
Bernoulli 24(4A), 2018, 2676–2692
https://doi.org/10.3150/17-BEJ940

Equivalence classes of staged trees
CHRISTIANE GÖRGEN* and JIM Q. SMITH**

Department of Statistics, University of Warwick, Coventry CV4 7AL, UK.
E-mail: *c.gorgen@warwick.ac.uk; **j.q.smith@warwick.ac.uk

In this paper, we give a complete characterization of the statistical equivalence classes of CEGs and of
staged trees. We are able to show that all graphical representations of the same model share a common poly-
nomial description. Then, simple transformations on that polynomial enable us to traverse the corresponding
class of graphs. We illustrate our results with a real analysis of the implicit dependence relationships within
a previously studied dataset.
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1. Introduction

The Chain Event Graph (CEG) is a discrete statistical model based on a graphical description
given by an event tree [22]. CEGs have now successfully led statistical inference in a whole
range of domains [2,5,9,25]. However, a formal analysis of the statistical properties of this class
of models is long overdue.

In this paper, it will be most convenient to represent a CEG model by a corresponding staged
tree [22]. From this colored graph, we can read a parametrization rule given by the multiplication
of transition probabilities along root-to-leaf paths. Two staged trees are said to be statistically
equivalent if their parametrization rules parametrize the same model: see Section 2.

The study of these statistical equivalence classes is an important one. The first reason for this
is computational: CEGs constitute a massive model space to explore. By identifying a single rep-
resentative within an equivalence class and a priori selecting across these representatives rather
than the full class, we can dramatically reduce the search effort across this space. The second
reason concerns coherence: when adopting a Bayesian approach in model selection, [14] and
others have argued that two statistically equivalent models (i.e., those always giving the same
likelihood) should be given the same prior distribution over its parameters. To apply this prin-
ciple, it is essential to know when two CEGs make the same distributional assertions. The third
reason is inferential: just like a Bayesian network (BN), a CEG or staged tree has a natural causal
extension [5,24]. So, in particular, causal discovery algorithms can be applied to CEGs to elicit
a putative causal ordering between various associated variables. A strong argument is that a nec-
essary condition for a causal deduction to be made from a given dataset is that this deduction is
invariant to the choice of one representative within a statistical equivalence class. So again we
need to be able to identify equivalence classes of a hypothesized causal CEG in order to perform
these algorithms.

Now, unlike for BNs, where model representations making equivalent distributional assump-
tions can be elegantly characterized through their sharing the same essential graph [1,14], sadly
no such common representation is available for staged trees or CEGs. However, we show here
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that we can instead specify staged trees in terms of a nested polynomial representation. This then
provides a natural algebraic index for a class of equivalent staged trees and an analogue of the
essential graph. Because staged tree models include discrete BN models as a special case, our
polynomial characterization also gives an alternative to the ansatz adopted by [10].

Our central theorem, presented in Section 3, is based on two main findings. First, the interpo-
lating polynomial of a staged tree can capture certain context-specific independence structures
that are invariant with respect to a class of graphical transformations we call swaps. These trans-
formations are analogous to arc reversals sometimes applied to BN models [20]. Second, by sub-
stituting various monomial terms of the interpolating polynomial into single factors we can often
simplify our representation to capture only its substantive structure. Within our development, this
corresponds to what we call here a resize operator on the staged tree. We show later that in the
context of decomposable BNs, this operation is analogous for example to the transformation of
a directed acyclic graph into a junction tree [15]. Swaps and resizes enable us to meaningfully
incrementally traverse the class of statistically equivalent staged tree representations of a given
model. We are able to show that between every two statistically equivalent staged trees there is a
map which is a composition of these operators. Statistical equivalence classes of staged tree and
CEG models are thus fully characterized through simple relationships between their interpolating
polynomials.

We illustrate our methods by giving a full characterization of the statistical equivalence class
and a putative causal interpretation of the staged tree representing the Christchurch Health and
Development Study [8] in Section 4. We end the paper with a brief discussion.

2. Staged tree statistical models

In this paper, we study properties of parametric statistical models which are based on a graphical
representation given by a probability tree [21,22]. We will treat the probability tree not only as
some easily interpretable picture but as a directed graphical model in its own right. To properly
study equivalence classes of these models, we first need to tighten the formalism introduced in
[22].

A finite graph T = (V ,E) with vertex set V and edge set E ⊆ V × V is called a tree if it
is connected and has no cycles [21]. In a directed tree, each edge e = (v, v′) ∈ E is a pair of
ordered vertices. We call vertices pa(v) = {v′| there is (v′, v) ∈ E} the parents of v ∈ V and
ch(v) = {v′ ∈ V | there is (v, v′) ∈ E} the set of children of a vertex v ∈ V . A vertex v0 ∈ V

without parents is called a root of the tree and vertices without children are called leaves. We
use the term root-to-leaf path and the symbol λ for a directed and connected sequence of edges
E(λ) ⊆ E which emanate from a root and terminate in a leaf. We call a directed tree an event
tree if all vertices except for one unique root have exactly one parent and each parent which is
not a leaf has at least two children.

In a tree model (as defined below), every root-to-leaf path represents an atom in a given sample
space and depicts one possible history of a unit in a population passing through the tree. Every
vertex v ∈ V denotes a situation that such a unit might find itself in during that progress, and
every edge e = (v, v′) ∈ E denotes the possibility of passing from one situation v to the next
v′. For any unit in the population, there are always at least two possible unfoldings from every
situation it might pass through.



2678 C. Görgen and J.Q. Smith

We denote the set of all root-to-leaf paths of an event tree by �(T ). For fixed v ∈ V we define
a vertex-centered event as �(v) = {λ ∈ �(T )| there is (·, v) ∈ E(λ)} and set �(v0) = �(T ).
In tree models, the set of all root-to-leaf paths going through one fixed vertex is the set of all
atoms for which that situation happens. We call a vertex v ∈ V together with its emanating edges
E(v) = {(v, v′) ∈ E|v′ ∈ ch(v)} a floret, denoted Fv = (v,E(v)). If v is a leaf, then E(v) = ∅

and Fv is an empty floret. If the entire event tree is a single floret, it is called a star.
The directionality of an event tree induces a natural order on events (and florets) as follows:

We say that �(v) is upstream of �(v′) if and only if every root-to-leaf path λ ∈ �(v) ∩ �(v′) is
a sequence of edges containing (v, ·) before (v′, ·). Tree models are therefore particularly useful
if a model class needs to express a potential ordering of events rather than of random variables
[22].

Definition 1 (Probability tree). Let T = (V ,E) be an event tree with parameters θ(e) =
θ(v, v′) associated to all edges e = (v, v′) ∈ E. We call θv = (θ(e)|e ∈ E(v)) a vector of flo-
ret parameters.

The pair (T , θT ) of tree graph and labels θT = (θv|v ∈ V ) is called a probability tree if
every floret parameter vector lies inside a probability simplex, so

∑
e∈E(v) θ(e) = 1 and θ(e) ∈

(0,1) for all v ∈ V , e ∈ E. In probability trees, we call each parameter θ(e), e ∈ E, a primitive
probability.

Primitive probabilities can be thought of as (conditional) transition probabilities along root-
to-leaf paths. Throughout, we assume these probabilities to be strictly positive in order to avoid
various distracting technical issues concerning boundary cases.

We henceforth denote the product of all primitive probabilities along a root-to-leaf path λ ∈
�(T ) in a probability tree by

πθ ,T (λ) =
∏

e∈E(λ)

θ(e), (2.1)

where θ = θT for short. It is straightforward to show that πθ ,T is a strictly positive probability
mass function. In particular, atomic probabilities sum to unity because of the floret sum-to-1
conditions in Definition 1.

Let πθ ,T = (πθ ,T (λ)|λ ∈ �(T )) denote a vector of atomic probabilities represented by a
probability tree. Following standard notation in algebraic statistics, we always think of a family
of discrete probability distributions as a set of points. So let

P(T ,θT ) = {
πθ ,T |θ ∈ ×

v∈V

�◦
#E(v)−1

} ⊆ �◦
#�(T )−1, (2.2)

where �◦
n−1 = {p ∈ R

n|∑n
i=1 pi = 1 and pi ∈ (0,1) for all i ∈ [n]} denotes a probability sim-

plex, [n] = {1,2, . . . , n} [7]. We call the parametric statistical model in (2.2) a (probability) tree
model and say that the elements in P(T ,θT ) factorize according to T . This terminology is analo-
gous to BN models where distributions factorize according to an acyclic digraph [15].

Henceforth, we will call two probability tree representations (T , θT ) and (S, θS) of the same
model P(T ,θT ) = P(S,θS ) statistically equivalent. We let the symbol [T , θT ] denote the set of all
probability tree representations of P(T ,θT ).
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We can always identify the set of root-to-leaf paths of a probability tree with a finite space �

via a bijection

ιT : � → �(T ), ω �→ (
e|e ∈ E

(
ιT (ω)

))
(2.3)

which maps an atom or atomic event to a sequence of edges. Importantly, πθ ,T then induces
a measure Pθ = πθ ,T ◦ ιT on � which does not depend on the graph T . We will usually use
the symbol Pθ (ω) to refer to a value in (0,1) and πθ ,T (ιT (ω)) to refer to a symbolic product of
parameters, ω ∈ �. To make this distinction, we also call πθ ,T an atomic monomial rather than an
atomic probability. So two statistically equivalent staged trees need to have the same underlying
space � and the same distribution Pθ over its atoms. Using (2.3), root-to-leaf paths with the same
meaning (representing the same atom) can then be identified across different representations.

A tree model does not need to arise from an underlying set of problem variables. However, if
it is naturally defined through the relationships between a set of pre-specified random variables
then we can identify the state space of these variables with a set of root-to-leaf paths as in (2.3).
This enables us for instance to represent a discrete BN by a probability tree.

Example 1. Let (T , θT ) be a probability tree with n ∈ N root-to-leaf paths and a probability
mass function πθ ,T as above. The vector πθ ,T ∈ �◦

n−1 can then take any value within the prob-
ability simplex and we call P(T ,θT ) = �◦

n−1 a saturated tree model.
Let F = ({v0}∪ ch(v0), {e1, . . . , en}) be a star with attached parameter vector θF = (θ(ei)|i ∈

[n]) ∈ �◦
n−1. Then (F, θF ) is statistically equivalent to (T , θT ) if the probabilities associated

with the same atoms are identified for any choice of parameters: so θ(ei) = πθ ,T (ιT (ωi)) for all
ι−1
F (ei) = ωi ∈ � and every i ∈ [n].

Probability trees are most interesting when two or more vectors of floret parameters take the
same values, and the distributions πθ ,T factorize according to a “colored” graph T .

Definition 2 (Staged tree). Let (T , θT ) with T = (V ,E) be a probability tree. We define an
equivalence relation which relates two vertices v,w ∈ V if and only if their parameter vectors
coincide θv = θw up to a permutation of their components. Then v and w are said to be in the
same stage and (T , θT ) is said to be a staged tree.

If no related vertices v,w ∈ V are connected by a root-to-leaf path, �(v) ∩ �(w) = ∅, we
will call (T , θT ) square-free.

Whenever two vertices are in the same stage and a unit arrives at one of them, the transition
probabilities to all children of that vertex will not depend on which of the two vertices the unit
is actually in, and will thus not depend on the path that unit took to arrive in that situation. The
transition probabilities from these stages are thus independent of upstream events. We always
assign the same color to all vertices in the same stage. In this way, all modelling assumptions in
staged tree models are coded purely graphically and are very easy to communicate [2,23].

When having a preassigned set of random variables, setting floret parameter vectors equal to
each other can be interpreted as specifying a set of context-specific conditional independences as
in [3]. Models with these types of constraints are now widely used in BN modelling, especially
when the domain of application is large.
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Figure 1. A staged tree (T , θT ), simplified version taken from [2]. We label the edges by + and −,
corresponding to “high” and “low”, respectively. See Example 2 for a discussion.

Example 2. The staged tree (T , θT ) depicted in Figure 1 is a simplified detail of the graph
analyzed in [2]. Here, every atom is represented by a root-to-leaf path with two edges: the first
depicts the socio-economic background of a child, the second corresponds to a number of life
events. See also Section 4 below.

Information of the type “if we know the social status of a child’s family, then their number
of life events does not depend on their economic situation” can be embedded graphically by
collecting the vertices v1, v2 ∈ ublue and v3, v4 ∈ ugreen in the blue- and green-colored stage,
respectively. The primitive probabilities on the edges of the corresponding florets θv1 = θv2 and
θv3 = θv4 are then identified.

3. A polynomial characterization of staged tree models

In the development below, we will interpret primitive probabilities or parameters which deter-
mine statistical models not as place holders for as yet undetermined numerical values but as
elements of some formal symbolic (or algebraic) structure. This has been a hugely successful ap-
proach in the field of algebraic statistics [7,18] which has until now not been explored for staged
trees. We have found that the stage constraints on the parameter space of a staged tree can be
easily translated into polynomial constraints on the atomic probabilities, and that the underlying
model can thus be characterized as the solution set of a set of polynomial equations. This re-
sult is analogous to a well-known algebraic characterisation of BN models [10]. The process of
translating the model-defining equations in (2.1) into equations which do not depend on a fixed
parametrisation is straightforward but technical: see [11].

So in this paper we will instead use the idea of embedding model assumptions in an algebraic
framework to develop an alternative and rather different approach which is more intuitive for
staged trees. In particular, we define a polynomial below which can be used to both represent a
staged tree model and to recover constructively all possible graph representations: a process not
possible using only a set of defining equations.
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3.1. Polynomial equivalence and the swap operator

We first characterize a subclass of a class of statistically equivalent staged trees for which the
following polynomial is invariant:

Definition 3 (Interpolating polynomial). Let P = {Pθ |θ ∈ 
} denote a parametric statistical
model on an underlying discrete space � with the property that every atomic probability Pθ (ω)

is a monomial in the parameters θ , ω ∈ �. A network polynomial is of the form

cg,P(θ) =
∑
ω∈�

g(ω)Pθ (ω), (3.1)

where g is a function that determines a real coefficient for each monomial. If g = 1, then the
symbolic sum of all atomic monomials is called an interpolating polynomial of the model P.

Network polynomials where g = 1A is chosen to be an indicator of an event A ⊆ � have been
successfully used to answer probabilistic queries in BN models [6]. Different choices of g also
relate the network polynomial to moment generating functions [19]. We have already demon-
strated the efficacy of using these polynomials to calculate marginal and conditional probabilities
in staged tree models [12], for sensitivity analysis in models with a multilinear parametrization
[17] and for causal manipulations [13].

In the following, we will write cT (θ) = ∑
λ∈�(T ) πθ ,T (λ) for the interpolating polynomial

c1,P(T ,θT )
of a tree model represented by (T , θT ).

Remark 1. When evaluating the network polynomial of a staged tree for a certain choice of
parameters, we find that in a non-symbolic framework the polynomial

c1A,T (θ) =
∑

λ∈�(T )

1A(λ)πθ ,T (λ) =
∑
λ∈A

πθ ,T (λ) = Pθ

(
ι−1
T (A)

)
(3.2)

is a function (A, θ) �→ Pθ (ι
−1
T (A)) which maps an event A ⊆ �(T ) and a choice of parameters

to the probability of that event.

In a symbolic setting, we usually ignore sum-to-1 conditions and exploit only the formal struc-
ture of a polynomial. This is for instance, beneficial when obtaining results like (3.2) from differ-
entiation operations [12]. Note that because any choice of floret sum-to-1 conditions on an event
tree will yield a probability distribution over the depicted root-to-leaf paths, these conditions can
be ignored in the characterisation of equivalence classes of staged trees below and be imposed
only after having found a model representation.

Definition 4 (Polynomial equivalence). Let (T , θT ) and (S, θS) be two staged trees with the
same underlying space �. These staged trees are called polynomially equivalent if and only if
they have the same edge labels and their network polynomials coincide formally cg,S = cg,T for
every choice of the function g.
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In general, polynomial equivalence is not necessary for statistical equivalence: see, for in-
stance, Example 1 where two very different parametrizations can be used for the same model.
However, we do have the following result.

Lemma 1. Polynomial equivalence implies statistical equivalence.

Proof. Set gω = 1{ω} to be the indicator function of an arbitrary atomic event ω ∈ �. Then
polynomial equivalence of two staged trees (T , θT ) and (S, θS) implies termwise equality of
the probability mass functions cgω,T (θ) = Pθ (ω) = cgω,S(θ) by Remark 1. �

So all polynomially equivalent staged trees can be characterized as having the same interpolat-
ing polynomial plus an identification between their atoms. In square-free staged trees, the proba-
bility mass function πθ ,T : λ �→ ∏

e∈E(λ) θ(e) is formally injective: that is, the atomic monomials
are pairwise different and we can uniquely identify atoms with monomials. So in these trees, the
interpolating polynomial is sufficient to identify a class of polynomially equivalent staged trees.
We henceforth use the symbol [T , θT ]c ⊆ [T , θT ] to denote a class of polynomially equivalent
square-free staged trees which share the same interpolating polynomial c. Note that a staged
tree (T , θT ) is square-free if and only if cT is linear in every indeterminate. We will restrict all
further analysis to this class of models.

Remark 2. The graph of a staged tree (T , θT ) yields a way to parenthesize the associated
interpolating polynomial as follows. For every floret Fv where v ∈ V is the parent of a leaf,
we sum all components of its parameter vector θv and multiply the result by its parent label
θ(pa(v), v). We then sum the result over the parent’s labels θpa(v). By repeating this until all
floret parameter vectors are summed and pa(v) = v0, the interpolating polynomial can then be
written in terms of a nested factorization

cT (θ) =
∑

v1∈ch(v0)

θ(v0, v1)

( ∑
v2∈ch(v1)

θ(v1, v2) . . .

( ∑
vk∈ch(vk−1)

θ(vk−1, vk)

))
, (3.3)

where the final index k ∈N of every inner sum implicitly depends on the length of a root-to-leaf
path ((v0, v1), (v1, v2), . . . , (vk−1, vk)). See Figure 2 for an illustration.

The interpolating polynomials of discrete BN models admit a nested bracketing as in (3.3).
The parameters in those polynomials are then potentials of a probability mass function and are
normalized via the florets of an underlying tree representation. This type of representation of a
polynomial provides a very efficient way to compute joint probabilities from marginals in a BN
model [16] and comes for free when choosing a staged tree representation rather than an acyclic
digraph.

Centrally, we can generalize the observation above to a new concept.
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Figure 2. Two polynomially equivalent staged trees with the same indeterminates θi = θ ′
i
, i = 1, . . . ,8,

and interpolating polynomials cT (θ) = θ1 + θ2(θ4 + θ5) + θ3(θ4(θ6 + θ7 + θ8) + θ5) and
cS (θ ′) = θ ′

1 + θ ′
4(θ ′

2 + θ ′
3(θ ′

6 + θ ′
7 + θ ′

8))+ θ ′
5(θ ′

2 + θ ′
3) given in the respective tree-compatible factorization.

The map s : (T , θT ) �→ (S, θS ) is a swap.

Definition 5 (Tree compatibility). Let θ = (θ1, . . . , θd) be a parameter vector, d ∈ N. We call
any polynomial tree compatible if it admits a representation of the form

c(θ) =
∑

θ1∈A1

θ1

( ∑
θ2∈A2(θ1)

θ2

( ∑
θ3∈A3(θ2)

θ3 . . .

( ∑
θk∈Ak(θk−1)

θk

)))
, (3.4)

where every A1,Aj (θj−1) ⊆ {θ1, . . . , θd} has at least two elements, for j ∈ [k] and k ∈ N. We
write s(c(θ)) for one fixed order of summation of the terms in c(θ) as above, and call this a
tree-compatible factorization.

An important aspect of the result in Remark 2 is that it is reversible: not only can we easily read
a polynomial from an event tree but we can also construct a tree graph from a tree-compatible
factorization. In addition, all polynomially equivalent staged trees arise from a tree-compatible
reordering of a given summation. Each of these gives a different representation within the same
statistical equivalence class.

Proposition 1. Let P be a discrete parametric model whose atomic probabilities are of mono-
mial form and let c = c1,P denote its interpolating polynomial. Then there exists a probabil-
ity tree representation (T , θT ) with P(T ,θT ) = P if and only if c is tree compatible. The map
c : s(c(θ)) �→ (T , θT ) is invertible.

Proof. Sufficiency of the first part of the claim is straightforward because the interpolating poly-
nomial of a tree model is tree compatible by (3.3).

For necessity assume now the interpolating polynomial of a parametric model to be tree com-
patible and given by the factorization s(c(θ)) in (3.4). We construct a labelled graph as follows:
for every subsum of (3.4), draw a floret Fj = (vj , {e|θ(e) = θj ∈ Aj(θj−1)}) with one edge for
every indeterminate in the sum and attach these indeterminates as labels, j ∈ [k]. Then partially
order these florets by reversing the steps in Remark 2, such that θj is the parent label of the floret
whose attached parameters are A(θj ), for all j ∈ [k]. In this way, we construct a connected graph
with no cycles – and hence a tree – whose leaf-floret edges are labelled by the innermost factors
Ak(θk−1) of s(c(θ)) and the root’s edges by the outermost factors A1. Since by definition every
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set Aj(θj−1) has at least two elements, it follows that there are at least two edges in every floret.
So the tree-compatible factorisations in (3.3) and (3.4) are componentwise equal and, multiply-
ing out the brackets of s(c(θ)), we find that c = cT . Thus, we have constructed a labelled event
tree (T , θT ). Then imposing sum-to-1 conditions on the constructed florets as in Definition 1
is consistent with the sum-to-1 conditions on atomic probabilities in the model. So (T , θT ) is a
probability tree which represents P= P(T ,θT ).

By construction, the steps above are reversible. So the map which identifies a tree-compatible
factorisation with a labelled tree is invertible. �

The proposition provides us with a powerful tool to determine whether a parametric model can
be represented by a probability tree. This representation is a staged tree only if all constraints on
the model are of the form Ai+1(θi) = Aj+1(θj ) for some i 
= j in the notation of Definition 5.

The result above induces two natural streams of research. First, how can we check whether or
not a given interpolating polynomial is tree compatible? We will discuss this issue at the very
end of this work where we will also outline ideas for an algorithmic implementation.

The second question is: how do we infer all the possible orders of bracketing of a tree-
compatible interpolating polynomial cT ? Knowing this, we can use the map c in Proposition 1
and the construction outlined in the proof to obtain all tree representations in [T , θT ]c . We will
show how to do this below.

Clearly, a transformation between two tree-compatible factorizations of an interpolating poly-
nomial is an application of the distributive property of addition and multiplication. These corre-
spond to the following intuitive graph transformation.

We henceforth call a subgraph of a probability tree which is an event tree with inherited edge
labels a (probability) subtree. We call a probability subtree (T , θT )u ⊆ (T , θT ) a twin if it is of
the following form: all root-to-leaf paths consist of exactly two edges and all children of its root
are in the same stage u. This stage does not contain the root itself.

The interpolating polynomial of a twin (T , θT )u can be written in the form

cTu
(θ) =

∑
e∈E(v0)

θ(e)

( ∑
e′∈E(v)

θ
(
e′)) =

∑
e′∈E(v)

θ
(
e′)( ∑

e∈E(v0)

θ(e)

)
, (3.5)

where v ∈ u is one representative of the stage u = ch(v0) and v0 is the root of the twin. By
Proposition 1, there is a staged tree (S, θS)u which is polynomially equivalent to (T , θT )u:
this is the one given by the second tree-compatible factorization in (3.5). Then, (S, θS)u is a
subtree of a tree (S, θS) which is polynomially equivalent to (T , θT ) and coincides with that
tree everywhere except on (T , θT )u.

Definition 6 (Swap). Let (T , θT ) be a staged tree and (T , θT )u ⊆ (T , θT ) a twin around the
stage u. Denote by (S, θS)u the staged tree which is polynomially equivalent to (T , θT )u and
let (S, θS)u ⊆ (S, θS) as above. We will call the map s : (T , θT ) �→ (S, θS) a naïve swap and
call it a swap if (S, θS) is itself a staged tree.

Figure 2 illustrates the definition above. We can see here that this operation does indeed “swap”
the order of edges before and after the stage u. It is straightforward to show that edge-centred
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events on the root-edges of a twin are independent of those of edges ending in leaves. Our very
plausible discovery is that for these independent events the order in which they are depicted in a
tree is reversible within a statistical equivalence class, using the swap operator.

Whilst it is natural for swaps to change the floret structure, as explained below, naïve swaps
might also violate stage structure. The simplest case is when the root of a twin is in a stage in
the original tree, and a naïve swap rearranges that floret but not an identified one elsewhere in
the graph. We henceforth call a composition of swaps for which floret parameter vectors are
invariant a floret-swap and a composition of swaps which swaps all edges at a fixed distance
from the root a level-swap. For instance, the swap in Figure 2 is not a floret-swap because the
root-vector (θ1, θ2, θ3) is not a vector in (S, θS). Conversely, (θ1, θ4, θ5) is not a floret parameter
vector in (T , θT ). This implies that (T , θT ) and (S, θS) have different local sum-to-1 conditions
on their primitive probabilities. By Lemma 1, both represent the same model. So even if the
numerical value of say θ1 = θ(e1) is different in (T , θT ) and (S, θS) – we have indicated this
using labels θ1 = θ ′

1 in Figure 2 – via a renormalization it is still the probability of the event
ι−1
T ({λ ∈ �(T )|e1 ∈ E(λ)}) ⊆ � depicted by both graphs. The meaning of this parameter is thus

unchanged and can be identified across different representations.
We can now obtain the following result, which enables us to both graphically and algebraically

move around a class of polynomially equivalent trees.

Proposition 2. Two square-free staged trees (T , θT ) and (S, θS) are polynomially equivalent if
and only if there exists a finite composition of naïve swaps s1, . . . , sl , l ∈ N, for which sl ◦ sl−1 ◦
· · · ◦ s1 : (T , θT ) �→ (S, θS) is a swap.

Proof. Let (T , θT ) = c(s1(c(θ))) and (S, θS) = c(s2(c(θ))) be polynomially equivalent staged
trees with a common interpolating polynomial c and corresponding tree-compatible factoriza-
tions s1 and s2 as in (3.3). Here, c denotes the map from Proposition 1. Clearly, one factorization
s1(c(θ)) is transformed into the other s2(c(θ)) by applying the distributive law of + and · a
finite number of times. Hence, we can define a map s̃ : s1(c(θ)) �→ s2(c(θ)) performing these
calculations on the subsums of c as in (3.5). Therefore,

s : (T , θT )
c−1�→ s1

(
c(θ)

) s̃�→ s2
(
c(θ)

) c−1�→ (S, θS) (3.6)

is a map which performs a finite number of swaps on the to s̃ corresponding twins and thus
transforms (T , θT ) into (S, θS). �

Thus, the polynomial equivalence class of a staged tree can be fully traversed by an algebraic
resummation operation or, equivalently, by local graph transformations. Note that this operator
is a close analogue to the arc reversal in BN models [20]. These, just like swaps, allow us to
traverse the class of all graphical representations of the same model, while renormalizing (but
not marginalizing) the associated probability mass function.

Example 3 (Example 2 continued). The staged tree (T , θT ) in Figure 1 contains two twins:
(T , θT )blue around the stage ublue = {v1, v2} and (T , θT )green around the stage ugreen = {v3, v4}.
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Figure 3. Two staged trees which are polynomially equivalent to the one from Example 2. See Example 3.

Applying a level-swap on (T , θT ) which swaps both of these twins, we obtain a new tree
(S, θS)1 depicted in Figure 3(a). In (S, θS)1, the edges emanating from the root now corre-
spond to the random variable “social background and life events” rather than “social and eco-
nomic background”. This application of a swap corresponds to a renormalization of an underly-
ing probability mass function p(s, e, l) = p(s, e)p(l|s) to p(s, l)p(e|s), for s, e, l ∈ {high, low}.
This result can equivalently be achieved by applying an arc reversal on an alternative representa-
tion of this model in terms of a decomposable acyclic digraph.

Unlike (S, θS)1, the staged tree (S, θS)2 in Figure 3 where a swap has been applied only
on (T , θT )blue, cannot be straightforwardly identified with a BN model. In particular, the edges
emanating from the root now correspond to a new random variable X “life events in low social
background and economic situation in high social background”, and the variable Y associated to
leaf-edges changes accordingly:

X =
{

(S,L) if S = 0,

(S,E) if S = 1,
and Y =

{
E|L if S = 0,

L|E if S = 1.

The example above provides a very simple illustration of how the statistical equivalence class
of a staged tree (or CEG) can be so much larger than that of a BN. It also demonstrates how
staged trees can implicitly generate relationships between new random variables, constructed as
functions of the original ones: possibly useful in later interpretative analysis. A more detailed
discussion of this process is given in Section 4.

3.2. Statistical equivalence and the resize operator

We have seen in Remark 1 that the network polynomial can be used to calculate probabilities
of events represented by a staged tree. Thus, when leaving the symbolic framework and sub-
stituting values for the edge parameters, the interpolating polynomial is clearly invariant for a
class of statistically equivalent staged trees. So in order to extend our characterization of polyno-
mial equivalence classes to the whole statistical equivalence class, we will need to reparametrize
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between two given descriptions without violating the model assumptions. We define a second
operator below which will again enable us to achieve this aim constructively.

We henceforth call the pair (T , θT )′ ⊆ (T , θT ) a subgraph if it is a subtree with inherited
edge labels whose root might have only one emanating edge, not necessarily two as required in
an event tree.

Definition 7 (Resize). Let (T , θT ) be a staged tree and let (T , θT )′ ⊆ (T , θT ) be a subgraph.
We denote by r : (T , θT ) �→ (S, θS) the map which transforms this subgraph into a floret
(F, θF ) with labels θF = (πθ ,T ′(λ′)|λ′ ∈ �(T ′)), while leaving the remaining graph invariant.
We call r and its inverse r−1 naïve resize operators, and a resize if (S, θS) is a staged tree.

In terms of the atomic monomials, a naïve resize performs a substitution of products of prim-
itive probabilities into degree 1 monomials. By construction, atomic probabilities of root-to-leaf
paths are invariant under this operation: see also Example 1. However, r is not necessarily a
well-defined map between two staged trees. The lemma below establishes useful criteria for a
well-defined application of this operator.

Lemma 2. Let (T , θT ) be a staged tree and l ∈ N. A composition of naïve resizes r = rl ◦ · · · ◦ r1
applied to (T , θT ) is a resize if one of the following conditions is fulfilled:

(a) r only acts on saturated subgraphs.
(b) r only acts on subgraphs which are polynomially equivalent to each other and whose

vertices are not in the same stage as vertices outside these subgraphs.

Proof. (a) Because the image r(T , θT ) = (S, θS) of a staged tree is a probability tree and
because by assumption the stage sets of image and preimage coincide, clearly also (S, θS) ∈
[T , θT ] is a staged tree.

(b) Because all subgraphs (T , θT )′, (T , θT )′′ ⊆ (T , θT ) that r acts on are polynomially
equivalent, they are also statistically equivalent: see Lemma 1. So after resizing, we identify
the atomic probabilities πθ ,T ′(λ′) = πθ ,T ′′(λ′′) of subpaths λ′, λ′′ which have the same atomic
monomial in (T , θT ). Thus, the image (S, θS) = r(T , θT ) is a staged tree where the stages are
given by these identified (formerly atomic now) primitive probabilities. �

Note that case (a) in Lemma 2 enables us to contract subgraphs which do not contain any
stage information, so are in that sense not informative to the model. Analogous operations are
often performed on BN models where the cliques of a decomposable model do not contain any
conditional independence information and can hence be treated as a joint random variable with-
out leaving the model class [15]. Case (b) enables us to directly identify atomic monomials of
polynomially equivalent subgraphs rather than repeating stage equations edge by edge. Note that
if these conditions are violated, then a naïve resize can take us out of the statistical equivalence
class of a staged tree.

Lemma 3. Let (T , θT ) be a staged tree and r a resize operator, possibly a composition of naïve
resizes. Then (T , θT ) and r(T , θT ) are statistically equivalent staged trees.
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This results follows immediately from the definition.
Finally, the resize in conjunction with the swap operator now enables us to traverse the whole

equivalence class of a given staged tree.

Theorem 1. Two square-free staged trees (T , θT ) and (S, θS) are statistically equivalent if and
only if there exists a map m : (T , θT ) �→ (S, θS) which is a finite composition of resizes and
swaps.

Proof. First, let (T , θT ) and (S, θS) be statistically equivalent staged trees. Then all identified
root-to-leaf paths λ′ = ιS(ιT (λ)) have equal atomic probabilities, πθ ,T (λ) = πθ ′,S(λ′). If the
above equality holds in a formal sense for every λ ∈ �(T ), then (T , θT ) and (S, θS) are poly-
nomially equivalent. In this case, Lemma 1 states that a map exists between the two staged trees
which is a composition of swaps, and thus proves the claim. If this is not the case, we denote by
� ⊆ �(T ) the set of root-to-leaf paths in T whose atomic monomials do not coincide formally
with the corresponding atomic monomials in S . Let (T , θT )′ ⊆ (T , θT ) denote a subtree of
T for which � ⊆ �(T ′), and define analogously the corresponding (S, θS)′ ⊆ (S, θS). These
are the subtrees which are not polynomially equivalent. We define two naïve resize operators,
rT : (T , θT )′ �→ (F, θF ) and rS : (S, θS)′ �→ (F, θF ) which map those subtrees to the same
floret. By Lemma 3, (S, θS)′, (T , θT )′ and (F, θF ) are statistically equivalent. Thus, there is
a composition of resizes r = r

−1
S ◦ rT : (T , θT ) �→ (S, θS) between the statistically equivalent

staged trees.
Now let m be a transformation given by swaps and resizes between two staged trees (T , θT )

and (S, θS). If m is a composition of swaps, then Proposition 1 ensures polynomial equivalence,
and thus statistical equivalence by Lemma 1. If m is a composition of resizes, then Lemma 3
yields statistical equivalence. Clearly, also for the composition of both of these operators holds
that (T , θT ) and m(T , θT ) = (S, θS) are statistically equivalent. The claim follows. �

4. Analyzing a full statistical equivalence class

We will now characterize properties of the statistical equivalence class of a staged tree inferred
from a dataset. In particular, using the resize operator we will create new random variables de-
scribing the system and using the swap operator we will be able to give a putative causal inter-
pretation to a depicted order of events.

A staged tree model for the Christchurch Health and Development Study (CHDS) [8] has
been closely analyzed, for example, in [2,5], and has been used to describe the interplay of the
social support, the economic situation, hospital admissions and possible life events (e.g., divorce,
redundancy of a parent) of a group of children over a fixed period of time. The staged tree (T , θT )

in Figure 4(a) was found using an MAP search [5]. We will now apply Theorem 1 to the statistical
equivalence class [T , θT ] in order to enrich our understanding of the model P(T ,θT ) represented
by that tree.

We first observe that there is a saturated subtree in (T , θT ), depicted by dotted lines in the
figure. Because this does not contain twins, within the polynomial equivalence class there is
thus an artificial order on the variables “social background” and “economic background”. This
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Figure 4. Two statistically equivalent staged trees for the CHDS data set.

order cannot be said to have been deduced from the model search. It is therefore helpful for us
to transform (T , θT ) into the statistically equivalent staged tree (S, θS) of Figure 4(b), using a
resize operator as in Lemma 2(a).

The root’s edges ei = (v0, vi), i = 1,2, . . . ,5, in this new tree (S, θS) can now be assigned
a meaning different from the one in (T , θT ). In particular, e1, e2 and e3 correspond to “social
background or economic status are high” and e4 and e5 to “both social background and economic
status are low, hospital admission yes or no”. Hence, children passing along e1 are “from a
wealthy background”, along e2 and e3 are “from a moderately wealthy background” and along
e4 and e5 are “from a poor background”. From the stage structure of (S, θS) we can see that
the probabilities of certain numbers of life events differ between wealthy and poor children.
Interestingly, [4] names the access to credit as a possible monetary measurement of poverty.
So being able to borrow from a social network or having own savings is a natural indicator of
wealth. This gives some external support for moving from (T , θT ) to (S, θS), suggested from
the results of our automated MAP search on the CHDS data.

We next analyze the polynomial equivalence class [S,
S ]c for c = cS . There are five twins
in this tree which have two children in the same stage. These are the ones where v1, v2 ∈ ured,
v1, v3 ∈ ured, v2, v3 ∈ ured, v4, v5 ∈ ugreen and v6, v7 ∈ ublue have the same parent and are in
the same stage, respectively. For most of these, an application of the swap operator would be
naïve and violate the stage constraints in the tree. In fact, there are only two swaps which yield a
staged tree: the composition which performs a floret-swap on v1, v2 and v3 simultaneously and
the swap on v6, v7. These change the order between access to credit and hospital admission for
(moderately) wealthy children, and between hospitalisation and life events for wealthy children.
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It would thus be spurious to assert a potentially causal or chronological order on these events on
the basis of the MAP search.

There is no staged tree in the polynomial equivalence class of (S, θS) that would allow for the
total order “life events before hospitalisation”. This is because no composition of the swaps on
the twins can form a level-swap on (S, θS). So a model which treats life events as an explanatory
variable of the response variable hospital admission as in the study [2] is less supported by the
data than one treating hospitalisation as an explanatory variable of life events as in [5]. Note that
no deductions about an ordering of variables would have been possible within the original BN
representation of the data because the MAP model turns out to be decomposable. This demon-
strates that the extra structure of the staged tree enables us to draw out new potential causal
hypotheses that could not be discovered when using more conventional graphical methods.

5. Discussion

In this paper, we have been able to show that a characterization of staged trees in terms of their
interpolating polynomials provides an elegant way to fully analyze statistical equivalence classes
of models represented by such trees.

For a future implementation of these results, it is important to note that the number of tree-
compatible factorizations of an interpolating polynomial is usually enormous. For instance,
a naïve count of the elements in the class analyzed in Section 4 reveals nearly one thousand
elements. This is because every polynomial equivalence class contains 2#twins elements arising
from naïve swaps, each of which can be combined with resize operations as outlined above. Of
course we would then need to check how many of these elements actually correspond to staged
trees. This will normally reduce the number of amenable tree-compatible factorizations signifi-
cantly: for instance, in that example there would be 25 = 32 naïve representations, only four of
which are staged.

The polynomial-based approach we develop here provides a most promising foundation for
developing an efficient search across this class using computational algebra. In particular, given
any discrete model with multilinear parametrization, we note that every possible tree-compatible
factorization of its interpolating polynomial arises from a certain nested order of common divi-
sors of terms in the polynomial. This nesting is naturally reflected in what is called the primary
decomposition of the ideal spanned by all terms in the polynomial. Every element of such a de-
composition which is spanned by degree-one indeterminates will then provide a set of putative
root labels of a corresponding tree representation; and if there are no such candidates then the
multilinear model would not be a staged tree model. Investigating subnestings of ideals and run-
ning a search over putative root-labels obtained from ideal decomposition is much faster than
for instance an exhaustive search over all possible nested factorizations of a polynomial. This
is because in such an unstructured search we would have in the order of 2d choices of root la-
bels, one for each subset of labels, where d is the number of indeterminates. Ideal decomposition
provides us with much fewer candidate nestings and also provides an elegant way of a priori
excluding certain naïve representations which are not staged. As a consequence, we can employ
a vast range of freely available software to design algorithms which can efficiently traverse a
polynomial equivalence class – so an algorithmic implementation for the swap operator is within
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reach. As for the resize operator, the computational-algebra algorithm suggested here will then
need to be enhanced by a command which allows us to leave a fixed algebraic framework (given
by the chosen parametrization) and to substitute terms using the requirements for having non-
naïve resizes we discovered in this paper. The design of these algorithms is outside the scope of
this publication.

In a second step, once an algorithm as sketched above is in place and we have software for
applying swaps and resizes on a staged tree, we are ready to use these results in inference and
model selection. In particular, when data is available we can now develop methods to score an
interpolating polynomial (rather than a tree graph) directly and use the methods proposed here to
then traverse the whole statistical equivalence class purely algebraically. An important direction
for future work is to demonstrate how interpolating polynomials can thus be used in the analysis
of tree-based causality, in comparison to analogous concepts developed for BN models.
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