivals are modeled by such Hawkes processes.

To study the ruin probability, let us consider the surplus process of the insurance company:

Xn
t = Xn

0 + ρt −
Nn

t∑
i=1

Yi.
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Here, Nn is the claim arrival process modeled as a Hawkes process with an initial intensity
μ + n, and an exciting function φ(t) = αe−βt ; the constant ρ > 0 is the premium rate, and we
assume it is independent of n for simplicity; {Yi} are the non-negative claim sizes which are
independent and identically distributed, and {Yi} is independent of Nn and n. Note that we use
Nn to emphasize the dependence on Z0 = n.

We are interested in approximating the finite horizon ruin probability P(τn ≤ T ) for fixed
T > 0 and large n, where τn is the ruin time of an insurance company and it is defined as
follows:

τn := inf
{
t > 0 : Xn

t ≤ 0
}
.

We assume that the initial surplus at time 0 is given by Xn(0) = nx, which is large, as n → ∞.
In the usual setting of the finite horizon ruin probability problem for the classical risk model, the
ruin probability is exponentially small when the initial surplus is large, see, for example, [2]. In
our example, because Nn

t is of the order n, the ruin will occur at a finite time with probability
one.

Notice that Nn satisfies a functional law of large numbers, see [13],

sup
0≤t≤T

∣∣∣∣Nn
t

n
− ψ(t)

∣∣∣∣ → 0 almost surely as n → ∞,

where ψ(t) := e(α−β)t−1
α−β

for α �= β , and ψ(t) := t for α = β . Therefore, as n → ∞,

τn → τ∞ := inf
{
t > 0 : x −E[Y1]ψ(t) = 0

}
almost surely.

It is easy to compute that (assuming that (α − β) x
E[Y1] + 1 > 0; otherwise τ∞ will be ∞).

τ∞ =

⎧⎪⎨
⎪⎩

log((α − β) x
E[Y1] + 1)

α − β
, for α �= β,

x

E[Y1] , for α = β.

For any T > τ∞, P(τn ≤ T ) → 1 as n → ∞. For any T < τ∞, this probability will go to zero
exponentially fast as n → ∞, and falls into the large deviations regime. In the following, we
develop approximations for this probability P(τn ≤ T ).

Let us assume that E[eθY1] < ∞ for any θ < θ+ and E[eθY1 ] = ∞ otherwise, where θ+ > 0
and we allow it to be +∞. We define V++ as the subspace of D[0,∞), consisting of unbounded
nonnegative increasing functions starting at zero at time zero with finite variation over finite
intervals equipped with the vague topology, see [23]. A Mogulskii-type theorem says that, see, for
example, Lemma 3.2. [23], P({ 1

n

∑�nt�
i=1 Yi,0 ≤ t < ∞} ∈ ·) satisfies a large deviation principle

on V++ with the good rate function

∫ ∞

0



(
g′

1(t)
)
dt + θ+g2(∞) if g = g1 + g2 ∈ V++, g1 ∈AC0[0,∞),
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where


(x) := sup
θ∈R

{
θx − logE

[
eθY1

]}
, (3.1)

and g = g1 + g2 denotes the Lebesgue decomposition of g with respect to Lebesgue measure,
where g2 is the singular component and g2(∞) = limt→∞ g2(t). Note that if θ+ = ∞, then
g2 ≡ 0. Since {Yi} and Nn are independent, then Theorem 2 implies that

P

({(
1

n
Nn

t ,
1

n

�ns�∑
i=1

Yi

)
,0 ≤ t ≤ T ,0 ≤ s < ∞

}
∈ ·

)

satisfies a large deviation principle on D[0, T ] × V++4 with the good rate function IN(h) +∫ ∞
0 
(g′

1(t)) dt + θ+g2(∞), where the rate function IN(h) is given in Theorem 2. It is easy to

see that 1
n

∑Nn
t

i=1 Yi = 1
n

∑�n· 1
n
Nn

t �
i=1 Yi . Hence, by the continuity of the first-passage-time map, and

the contraction principle, for any fixed 0 < T < τ∞, we have

P
(
τn ≤ T

) = e−n·infh,g:x−g(h(T ))≤0{IN (h)+∫ ∞
0 
(g′

1(t)) dt+θ+g2(∞)}+o(n)

(3.2)
= e−n·infh,g:x−g(h(T ))≤0{IN (h)+∫ h(T )

0 
(g′
1(t)) dt+θ+g2(h(T ))}+o(n),

as n → ∞. We can replace ∞ by h(T ) in (3.2) since 
(x) ≥ 0 for any x ≥ 0 and it is zero
for x = E[Y1] and g2 is also non-decreasing so that g2(∞) ≥ g2(h(T )), and thus the optimal g

satisfies g′
1(t) = E[Y1] for t > h(T ) so that 
(g′

1(t)) = 0 for t > h(T ) and g2(∞) = g2(h(T )).
The expression (3.2) is not very informative, so we next simplify it to obtain a more manage-

able expression which allows efficient numerical computations. We can first fix g2(h(T )) and
then optimize over g2(h(T )). By the convexity of 
(·) and using Jensen’s inequality, we obtain

∫ h(T )

0



(
g′

1(t)
)
dt ≥ h(T )


(
1

h(T )

∫ h(T )

0
g′

1(t) dt

)
≥ h(T )


(
x − g2(h(T ))

h(T )

)
,

where the second inequality is due to x − g1(h(T )) − g2(h(T )) ≤ 0 and 
(x) is non-decreasing
in x for x > E[Y1]. On the other hand, by considering g∗

1(t) = x−g2(h(T ))
h(T )

t , we have

∫ h(T )

0



((
g∗

1

)′
(t)

)
dt = h(T )


(
x − g2(h(T ))

h(T )

)
.

This implies that (3.2) can be reduced to the following:

P
(
τn ≤ T

) = e
−n·infh,z≤x {IN (h)+h(T )
( x−z

h(T )
)+θ+z}+o(n)

,

4Here D[0, T ] is equipped with Skorokhod topology. In Theorem 1 and Theorem 2 we proved first the large deviation
principles hold in the Skorokhod topology.
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as n → ∞. Therefore, we have

P
(
τn ≤ T

) = e
−n·infy>0,z≤x infh:h(T )=y {IN (h)+y
( x−z

y
)+θ+z}+o(n)

.

To further simplify the above expression, we note from Theorem 2 that P(Nn
T /n ∈ ·) satisfies a

large deviation principle with the rate function

H(x;T ) = inf
h:h(T )=x

IN(h) = sup
θ∈R

{
θx − C

(
T ; θ

α

)
+ θ

α

}
,

where C solves the nonlinear ODE given in (2.10) and (2.11). Hence, we conclude that

P
(
τn ≤ T

) = exp
(−n · Iτ (x;T ) + o(n)

)
as n → ∞,

where

Iτ (x;T ) := inf
y>0,z≤x

{
H(y;T ) + y


(
x − z

y

)
+ θ+z

}
.

We remark that the function H(y;T )+ y
(x−z
y

)+ θ+z is convex in y. This is because H(y;T )

is convex in y and one can also verify directly from the convexity of 
 that y
(x
y
) in convex in

y. It is also clear that H(y;T ) + y
(x−z
y

) + θ+z is convex in z. So we can numerically obtain
Iτ (x;T ) efficiently.

We now present a numerical example when Yi has a Poisson distribution with rate 1. Then it
is easy to see from (3.1) that 
̄(v) = v logv − v + 1 for v > 0 and 
̄(v) = +∞ otherwise. Also
in this case θ+ = ∞. Hence, we obtain

Iτ (x;T ) = inf
y>0

{
H(y;T ) + y ·

(
x

y
− 1 − log

(
x

y

))}
. (3.3)

See Figure 3 for a numerical illustration.

3.2. Example 2: Finite-horizon maximum of the queue length process in an
infinite-server queue

In this example, we use our large deviations results to study certain tail probabilities in an infinite-
server queue in heavy traffic where the job arrival process is modeled by a Hawkes process with a
large initial intensity. Such a queueing system could be relevant for analyzing the performance of
large scale service systems with high-volume traffic which exhibits clustering. For background
on infinite-server queues, their engineering applications and related large deviation analysis, see,
for example, [4,15,28].

Consider a sequence of queueing systems indexed by n with infinite number of servers. Jobs
arrive to the nth system according to a Markovian Hawkes process Nn with an initial intensity
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Figure 3. This figure plots Iτ (x;T ) in (3.3). The parameters are given by: α = β = 1.

μ + n, and an exciting function φ(t) = αe−βt . We use Nn to emphasize the dependence on
Z0 = n. For simplicity, we assume that (a) n is large so the offered load in the system is high;
(b) the system is initially empty; (c) the processing time of each job is deterministic given by a
constant c > 0.

We are interested in the finite-horizon maximum of queue length process in such an infinite-
serve queue, similarly as in [4]. Mathematically, we want to develop large deviations approxima-
tions for the probability of the event

max
0≤s≤T

Qn
s ≥ nx (3.4)

for fixed T > 0 and sufficiently large x, as n → ∞. Here Qn
s is number of jobs (or busy servers)

in the nth system at time s. For sufficiently large x, we note that (3.4) is a rare event. This event
corresponds precisely to the event of observing a loss in a queue with nx servers, no waiting
room, and starting empty.

It is well known that (see, e.g., [16]) for the nth system with deterministic processing time c,
the queue length process Qn can be represented by

Qn
t = Nn

t − Nn
t−c,

where Nn
t = 0 if t ≤ 0 by convention. It is easy to see that the function � mapping y to ỹ where

ỹ(t) := max
s≤t

{
y(s) − y(s − c)

}
,

is continuous under the uniform topology. Since Theorem 2 states that P( 1
n
Nn ∈ ·) satisfies a

sample path large deviation principle with the good rate function IN , we can apply the contraction
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principle and obtain:

lim
n→∞

1

n
logP

(
max

0≤s≤T
Qn

s ≥ nx
)

= lim
n→∞

1

n
logP

(
max

0≤s≤T

1

n

[
Nn

s − Nn
s−c

] ≥ x

)
(3.5)

= − inf
h

{
IN(h;T ) : max

s≤T

[
h(s) − h(s − c)

] ≥ x
}
,

where we use the notation IN(h;T ) to emphasize the dependence of IN on T , as can be clearly
seen in (2.7).

Therefore, to develop large deviations approximations for P(max0≤s≤T Qn(s) ≥ nx), it re-
mains to solve the optimization problem in (3.5). For T ≤ c, since h is a nondecreasing function,
then the infimum in (3.5) is simply

inf
h(T )≥x

IN(h;T ) = H(x;T ).

For T > c, the infimum in (3.5) is equivalent to:

min
{

inf
0≤s≤c

inf
h:h(s)≥x

IN(h; s), inf
c≤s≤T

inf
h:h(s)−h(s−c)≥x

IN(h; s)
}
.

Now, let us solve the optimization problem:

inf
h:h(t)−h(t−c)≥x

IN(h; t).

Since

lim
ε→0

lim
n→∞

1

n
logP

(
N

ny
t /n ∈ Bε(x)|Z0 = ny

) = −yH(x/y; t),

lim
ε→0

lim
n→∞

1

n
logP

(
Zn

t /n ∈ Bε(y)|Z0 = n
) = −J (y; t),

and by the Markov property, we get

lim
ε→0

lim
n→∞

1

n
logP

([
Nn

t − Nn
t−c

]
/n ∈ Bε(x),Zn

t−c/n ∈ Bε(y)|Z0 = n
)

(3.6)
= −yH(x/y; c) − J (y; t − c),

and finally for sufficiently large x, by (3.6) and the contraction principle, we obtain

inf
h:h(t)−h(t−c)≥x

IN(h; t) = − lim
ε→0

lim
n→∞

1

n
logP

([
Nn

t − Nn
t−c

]
/n ∈ Bε(x)|Z0 = n

)
= inf

y>0

{
yH(x/y; c) + J (y; t − c)

}
.
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Figure 4. This figure plots G(x;T ) in (3.7). We use parameters α = β = 1, c = 1.

Hence we conclude that the infimum in (3.5) is equivalent to the following expression:

G(x;T ) := min
{

inf
0≤s≤c

H(x; s), inf
c≤s≤T

inf
y>0

{
yH(x/y; c) + J (y; s − c)

}}
, (3.7)

where H and J are given in Theorems 1 and 2, respectively. This implies the following approxi-
mation for T > c and sufficiently large x:

P

(
max

0≤s≤T
Qn

s ≥ nx
)

= exp
(−n · G(x;T ) + o(n)

)
as n → ∞.

Since one can solve H and J numerically, we can then also obtain G by solving the optimization
problem in (3.7) numerically. We present an example in Figure 4.

4. Proofs of Theorems 1 and 2

4.1. Moment generating functions of Zt and Nt

We first discuss in this section the moment generating functions of Zt and Nt for fixed t , con-
ditioned on knowing the value of Z0. These functions play a critical role in proving our large
deviation results.

First, recall from [[13], Section 3.2.1] the moment generating function of Zt :

u(t, z) := E
[
eθZt |Z0 = z

] = eA(t;θ)z+B(t;θ), (4.1)

where A(t; θ),B(t; θ) satisfy the ODEs:

A′(t; θ) = −βA(t; θ) + eαA(t;θ) − 1, (4.2)

B ′(t; θ) = μ
(
eαA(t;θ) − 1

)
, (4.3)
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with initial conditions A(0; θ) = θ and B(0; θ) = 0. As remarked earlier, we have used A(t; θ)

instead of A(t) to emphasize that A takes value θ at time zero, and the derivative in (4.2) is taken
with respect to t . We also write B(t; θ) instead of B(t) to stress that B depends on the initial
condition of A.

Next, we compute the moment generating function of Nt . Recall that Nt = Zt−Z0
α

+
β
α

∫ t

0 Zs ds. Thus, E[eθNt |Z0 = z] = e− θ
α
zv(t, z), where

v(t, z) := E
[
e

θ
α
Zt+ θβ

α

∫ t
0 Zs ds |Z0 = z

]
.

Recall that Z is a Markov process with the infinitesimal generator

Af (z) = −βz
∂f

∂z
+ (z + μ)

[
f (z + α) − f (z)

]
.

By Feynman–Kac formula, v satisfies the equation:

∂v

∂t
= −βz

∂v

∂z
+ (μ + z)

[
v(t, z + α) − v(t, z)

] + θβ

α
zv(t, z),

with an initial condition v(0, z) = e
θ
α
z. Therefore, by the affine structure, see, for example, [11],

one deduces that v(t, z) = eC(t; θ
α
)z+D(t; θ

α
), where C(t; θ

α
),D(t; θ

α
) satisfy the ODEs:

C′
(

t; θ

α

)
= −βC

(
t; θ

α

)
+ eαC(t; θ

α
) − 1 + β · C

(
0; θ

α

)
, (4.4)

D′
(

t; θ

α

)
= μ

(
eαC(t; θ

α
) − 1

)
, (4.5)

with initial conditions C(0; θ
α
) = θ

α
and D(0; θ

α
) = 0. Thus we have

E
[
eθNt |Z0 = z

] = exp

{(
C

(
t; θ

α

)
− C

(
0; θ

α

))
· z + D

(
t; θ

α

)}
. (4.6)

Finally, we remark that there exists some � > 0 such that the moment generating functions in
(4.1) and (4.6) are both finite for all θ ≤ �. See [33].

4.2. Proofs of Theorems 1 and 2

We prove Theorems 1 and 2 in this section. For notational convenience, unless specified explic-
itly, we use Z and N for Zn and Nn when Z0 = n. We also use E[·] to denote the conditional
expectation E[·|Z0 = n], and P(·) for the conditional probability P(·|Z0 = n).

Proof of Theorem 1. The proof is long, so we split it into four steps.
Step 1. We first establish a scalar large deviation principle for P( 1

n
ZT ∈ ·), using Gärtner–Ellis

theorem.
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From (4.1), we have

u(t, z) := E
[
eθZt |Z0 = z

] = eA(t;θ)z+B(t;θ).

It is easy to see that since Zt process is positive, u(t, z) is monotonically increasing in θ . Let us
recall from Section 4.1 that A(t; θ),B(t; θ) satisfy the ODEs:

A′(t; θ) = −βA(t; θ) + eαA(t;θ) − 1,

B ′(t; θ) = μ
(
eαA(t;θ) − 1

)
,

with initial conditions A(0; θ) = θ and B(0; θ) = 0.
Let us first consider the critical and super-critical case, that is, α ≥ β . When we have α ≥ β , for

any A > 0, −βA + eαA − 1 > 0 and thus A(t; θ) is increasing in t . It is clear that for any θ > 0,∫ ∞
θ

dA
−βA+eαA−1

< ∞. On the other hand, it is easy to see that
∫ ∞

0
dA

−βA+eαA−1
= ∞. Therefore,

for any fixed T > 0, there exists a unique positive value θc(T ) such that∫ ∞

θc(T )

dA

−βA + eαA − 1
= T . (4.7)

Hence, we conclude that for any fixed T > 0, for any 0 < θ < θc(T ), A(T ; θ) is the unique
positive value greater than θ , that satisfies the equation:

∫ A(T ;θ)

θ

dA

−βA + eαA − 1
= T . (4.8)

Now let us consider the case θ ≤ 0. When α > β , −βA + eαA − 1 = 0 when A = 0 or when
A = Ac, for some unique negative value Ac. For θ = 0 or θ = Ac , A(t; θ) = 0 for any t . For
Ac < θ < 0, A(t; θ) is decreasing in t and A(T ; θ) satisfies the equation (4.8). For θ < Ac ,
A(t; θ) is increasing in t and A(T ; θ) < 0 and satisfies the equation (4.8). When α = β , −βA +
eαA − 1 > 0 when A �= 0. Thus, for any θ < 0, A(t; θ) is increasing in t and A(T ; θ) < 0 and
satisfies the equation (4.8) and also A(t;0) ≡ 0. Also, it is easy to see that for θ < θc(T ), A(t; θ)

is continuous and finite in t , and

B(T ; θ) = μ

∫ T

0

(
eαA(t;θ) − 1

)
dt

is finite. Therefore, for θ < θc(T )

lim
n→∞

1

n
logE

[
eθZT

] = A(T ; θ).

When θ ≥ θc(T ), this limit is ∞. By differentiating the equation (4.8) with respect to θ , we get

− 1

−βθ + eαθ − 1
+ 1

−βA(T ; θ) + eαA(T ;θ) − 1

d

dθ
A(T ; θ) = 0. (4.9)
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It is clear from the equation (4.7) and (4.8) that as θ → θc(T ), we have A(T ; θ) → ∞. Therefore,
from (4.9), we get

∂

∂θ
A(T ; θ) = −βA(T ; θ) + eαA(T ;θ) − 1

−βθ + eαθ − 1
→ ∞ as θ → θc(T ).

Hence, we verified the essential smoothness condition. By Gärtner–Ellis theorem, P( 1
n
ZT ∈ ·)

satisfies a large deviation principle on R
+ with the rate function

J (x;T ) = sup
θ∈R

{
θx − A(T ; θ)

}
. (4.10)

Next, let us consider the sub-critical case, that is, α < β . In this case, −βA + eαA − 1 = 0 if
and only if A = 0 or A = Ac , where Ac is a positive constant and it is unique. For θ = 0 or Ac,
A(t; θ) = 0 for any t . For θ < 0, A(t; θ) is increasing in t , and A(T , θ) < 0 satisfies the equation
(4.8). For 0 < θ < Ac, A(t, θ) is decreasing in t and satisfies the equation (4.8). For θ > Ac,
A(t, θ) is increasing in t . For any fixed T > 0, there exists a unique θc(T ) > Ac satisfying the
equation (4.7) so that for any Ac < θ < θc(T ), A(T , θ) is the unique positive value greater than
θ that satisfies the equation (4.8) and for θ ≥ θc(T ), A(T , θ) = ∞. We can proceed similarly
as before and prove that, P( 1

n
ZT ∈ ·) satisfies a large deviation principle on R

+ with the rate
function given in (4.10).

Step 2. Next, we need to prove the exponential tightness before we proceed to establish the
sample path large deviation principle. To be more precise, we will show that

lim sup
K→∞

lim sup
n→∞

1

n
logP

(
sup

0≤t≤T

Zt ≥ nK
)

= −∞, (4.11)

and for any δ > 0,

lim sup
ε→0

lim sup
n→∞

1

n
logP

(
sup

|t−s|≤ε,0≤t,s≤T

|Zt − Zs | ≥ δn
)

= −∞. (4.12)

We will also show that for any η > 0,

lim sup
n→∞

1

n
logP

(
sup

0<t≤T

|Zt − Zt−| ≥ ηn
)

= −∞. (4.13)

The superexponential estimates (4.11) and (4.12) will guarantee the exponential tightness on
D[0, T ] equipped with the Skorokhod topology, see, for example, Theorem 4.1. in Feng and
Kurtz [12]. Together with Step 3, it will prove the large deviation principle for P({ 1

n
Zt ,0 ≤ t ≤

T } ∈ ·) on D[0, T ] equipped with Skorokhod topology. Next, the equation (4.13), that is, the
so-called C-exponentially tightness, see, for example, Definition 4.12. in [12] strengthens the
large deviation principle for P({ 1

n
Zt ,0 ≤ t ≤ T } ∈ ·) so that it holds on D[0, T ] equipped with

uniform topology, see, for example, Theorem 4.14. in [12].
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Let us first prove (4.11). Notice first that Zt − Z0 ≤ αNt and Z0 = n. Therefore, for K > 1,

P

(
sup

0≤t≤T

Zt ≥ nK
)

= P

(
sup

0≤t≤T

(Zt − Z0) ≥ n(K − 1)
)

≤ P

(
sup

0≤t≤T

Nt ≥ n
K − 1

α

)

= P
(
αNT ≥ n(K − 1)

)
≤ E

[
eθNT

]
e−θ(K−1)n/α,

where the last inequality follows from Chebychev’s inequality. In conjunction with the moment
generating function of NT in (4.6), we hence obtain

lim sup
n→∞

1

n
logP

(
sup

0≤t≤T

Zt ≥ nK
)

≤ C

(
T ; θ

α

)
− θ

α
− θ(K − 1)

α
,

which goes to −∞ as K → ∞. Hence, we proved (4.11).
Next, let us prove (4.12). Note that for s < t , αN(s, t] = Zt −Zs +β

∫ t

s
Zu du. Thus, for s < t ,

we have

|Zt − Zs | ≤ αN(s, t] + β(t − s) sup
s≤u≤t

Zu.

Therefore,

P

(
sup

|t−s|≤ε,0≤t,s≤T

|Zt − Zs | ≥ δn
)

≤ P

(
sup

|t−s|≤ε,0≤s≤t≤T

(
αN(s, t] + β(t − s) sup

s≤u≤t
Zu

)
≥ δn

)

≤ P

(
sup

|t−s|≤ε,0≤s≤t≤T

αN(s, t] ≥ δ

2
n

)

+ P

(
sup

|t−s|≤ε,0≤s≤t≤T

β(t − s) sup
s≤u≤t

Zu ≥ δ

2
n

)
.

Note that

P

(
sup

|t−s|≤ε,0≤s≤t≤T

β(t − s) sup
s≤u≤t

Zu ≥ δ

2
n

)
≤ P

(
βε sup

0≤u≤T

Zu ≥ δ

2
n

)
.

By (4.11), we have

lim sup
ε→0

lim sup
n→∞

1

n
logP

(
βε sup

0≤u≤T

Zu ≥ δ

2
n

)
= −∞.
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Next, notice that without loss of generality we can assume that 1
ε

∈N and

P

(
sup

|t−s|≤ε,0≤s≤t≤T

αN(s, t] ≥ δ

2
n

)
≤ P

(
∃1 ≤ j ≤ T/ε : αN(tj−1, tj ] ≥ δ

4
n

)
(4.14)

≤
T/ε∑
j=1

P

(
αN(tj−1, tj ] ≥ δ

4
n

)
,

where 0 = t0 < t1 < · · · < tT/ε = T , where tj − tj−1 = ε for any j . In addition, note that for
θ > 0,

E
[
eθαN(tj−1,tj ]] = E

[
E

[
eθαN(tj−1,tj ]|Ztj−1

]]
= E

[
e
−θZtj−1 e

C(tj −tj−1;θ)Ztj−1+D(tj −tj−1;θ)] (4.15)

= exp
(
D(ε; θ) + A

(
tj−1;C(ε; θ) − θ

)
n + B

(
tj−1;C(ε; θ) − θ

))
,

where we have used the moment generating functions of Zt and Nt in Section 4.1. Hence, using
Chebychev’s inequality and combining (4.14) and (4.15), we find for fixed ε > 0,

lim sup
n→∞

1

n
logP

(
sup

|t−s|≤ε,0≤s≤t≤T

αN(s, t] ≥ δ

2
n

)

≤ sup
1≤j≤T/ε

{
A

(
tj−1;C(ε; θ) − θ

) − θ
δ

4

}

≤ sup
0≤t≤T

{
A

(
t;C(ε; θ) − θ

)} − θ
δ

4
.

So in order to prove (4.12), what remains is to choose θ that depends on ε so that (i) θ → ∞
as ε → 0; (ii) A(t;C(ε; θ) − θ) is uniformly bounded for t ∈ [0, T ] and ε → 0. To this end, let
us define y(t) := C(t; θ) − C(0; θ) = C(t; θ) − θ . Then y satisfies the ODE:

y ′(t) = −βy(t) + eαθ eαy(t) − 1,

y(0) = 0.

For θ > 0, we have y′(0) = eαθ − 1 > 0, which implies y is increasing on [0, γ ] for some γ > 0.
This suggests that

0 < y ′(t) ≤ eαθeαy(t) for t ∈ [0, γ ].
By Gronwall’s inequality for nonlinear ODEs, we obtain

0 ≤ y(t) ≤ − 1

α
· log

(
1 − αeαθ t

)
for t ∈ [0, γ ]. (4.16)
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Let us set αeαθ = 1√
ε
. Then it is clear that θ → ∞ as ε → 0. In addition, we deduce from (4.16)

that for ε < γ ,

0 ≤ C(ε; θ) − θ = y(ε) ≤ − 1

α
· log(1 − √

ε). (4.17)

Next we show {A(t;C(ε; θ) − θ)} is uniformly bounded for t ∈ [0, T ] and ε → 0. When α <

β , it is clear that zero is a stable solution for the ODE of A in (4.2). Since A(0;C(ε; θ) − θ)) =
y(ε) → 0 as ε → 0, so the stability of zero solution implies that when ε → 0, {A(t;C(ε; θ)−θ)}
is uniformly small and thus uniformly bounded for all t ≥ 0. When α ≥ β , since A(0;C(ε; θ) −
θ)) = y(ε) ≥ 0, one readily checks that A is non-decreasing with respect to time t . Hence, we
obtain

sup
0≤t≤T

{
A

(
t;C(ε; θ) − θ

)} = A
(
T ;y(ε)

)
.

We have shown in Step 1 that A(T ; θ̄ ) is finite when θ̄ < θc(T ), and A(T ; θ̄ ) is continuous as
a function of θ̄ . Therefore, we deduce from (4.17) that A(T ;y(ε)) is uniformly bounded for
ε → 0. Thus, we have proved (4.12).

Finally, the claim in (4.13) trivially holds since for any 0 < t ≤ T , |Zt− − Zt | = 0 or α with
probability 1.

Step 3. Next, we establish the sample path large deviation principle.
For any ε > 0, let Bε(x) denote the open ball centered at x with radius ε. For any 0 =: t0 <

t1 < t2 < · · · < tk−1 < tk := T and x1, . . . , xk ∈ R
+, by the Markov property of the process Z,

we have

P

(
1

n
Zt1 ∈ Bε(x1),

1

n
Zt2 ∈ Bε(x2), . . . ,

1

n
Ztk ∈ Bε(xk)

)

= P

(
1

n
Zt1 ∈ Bε(x1)

)
P

(
1

n
Zt2 ∈ Bε(x2)

∣∣∣1

n
Zt1 ∈ Bε(x1)

)

· · ·P
(

1

n
Ztk ∈ Bε(xk)

∣∣∣1

n
Ztk−1 ∈ Bε(xk−1)

)
.

Hence, we have

lim
ε→0

lim
n→∞

1

n
logP

(
1

n
Zt1 ∈ Bε(x1),

1

n
Zt2 ∈ Bε(x2), . . . ,

1

n
Ztk ∈ Bε(xk)

)

= −J (x1; t1) − x1J

(
x2

x1
; t2 − t1

)

− · · · − xk−1J

(
xk

xk−1
; tk − tk−1

)
,
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where J is given in (4.10). Hence, for any g ∈ AC1[0, T ],

lim
ε→0

lim
n→∞

1

n
logP

(
1

n
Zt1 ∈ Bε

(
g(t1)

)
,

1

n
Zt2 ∈ Bε

(
g(t2)

)
, . . . ,

1

n
Ztk ∈ Bε

(
g(tk)

))

= −J
(
g(t1); t1

) − g(t1)J

(
g(t2)

g(t1)
; t2 − t1

)
− · · · − g(tk−1)J

(
g(tk)

g(tk−1)
; tk − tk−1

)
.

For any given positive g ∈AC1[0, T ], we have

J

(
g(tj )

g(tj−1)
; tj − tj−1

)

= sup
θ∈R

{
θ

g(tj )

g(tj−1)
− A(tj − tj−1; θ)

}

= sup
θ∈R

{
θ

(
1 + g′(t∗j−1)

g(tj−1)
(tj − tj−1)

)
− θ −

∫ tj −tj−1

0

(−βA(s; θ) + eαA(s;θ) − 1
)
ds

}

= (tj − tj−1) sup
θ∈R

{
θ
g′(t∗j−1)

g(tj−1)
− (−βA

(
t∗∗
j−1; θ

) + e
αA(t∗∗

j−1;θ) − 1
)}

,

where t∗j−1 ∈ [tj−1, tj ] is independent of θ and t∗∗
j−1 ∈ [0, tj − tj−1] may depend on θ .

It is easy to see that for any given positive g ∈ AC1[0, T ], g′(t∗j )

g(tj−1)
, is uniformly bounded in j .

To see this, notice that g is positive and continuous so inf0≤t≤T g(t) > 0, and since g is absolutely
continuous, g′ exists almost surely and we can assume that g′ exist for any t∗j . And we can also
see that A(t∗∗

j−1; θ) is uniformly bounded in j . Therefore, there exists some constant K that may
depend on the given g, such that, uniformly in j ,

sup
θ∈R

{
θ
g′(t∗j−1)

g(tj−1)
− (−βA

(
t∗∗
j−1; θ

) + e
αA(t∗∗

j−1;θ) − 1
)}

= sup
|θ |≤K

{
θ
g′(t∗j−1)

g(tj−1)
− (−βA

(
t∗∗
j−1; θ

) + e
αA(t∗∗

j−1;θ) − 1
)}

.

Therefore,

∣∣∣∣sup
θ∈R

{
θ
g′(t∗j−1)

g(tj−1)
− (−βA

(
t∗∗
j−1; θ

) + e
αA(t∗∗

j−1;θ) − 1
)}

− sup
θ∈R

{
θ
g′(t∗j−1)

g(tj−1)
− (−βθ + eαθ − 1

)}∣∣∣∣
≤ sup

|θ |≤K

sup
0≤t≤tj −tj−1

∣∣(−βA(t; θ) + eαA(t;θ) − 1
) − (−βθ + eαθ − 1

)∣∣ → 0,
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as tj − tj−1 → 0. Hence, we conclude that

lim
ε→0

lim
n→∞

1

n
logP

(
1

n
Zt ∈ Bε(g),0 ≤ t ≤ T

)

= −
∫ T

0
g(t) sup

θ∈R

{
θ
g′(t)
g(t)

− (−βθ + eαθ − 1
)}

dt

= − sup
θ(t):0≤t≤T

∫ T

0

{
θ(t)g′(t) − (−βθ(t) + eαθ(t) − 1

)
g(t)

}
dt.

Together with the superexponential estimates (4.11) and (4.12), we have proved that,
P({ 1

n
Zt ,0 ≤ t ≤ T } ∈ ·) satisfies a large deviation principle with the rate function

IZ(g) = sup
θ(t):0≤t≤T

∫ T

0

{
θ(t)g′(t) − (−βθ(t) + eαθ(t) − 1

)
g(t)

}
dt,

if g ∈AC1[0, T ]. Note that the maximization problem

sup
x

{
xg′ − (−βx + eαx − 1

)
g
}

has its maximum achieved at x = 1
α

log(
β+ g′

g

α
), provided that g′ ≥ −βg. Otherwise, the maxi-

mum is +∞. Therefore, we conclude that

IZ(g) =
∫ T

0

βg(t) + g′(t)
α

log

(
βg(t) + g′(t)

αg(t)

)
−

(
βg(t) + g′(t)

α
− g(t)

)
dt,

for any g ∈ AC1[0, T ] and g′ ≥ −βg and IZ(g) = +∞ otherwise.
Step 4. Finally let us show that the rate function IZ(g) is good. That is, we need to show that

for any fixed m > 0, the level set

Km := {
g ∈AC1[0, T ] : IZ(g) ≤ m

}
(4.18)

is compact.
Since Zt ≥ Z0e

−βt , we have g(t) ≥ g(0)e−βt = e−βt for any t . Therefore, for any g ∈ Km,

e−βT

∫ T

0

∗

(
βg(t) + g′(t)

αg(t)

)
dt ≤ m, (4.19)

where 
∗(x) := x logx − x + 1 is strictly convex and non-negative. Thus, for any g ∈ Km,

∫ T

0

∗

(
β

α
+ 1

α

g′(t)
g(t)

)
dt ≤ meβT . (4.20)
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Let us define f (t) = β
α
t + 1

α
logg(t). Then f (0) = 0 and f ′(t) = β

α
+ 1

α
g′(t)
g(t)

. From the proof
that the rate function for Mogulskii’s theorem is good, see, for example, page 183 in Dembo and
Zeitouni [9], it follows that the set

{
f ∈ AC0[0, T ] :

∫ T

0

∗(f ′(t)

)
dt ≤ meαT

}
(4.21)

is a bounded set of equicontinuous functions. Since g(t) = eαf (t)−βt , it follows that the set Km

is a bounded set of equicontinuous functions. By Arzelà–Ascoli theorem, the set Km is compact.
Hence, IZ(g) is a good rate function. The proof is complete. �

Proof of Theorem 2. We apply Theorem 1 and the contraction principle. One then readily ob-
tains from (2.6) that P({ 1

n
Nt ,0 ≤ t ≤ T } ∈ ·) satisfies a large deviation principle with the good

rate function

IN(h) = inf
h(t)= g(t)−1

α
+ β

α

∫ t
0 g(s) ds,0≤t≤T

IZ(g). (4.22)

Observe that differentiating the integral equation h(t) = g(t)−1
α

+ β
α

∫ t

0 g(s) ds, we get

h′(t) = 1

α
g′(t) + β

α
g(t),

which is a first-order linear ODE for g(t) with initial condition g(0) = 1. Thus, we can solve this
ODE and get

g(t) = e−βt + e−βt

∫ t

0
αeβsh′(s) ds.

Hence, we infer from (4.22) and the expression of IZ(g) in (2.1) that

IN(h) =
∫ T

0
h′(t) log

h′(t)
g(t)

− (
h′(t) − g(t)

)
dt

=
∫ T

0
h′(t) log

(
h′(t)

e−βt + e−βt
∫ t

0 αeβsh′(s) ds

)

−
(

h′(t) − e−βt − e−βt

∫ t

0
αeβsh′(s) ds

)
dt.

Using this sample path large deviations result and applying the contraction principle, we can also
obtain that, P(NT /n ∈ ·) satisfies a scalar large deviation principle on R

+ with the good rate
function

H(x;T ) = inf
h:h(T )=x

IN(h). (4.23)
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Next, we prove that the rate function H in (4.23) can be equivalently given by (2.9). Recall
the moment generating function of Nt in (4.6),

E
[
eθNt |Z0 = n

] = exp

{(
C

(
t; θ

α

)
− θ

α

)
n + D

(
t; θ

α

)}
,

where

C′
(

t; θ

α

)
= −βC

(
t; θ

α

)
+ eαC(t; θ

α
) − 1 + βθ

α
, C

(
0; θ

α

)
= θ

α
.

Let us first consider the critical and super-critical case, that is, α ≥ β . When we have α ≥ β ,
for any C > 0 and θ > 0, −βC + eαC − 1 + βθ

α
> 0 and thus C(t; θ

α
) is increasing in t . It

is clear that for any θ > 0,
∫ ∞

θ
α

dC

−βC+eαC−1+ βθ
α

< ∞. On the other hand, it is easy to see that∫ ∞
0

dC
−βC+eαC−1

= ∞. Therefore, for any fixed T > 0, there exists a unique positive value θd(T )

such that ∫ ∞
θd (T )

α

dC

−βC + eαC − 1 + βθd (T )
α

= T . (4.24)

Hence, we conclude that for any fixed T > 0, for any 0 < θ < θd(T ), C(T ; θ
α
) is the unique

positive value greater than θ
α

, that satisfies the equation:

∫ C(T ; θ
α
)

θ
α

dC

−βC + eαC − 1 + βθ
α

= T . (4.25)

The case for θ ≤ 0 is similar. Also, it is easy to see that for θ < θd(T ), C(t; θ
α
) is continuous and

finite in t , and

D

(
T ; θ

α

)
= μ

∫ T

0

(
eαC(t; θ

α
) − 1

)
dt

is finite. Therefore, for θ < θd(T ),

lim
n→∞

1

n
logE

[
eθNT

] = C

(
T ; θ

α

)
− θ

α
.

When θ ≥ θd(T ), this limit is ∞. By differentiating the equation (4.25) with respect to θ , we get

− 1

eθ − 1
− β

α

∫ C(T ; θ
α
)

θ
α

dC

(−βC + eαC − 1 + βθ
α

)2

(4.26)

+ 1

−βC(T ; θ
α
) + eαC(T ; θ

α
) − 1 + βθ

α

d

dθ
C

(
T ; θ

α

)
= 0.
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It is clear from the equation (4.24) and (4.25) that as θ → θd(T ), we have C(T ; θ
α
) → ∞. There-

fore, from (4.26), we get

∂

∂θ
C

(
T ; θ

α

)
=

(
−βC

(
T ; θ

α

)
+ eαC(T ; θ

α
) − 1 + βθ

α

)

×
(

1

eθ − 1
+ β

α

∫ C(T ; θ
α
)

θ
α

dC

(−βC + eαC − 1 + βθ
α

)2

)
→ ∞,

as θ → θd(T ). Hence, we verified the essential smoothness condition. By Gärtner–Ellis theorem,
we get the desired result. The proof for the sub-critical case is similar and is omitted here. �
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