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For model-comparison purpose, we study asymptotic behavior of the marginal quasi-log likelihood asso-
ciated with a family of locally asymptotically quadratic (LAQ) statistical experiments. Our result entails a
far-reaching extension of applicable scope of the classical approximate Bayesian model comparison due to
Schwarz, with frequentist-view theoretical foundation. In particular, the proposed statistics can deal with
both ergodic and non-ergodic stochastic process models, where the corresponding M-estimator may of
multi-scaling type and the asymptotic quasi-information matrix may be random. We also deduce the con-
sistency of the multistage optimal-model selection where we select an optimal sub-model structure step by
step, so that computational cost can be much reduced. Focusing on some diffusion type models, we illus-
trate the proposed method by the Gaussian quasi-likelihood for diffusion-type models in details, together
with several numerical experiments.

Keywords: approximate Bayesian model comparison; Gaussian quasi-likelihood; locally asymptotically
quadratic family; quasi-likelihood; Schwarz’s criterion

1. Introduction

The objective of this paper is Bayesian model comparison for a general class of statistical mod-
els, which includes various kinds of stochastic process models that cannot be handled by pre-
ceding results. There are two classical principles of model selection: the Kullback–Leibler diver-
gence (KL divergence) principle and the Bayesian one, acted over Akaike information criterion
(AIC, [1,2]) and Schwarz or Bayesian information criterion (BIC, [35]), respectively. A common
knowledge is that there are no universal politic between AIC and BIC type statistics, and they
are indeed used for different purposes. On the one hand, the AIC is a predictive model selection
criterion minimizing the KL divergence between prediction and true models, not intended to pick
up the true model consistently even if it does exist in the candidate-model set. On the other hand,
the BIC is used to look for better model description, putting importance not only on underfitting
but also on overfitting. The BIC usually takes the form

BICn = −2�n

(
θ̂MLE
n

)+ p logn,

where �n, θ̂MLE
n , and p denote the log-likelihood function, the maximum-likelihood estimator

(MLE), and the dimension of the parameter space of the statistical model to be assessed, respec-
tively. The model selection consistency via BIC type statistics has been studied by many authors
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in several different model setups, for example, [5,8], and [34], to mention just a few old ones.
An extension of the BIC-derivation logic to subsume smoothly regularized likelihood estimation
can be found in [26].

There also do exist many studies of the BIC methodology in the time series context. The un-
derlying principles, such as maximization of posterior model selection probability, remain the
same in this case. It should be mentioned that [9] demonstrated that derivation of the classical
BIC could be generalized into general

√
n-consistent framework with constant asymptotic in-

formation. Their argument supposes the almost-sure behaviors of the likelihood characteristics,
especially of the observed information matrix. Our stance is similar to theirs, but more general
so as to subsume a much broader spectrum of models that cannot be handled by [9]. We note
that much less has been known about theoretically guaranteed information criteria concerning
sampled data from stochastic process models; to mention some of them, we refer to [37–40]
and [44].

Our primary interest is to extend the range of application of Schwarz’s BIC to a large degree
in a unified way, so as to be able to target a wide class of dependent data models especially in-
cluding the locally asymptotically mixed-normal family of statistical experiments. The Bayesian
principle of model selection amounts choosing the model that is most likely in terms of the
posterior model selection probability, which is typically measured by approximating the (ex-
pected) marginal quasi-log likelihood. Unfortunately, a mathematically rigorous derivation of
BIC type statistics is sometimes missing in the literature, especially when the underlying model
is non-ergodic. In this paper, we will focus on locally asymptotically quadratic (LAQ) statisti-
cal models. We will introduce the quasi-BIC (QBIC) through the stochastic expansion of the
marginal quasi-likelihood. Here, we use the terminology “quasi” to mean that the model may
be misspecified in the sense that none of candidate models may not include the true one; see
[31] for information criteria for a class of generalized linear models for independent data. Our
proof of the expansion essentially utilizes the polynomial type large deviation inequality of [47];
quite importantly, the asymptotic information matrix then may be random (i.e., suitably scaled
observed information (random bilinear form) has a random limit in probability), enabling us to
deal with non-ergodic models in a unified way. We note the two things, though we do not go
into any detail in this paper: the popular cointegration models (see [4] and the references therein)
would be in the scope of the QBIC as well; the QBIC may be closely related to the correct BIC in
the context of non-stationary time series models [25], where the observed information matrix is
involved in the bias-correction term. Further, it is worth mentioning that QBIC may be used even
for semiparametric models, where possibly infinite-dimensional nuisance element, whenever a
suitable quasi-likelihood is available.

There are many other works on the model selection, which includes the risk information crite-
rion [17], the generalized information criterion [27], the “parametricness” index [30], and many
extensions of AIC and BIC including [12,31]. We refer to [7,13], and [28] for comprehensive
accounts of information criteria, and also to [14] for an illustration from practical point of view.

This paper is organized as follows. Section 2 describes the basic model setup and some related
backgrounds. In Section 3, we will present the asymptotic expansions of the marginal quasi-log
likelihood (equivalently, the Bayes factor or the Kullback–Leibler divergence); the presentation
contains a revised and extended version of [15]. In Section 4, we illustrate the proposed model
selection method by the Gaussian quasi-likelihoods, with focuses on estimation of an ergodic
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diffusion process and volatility-parameter estimation for a class of continuous semimartingales,
both based on high-frequency sampling; to the best of our knowledge, this is the first place that
mathematically validates Schwarz’s methodology of model comparison for high-frequency data
from a stochastic process. Section 5 is devoted to the model selection consistency with respect
to the optimal model, which is naturally defined to be a minimal model among those minimizing
the quasi-entropy quantities. When in particular the quasi-maximum likelihood estimator is of
multi-scaling type, we prove the consistency of the multistage optimal model selection proce-
dure, where we partially select an optimal model structure step by step, resulting in a reduced
computational cost. Section 6 give some numerical experiments supporting our asymptotic re-
sults. All the proofs are presented in Section 7.

2. Preliminaries

2.1. Basic model setup

We begin with describing our basic Bayesian-model setup used throughout this paper. Denote by
Xn an observation random variable defined on an underlying probability space (�,F,P), and by
Gn(dx) = gn(x)μn(dx) the true distribution L(Xn), where μn is a σ -finite dominating measure
on a Borel state space of Xn, that is, Gn(dx) = P ◦ X−1

n (dx).
Suppose that we are given a set of M candidate Bayesian models M1, . . . ,MM :

Mm = {(pm,πm,n(θm),Hm,n(·|θm)
)|θm ∈ �m

}
, m = 1, . . . ,M,

where the ingredients in each Mm are given as follows.

• pm > 0 denotes the relative likeliness of the model-Mm occurrence among M1, . . . ,MM ;
we have

∑M
m=1 pm = 1.

• πm,n : �m → (0,∞) is the prior distribution L(θm) of mth-model parameter θm, here de-
fined to be a probability density function possibly depending on the sample size n, with
respect to the Lebesgue density on a bounded convex domain �m ⊂R

pm .
• The measurable function x �→ Hm,n(x|θm) for each θm ∈ �m defines a logarithmic regular

conditional probability density of L(Xn|θm) with respect to μn(dx).

Each Mm may be misspecified in the sense that the true data generating model gn(x) does not
belong to the family {exp{Hm,n(·|θm)}|θm ∈ �m}; we will, however, assume suitable regularity
conditions for the associated statistical random fields.

Concerning the model Mm, the random function θm �→ exp{Hm,n(Xn|θm)}, assumed to be a.s.
well-defined, is referred to as the quasi-likelihood of L(Xn|θm). The quasi-maximum likelihood
estimator (QMLE) θ̂m,n associated with Hm,n is defined to be any maximizer of Hm,n:

θ̂m,n ∈ argmax
θ∈�̄m

Hm,n(Xn|θ).

We will assume the a.s. continuity of Hm,n over the compact set �̄m, so that θ̂m,n always exists.
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Our objective includes estimators of multi-scaling type, meaning that the components of θ̂m,n

converges at different rates, which can often occur when considering high-frequency asymp-
totics. A typical example is the Gaussian quasi-likelihood estimation of ergodic diffusion pro-
cess: see [24], also Section 4.2. Let Km ∈ N be a given number, which represents the number
of the components having different convergence rates in Mm, and assume that the mth-model
parameter vector is divided into Km parts:

θm = (θm,1, . . . , θm,Km) ∈
Km∏
k=1

�m,k = �m,

with each �m,k being a bounded convex domain in R
pm,k , k ∈ {1, . . . ,Km}, where pm =∑Km

k=1 pm,k . Then the QMLE in the mth model takes the form θ̂m,n = (θ̂m,1,n, . . . , θ̂m,Km,n).
The optimal value of θm associated with Hm,n, to be precisely defined later on, is denoted by
θm,0 = (θm,1,0, . . . , θm,Km,0), θm,k,0 ∈ �m,k . The rate matrix in the model Mm is then given in
the form

Am,n(θm,0) = diag
(
am,1,n(θm,0)Ipm,1 , . . . , am,Km,n(θm,0)Ipm,Km

)
, (2.1)

where Ip denotes the p-dimensional identity matrix and am,k,n (θm,0) are deterministic positive
sequences satisfying that

am,k,n(θm,0) → 0, am,i,n(θm,0)/am,j,n(θm,0) → 0 (i < j), n → ∞. (2.2)

The diagonality of Am,n(θ0) is just for simplicity.
Since we are allowing not only data dependency but also the possibility of model misspecifi-

cation, we may deal with a wide range of quasi-likelihoods Hm,n, even including semiparametric
situations such as the Gaussian quasi-likelihood; see Section 4 for related models.

2.2. Bayesian model selection principle

The quasi-marginal distribution of Xn in the mth model Mm is given by the density

x �→ fm,n(x) :=
∫

�m

exp
{
Hm,n(x|θm)

}
πm,n(θm)dθm,

which is sometimes referred to as the model evidence of Mi . Typical reasoning in Bayesian
principle of model selection in M1, . . . ,MM is to choose the model that is most likely to occur
in terms of the posterior model selection probability, namely to choose the model maximizing

log

(
fm,n(x)pm,n∑M
i=1 fi,n(x)pi,n

)
= logfm,n(x) + logpm − log

(
M∑
i=1

fi,n(x)pi

)

over m = 1, . . . ,M . This is equivalent to finding

argmax
m≤M

{
logfm,n(x) + logpm

}
.
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Then one proceeds with suitable almost-sure (� 
 ω-wise) asymptotic expansion of the loga-
rithm of the quasi-marginal likelihood logfm,n(x) for n → ∞ around a suitable estimator, a mea-
surable function of x = xn for each n: when

√
n(θ̂m,n − θm,0) = Op(1), the resulting form may

be quite often given by

logfm,n(x) + logpm ≈Hm,n(x|θ̂m,n) − pm

2
logn + O(1) a.s. (2.3)

This is the usual scenario of derivation of the classical-BIC type statistics; see [9] and [31] as
well as [35].

We recall that the expansion (2.3) is also used to approximate the Bayes factor. The logarithmic
Bayes factor of Mi against Mj is defined by the (random) ratio of posterior and prior odds of
model selection probabilities: letting P(Mi |Xn) denote the posterior model selection probability
of the ith model, we have

log BFn(i, j) := log
P(Mi |Xn)/P(Mj |Xn)

pi/pj

= log
fi,n(Xn)

fj,n(Xn)
. (2.4)

The Bayes factor measures change in model selection odds between Mi and Mj when observ-
ing Xn. We relatively prefer Mi to Mj if log BFn(i, j) > 0, and vice versa. A selected model
via the Bayes factor minimizes the total error rates compounding false-positive and false-negative
probabilities, while, different from the AIC, it has no theoretical implication for predictive per-
formance of the selected model. For a more detailed account of the philosophy of the Bayes
factor, we refer to [29].

As was explained in [31], we have yet another interpretation based on the Kullback–Leibler
(KL) divergence between the true distribution gn and the mth quasi-marginal distribution fm,n:

KL(fm,n;gn) := −
∫ (

log
fm,n(x)

gn(x)

)
gn(x)μn(dx)

(2.5)

=
∫ {

loggn(x)
}
gn(x)μn(dx) −

∫ {
logfm,n(x)

}
gn(x)μn(dx);

recall that in the classical AIC methodology we instead look at KL{fm,n(·; θ̂m,n);gn} where
θ̂m,n = θ̂m,n(X̃n) denotes the MLE in the mth correctly specified model, constructed from an
i.i.d. copy X̃n of Xn. Based on (2.5), we choose a relatively optimal one among M1, . . . ,MM ,
the model index of which equals

argmin
m≤M

KL(fm,n;gn) = argmax
m≤M

∫ {
logfm,n(x)

}
gn(x)μn(dx).

Comparison of fi,n and fj,n is equivalent to looking at the sign of

KL(fj,n;gn) − KL(fi,n;gn) =
∫

log

(
fi,n(x)

fj,n(x)

)
gn(x)μn(dx)

(2.6)

= E

{
log

(
fi,n(Xn)

fj,n(Xn)

)}
.



Schwarz type model comparison for LAQ models 2283

As was noted in [31], it is important to notice that this reasoning remains valid even when any
of candidate models does not coincide with the true model. We also refer to [21] for another
Bayesian variable selection device based on the KL projection.

We will introduce a set of regularity conditions under which explicit statistics QBIC	,i
n for

each model Mi , i = 1, . . . ,M (see (3.7) below) satisfy the stochastic expansion

log BFn(i, j) = 1

2

(
QBIC	,j

n − QBIC	,i
n

)+ op(1).

In the classical treatment originating [35], the almost-sure expansion was relevant; see also Re-
mark 3.5.

2.3. Expected logarithmic Bayes factor

Comparing (2.6) with (2.4), we see that the expected Bayes factor is directly related to the KL
divergence difference:

E
{
log BFn(i, j)

}= KL(fj,n;gn) − KL(fi,n;gn).

For Bayesian model comparison in our model setting, we wish to estimate the quantity
E{log BFn(i, j)} for each pair (i, j). In Section 3.2, we will derive statistics QBIC	,1

n , . . . ,

QBIC	,M
n such that for each i, j ∈ {1, . . . ,M} with i �= j :

E

(∣∣∣∣log BFn(i, j) − 1

2

(
QBIC	,j

n − QBIC	,i
n

)∣∣∣∣
)

= o(1). (2.7)

In particular, it follows that the statistics (QBIC	,j
n − QBIC	,i

n )/2 serves as an asymptotically
unbiased estimator of the expected Bayes factor:

E

(
E
{
log BFn(i, j)

}− 1

2

(
QBIC	,j

n − QBIC	,i
n

))= o(1),

or, of the raw (random) Bayes factor:

E

(
log BFn(i, j) − 1

2

(
QBIC	,j

n − QBIC	,i
n

))= o(1).

Obviously it suffices for (2.7) to show that

E
{∣∣QBIC	,i

n − (−2 logfi,n(Xn)
)∣∣}= o(1)

for each i (see Theorem 3.15). We are thus led to the basic rule about an optimal model Mm0 in
the sense of approximate Bayesian model description:

m0 ∈ argmin
1≤i≤M

QBIC	,i
n .
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Remark 2.1. To perform a model comparison based on Bayesian prediction, we should replace
the marginal likelihood fm,n in (2.5) by a Bayesian predictive model and also the “gn dμn”-
integral by suitable one. We refer to [46] for an extensive review of Bayesian prediction, and also
to [37] for a study in this direction for the LAMN models.

Remark 2.2. While we here focus on the finite model comparison among M candidates, it would
be possible to consider a continuum of models, say (Mλ)∈� for some (possibly uncountable)
model-index set �. This is relevant when considering continuous fine-tuning in regularization
methods, for example, [3]. Although we do not treat such a setting here, it is readily expected
that our claims remain valid in an analogous form.

3. Quasi-Bayesian information criterion

We here focus on a single model Mm and consider the asymptotic expansion related to Hm,n.
From now on, we will omit the model index “m” from the notation, simply denoting the prior
density and the quasi-log likelihood by πn(θ) and Hn(θ) = Hn(Xn|θ), respectively. The param-
eter θ ∈ � ⊂R

p is graded into K parts, say

θ = (θ1, . . . , θK), θk ∈ R
pk .

Here we wrote p =∑K
k=1 pk . Let θ0 ∈ � be a constant, which will serve as the optimal parameter

defined in Section 5. We are thinking of situations where the contrast function Hn provides an
M-estimator θ̂n such that the An(θ0)(θ̂n − θ0) tends in distribution to a non-trivial asymptotic
distribution. The rate matrix An(θ0) is of the form (2.1) satisfying (2.2):

An(θ0) = diag
(
a1,n(θ0)Ip1, . . . , aK,n(θ0)IpK

)
,

where positive decreasing sequences ak,n(θ0) such that a−1
k,n(θ0)/a

−1
l,n (θ0) → 0 for k > l;

we will assume that An(θ̂n) − An(θ0)
P−→ 0 (see Theorem 3.7(ii)), so that log |An(θ̂n)| =∑K

k=1 pk logak,n(θ̂n); here and in what follows, with a slight abuse of notation we often write
|A| instead of det(A) for a square matrix A. The statistical random field associated with Hn is
given by

Zn(u) = Zn(u; θ0) := exp
{
Hn

(
θ0 + An(θ0)u

)−Hn(θ0)
}
, (3.1)

which is defined on the admissible domain

Un(θ0) := {u ∈ R
p; θ0 + An(θ0)u ∈ �

}
.

The objective here is to deduce the asymptotic behavior of the marginal quasi-log likelihood
function

log

(∫
�

exp
{
Hn(θ)

}
πn(θ) dθ

)
,

and then derive an extension of the classical BIC.
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3.1. Stochastic expansion

We begin with the stochastic expansion of the marginal quasi-log likelihood function. The poly-
nomial type large deviation inequality (PLDI, [47]), mentioned in the introduction, is a powerful
tool for ensuring the Lq(P)-boundedness of scaled M- and Bayes estimators stemming from the
quasi-likelihood Hn. As seen below, the PLDI argument can be effectively used also to verify the
key Laplace-approximation type argument in a unified manner.

Write ∂θ = ∂/∂θ , and denote by θj the j th element of θ and by An,ii(θ0) the (i, i)th element
of An(θ0) (i.e., An,ii(θ0) = aj,n(θ0) for some j ∈ {1, . . . ,K}).

Assumption 3.1. Hn(θ) is of class C3(�) and satisfies the following conditions:

(i) 
n = 
n(θ0) := An(θ0)∂θHn(θ0) = Op(1);
(ii) �n = �n(θ0) := −An(θ0)∂

2
θHn(θ0)An(θ0) = �0 + op(1) where P(�0 > 0) = 1;

(iii) maxi,j,k∈{1,...,p} supθ |An,ii(θ0)An,jj (θ0)An,kk(θ0)∂θi ∂θj ∂θkH(θ)| = op(1).

Assumption 3.1 implicitly sets down the optimal value θ0; of course, as in the usual M-
estimation theory (e.g. [45], Chapter 5) it is possible to put more specific conditions in terms
of the uniform-in-θ limits of suitable scaled quasi-log likelihoods function, but we omit them.
The quadratic form �0 is the asymptotic quasi-Fisher information matrix, which may be random.
A truly random example is the volatility-parameter estimation of a continuous semimartingale
(see Section 6.2). In particular, Assumption 3.1 leads to the LAQ approximation of logZn:

sup
u∈A

∣∣∣∣logZn(u) −
(


n[u] − 1

2
�0[u,u]

)∣∣∣∣= op(1) (3.2)

for each compact set A ⊂R
p .

Assumption 3.2. The prior density πn satisfies the following:

(i) πn(θ0) > 0 for all n, and supn supθ πn(θ) < ∞;
(ii) sup|u|<M |πn(θ0 + An(θ0)u) − πn(θ0)| → 0 as n → ∞ for each M > 0.

Assumption 3.3. For any ε > 0 there exist M > 0 and N ∈ N such that

sup
n≥N

P

(∫
Un(θ0)∩{|u|≥M}

Zn(u) du > ε

)
< ε.

Thanks to Assumption 3.3, we can consider general LAQ models in a unified manner. Let us
mention some sufficient conditions for the key assumption Assumption 3.3. To this end, we need
to introduce further notation. Write

�n(θ) = −An(θ0)∂
2
θHn(θ)An(θ0),

and denote by λmin(A) the smallest eigenvalues of a given matrix A. We write θk = (θ1, . . . , θk)

and θk = (θk, . . . , θK), with θk,0 and θk,0 in a similar manner. Let u := (u1, . . . , uK) ∈ R
p1 ×
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· · · ×R
pK . The kth random field is defined by

Z
k
n(uk; θk−1, θk,0, θk+1) = exp

{
Hn

(
θk−1, θk,0 + ak,n(θ0)uk, θk+1

)−Hn(θk−1, θk,0, θk+1)
}
.

The random fields Z
k
n is designed to focus on the kth-graded parameters, when we have more

than one rate of convergence, that is, when K ≥ 2 (we neglect symbols with index K + 1 like
θK+1 and ones with index 0 like θ0).

Theorem 3.4. Let Assumption 3.1 hold. Then, Assumption 3.3 follows if at least one of the
following conditions holds:

(i) There exist constants L > 1 and CL > 0 such that

sup
n

P

(
sup

(uk,θk+1)∈{|uk |≥r}×∏K
j=k+1 �j

Z
k
n(uk; θk−1,0, θk,0, θk+1) ≥ e−r

)
≤ CL

rL
(3.3)

for r > 0 and k = 1, . . . ,K ;
(ii) We have

lim sup
δ→0

lim sup
n→∞

P

(
inf
θ∈�

λmin
(
�n(θ)

)
< δ
)

= 0. (3.4)

The proof of Theorem 3.4(i) can be found in [47], Theorem 6; what is important in the proof
is that, inside the probability, we are bounding the supremum of the random field from below
by the quickly decreasing “e−r” (see also Remark 3.6). The proof of Theorem 3.4(ii) is given in
Section 7.1; the condition (3.4) is a sort of global non-degeneracy condition of the asymptotic
information matrix. Since we are dealing with the integral-type functional, the non-degeneracy
condition may not be local in u.

Remark 3.5. As already mentioned in (3.2), Assumption 3.1 ensures the LAQ structure of the
random field Zn, so that, in the verification of Assumption 3.3 the uniform-in-θ asymptotic non-
degeneracy of the quasi-observed-information matrix �n(θ) plays a crucial role. In the literature,
among others: the original [35] considered genuinely Bayesian situation, where data was re-
garded as non-random quantities; [9] proved the key Laplace approximation for the marginal log-
likelihood under the assumption that the minimum eigenvalue of the observed information matrix
is almost surely bounded away from zero and infinity; [31] considered the quasi-likelihood esti-
mation in the generalized linear models where the observed information matrix is non-random.
When attempting to directly follow such routes, in general we would need to impose almost-sure
type condition instead of (3.4), such as the existence of δ > 0 for which

P

(
lim sup
n→∞

inf
θ∈�

λmin
(
�n(θ)

)
< δ
)

= 0.

Remark 3.6. For reference, let us mention the tail-probability estimate about the normalized
estimator

ûn := A−1
n (θ0)(θ̂n − θ0).
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We can consider the stepwise probability estimates of logZn(u) through successive applications
of the PLDI result [47]. Namely, the following statement holds for a constant L > 0: if there
exists a universal constant CL > 0 such that

sup
n

P

(
sup

(uk,θk+1)∈{|uk |≥r}×∏K
j=k+1 �j

Z
k
n(uk; θ̂ k−1, θk,0, θk+1) ≥ 1

)
≤ CL

rL
(3.5)

for all r > 0 and k = 1, . . . ,K , then ûn satisfies the estimate

sup
n

P
(|ûn| ≥ r

)≤ CL

rL
, r > 0, (3.6)

which implies the tightness of (ûn), hence in particular θ̂n
P−→ θ0. As in [47], Proposition 2, we

can derive (3.6) as follows: we have

P
(|ûn| ≥ r

)≤ K∑
k=1

P

(∣∣a−1
k,n(θ0)(θ̂k,n − θk,0)

∣∣≥ r

K

)
,

and each P(|a−1
k,n(θ0)(θ̂k,n − θk,0)| ≥ r

K
) can be bounded by

P

(
sup

r
K

≤|uk |

{
Hn

(
θ̂ k−1, θk,0 + ak,n(θ0)uk, θ̂ k+1

)−Hn(θ̂ k−1, θk,0, θ̂ k+1)
}≥ 0

)

≤ P

(
sup

(uk,θk+1)∈{ r
K

≤|uk |}×∏K
j=k+1 �j

Z
k
n(uk; θ̂ k−1, θk,0, θk+1) ≥ 1

)
≤ CL

rL
KL

for all n > 0 and r > 0. Sufficient conditions for the PLDI (3.3) and (3.5) to hold can be found
in [47], Theorem 2. The asymptotic mixed normality of ûn then follows from a functional weak
convergence of Zn on compact sets to a suitable exponential quadratic random field, which often
follows through a stable convergence in law of the random linear form 
n = An(θ0)∂θHn(θ0).

Now we are in position to state the stochastic expansion result.

Theorem 3.7. Suppose that Assumptions 3.1 to 3.3 are satisfied and that θ̂n
P−→ θ0.

(i) We have the asymptotic expansion

log

(∫
�

exp
{
Hn(θ)

}
πn(θ) dθ

)
= Hn(θ0) +

K∑
k=1

pk logak,n(θ0) − 1

2
log |�0|

+ p

2
log 2π + 1

2

∥∥�− 1
2

0 
n

∥∥2 + logπn(θ0) + op(1).
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(ii) If further logak,n(θ̂n) = logak,n(θ0) + op(1) and logπn(θ̂n) = logπn(θ0) + op(1), then

log

(∫
�

exp
{
Hn(θ)

}
πn(θ) dθ

)

=Hn(θ̂n) +
K∑

k=1

pk logak,n(θ̂n) + p

2
log 2π + logπn(θ̂n)

− 1

2
log
∣∣−An(θ̂n)∂

2
θHn(θ̂n)An(θ̂n)

∣∣+ op(1)

=Hn(θ̂n) + p

2
log 2π − 1

2
log
∣∣−∂2

θHn(θ̂n)
∣∣+ logπn(θ̂n) + op(1).

It follows from Theorem 3.7(ii) that the statistics

QBIC	
n := −2Hn(θ̂n) + log

∣∣−∂2
θHn(θ̂n)

∣∣− 2 logπn(θ̂n) − p log 2π (3.7)

is a consistent estimator of the marginal quasi-log likelihood function multiplied by “−2”. Then,
ignoring the Op(1) parts, we define the quasi-Bayesian information criterion (QBIC) by

QBICn = QBICn(Xn) := −2Hn(θ̂n) + log
∣∣−∂2

θHn(θ̂n)
∣∣. (3.8)

As long as πn is not so dominant and n is moderately large, using QBICn instead of QBIC	
n would

be enough in practice. We compute QBIC for each candidate model, say QBIC(1)
n , . . . ,QBIC(M)

n ,
and then define the best model Mm0 in the sense of approximate Bayesian model description:

{m0} = argmin
1≤m≤M

QBIC(m)
n ,

the uniqueness being implicitly assumed. In view of Assumption 3.1, we see that

QBICn = −2Hn(θ̂n) + 2
K∑

k=1

pk loga−1
k,n(θ̂n) + Op(1). (3.9)

Since the second term in the right-hand side diverges in probability, we could more simply define
QBIC to be the the sum of the first two terms in the right-hand side of (3.9). We may thus define
Schwarz’s BIC in our context by

BICn = −2Hn(θ̂n) + 2
K∑

k=1

pk loga−1
k,n(θ̂n). (3.10)

Note that in the classical case of single
√

n-scaling (3.10) reduces to the familiar form

BICn = −2Hn(θ̂n) + p logn. (3.11)
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The statistics QBICn thus provides us with a far-reaching extension of derivation machinery of
the classical BIC.

Although the original definition (3.8) has higher computational load than (3.10), it enables us
to incorporate a model-complexity bias correction taking the volume of observed information
into account. In particular, to reflect data information for dependent-data models, (3.8) would be
more suitable than (3.10) whose bias correction is only based on the rate of convergence.

Remark 3.8. Making use of the observed information matrix (3.8) for regularization has been
already mentioned in the literature; for example, [5,23], and [36] contain such statistics for some
variants of the AIC statistics. Further, it is worth mentioning that using the observed-information
is a right way for some non-stationary models (see [25]).

Remark 3.9. At the beginning, the prior model selection probabilities p1, . . . ,pM are to be set
in a subjective manner. As usual, using the QBIC of the candidate models we may estimate the
posterior model selection probabilities in the data-driven manner through the quantities

pm exp{−QBIC(m)
n /2}∑M

l=1 pl exp{−QBIC(l)
n /2}

, m = 1, . . . ,M,

or those with QBIC replaced by BIC, where QBIC(m)
n denotes the QBIC of the mth model.

Remark 3.10 (Variants of QBIC). In practice, we may conveniently consider several variants
of the QBIC (3.8). When �0 takes the form �0 = diag(�10, . . . ,�K0) with each �k0 ∈R

pk ⊗R
pk

being a.s. positive definite, we may slightly simplify the form of the QBIC as follows. We can
see that under Assumption 3.1,

−ak,n(θ0)al,n(θ0)∂θk
∂θl

Hn(θ̂n) = op(1), k �= l.

Taking logarithmic determinant of a positive definite matrix is continuous, the asymptotic expan-
sion in Theorem 3.7(ii) becomes

log

(∫
�

exp
{
Hn(θ)

}
πn(θ) dθ

)
=Hn(θ̂n) − 1

2

K∑
k=1

log
∣∣−∂2

θk
Hn(θ̂n)

∣∣+ Op(1),

resulting in the QBIC of the form

−2Hn(θ̂n) +
K∑

k=1

log
∣∣−∂2

θk
Hn(θ̂n)

∣∣. (3.12)

In particular, this is the case if A−1
n (θ0)(θ̂n − θ0) is asymptotically mixed normally distributed,

with a block diagonal asymptotic (random) covariance matrix �0 = diag(�10, . . . ,�K0) where
each �k0 ∈ R

pk ⊗R
pk is a.s. positive definite. We will deal with such an example in Section 4.2.
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We may also consider finite-sample manipulations of QBIC without breaking its asymptotic
behavior. For example, the problem caused by |−∂2

θHn(θ̂n)| ≤ 0 can be avoided by using

−2Hn(θ̂n) + I
{∣∣−∂2

θHn(θ̂n)
∣∣> 0

}
log
∣∣−∂2

θHn(θ̂n)
∣∣

+ I
{∣∣−∂2

θHn(θ̂n)
∣∣≤ 0

} K∑
k=1

pk log
(
a−2
k,n(θ̂k,n)

)

instead of (3.8); obviously, the difference between this quantity and QBICn is of op(1). Further,

we may use any �̂n such that �̂n
P−→ �0:

−2Hn(θ̂n) − 2 log
∣∣An(θ̂n)

∣∣+ log |�̂n|,

which would be convenient if �̂n is more likely to be stable than −An(θ̂n)∂
2
θHn(θ̂n)An(θ̂n); for

example, if we beforehand know the specific form of �0 = �0(θ), then it would be numerically
more stable to use �0(θ̂n) instead of −An(θ̂n)∂

2
θHn(θ̂n)An(θ̂n).

3.2. Convergence of the expected values

From the frequentist point of view where Xn is regarded as a random element, it is desirable
to verify the convergence of expected marginal quasi-log likelihood, which follows from the
asymptotic uniform integrability of the sequence{∣∣∣∣−2 log

(∫
�

exp
{
Hn(θ)

}
πn(θ) dθ

)
− QBIC	

n

∣∣∣∣
}

n

.

In particular, QBIC	
n is then an asymptotically unbiased estimator of the expected logarithmic

Bayes factor; see Section 2.3, in particular (2.7).
Let us recall the notation 
n = An(θ0)∂θHn(θ0) and �n(θ) = −An(θ0)∂

2
θHn(θ)An(θ0). We

replace Assumptions 3.1 to 3.3 as follows.

Assumption 3.11. The random function Hn is of class C3(�) a.s. and for every r > 0

sup
n

E

(
|
n|r + sup

θ

∣∣�n(θ)
∣∣r +

p∑
i=1

sup
θ

∣∣An(θ0)∂θi ∂2
θHn(θ)An(θ0)

∣∣r)< ∞.

Assumption 3.12. In addition to Assumption 3.2, we have 0 < infn,θ πn(θ) ≤ supn,θ πn(θ)< ∞.

Assumption 3.13. There exists an a.s. positive definite random matrix �0 such that �n(θ0)
P−→

�0, and for some q > 3p we have

lim sup
n

E

(
sup
θ

λ
−q

min

(
�n(θ)

))
< ∞.
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The moment bounds in Assumption 3.13 was studied in [10] and [11] for some time series
models, with a view toward prediction. The integrability in Assumption 3.13 is related to the key
index χ0 of [43] in case of volatility estimation of a continuous Itô process.

Under Assumptions 3.11 and 3.13, we have λ
−q

min(�n(θ0))
P−→ λ

−q

min(�0) by the continuous map-
ping theorem, and also λ−1

min(�0) ∈ Lq(P) as well as �0 ∈⋂r>0 Lr(P).
Finally, we impose the boundedness of moments of the normalized estimator; see Remark 3.6.

Assumption 3.14. supn E(|ûn|r ) < ∞ for some r > 3.

We can now state the L1(P)-converge result.

Theorem 3.15. If Assumptions 3.11 to 3.14 hold, then we have

lim
n→∞E

{∣∣∣∣−2 log

(∫
�

exp
{
Hn(θ)

}
πn(θ) dθ

)
− QBIC	

n

∣∣∣∣
}

= 0.

In particular, QBIC	
n is an asymptotically unbiased estimator of the logarithmic quasi-marginal

likelihood.

4. Gaussian quasi-likelihood

This section is devoted to the Gaussian quasi-likelihood.

4.1. General framework

A general setting for the Gaussian quasi-likelihood estimation is described as follows. Let Xn =
(Xn,j )

n
j=0 = (Xn,0, . . . ,Xn,n) be an array of random variables, where Xn,j ∈ R for brevity. Let

Fn,j := σ(Xn,k; k ≤ j) denote the σ -field representing the data information at stage j when the
total number of data is n. The Gaussian quasi-likelihood (in the univariate case) is constructed as
if the conditional distribution of Xn,j given past information Fn,j−1 is Gaussian, say

L(Xn,j |Xn,0, . . . ,Xn,j−1) ≈N
(
μn,j−1(θ), σn,j−1(θ)

)
,

where μn,j−1 and σn,j−1 are Fn,j−1-measurable (predictable) random function on �; typically,

μn,j−1(θ) = E(Xn,j |Fn,j−1), σn,j−1(θ) = var(Xn,j |Fn,j−1),

where the conditional expectation and variance are taken under the image measure of Xn associ-
ated with the parameter value θ . In what follows, we will suppress the subscript “n”.

Because the quasi-likelihood is given by

θ �→
n∑

j=1

log
1√

2πσ 2
j−1(θ)

exp

{
− 1

2σ 2
j−1(θ)

(
Xj − μj−1(θ)

)2}

= (const.) +
[
−1

2

n∑
j=1

{
logσ 2

j−1(θ) + (Xj − μj−1(θ))2

σ 2
j−1(θ)

}]
,
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we may define the Gaussian quasi-likelihood function by

Hn(θ) = −1

2

n∑
j=1

{
logσ 2

j−1(θ) + (Xj − μj−1(θ))2

σ 2
j−1(θ)

}
.

Then, supposing that Hn and its partial derivatives can be continuously extended to the boundary
∂�, we define the Gaussian QMLE (GQMLE) by any maximizer of Hn over �̄.

The Gaussian quasi-likelihood is designed to fit not full joint distribution but only conditional-
mean and conditional-covariance structures. The simplest case is the location-parameter esti-
mation by the sample mean in the i.i.d.-data setting, where σ 2

j−1(θ) ≡ 1 (set for brevity) and
μj−1(θ) = θ , namely the least-squares estimation without “full” specification of the underlying
population distribution. Although the GQMLE is not (possibly far from being) asymptotically
efficient when the model is misspecified and/or the conditional distribution is deviating from
being normal, the GQMLE quite often exhibits asymptotic (mixed-)normality under appropriate
conditions.

4.2. Ergodic diffusion process

Let Xn = (Xtj )
n
j=0 with tj = jhn, where hn is the discretization step and nhn = Tn and Xt is

a solution to the d-dimensional strictly stationary diffusion process defined by the stochastic
differential equation

dXt = a(Xt ) dt + b(Xt ) dwt , t ∈ [0, Tn].

Here a is an R
d -valued function defined on R

d , b is an R
d ⊗ R

d -valued function defined on
R

d , and wt is an d-dimensional standard Wiener process. We assume that Tn = nhn → ∞ and
nh2

n → 0 as n → ∞, and that for some positive constant ε0, nhn ≥ nε0 for every large n. Let us
consider the following stochastic differential equation as a statistical model Mm1,m2 :

dXt = am2(Xt , θm2) dt + bm1(Xt , θm1) dwt , t ∈ [0, Tn],X0 = x0, (4.1)

where am2 is an R
d -valued function defined on R

d × �m2 , bm1 is an R
d ⊗ R

d -valued function
defined on R

d ×�m1 and (m1,m2) ∈ {1, . . . ,M1}× {1, . . . ,M2}; namely, we consider M1 ×M2

models in total. In each model Mm1,m2 , the coefficients bm1 and am2 are assumed to be known
up to the finite-dimensional parameter θm1,m2 := (θm1, θm2) ∈ �m1 × �m2 ⊂ R

pm1 × R
pm2 . We

focus on the case of correctly specified parametric coefficients: we assume that for each m there
exists the true value (θm1,0, θm2,0) for which bm1(·, θm1,0) = b(·) and am2(·, θm2,0) = a(·).

Below, we omit the model index “m1” and “m2” from the notation. That is, the stochastic
differential equation (4.1) is expressed by

dXt = a(Xt , θ2) dt + b(Xt , θ1) dwt , t ∈ [0, Tn],X0 = x0.
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Let B(x, θ1) := b(x, θ1)b
′(x, θ1) and 
jX := Xtj − Xtj−1 . We consider the quasi-likelihood

function based on the small-time Gaussian approximation:

n∏
j=1

(2πhn)
− d

2
∣∣B(Xtj−1, θ1)

∣∣− 1
2 exp

{
− 1

2hn

B(Xtj−1, θ1)
−1[(
jX − hna(Xtj−1, θ2)

)⊗2]}
,

where x⊗2 := xx′. Then, up to an additive constant common to all the candidate models, the
quasi-log likelihood function is given by

Hn(θ) = −1

2

n∑
j=1

{
log
∣∣B(Xtj−1, θ1)

∣∣+ 1

hn

B(Xtj−1, θ1)
−1[(
jX − hna(Xtj−1, θ2)

)⊗2]}
.

We set An = An(θ0) := diag( 1√
n
Ip1,

1√
nhn

Ip2) for the rate matrix.
We assume the following conditions ([47], Section 6):

Assumption 4.1. (i) For some constant C,

sup
θ2∈�2

∣∣∂i
θ2

a(x, θ2)
∣∣ ≤ C

(
1 + |x|)C (0 ≤ i ≤ 4),

sup
θ1∈�1

∣∣∂j
x ∂i

θ1
b(x, θ1)

∣∣ ≤ C
(
1 + |x|)C (0 ≤ i ≤ 4,0 ≤ j ≤ 2).

(ii) inf|u|=1 inf(x,θ1) B(x, θ1)[u,u] > 0.
(iii) There exists a constant C such that for every x1, x2 ∈R

p ,

sup
θ2∈�2

∣∣a(x1, θ2) − a(x2, θ2)
∣∣+ sup

θ1∈�1

∣∣b(x1, θ1) − b(x2, θ1)
∣∣≤ C|x1 − x2|.

(iv) X0 ∈⋂p>0 Lp(P).

Assumption 4.2. For some constant a > 0,

sup
t∈R+

sup
A∈σ [Xr ;r≤t]

B∈σ [Xr ;r≥t+h]

∣∣P(A ∩ B) − P(A)P(B)
∣∣≤ a−1e−ah (h > 0).

Assumption 4.2 ensures the ergodicity: there exists a unique invariant probability measure
ν = νθ0 of Xt such that

1

T

∫ T

0
g(Xt ) dt

P−→
∫
Rd

g(x)ν(dx), T → ∞,

for any measurable function g of at most polynomial growth.
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Assumption 4.3. There exists a positive constant χ > 0 such that Y1,0(θ1) ≤ −χ |θ1 − θ1,0|2 for
all θ1 ∈ �1, where

Y1,0(θ1) = −1

2

∫
Rd

{
tr
(
B(x, θ1)

−1B(x, θ1,0) − Ip

)+ log
|B(x, θ1)|
|B(x, θ1,0)|

}
ν(dx).

Assumption 4.4. There exists a positive constant χ ′ > 0 such that Y2,0(θ2) ≤ −χ ′|θ2 − θ2,0|2
for all θ2 ∈ �2, where

Y2,0(θ2) = −1

2

∫
Rd

B(x, θ1,0)
−1[(a(x, θ2) − a(x, θ2,0)

)⊗2]
ν(dx).

The second-order partial derivatives of Hn are given as follows: for u1 ∈ R
m1 and u2 ∈R

m2 ,

∂2
θ1
Hn(θ1, θ2)

[
u⊗2

1

] = −1

2

n∑
j=1

{
∂2
θ1

log
|B(Xtj−1 , θ1)|
|B(Xtj−1 , θ1,0)|

[
u⊗2

1

]

+ 1

hn

∂2
θ1

B(Xtj−1 , θ1)
−1[u⊗2

1 ,
(

jX − hna(Xtj−1, θ2)

)⊗2]}
,

∂2
θ2
Hn(θ1, θ2)

[
u⊗2

2

] = −
n∑

j=1

B(Xtj−1 , θ1)
−1

× {[∂θ2a(Xtj−1, θ2)[u2], ∂θ2hna(Xtj−1, θ2)[u2]
]

− [∂2
θ2

a(Xtj−1, θ2)
[
u⊗2

2

]
,
jX − hna(Xtj−1, θ2)

]}
,

∂θ1∂θ2Hn(θ1, θ2)[u1, u2] =
n∑

j=1

∂θ1B(Xtj−1, θ1)

× [u1, ∂θ2a(Xtj−1, θ2)[u2],
jX − hna(Xtj−1, θ2)
]
.

Then, we obtain the corresponding QBIC as in the following theorem.

Theorem 4.5. Suppose that Assumptions 4.1 to 4.4 are satisfied. Then, the assumptions in The-
orem 3.7 are satisfied and the corresponding QBIC is given by

QBICn =
n∑

j=1

{
log
∣∣B(Xtj−1 , θ̂1,n)

∣∣+ 1

hn

B(Xtj−1, θ̂1,n)
−1[(
jX − hna(Xtj−1, θ̂2,n)

)⊗2]}

+ log

∣∣∣∣−
(

∂2
θ1
Hn(θ̂n) ∂θ1∂θ2Hn(θ̂n)

∂θ1∂θ2Hn(θ̂n) ∂2
θ2
Hn(θ̂n)

)∣∣∣∣.
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In the present case of ergodic diffusion process, the convergence in probability

1√
n2hn

∂θ1∂θ2Hn(θ̂n)
P−→ 0 (n → ∞) (4.2)

is satisfied, so that

log
∣∣−An∂

2
θHn(θ̂n)An

∣∣ = log

∣∣∣∣∣∣∣∣
−1

n
∂2
θ1
Hn(θ̂n) − 1√

n2hn

∂θ1∂θ2Hn(θ̂n)

− 1√
n2hn

∂θ1∂θ2Hn(θ̂n)
′ − 1

nhn

∂2
θ2
Hn(θ̂n)

∣∣∣∣∣∣∣∣

= log

∣∣∣∣∣∣∣
−1

n
∂2
θ1
Hn(θ̂n) 0

0 − 1

nhn

∂2
θ2
Hn(θ̂n)

∣∣∣∣∣∣∣+ op(1)

= log
∣∣An diag

(−∂2
θ1
Hn(θ̂n),−∂2

θ2
Hn(θ̂n)

)
An

∣∣+ op(1).

In the asymptotic framework, statistics Ŝn such that Ŝn is easier to compute and that Ŝn =
QBICn +Op(1) may be used as a variant of QBICn; recall (3.8) and (3.9), and also Remark 3.10.

Theorem 4.6. Assume that Assumptions 4.1 to 4.4 hold, then the difference between the statistics

n∑
j=1

{
log
∣∣B(Xtj−1 , θ̂1,n)

∣∣+ 1

hn

B(Xtj−1, θ̂1,n)
−1[(
jX − hna(Xtj−1, θ̂2,n)

)⊗2]}

+ log
∣∣−∂2

θ1
Hn(θ̂n)

∣∣+ log
∣∣−∂2

θ2
Hn(θ̂n)

∣∣
and the QBICn given in Theorem 4.5 is op(1).

The BIC corresponding to (3.10) takes the form

n∑
j=1

{
log
∣∣B(Xtj−1, θ̂1,n)

∣∣+ 1

hn

B(Xtj−1, θ̂1,n)
−1[(
jX − hna(Xtj−1, θ̂2,n)

)⊗2]}

+ p1 logn + p2 log(nhn)

=
n∑

j=1

{
log
∣∣B(Xtj−1 , θ̂1,n)

∣∣+ 1

hn

B(Xtj−1 , θ̂1,n)
−1[(
jX − hna(Xtj−1, θ̂2,n)

)⊗2]}

+ p logn + p2 loghn,

clarifying that the high frequency of data indeed has a significant impact through the term
“p2 loghn” (diverging to −∞): this point is quite important since one might wrongly set BIC-
correction term to be “p logn”.
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Remark 4.7. It follows from [24] that we have

(√
n(θ̂1,n − θ1,0),

√
nhn(θ̂2,n − θ2,0)

) L−→ Np

(
0,diag

(
�1,0(θ1,0)

−1,�2,0(θ1,0, θ2,0)
−1)),

where

�1,0(θ1,0)
[
u⊗2

1

] = 1

2

∫
tr
{
B(x, θ1,0)

−1(∂θ1B(x, θ1,0)
)

× B(x, θ1,0)
−1(∂θ1B(x, θ1,0)

)[
u⊗2

1

]}
ν(dx),

�2,0(θ1,0, θ2,0)
[
u⊗2

2

] =
∫

B(x, θ1,0)
−1[∂θ2a(x, θ2,0)[u2], ∂θ2a(x, θ2,0)[u2]

]
ν(dx)

for u1 ∈ R
m1 , u2 ∈ R

m2 . We know from [20] that this GQMLE is asymptotically efficient in the
sense of Hajék–Le Cam.

Remark 4.8 (Partially convex example). Consider the following class of univariate stochastic
differential equations:

dXt =
(

p2∑
k=1

θ2,kak(Xt )

)
dt + exp

(
1

2

p1∑
�=1

θ1,�b�(Xt )

)
dwt ,

where ak and bl are known functions. Write θ1 = (θ1,1, . . . , θ1,p1)
′, θ2 = (θ2,1, . . . , θ2,p2)

′,
a(x) = (a1(x), . . . , ap2(x))′, and b(x) = (b1(x), . . . , bp1(x))′. Then the quasi-likelihood func-
tion is given by

Hn(θ1, θ2) = −1

2

n∑
j=1

{
θ ′

1b(Xtj−1) + 1

hn

(

jX − hna(Xtj−1)

′θ2
)2 exp

{−b(Xtj−1)
′θ1
}}

.

The corresponding QBIC of Theorem 4.6 is given by

QBICn = −2Hn(θ̂1,n, θ̂2,n) + log

∣∣∣∣∣hn

n∑
j=1

exp
{−θ̂ ′

1,nb(Xtj−1)
}
a⊗2(Xtj−1)

∣∣∣∣∣
+ log

∣∣∣∣∣12
n∑

j=1

1

hn

exp
{−θ̂ ′

1,nb(Xtj−1)
}(


jX − hnθ̂
′
2,na(Xtj−1)

)2
b⊗2(Xtj−1)

∣∣∣∣∣.
Several adaptive-estimation methodologies for general parametric ergodic diffusions have been
developed in the literature; see [22] and [42] as well as the references therein. We here remark
that, under mild conditions on the functions a and b, the optimization may be made even simpler
and more efficient by using an adaptive estimation strategy. This is because of the convexity of
each of the random functions to be optimized: specifically, we first get an estimate θ̂1,n of θ1 as
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an minimizer of the convex random function

θ1 �→
n∑

j=1

(
θ ′

1b(Xtj−1) + 1

hn

(
jX)2 exp
{−θ ′

1b(Xtj−1)
})

(regarding a(x) ≡ 0 in the original Hn(θ1, θ2)). Second, we get an estimate θ̂2,n by the explicit
minima of the convex random function

θ2 �→ −2Hn(θ̂1,n, θ2) =
n∑

j=1

1

hn

(

jX − hnθ

′
2a(Xtj−1)

)2 exp
{−θ̂ ′

1,nb(Xtj−1)
}
.

This framework naturally provides us with an adaptive model selection procedure. See Sec-
tion 5.2.1 for details.

4.3. Volatility-parameter estimation for continuous semimartingales

In this section, we deal with the stochastic volatility-regression model [19,43]:

dYt = bt dt + σ(Xt , θ) dwt , t ∈ [0, T ],
where w is an r-dimensional standard Wiener process, b and X are progressively measurable
processes with values in R

m and R
d , respectively, σ is an R

m ⊗ R
r -valued function defined

on R
d × � with � ∈ R

p . A data set consists of discrete observations Xn = (Xtj , Ytj )
n
j=0 with

tj = jhn, where hn = T/n with T fixed. The process b is completely unobservable and unknown.
All processes are defined on a filtered probability space B := (�,F, (Ft )t≤T ,P ).

Let S(x, θ) := σ(x, θ)σ (x, θ)′ and 
jY := Yj − Yj−1. Then the quasi-likelihood function is
given by

Hn(θ) = −1

2

n∑
j=1

{
log
∣∣S(Xtj−1, θ)

∣∣+ 1

hn

S(Xtj−1, θ)−1[(
jY )⊗2]}.

Under appropriate conditions, the asymptotic distribution of A−1
n (θ0)(θ̂n − θ0) = √

n(θ̂n − θ0) is
mixed normal, that is,

√
n(θ̂n − θ0)

L−→ �
−1/2
θ Z,

where �θ is a symmetric p × p-matrix which is a.s. positive definite, and Z is a p-variate
standard-normal random variable which is defined on an extension of B and is independent of F :
see [19] and [43] for details.

The QBIC is computed as

QBICn =
n∑

j=1

{
log
∣∣S(Xtj−1, θ̂n)

∣∣+ 1

hn

S−1(Xtj−1, θ̂n)
[
(
jY )⊗2]}

+ log

∣∣∣∣∣12
n∑

j=1

{
∂2
θ log

∣∣S(Xtj−1, θ̂n)
∣∣+ 1

hn

∂2
θ

(
S−1)(Xtj−1, θ̂n)

[
(
jY )⊗2]}∣∣∣∣∣.
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Let us consider the conditions for the QBIC to be valid, when d = p and m = r = 1 with
σ(x, θ) = exp(x′θ/2). The quasi-likelihood function is then given by

Hn(θ) = −1

2

n∑
j=1

{
X′

tj−1
θ + 1

hn

(
jY )2 exp
(−X′

tj−1
θ
)}

, (4.3)

with −∂2
θHn(θ) = 1

2

∑n
j=1

(
j Y )2

hn
exp(−X′

tj−1
θ)Xtj−1X

′
tj−1

≥ 0 a.s.

Assumption 4.9. (i) supω∈� supt≤T |Xt | < ∞.
(ii) ∀q > 0, ∃C > 0, ∀s, t ∈ [0, T ], E(|Xt − Xs |q) ≤ C|t − s|q/2.
(iii) ∀q > 0, sup0≤t≤T E(|bt |q) < ∞.

Assumption 4.10. ∀L > 0, ∃CL > 0, ∀r > 0, P{λmin(
∫ T

0 XtX
′
t dt) ≤ 1

r
} ≤ CL

rL .

It will be seen that Assumptions 4.9 and 4.10 ensure Assumption 3.1 and inequality (3.3):

Theorem 4.11. Let Assumptions 4.9 and 4.10 hold. Then, the assumptions in Theorem 3.7 are
satisfied and the corresponding QBIC is given by

QBICn =
n∑

j=1

{
X′

tj−1
θ̂n + 1

hn

(
jY )2 exp
(−X′

tj−1
θ̂n

)}

+ log

∣∣∣∣∣ 1

2hn

n∑
j=1

(
jY )2 exp
(−X′

tj−1
θ̂n

)
Xtj−1X

′
tj−1

∣∣∣∣∣.

5. Model selection consistency

As long as concerned with good prediction performance, model selection consistency itself does
not matter in an essential way. Given a set of models, it does when attempting to find the one
“closest” (in the sense of KL divergence) to the true data-generating model structure itself as
much as possible. For example, estimation of daily integrated volatility in econometrics would be
the case, for econometricians usually builds up daily-volatility prediction model through a time
series model such as, among others, ARFIMA models; an underlying continuous-time dynamics
and a daily-volatility time series are separately modeled. This section is devoted to studying
the validity of model selection consistency in our general setting. In particular, we propose an
adaptive (stepwise) model selection strategy when we have more than one scaling rate. We start
with a single-norming case, and then, before moving on to the multi-scaling case, we look at the
case of ergodic diffusions since it well illustrates the proposed method.



Schwarz type model comparison for LAQ models 2299

5.1. Single-scaling case

We first consider cases where

an = am,k,n(θ0) → 0

for each m ∈ {1, . . . ,M} and k ∈ {1, . . . ,Km}. Suppose that there exists a random function Hm,0

such that

a2
nHm,n(θm)

P−→ Hm,0(θm) (5.1)

uniformly in θm ∈ �̄m as n → ∞ (m = 1, . . . ,M). Moreover, we assume that the optimal param-
eter θm,0 ∈ �m in the model Mm is the unique maximizer of Hm,0:

{θm,0} = argmax
θm∈�m

Hm,0(θm) a.s.

If m0 satisfies

{m0} = argmin
m∈M

dim(�m),

where M = argmax1≤m≤M Hm,0(θm,0), we say that Mm0 is the optimal model. That is, the opti-
mal model is, if exists, an element of the optimal model set M which has the smallest dimension.

Let �i ⊂R
pi and �j ⊂R

pj be the parameter space associated with Mi and Mj , respectively.
We say that �i is nested in �j when pi < pj and there exist a matrix F ∈ R

pj ×pi with F ′F =
Ipi×pi

and a constant c ∈ R
pj such that Hi,n(θi) = Hj,n(Fθi + c) for all θi ∈ �i . That is, when

�i is nested in �j , any model given by a parameter in �i can also be generated by a parameter

in �j , so that Mj includes Mi . Denote by QBIC(m)
n the QBIC in Mm.

Theorem 5.1. Assume that (5.1) is satisfied and that Mm0 is the optimal model. Let m ∈
{1, . . . ,M} \ {m0}, and let Assumptions 3.1 to 3.3 hold, and suppose that either

(i) �m0 is nested in �m, or
(ii) Hm,0(θm) �=Hm0,0(θm0,0) a.s. for any θm ∈ �m.

Then we have

lim
n→∞P

(
QBIC(m0)

n − QBIC(m)
n < 0

) = 1, (5.2)

lim
n→∞P

(
BIC(m0)

n − BIC(m)
n < 0

) = 1. (5.3)

This theorem indicates that the probability that QBIC and BIC choose the optimal model tends
to 1 as n → ∞.
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5.2. Multi-scaling case: Adaptive model comparison

For simplicity of exposition, we consider the two-scaling case, that is, K = 2. We propose a
multi-step model selection procedure, which seems natural and more effective especially when
an adaptive estimation procedure is possible in such a way that we can estimate a first component
θm1 without knowledge of a second one θm2 . That is to say, it should be possible to select an
optimal “partial” model structure associated with θm1 , with regarding θm2 as a nuisance element.

We suppose that the full model is “decomposed” into two parts, each consisting of M1 and M2
candidates, resulting in M1 ×M2 models in total. Write (Mm1,m2)m1≤M1;m2≤M2 for the set of all
the candidate models. We are given the “full” quasi-log likelihood function Hm1,m2,n(θm1, θm2).
Roughly speaking, we proceed as follows.

• First, introducing an auxiliary quasi-log likelihood which is only associated with the
first-component parameter θm1 and does not involve θm2 , we obtain an estimate θ̂m1,n

of θm1 . Then we compare the corresponding (Q)BICs to select a first-stage optimal in-
dex, say m∗

1,n ∈ {1, . . . ,M1}; note that this strategy reduces the model-candidate set from

{Hm1,m2,n(θm1, θm2)}m1,m2 to {Hm∗
1,n,m2,n(θ̂m∗

1,n,n, θm2)}m2 .
• Second, based on the “partly optimized” full quasi-log likelihoods Hm∗

1,n,1,n, . . . ,Hm∗
1,n,M2,n,

we find a second-stage optimal index m∗
2,n ∈ {1, . . . ,M2} through (Q)BIC again.

• Finally, we pick the model Mm∗
1,n,m∗

2,n
as our optimal model.

This adaptive procedure apparently reduces the computational cost (the number of comparison)
to much extent compared with the joint-(Q)BIC case, that is, from “O(M1 × M2)” to “O(M1 +
M2)”; needless to say, the amount of reduction becomes larger for K ≥ 3.

Remark 5.2. It is not essential in the above argument that the final step is based on the original
quasi-log likelihood Hm1,m2,n. What is essential for the model selection consistency is that at
each stage we have a suitable auxiliary quasi-likelihood function based on which we can estimate
a suitably separated optimal model. We here do not go into this direction.

To be specific, we here focus on the ergodic diffusion discussed in Section 4.2, and then briefly
mention the general case in Section 5.2.2.

5.2.1. Example: Ergodic diffusion

Here we consider the same setting as in Section 4.2, that is, the model Mm1,m2 is given by (4.1):

dXt = am2(Xt , θm2) dt + bm1(Xt , θm1) dwt , t ∈ [0, Tn],X0 = x0.

Let Bm1(x, θm1) := bm1(x, θm1)bm1(x, θm1)
′. Up to an additive constant term, the quasi-

likelihood function Hm1,m2,n is given by

Hm1,m2,n(θm1,m2) = −1

2

n∑
j=1

{
log
∣∣Bm1(Xtj−1, θm1)

∣∣
(5.4)

+ 1

hn

Bm1(Xtj−1, θm1)
−1[(
jX − hnam2(Xtj−1, θm2)

)⊗2]}
.
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Then,

1

n
Hm1,m2,n(θm1,m2)

P−→ −1

2

∫
Rd

[
tr
{
B(x)Bm1(x, θm1)

−1}+ log
∣∣Bm1(x, θm1)

∣∣]ν(dx)

=: H1
m1,0(θm1)

uniformly in θm1 , where B(x) := b(x)b(x)′. Now we define an optimal model in the present
setting: the situation is somewhat different from the single-scaling case because of the different
rates of convergence, and we here need to introduce “partial” optimality step by step. First, we
assume that optimal parameter θm1,0 and optimal model index m1,0 are a.s. uniquely determined,
that is,

{θm1,0} = argmax
θm1∈�m1

H
1
m1,0(θm1),

{m1,0} = argmin
m1∈M1

dim(�m1),

respectively, where M1 := argmax1≤m1≤M1
H

1
m1,0

(θm1,0). Furthermore, we have

1

nhn

{
Hm1,m2,n(θm1,m2) −Hm1,m2,n(θm1, θm2,0)

}
P−→ −1

2

∫
Rd

Bm1(x, θm1)
−1[(a(x) − am2(x, θm2)

)⊗2]
ν(dx) =: Hm1,m2,0(θm1,m2)

uniformly in θm1,m2 , and that the optimal parameter θm2,0 is the unique maximizer of Hm1,0,m2,0:

{θm2,0} = argmax
θm2 ∈�m2

Hm1,0,m2,0(θm1,0,0, θm2).

If m2,0 satisfies

{m2,0} = argmin
m2∈M2

dim(�m2),

where M2 := argmax1≤m2≤M2
Hm1,0,m2,0(θm1,0,0, θm2,0), we say that Mm1,0,m2,0 is the optimal

model. Note that bm1,0(·, θm1,0,0) = b(·) and am2,0(·, θm2,0,0) = a(·) since we are only considering
correctly specified models.

Let �i1 ×�i2 ⊂R
pi1 ×R

pi2 , �j1 ×�j2 ⊂R
pj1 ×R

pj2 be the parameter spaces associated with
Mi1,i2 and Mj1,j2 , respectively. We say that �i1 is nested in �j1 if pi1 < pj1 and there exists a
matrix F1 ∈ R

pj1×pi1 with F ′
1F1 = Ipi1 ×pi1

as well as a c1 ∈ R
pj1 such that Hi1,m2,n(θi1, θm2) =

Hj1,m2,n(F1θi1 + c1, θm2) for all θi1 ∈ �i1 and m2 ∈ {1, . . . ,M2}. It is defined in a similar manner
that �i2 is nested in �j2 .

First, we consider the joint QBIC of (3.12):

QBIC(m1,m2)
n = −2Hm1,m2,n(θ̂m1,m2,n)

+ log
∣∣−∂2

θm1
Hm1,m2,n(θ̂m1,m2,n)

∣∣+ log
∣∣−∂2

θm2
Hm1,m2,n(θ̂m1,m2,n)

∣∣.
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If (m∗
1,n,m

∗
2,n) = argmin(m1,m2)∈{1,...,M1}×{1,...,M2} QBIC(m1,m2)

n , we choose the model
Mm∗

1,n,m∗
2,n

, which we again call the optimal model, as the optimal model among the candidate

models. The details of QBIC(m1,m2)
n are given in Theorems 4.5 and 4.6. Likewise, we define

BIC(m1,m2)
n = −2Hm1,m2,n(θ̂m1,m2,n) + pm1 logn + pm2 logTn.

Theorem 5.3. Suppose that Assumptions 4.1 to 4.4 hold for the models Mm1,0,m2,0 and Mm1,m2

where Mm1,0,m2,0 is the optimal model, and at least one of m1 and m2 differs from m1,0 and m2,0,
respectively. Moreover, suppose that �m1,0 and �m2,0 are nested in �m1 and �m2 , respectively.
Then we have

lim
n→∞P

(
QBIC

(m1,0,m2,0)
n − QBIC(m1,m2)

n < 0
)= 1,

and the same statement with “QBIC” replaced by “BIC”.

Remark 5.4. Here we have derived the validity and the selection consistency of the (Q)BIC for
correctly specified (nested) ergodic diffusion process. Concerned with misspecified (non-nested)
ergodic diffusion processes, [41] proved that the asymptotic behavior of the GQMLE can be
essentially different; in that case, the tail-probability estimate for Assumption 3.3 has not yet
been established. We do not consider the misspecified case in this paper. Nevertheless, it is easily
expected that, as in [33], the tail-probability estimate can be deduced in a two-step manner by
applying [32], Theorem 3.5, twice, first for the diffusion part and then for the drift one.

Next, we turn to the two-step QBIC. In the present case, we apply the previous single-scaling
result twice for the single true data-generating model. First, we focus on the diffusion coefficient,
which we can estimate more quickly than the drift one. Under suitable conditions, QBIC(m1)

n and
BIC(m1)

n are given by

QBIC(m1)
n = −2H1

m1,n
(θ̂m1,n) + log

∣∣−∂2
θm1

H
1
m1,n

(θ̂m1,n)
∣∣,

BIC(m1)
n = −2H1

m1,n
(θ̂m1,n) + pm1 logn,

where H
1
m1,n

is defined by the joint quasi-likelihood (5.4) with am2 being ignored:

H
1
m1,n

(θm1,m2) = −1

2

n∑
j=1

{
log
∣∣Bm1(Xtj−1, θm1)

∣∣+ 1

hn

Bm1(Xtj−1, θm1)
−1[(
jX)⊗2]},

and where θ̂m1,n is the QMLE associated with H
1
m1,n

. Note that we can write

1

n
Hn(θ) = 1

n
H

1
n(θ1) + δ1

n(θ)

with supθ |δ1
n(θ)| P−→ 0. We proceed as follows.
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• First, assuming that �i1 is nested in �j1 , i.e. H1
i1,n

(θi1) =H
1
j1,n

(F1θi1 + c1), we set

{
m∗

1,n

}= argmin
1≤m1≤M1

QBIC(m1)
n .

• Next, we consider the stochastic differential equation

dXt = am2(Xt , θm2) dt + bm∗
1,n

(Xt , θ̂m∗
1,n,n) dwt . (5.5)

Assuming that {θ̂m2,n} = argmaxθm2 ∈�m2
Hm∗

1,n,m2,n(θ̂m∗
1,n,n, θm2) and that {m∗

2,n} =
argmin1≤m2≤M2

QBIC
(m2|m∗

1,n)

n , where

QBIC
(m2|m∗

1,n)

n := −2Hm∗
1,n,m2,n(θ̂m∗

1,n,n, θ̂m2,n)

+ log
∣∣−∂2

θm2
Hm∗

1,n,m2,n(θ̂m∗
1,n,n, θ̂m2,n)

∣∣,
we select the model Mm∗

1,n,m∗
2,n

as the final optimal model.

When we use BIC, the best model is selected by a similar procedure with

BIC
(m2|m∗

1,n)

n := −2Hm∗
1,n,m2,n(θ̂m∗

1,n
, θ̂m2,n) + pm2 logTn

used instead of QBIC
(m2|m∗

1,n)

n .
Joint (Q)BIC and two-step (Q)BIC may select different models for a fixed sample size, how-

ever, the model selection consistency property is asymptotically shared.

Theorem 5.5. Suppose that Assumptions 4.1 to 4.4 hold for the models Mm1,0,m2,0 and Mm1,m2

where Mm1,0,m2,0 is the optimal model and (m1,m2) ∈ ({1, . . . ,M1} \ {m1,0}) × ({1, . . . ,M2} \
{m2,0}), and that �m1,0 and �m2,0 are nested in �m1 and �m2 , respectively. Then we have

lim
n→∞P

(
QBIC

(m1,0)
n − QBIC(m1)

n < 0
) = 1,

lim
n→∞P

(
QBIC

(m2,0|m∗
1,n)

n − QBIC
(m2|m∗

1,n)

n < 0
) = 1,

and the same statements with “QBIC” replaced by “BIC”.

5.2.2. Remark on general case

Without essential change, we may follow the same scenario as in the previous section for general
LAQ models under the setting described in the beginning of this section: instead of the original
“full” quasi-likelihood Hn(θ), we solely look at some “auxiliary” random fields θ1 �→ H

1
n(θ1)

and θ2 �→ Hn(θ̂1,n, θ2) in this order, based on which we successively define the two-step QMLE
as θ̂1,n ∈ argmaxH1

n and θ̂2,n ∈ argmaxθ2
H

2
n(θ̂1,n, θ2). More specifically, we let Assumptions 3.1
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to 3.3 hold and further assume that there exist positive sequences ai,n(θ0) → 0 (i = 1,2) such
that a1,n(θ0)/a2,n(θ0) → 0 and random functions Y1

0(θ1) and Y
2
0(θ), for which:

1. a2
1,n(θ0)Hn(θ) = a2

1,n(θ0)H
1
n(θ1) + δ1

n(θ) where supθ |δ1
n(θ)| P−→ 0;

2. supθ1
|a1,n(θ0)

2{H1
n(θ1) −H

1
n(θ1,0)} −Y

1
0(θ1)| P−→ 0, where {θ1,0} = argmaxY1

0 a.s.;

3. supθ |a2,n(θ0)
2{Hn(θ)−Hn(θ1, θ2,0)}−Y

2
0(θ)| P−→ 0, where {θ2,0} = argmaxθ2

Y
2
0(θ1,0, θ2)

a.s.

Under these conditions, we may deduce the consistency θ̂n = (θ̂1,n, θ̂2,n)
P−→ θ0, which combined

with Assumption 3.1 gives the tightness A−1
n (θ0)(θ̂n − θ0) = Op(1); in this case, the LAQ struc-

ture (3.2) typically takes the form

sup
u=(u1,u2)∈A

∣∣∣∣logZn(u) −
(


1,n[u1] + 
2,n[u2] − 1

2

(
�1,0(θ1,0)[u1, u1] + �2,0(θ0)[u2, u2]

))∣∣∣∣
= op(1)

for each compact A ∈ R
p , with 
1 =: (
1,n,
2,n) and �0 =: diag{�1,0(θ1,0),�2,0(θ0)}. Then,

we can prove the model selection consistency in analogy with the proofs of Theorems 5.1, 5.3
and 5.5.

6. Simulation results

We here conduct a number of simulations to observe finite-sample performance of the (Q)BIC
proposed in this paper. While what to be looked at is quasi-Bayes factors for candidate models,
for conciseness we focus on the selection frequency as well as the estimation performance of
the quasi-maximum likelihood estimates. In Section 6.1, we use the R package yuima [6] for
generating data and estimating the parameter. We set the initial value in numerical optimization
to be random numbers drawn from uniform distributions U(θi,0 − 0.5, θi,0 + 0.5), 1 ≤ i ≤ p. All
the SDE coefficients considered here are of the partially convex type mentioned in Remark 4.8.
In the examples below, w denotes a one-dimensional standard Wiener process, and all the Monte
Carlo trials are based on 1000 independent sample paths.

6.1. Ergodic diffusion process

Suppose that we have a sample Xn = (Xtj )
n
j=0 with tj = jn−2/3 from the true model

dXt = −Xt dt + exp

{
1

2
(−2 cosXt + 1)

}
dwt , t ∈ [0, Tn],X0 = 1,

where Tn = n1/3. We consider the following as the diffusion part:

Diff 1 : exp

{
1

2
(θ11 cosXt + θ12 sinXt + θ13)

}
;
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Diff 2 : exp

{
1

2
(θ11 cosXt + θ12 sinXt)

}
; Diff 3 : exp

{
1

2
(θ11 cosXt + θ13)

}
;

Diff 4 : exp

{
1

2
(θ12 sinXt + θ13)

}
; Diff 5 : exp

{
1

2
θ11 cosXt

}
;

Diff 6 : exp

{
1

2
θ12 sinXt

}
; Diff7 : exp

{
1

2
θ13

}
,

and also the following for the drift one:

Drif 1 : θ21Xt + θ22; Drif 2 : θ21Xt ; Drif 3 : θ22.

Each candidate model is given through a combination of the diffusion and drift parts; for exam-
ple, in the case of Diff 1 and Drif 1, we consider the statistical model

dXt = (θ21Xt + θ22) dt + exp

{
1

2
(θ11 cosXt + θ12 sinXt + θ13)

}
dwt .

That is, the true model consists of Diff 3 and Drif 2.
We compare model selection frequency through QBIC, BIC, and the contrast-based informa-

tion criterion (CIC), which is an AIC-type criterion introduced by [38] under the rapidly in-
creasing experimental design nh2

n → 0 (see also [18] for CIC under a weaker sampling-design
condition nhq → 0 for some q ≥ 2). We simulate the number of the model selected by using
joint QBIC, joint BIC, two-step QBIC, two-step BIC, and CIC among the candidate models. The
simulations are done for n = 1000,3000, and 5000.

Tables 1 and 2 summarize the comparison results of the model selection frequencies; they
show quite similar tendencies, in particular, the frequencies that the true model defined by Diff 3
and Drif 2 is selected by QBIC and BIC become larger as n increases. Also observed is that BIC
often takes values between QBIC and CIC; in particular, QBIC chooses the full model consisting
of Diff 1 and Drif 1 more frequently than BIC. Moreover, joint (Q)BIC gets close to two-step
(Q)BIC as n increases.

It is worth mentioning that computation time of joint (Q)BIC was overall about twice of that
of two-step (Q)BIC. This superiority of the two-step (Q)BIC should become more significant for
higher-dimensional models.

6.2. Volatility-parameter estimation for continuous semimartingale

Let (Xtj , Ytj )
n
j=0 be a data set with tj = j/n and the number of data n. We consider a solution

to the stochastic regression model

dYt = exp

(
1

2
X′

t θ0

)
dwt = exp

{
1

2
(−2X2,t + 3X3,t )

}
dwt , t ∈ [0,1],
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Table 1. The number of models selected by joint QBIC, joint BIC and CIC in Section 6.1 over 1000
simulations for various n. The true model consists of Diff 3 and Drif 2

Criteria Diff 1 Diff 2 Diff 3∗ Diff 4 Diff 5 Diff 6 Diff 7

n = 1000

Drif 1 QBIC 7 8 109 1 15 0 1
BIC 0 20 105 1 49 0 2
fAIC 25 23 136 3 19 0 2

Drif 2∗ QBIC 19 17 741 0 76 0 1
BIC 1 22 523 0 248 0 1
fAIC 92 43 559 0 73 0 1

Drif 3 QBIC 0 0 5 0 0 0 0
BIC 0 0 28 0 0 0 0
fAIC 5 0 19 0 0 0 0

n = 3000

Drif 1 QBIC 1 2 102 0 0 0 0
BIC 0 2 126 0 10 0 0
fAIC 24 5 173 0 2 0 0

Drif 2∗ QBIC 12 4 867 0 12 0 0
BIC 1 4 786 0 63 0 0
fAIC 110 6 667 0 7 0 0

Drif 3 QBIC 0 0 0 0 0 0 0
BIC 0 0 8 0 0 0 0
fAIC 0 0 6 0 0 0 0

n = 5000

Drif 1 QBIC 1 0 80 0 0 0 0
BIC 0 0 113 0 3 0 0
fAIC 30 1 166 0 2 0 0

Drif 2∗ QBIC 16 0 900 0 3 0 0
BIC 1 0 863 0 20 0 0
fAIC 135 0 666 0 7 0 0

Drif 3 QBIC 0 0 0 0 0 0 0
BIC 0 0 8 0 0 0 0
fAIC 0 0 0 0 0 0 0

where Xt = (X1,t ,X2,t ,X3,t )
′ and the true parameter θ0 = (0,−2,3)′. We consider the following

models:

Model 1 : dYt = exp

{
1

2
(θ1X1,t + θ2X2,t + θ3X3,t )

}
dwt ;
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Table 2. The number of models selected by two-step QBIC and two-step BIC in Section 6.1 over 1000
simulations for various n. The true model consists of Diff 3 and Drif 2

Criteria Diff 1 Diff 2 Diff 3∗ Diff 4 Diff 5 Diff 6 Diff 7

n = 1000

Drif 1 QBIC 4 3 108 0 0 0 0
BIC 1 6 120 0 41 0 0

Drif 2∗ QBIC 19 10 798 0 45 0 0
BIC 3 16 588 0 199 0 0

Drif 3 QBIC 0 0 1 0 0 0 0
BIC 0 0 26 0 0 0 0

n = 3000

Drif 1 QBIC 6 0 77 0 0 0 0
BIC 0 3 111 0 3 0 0

Drif 2∗ QBIC 19 1 892 0 4 0 0
BIC 1 1 836 0 36 0 0

Drif 3 QBIC 0 0 1 0 0 0 0
BIC 0 0 9 0 0 0 0

n = 5000

Drif 1 QBIC 1 0 80 0 0 0 0
BIC 0 3 115 0 1 0 0

Drif 2∗ QBIC 14 0 904 0 1 0 0
BIC 2 0 864 0 18 0 0

Drif 3 QBIC 0 0 0 0 0 0 0
BIC 0 0 0 0 0 0 0

Model 2 : dYt = exp

{
1

2
(θ1X1,t + θ2X2,t )

}
dwt ;

Model 3 : dYt = exp

{
1

2
(θ1X1,t + θ3X3,t )

}
dwt ;

Model 4 : dYt = exp

{
1

2
(θ2X2,t + θ3X3,t )

}
dwt ; Model 5 : dYt = exp

{
θ1

2
X1,t

}
dwt ;

Model 6 : dYt = exp

{
θ2

2
X2,t

}
dwt ; Model 7 : dYt = exp

{
θ3

2
X3,t

}
dwt .

Then the true model is Model 4. Note that Models 2, 3, 5, 6, and 7 are misspecified models.
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For each model, an estimator is obtained from the quasi-likelihood (4.3). In the Model 1 (full
model), the statistics QBIC, BIC and formal AIC (fAIC) are given by

QBICn =
n∑

j=1

{
(θ̂1,nX1,tj−1 + θ̂2,nX2,tj−1 + θ̂3,nX3,tj−1)

+ n(
jY )2 exp(−θ̂1,nX1,tj−1 − θ̂2,nX2,tj−1 − θ̂3,nX3,tj−1)
}

+ log

∣∣∣∣∣n2
n∑

j=1

(
jY )2

× exp(−θ̂1,nX1,tj−1 − θ̂2,nX2,tj−1 − θ̂3,nX3,tj−1)Xtj−1X
′
tj−1

∣∣∣∣∣,

BICn =
n∑

j=1

{
(θ̂1,nX1,tj−1 + θ̂2,nX2,tj−1 + θ̂3,nX3,tj−1)

+ n(
jY )2 exp(−θ̂1,nX1,tj−1 − θ̂2,nX2,tj−1 − θ̂3,nX3,tj−1)
}+ 3 logn,

fAICn =
n∑

j=1

{
(θ̂1,nX1,tj−1 + θ̂2,nX2,tj−1 + θ̂3,nX3,tj−1)

+ n(
jY )2 exp(−θ̂1,nX1,tj−1 − θ̂2,nX2,tj−1 − θ̂3,nX3,tj−1)
}+ 3 × 2,

where θ̂n = (θ̂1,n, θ̂2,n, θ̂3,n) is the quasi-maximum likelihood estimator.

6.2.1. Non-random covariate process

First, we set

Xtj =
(

1, cos

(
2jπ

n

)
, sin

(
2jπ

n

))′
, j = 0,1, . . . , n.

Then the model is Gaussian. We readily get

∫ T

0
XtX

′
t dt =

∫ 1

0

⎛
⎝ 1 cos(2tπ) sin(2tπ)

cos(2tπ) cos2(2tπ) cos(2tπ) sin(2tπ)

sin(2tπ) cos(2tπ) sin(2tπ) sin2(2tπ)

⎞
⎠ dt

=
⎛
⎝1 0 0

0 1/2 0
0 0 1/2

⎞
⎠ ,

so that det(
∫ T

0 XtX
′
t dt) = 1

4 .
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Table 3. The number of models selected by QBIC, BIC and fAIC in Section 6.2.1 over 1000 simulations
for various n (1–7 express the model labels, and the true model is model 4)

n = 50 n = 100 n = 200

Criterion 1 2 3 4∗ 5 6 7 1 2 3 4∗ 5 6 7 1 2 3 4∗ 5 6 7

QBIC 74 0 0 925 0 0 0 57 0 0 943 0 0 0 37 0 0 963 0 0 0
BIC 67 0 0 933 0 0 0 39 0 0 961 0 0 0 25 0 0 975 0 0 0
fAIC 183 0 0 817 0 0 0 178 0 0 822 0 0 0 179 0 0 821 0 0 0

In Table 3, Model 4 is selected with high frequency as the best model for all cases. Note that
in this case θ̂n is approximately the MLE, so that fAIC is approximately the true AIC. fAIC
shows the tendency to choose a model larger than the true one even for large sample size, while
QBIC and BIC do the model selection consistency; these phenomena are common in the classi-
cal information criteria based on likelihood function and MLE. Recall that the model selection
inconsistency is not a defect as the AIC is not intended to estimate the true model consistently.

Table 4 summarizes the mean and the standard deviation of estimators in each model. In the
case of the correctly specified models, the estimators get closer to the true value.

Table 4. The mean and the standard deviation (s.d.) of the estimator θ̂1,n, θ̂2,n and θ̂3,n in Section 6.2.1 for
various n (1–7 express the models, and the true parameter θ0 = (0,−2,3))

n = 50 n = 100 n = 200

θ̂1,n θ̂2,n θ̂3,n θ̂1,n θ̂2,n θ̂3,n θ̂1,n θ̂2,n θ̂3,n

1 mean −0.0564 −1.8312 3.1129 −0.0218 −1.8972 3.0748 −0.0183 −1.9586 3.0299
s.d. 0.2086 0.2879 0.2978 0.1509 0.2006 0.2052 0.1026 0.1461 0.1442

2 mean 1.5872 −1.8314 – 1.6145 −1.8839 – 1.5834 −1.9602 –
s.d. 0.3579 0.4852 – 0.2497 0.3505 – 0.1750 0.2525 –

3 mean 0.6473 – 3.1168 0.7259 – 3.0660 0.7734 – 3.0328
s.d. 0.2829 – 0.3981 0.2054 – 0.2705 0.1486 – 0.1966

4∗ mean – −1.8312 3.1129 – −1.8972 3.0748 – −1.9586 3.0299
s.d. – 0.2879 0.2978 – 0.2006 0.2052 – 0.1461 0.1441

5 mean 0.4871 – – 0.5045 – – 0.4915 – –
s.d. 0.2858 – – 0.2866 – – 0.2948 – –

6 mean – −1.892 – – −1.916 – – −1.9726 –
s.d. – 0.3427 – – 0.2814 – – 0.2157 –

7 mean – – 3.0867 – – 3.0498 – – 3.0262
s.d. – – 0.3026 – – 0.2267 – – 0.1716
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6.2.2. Random covariate process

Next, we consider the following two cases:

(i–1) Xt = (X1,t ,X2,t ,X3,t )
′ = (1, cos(Bt ), sin(Bt ))

′;
(i–2) Xt = (X1,t ,X2,t ,X3,t )

′ = (10, cos(Bt ), sin(Bt ))
′,

where B is a one-dimensional standard Wiener process independent of w. For data generation,
we use the 3-dimensional stochastic differential equation for (X2,t ,X3,t , Yt )

d

⎛
⎝X2,t

X3,t

Yt

⎞
⎠= −1

2

⎛
⎝X2,t

X3,t

0

⎞
⎠ dt +

⎛
⎜⎜⎝

−X3,t 0
X2,t 0

0 exp

{
1

2
(−2X2,t + 3X3,t )

}
⎞
⎟⎟⎠ d

(
Bt

wt

)
.

Tables 5 and 7 summarize the comparison results of model selection frequency. In the case
of (i–1) (Table 5), the probability that a full model is chosen by QBIC seems to be too high
when the sample size is small. This phenomenon in QBIC would be caused by the problem
that |−∂2

θHn(θ̂n)| ≈ 0; as a matter of fact, we did observe that the values of the determinant in
simulations were so small. Nevertheless, judging from the whole Table 5, tendencies of QBIC,
BIC and fAIC for n → ∞ are overall the same as in Section 6.2.1.

In the case of (i–2) (Table 7), QBIC tends to perform better not only than fAIC but also than
BIC for all n; indeed, in this case we observed that the values of |−∂2

θHn(θ̂n)| were far from
zero. Moreover, the true model was selected by using QBIC with high probability even for small
sample size.

Tables 6 and 8 show that a tendency of the estimators for Model 1 and Model 4 is analogous to
the previous non-random case. As is easily expected from the result [41] concerning parametric
estimation of a diffusion with misspecified coefficients, we need to let Tn → ∞ in order to
consistently estimate optimal parameter values.

Table 5. The number of models selected by QBIC, BIC and fAIC in Section 6.2.2 (i–1) over 1000 simula-
tions for various n (1–7 express the models, and the true model is model 4)

Criterion 1 2 3 4∗ 5 6 7 1 2 3 4∗ 5 6 7 1 2 3 4∗ 5 6 7

n = 200 n = 500 n = 1000

QBIC 831 0 5 164 0 0 0 657 1 8 334 0 0 0 500 0 7 493 0 0 0
BIC 8 29 234 729 0 0 0 8 5 141 846 0 0 0 5 0 117 878 0 0 0
fAIC 75 24 224 677 0 0 0 107 4 132 757 0 0 0 129 0 105 766 0 0 0

n = 3000 n = 5000 n = 10 000

QBIC 250 0 7 743 0 0 0 217 0 8 775 0 0 0 123 0 3 874 0 0 0
BIC 0 0 43 957 0 0 0 4 0 40 956 0 0 0 4 0 8 988 0 0 0
fAIC 111 0 38 851 0 0 0 156 0 30 814 0 0 0 153 0 5 842 0 0 0
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Table 6. The mean and the standard deviation (s.d.) of the estimator θ̂1,n, θ̂2,n and θ̂3,n in Section 6.2.2
(i–1) for various n (1–7 express the models, and the true parameter θ0 = (0,−2,3))

θ̂1,n θ̂2,n θ̂3,n θ̂1,n θ̂2,n θ̂3,n θ̂1,n θ̂2,n θ̂3,n

n = 200 n = 500 n = 1000

1 mean −0.2910 −1.7237 2.9497 −0.0683 −1.9422 2.9842 −0.0458 −1.9548 2.9974
s.d. 2.2703 2.2300 0.8309 1.5636 1.5293 0.5462 1.0542 1.0335 0.3824

2 mean 0.9085 −2.7435 – 0.8747 −2.7212 – 0.8685 −2.7301 –
s.d. 6.4524 6.2657 – 6.3784 6.1702 – 6.2699 6.0750 –

3 mean −2.0247 – 2.9749 −2.0092 – 3.0041 −2.0528 – 2.9834
s.d. 0.5204 – 1.2907 0.5638 – 1.2907 0.3399 – 1.2396

4∗ mean – −2.0000 2.9724 – −1.9989 3.0037 – −1.9986 2.9890
s.d. – 0.1691 0.3137 – 0.1075 0.2044 – 0.0712 0.1384

5 mean −0.2429 – – −0.2132 – – −0.2409 – –
s.d. 0.4806 – – 0.4905 – – 0.4746 – –

6 mean – −1.8835 – – −1.8974 – – −1.9033 –
s.d. – 0.4777 – – 0.4701 – – 0.4763 –

7 mean – – 3.0079 – – 2.9923 – – 2.9776
s.d. – – 0.5366 – – 0.5401 – – 0.5385

n = 3000 n = 5000 n = 10 000

1 mean −0.0098 −1.9915 3.0000 −0.0432 −1.9569 2.9971 −0.0040 −1.9957 2.9964
s.d. 0.5700 0.5601 0.2043 0.4887 0.4802 0.1722 0.3244 0.3193 0.1145

2 mean 0.9311 −2.7877 – 0.7949 −2.6941 – 0.7585 −2.5841 –
s.d. 6.2734 6.0827 – 6.4740 6.2692 – 6.4844 6.3014 –

3 mean −2.0158 – 3.0173 −2.0390 – 2.9579 −2.0177 – 3.0653
s.d. 0.4537 – 1.2141 0.4679 – 1.2394 0.4491 – 1.2283

4∗ mean – −2.0002 2.9953 – −1.9986 2.9987 – −1.9999 2.9994
s.d. – 0.0433 0.0797 – 0.0335 0.0617 – 0.0220 0.0450

5 mean −0.2391 – – −0.2603 – – −0.2159 – –
s.d. 0.4794 – – 0.4765 – – 0.4806 – –

6 mean – −1.8916 – – −1.9019 – – −1.8775 –
s.d. – 0.4627 – – 0.4842 – – 0.4521 –

7 mean – – 2.9736 – – 3.0103 – – 2.9793
s.d. – – 0.5533 – – 0.5483 – – 0.5326

We also conducted similar simulations for the case where X is instead given by

Xt =
(

1,
1

1 + B2
t

,
Bt

1 + B2
t

)′
,

and quite similar tendencies were observed.
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Table 7. The number of models selected by QBIC, BIC and fAIC in Section 6.2.2 (i–2) over 1000 simula-
tions for various n (1–7 express the models, and the true model is model 4)

n = 200 n = 500 n = 1000

Criterion 1 2 3 4∗ 5 6 7 1 2 3 4∗ 5 6 7 1 2 3 4∗ 5 6 7

QBIC 78 1 1 920 0 0 0 38 0 7 954 1 0 0 27 1 3 969 0 0 0
BIC 6 42 245 703 4 0 0 7 5 161 826 1 0 0 4 1 122 873 0 0 0
fAIC 74 40 236 648 2 0 0 94 2 155 748 1 0 0 119 1 115 765 0 0 0

Remark 6.1. In each case of Section 6.2, we have not paid attention to Assumption 4.10, which
may not be so easy-to-verify; we refer to [43] for several general criterion for the non-degeneracy
of the statistical random fields in the present context. Let us mention almost sure lower bounds
of det(

∫ 1
0 XtX

′
t dt) for the models considered in Sections 6.2.2. Let X1,0 = a > 0 (either 1 or 10;

case of a = 0 is not relevant here). Then, because of the Schwarz inequality

det

(∫ 1

0
XtX

′
t dt

)
= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a2 a

∫ 1

0
X2,t dt a

∫ 1

0
X3,t dt

a

∫ 1

0
X2,t dt

∫ 1

0
X2

2,t dt

∫ 1

0
X2,tX3,t dt

a

∫ 1

0
X3,t dt

∫ 1

0
X2,tX3,t dt

∫ 1

0
X2

3,t dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Table 8. The mean and the standard deviation (s.d.) of the estimator θ̂1,n, θ̂2,n and θ̂3,n in Section 6.2.2
(i–2) for various n (1–7 express the models, and the true parameter θ0 = (0,−2,3))

n = 200 n = 500 n = 1000

θ̂1,n θ̂2,n θ̂3,n θ̂1,n θ̂2,n θ̂3,n θ̂1,n θ̂2,n θ̂3,n

1 mean −0.0242 −1.7665 2.9373 −0.0091 −1.9145 2.9985 −0.0080 −1.9306 2.9845
s.d. 0.2290 2.2493 0.8445 0.1366 1.3373 0.5130 0.1028 1.0048 0.3855

2 mean 0.0620 −2.5040 – 0.0870 −2.7296 – 0.1050 −2.8925 –
s.d. 0.6529 6.3498 – 0.6370 6.1847 – 0.6329 6.1223 –

3 mean −0.2047 – 2.9181 −0.2029 – 2.9897 −0.2048 – 3.0437
s.d. 0.0471 – 1.2826 0.0473 – 1.2787 0.0503 – 1.2950

4∗ mean – −1.9948 2.9628 – −1.9976 2.9963 – −2.0038 2.9883
s.d. – 0.1712 0.3275 – 0.1053 0.1918 – 0.0751 0.1424

5 mean −0.1029 – – −0.0946 – – −0.0871 – –
s.d. 0.1484 – – 0.1527 – – 0.1518 – –

6 mean – −1.9063 – – −1.8867 – – −1.8722 –
s.d. – 0.4801 – – 0.4622 – – 0.4716 –

7 mean – – 3.0147 – – 2.9964 – – 2.9648
s.d. – – 0.5319 – – 0.5530 – – 0.5440
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= a2
[{∫ 1

0

(
X2,t −

∫ 1

0
X2,t dt

)2

dt

}{∫ 1

0

(
X3,t −

∫ 1

0
X3,t dt

)2

dt

}

−
(∫ 1

0
X2,tX3,t dt −

∫ 1

0
X2,t dt

∫ 1

0
X3,t dt

)2]

≥ a2
[{∫ 1

0

(
X2,t −

∫ 1

0
X2,t dt

)(
X3,t −

∫ 1

0
X3,t dt

)
dt

}2

−
(∫ 1

0
X2,tX3,t dt −

∫ 1

0
X2,t dt

∫ 1

0
X3,t dt

)2]
= 0.

Hence, det(
∫ 1

0 XtX
′
t dt) = 0 holds if and only if at least one of the following conditions is satis-

fied:

(i) X2,t − ∫ 1
0 X2,t dt = 0 for all t ∈ [0,1];

(ii) X3,t − ∫ 1
0 X3,t dt = 0 for all t ∈ [0,1];

(iii) There exists a constant c �= 0, X2,t − ∫ 1
0 X2,t dt = c(X3,t − ∫ 1

0 X3,t dt) for all t ∈ [0,1].

6.3. Non-ergodic diffusion process

Let Xn = (Xtj )
n
j=0 be a data set with tj = j/n and the number of data n, sampled from a solution

to

dXt = exp

{
5 + 2Xt

2(1 + X2
t )

}
dwt , t ∈ [0,1],X0 = 0.

We consider the following models:

Model 1 : dXt = exp

{
θ1 + θ2Xt + θ3X

2
t

2(1 + X2
t )

}
dwt ;

Model 2 : dXt = exp

{
θ1 + θ2Xt

2(1 + X2
t )

}
dwt ; Model 3 : dXt = exp

{
θ1 + θ3X

2
t

2(1 + X2
t )

}
dwt ;

Model 4 : dXt = exp

{
θ2Xt + θ3X

2
t

2(1 + X2
t )

}
dwt ; Model 5 : dXt = exp

{
θ1

2(1 + X2
t )

}
dwt ;

Model 6 : dXt = exp

{
θ2Xt

2(1 + X2
t )

}
dwt ; Model 7 : dXt = exp

{
θ2X

2
t

2(1 + X2
t )

}
dwt .

Then the optimal model is Model 2, the true parameter being θ0 = (5,2,0). Table 9 shows that
Model 2 is chosen with high probability as the best model for all criteria, where QBIC tends to
take values between BIC and fAIC. As before, the larger the sample size becomes, the higher the
frequency that the true model is selected by QBIC and BIC become. In Table 10, the estimators
exhibit similar tendencies to Tables 6 and 8.
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Table 9. The number of models selected by QBIC, BIC and AIC in Section 6.3 over 1000 simulations for
various n (1–7 express the models, and the true model is Model 2)

n = 200 n = 500 n = 1000

Criterion 1 2∗ 3 4 5 6 7 1 2∗ 3 4 5 6 7 1 2∗ 3 4 5 6 7

QBIC 291 690 19 0 0 0 0 151 832 17 0 0 0 0 115 874 11 0 0 0 0
BIC 30 733 237 0 0 0 0 15 842 143 0 0 0 0 20 892 88 0 0 0 0
fAIC 130 642 228 0 0 0 0 135 728 137 0 0 0 0 151 767 82 0 0 0 0

Remark 6.2. We write Zt = ( 1
1+X2

t

, Xt

1+X2
t

,
X2

t

1+X2
t

)′. In a similar way to Remark 6.1, we can see

that

det

(∫ T

0
ZtZ

′
t dt

)

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∫ 1

0

1

(1 + X2
t )

2
dt

∫ 1

0

Xt

(1 + X2
t )

2
dt

∫ 1

0

X2
t

(1 + X2
t )

2
dt∫ 1

0

Xt

(1 + X2
t )

2
dt

∫ 1

0

X2
t

(1 + X2
t )

2
dt

∫ 1

0

X3
t

(1 + X2
t )

2
dt∫ 1

0

X2
t

(1 + X2
t )

2
dt

∫ 1

0

X3
t

(1 + X2
t )

2
dt

∫ 1

0

X4
t

(1 + X2
t )

2
dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Table 10. The mean and the standard deviation (s.d.) of the estimator θ̂1,n, θ̂2,n and θ̂3,n in Section 6.3 for
various n (1–7 express the models, and the true parameter θ0 = (5,2,0))

n = 200 n = 500 n = 1000

θ̂1,n θ̂2,n θ̂3,n θ̂1,n θ̂2,n θ̂3,n θ̂1,n θ̂2,n θ̂3,n

1 mean 4.7972 1.6082 0.0057 4.9333 1.7426 −0.0238 4.9679 1.8711 −0.0051
s.d. 0.8198 1.2508 0.5725 0.5754 0.8357 0.3637 0.4783 0.6970 0.2835

2∗ mean 4.9551 1.8910 – 5.0031 1.9385 – 5.0135 1.9713 –
s.d. 0.7156 0.4938 – 0.4686 0.3138 – 0.3416 0.2260 –

3 mean 4.7796 – −0.0972 4.8136 – −0.1076 4.8542 – −0.1369
s.d. 1.0889 – 0.7943 0.9700 – 0.7772 0.9593 – 0.7626

4 mean – −0.3651 1.1604 – −0.2268 1.4376 – 0.0324 1.2284
s.d. – 4.1514 2.8986 – 3.6764 2.7531 – 3.8005 2.6084

5 mean 4.9133 – – 4.9294 – – 4.9231 – –
s.d. 0.5360 – – 0.5259 – – 0.5477 – –

6 mean – 1.6946 – – 1.7188 – – 1.7393 –
s.d. – 0.4614 – – 0.4670 – – 0.4742 –

7 mean – – 0.4908 – – 0.4826 – – 0.4926
s.d. – – 0.2881 – – 0.2782 – – 0.2872
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=
(∫ 1

0

1

(1 + X2
t )

2
dt

)

×
[{∫ 1

0

1

(1 + X2
t )

2

(
Xt −

(∫ 1

0

1

(1 + X2
t )

2
dt

)−1 ∫ 1

0

Xt

(1 + X2
t )

2
dt

)2

dt

}

×
{∫ 1

0

1

(1 + X2
t )

2

(
X2

t −
(∫ 1

0

1

(1 + X2
t )

2
dt

)−1 ∫ 1

0

X2
t

(1 + X2
t )

2
dt

)2

dt

}

−
(∫ 1

0

X3
t

(1 + X2
t )

2
dt −

(∫ 1

0

1

(1 + X2
t )

2
dt

)−1 ∫ 1

0

Xt

(1 + X2
t )

2
dt

∫ 1

0

X2
t

(1 + X2
t )

2
dt

)2]

≥ 0,

with the last equality holding if and only if at least one of the following holds true for all t ∈
[0,1]:

(i) Xt − (
∫ 1

0
1

(1+X2
t )2 dt)−1

∫ 1
0

Xt

(1+X2
t )2 dt = 0;

(ii) X2
t − (

∫ 1
0

1
(1+X2

t )2 dt)−1
∫ 1

0
X2

t

(1+X2
t )2 dt = 0;

(iii) There exists a constant c �= 0 such that

Xt −
(∫ 1

0

1

(1 + X2
t )

2
dt

)−1 ∫ 1

0

Xt

(1 + X2
t )

2
dt

= c

{
X2

t −
(∫ 1

0

1

(1 + X2
t )

2
dt

)−1 ∫ 1

0

X2
t

(1 + X2
t )

2
dt

}
.

7. Proofs

Recall that Un(θ0) = {u ∈ R
p; θ0 + An(θ0)u ∈ �}. In what follows, we deal with the zero-

extended version of Zn and use the same notation: Zn vanishes outside Un(θ0), so that

∫
Rp\Un(θ0)

Zn(u) du = 0.

7.1. Proof of Theorem 3.4(ii)

By using the Taylor expansion, we obtain

Zn(u) = exp

(

n[u] − 1

2
�n(θ̃n)[u,u]

)
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for a random point θ̃n on the segment connecting θ0 and θ0 + An(θ0)u. Then, for any positive ε,
δ and M , we have

P

(∫
Un(θ0)∩{|u|≥M}

Zn(u) du > ε

)

≤ P

(∫
|u|≥M

Zn(u) du > ε; inf
θ∈�

λmin
(
�n(θ)

)
< δ

)

+ P

(∫
|u|≥M

Zn(u) du > ε; inf
θ∈�

λmin
(
�n(θ)

)≥ δ

)

≤ P

(
inf
θ∈�

λmin
(
�n(θ)

)
< δ
)

+ P

{∫
|u|≥M

exp

(

n[u] − δ

2
[u,u]

)
du > ε

}
.

Under (3.4), we can find δ and N ′ for which the first term in the rightmost side can be bounded
by ε/2 for n ≥ N ′. Given such a δ, making use of the tightness of (
n) we can take N ′′ and
M > 0 large enough to ensure

sup
n≥N ′′

P

{∫
|u|≥M

exp

(

n[u] − δ

2
[u,u]

)
du > ε

}
<

ε

2
.

Hence, we have supn≥N P(
∫
Un(θ0)∩{|u|≥M} Zn(u) du > ε) < ε for N := N ′ ∨ N ′′, completing the

proof.

7.2. Proof of Theorem 3.7

(i) By the change of variable θ = θ0 +An(θ0)u, the marginal quasi-log likelihood function equals

Hn(θ0) +
K∑

k=1

pk logak,n(θk,0) + log

(∫
Un(θ0)

Zn(u)πn

(
θ0 + An(θ0)u

)
du

)
.

Consequently,

log

(∫
�

exp
{
Hn(θ)

}
πn(θ) dθ

)
−
(
Hn(θ0) +

K∑
k=1

pk logak,n(θk,0) + log Q̄n

)

= log(Q̄n + ε̄n) − log Q̄n,

where

Q̄n = πn(θ0)

∫
Rp

exp

(

n[u] − 1

2
�0[u,u]

)
du,

ε̄n =
∫
Un(θ0)

Zn(u)
(
πn

(
θ0 + An(θ0)u

)− πn(θ0)
)
du

+ πn(θ0)

∫
Rp

{
Zn(u) − exp

(

n[u] − 1

2
�0[u,u]

)}
du.
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First, we note that

Q̄n = πn(θ0) exp

(
1

2

∥∥�− 1
2

0 
n

∥∥2
)∫

Rp

exp

(
−1

2
�0
[
u − �−1

0 
n,u − �−1
0 
n

])
du

= πn(θ0) exp

(
1

2

∥∥�− 1
2

0 
n

∥∥2
)

(2π)
p
2 |�0|− 1

2 ,

so that

log Q̄n = logπn(θ0) + 1

2

∥∥�− 1
2

0 
n

∥∥2 + p

2
log(2π) − 1

2
log |�0|.

Hence, it remains to show that | log(Q̄n + ε̄n) − log Q̄n| P−→ 0.
Observe that

|ε̄n| ≤
∫
Un(θ0)

Zn(u)
∣∣πn

(
θ0 + An(θ0)u

)− πn(θ0)
∣∣du

+ πn(θ0)

∫
Rp

∣∣∣∣Zn(u) − exp

(

n[u] − 1

2
�0[u,u]

)∣∣∣∣du.

Fix any ε > 0. Then, for each M > 0 we have

P

(∫
Un(θ0)

Zn(u)
∣∣πn

(
θ0 + An(θ0)u

)− πn(θ0)
∣∣du > ε

)

≤ P

(
(2M)p sup

|u|<M

∣∣πn

(
θ0 + An(θ0)u

)− πn(θ0)
∣∣ sup
|u|<M

Zn(u) >
ε

2

)
(7.1)

+ P

(
2 sup

θ

πn(θ)

∫
|u|≥M

Zn(u) du >
ε

2

)
.

Let rn(u) := 1
2 (�0 − �n)[u,u] + 1

6

∑p

i,j,k=1(∂θi ∂θj ∂θkHn(θ̃n))An,ii (θ0)An,jj (θ0)An,kk(θ0) ×
uiujuk for a point θ̃n between θ0 and θ0 + An(θ0)u. Then, under the assumptions we have

sup|u|<K0
|rn(u)| P−→ 0 for every K0 > 0. We may write

sup
|u|<M

Zn(u) = sup
|u|<M

exp

(

n[u] − 1

2
�0[u,u] + rn(u)

)

and this quantity equals Op(1), so that sup|u|<M |πn(θ0 + An(θ0)u) − πn(θ0)| sup|u|<M Zn(u) =
op(1) for each M > 0. Under Assumption 3.3, we can take a sufficiently large M to conclude
that

P

(∫
Un(θ0)

Zn(u)
∣∣πn

(
θ0 + An(θ0)u

)− πn(θ0)
∣∣du > ε

)
<

ε

2(2M)p
+ ε

4 supθ πn(θ)
� ε,
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where “an � bn” for positive sequences an and bn means that “supn(an/bn) ≤ C” for a universal

positive constant C. Then it follows that
∫
Un(θ0)

Zn(u)|πn(θ0 +An(θ0)u)−πn(θ0)|du
P−→ 0. Next,

for any δ > 0 and K > 0,

P

{∫
Rp

∣∣∣∣Zn(u) − exp

(

n[u] − 1

2
�0[u,u]

)∣∣∣∣du > δ

}

≤ P

{∫
|u|<K

∣∣∣∣Zn(u) − exp

(

n[u] − 1

2
�0[u,u]

)∣∣∣∣du >
δ

2

}
+ P

(∫
|u|≥K

Zn(u) du >
δ

4

)

+ P

{∫
|u|≥K

exp

(

n[u] − 1

2
�0[u,u]

)
du >

δ

4

}
.

We can pick K > 0 and N ′′ large enough to ensure

sup
n≥N ′′

P

(∫
|u|≥K

Zn(u) du >
δ

4

)
<

δ

4
, (7.2)

sup
n≥N ′′

P

{∫
|u|≥K

exp

(

n[u] − 1

2
�0[u,u]

)
du >

δ

4

}
<

δ

4
. (7.3)

Since 
n[u] − 1
2�0[u,u] ≤ 1

2
′
n�

−1
0 
n with equality holding if and only if u = �−1

0 
n, for the
same K > 0 as above we get

∫
|u|<K

∣∣∣∣Zn(u) − exp

(

n[u] − 1

2
�0[u,u]

)∣∣∣∣du

� sup
|u|<K

∣∣∣∣exp

(

n[u] − 1

2
�0[u,u]

){
exp
(
rn(u)

)− 1
}∣∣∣∣

(7.4)

≤ sup
|u|<K

∣∣exp
(
rn(u)

)− 1
∣∣ exp

(
1

2

′

n�
−1
0 
n

)

P−→ 0.

Because of (7.2) to (7.4) we have
∫
Rp |Zn(u) − exp(
n[u] − 1

2�0[u,u])|du
P−→ 0, hence ε̄n

P−→ 0
and it follows that

log(Q̄n + ε̄n) − log Q̄n = (log Q̄n + op(1)
)− log Q̄n = op(1),

establishing the claim (i).
(ii) By the consistency of θ̂n we may focus on the event {θ̂n ∈ �} (⊂ {∂θHn(θ̂n) = 0}). Then


n = −An(θ0)

∫ 1

0
∂2
θHn

(
θ̂n + s(θ0 − θ̂n)

)
dsAn(θ0)[ûn] = {�0 + op(1)

}[ûn],
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so that ûn = �−1
0 
n + op(1) = Op(1). Therefore,

Hn(θ0) = Hn(θ̂n) − 1

2
û′

n�0ûn + op(1)

= Hn(θ̂n) − 1

2

(
�−1

0 
n

)′
�0
(
�−1

0 
n

)+ op(1)

= Hn(θ̂n) − 1

2

∥∥�− 1
2

0 
n

∥∥2 + op(1),

which combined with the preceding result (i) and the fact −An(θ̂n)∂
2
θHn(θ̂n)An(θ̂n) = �0 +op(1)

establishes (ii).

Remark 7.1. Recall that the Bayes point estimator associated with a loss function L : �×� →
R is defined to be any statistics θ̃n(L) minimizing the random function

t �→
∫

�

L(t, θ)πn(θ |Xn) dθ,

where

πn(θ |Xn) := exp{Hn(θ)}πn(θ)∫
�

exp{Hn(θ)}πn(θ) dθ

denotes the quasi-posterior density of θ ; in particular, the quadratic loss L2(t, θ) := |t −θ |2 gives
rise to the posterior-mean:

θ̃n(L2) :=
∫
�

θ exp{Hn(θ)}πn(θ) dθ∫
�

exp{Hn(θ)}πn(θ) dθ
.

In the theoretical derivation of the QBIC, we made use of the fact that (at least with sufficiently
high probability) ∂θHn(θ̂n) = 0, which does not hold true if we use an integral-type Bayes point
estimator.

7.3. Proof of Theorem 3.15

Let

Fn := −2 log

(∫
�

exp
{
Hn(θ)

}
πn(θ) dθ

)
,

F ′
n := −2Hn(θ0) − 2

K∑
k=1

pk logak,n(θk,0) + log |�0| − p log 2π − ∥∥�− 1
2

0 
n

∥∥2 − 2 logπn(θ0).

We complete the proof by showing that E(|Fn −F ′
n|) → 0 and E(|F ′

n −QBIC	
n|) → 0 separately.
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Proof of E(|Fn − F ′
n|) → 0. Obviously Assumptions 3.11 and 3.13 imply Assumption 3.1,

hence Theorem 3.7(i) yields that Fn = F ′
n + op(1).

Now pick any κ ∈ (1, q/p) with q being the constant given in Assumption 3.13. To deduce
the claim, it suffices to show that lim supn E(|Fn − F ′

n|κ) < ∞. Then for some δ ∈ (0,1/κ),

E
(∣∣Fn − F ′

n

∣∣κ)
� 1 +E

(∣∣∣∣log

(∫
Un(θ0)

Zn(u) du

)∣∣∣∣
κ)

+E
(∣∣log |�0|

∣∣κ)+E
(∣∣�−1

0

[

⊗2

n

]∣∣κ)

� 1 +E

[{
− log

(∫
Un(θ0)

Zn(u) du

)}κ

;
∫
Un(θ0)

Zn(u) du ≤ 1

]

+E

[{
log

(∫
Un(θ0)

Zn(u) du

)}κ

;
∫
Un(θ0)

Zn(u) du > 1

]

+E
(
λ

−pκ

min (�0) + |�0|κ
)+E

(|
n|2κλ
−pκ

min (�0)
)

� 1 +E

{(∫
Un(θ0)

Zn(u) du

)−δκ

;
∫
Un(θ0)

Zn(u) du ≤ 1

}

+E

[{
log

(∫
Un(θ0)

exp

(

n[u] − 1

2
inf
θ∈�

λmin
(
�n(θ)

)[u,u]
)

du

)}κ

;
∫
Un(θ0)

Zn(u) du > 1

]
(7.5)

� 1 +E

{(∫
Un(θ0)

Zn(u) du

)−1}

+E

[{(
inf
θ∈�

λmin
(
�n(θ)

))−1[

⊗2

n

]+ log

(∫
Rp

exp

(
−1

2
inf
θ∈�

λmin
(
�n(θ)

)

×
[(

u −
(

inf
θ∈�

λmin
(
�n(θ)

))−1

n

)⊗2])
du

)}κ]

� 1 +E

[{(
inf
θ∈�

λmin
(
�n(θ)

))−1[

⊗2

n

]}κ +
∣∣∣log

(
inf
θ∈�

λmin
(
�n(θ)

))∣∣∣κ]

≤ 1 +E

[(
inf
θ∈�

λmin
(
�n(θ)

))−κ |
n|2κ

+
(

inf
θ∈�

λmin
(
�n(θ)

))κ +
(

inf
θ∈�

λmin
(
�n(θ)

))−κ]

≤ 1 +E

[(
sup
θ∈�

λ−κ
min

(
�n(θ)

))(|
n|2κ + 1
)+ sup

θ∈�

∣∣�n(θ)
∣∣κ]

� 1,
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where: in the fifth step, we applied [47], Lemma 2, for the second term; in the second step and
the sixth step, we made use of the inequality: for any s > 0, | logx| � x−s + xs for x > 0.

Proof of E(|F ′
n − QBIC	

n|) → 0. We have |F ′
n − QBIC	

n| � R1,n + R2,n + R3,n, where

R1,n :=
∣∣∣∣log

πn(θ̂n)

πn(θ0)

∣∣∣∣+ sup
θ

∣∣∂3
θHn(θ)

[
(θ̂n − θ0)

⊗3]∣∣+ ∣∣∂θHn(θ̂n)[θ̂n − θ0]
∣∣,

R2,n := ∣∣log
∣∣�n(θ̂n)

∣∣− log |�0|
∣∣,

R3,n := ∣∣�n(θ̂n)
[
û⊗2

n

]− �−1
0

[

⊗2

n

]∣∣.
We will show that E(Ri,n) → 0 for i = 1,2,3 separately.

First, we look at R1,n. The convergence πn(θ̂n)/πn(θ0)
P−→ 1 holds under Assumption 3.12:

indeed, for any ε > 0 and M > 0 we have P(|πn(θ̂n)/πn(θ0) − 1| > ε) ≤ supn P(|ûn| > M) +
P{(|ûn| ≤ M) ∩ (sup|u|≤M |πn(θ0 + An(θ0)u) − πn(θ0)| ≥ Cε)} for some constant C > 0, from
which the claim follows on letting M large enough and then n → ∞. Then,

lim
n

E

(∣∣∣∣log
πn(θ̂n)

πn(θ0)

∣∣∣∣
)

→ 0

by the bounded convergence theorem. We are assuming that (ûn)n is Lr(P)-bounded for some
r > 3 (Assumption 3.14), hence under the assumptions we can apply Hölder’s inequality to
deduce

E

(
sup
θ

∣∣∂3
θHn(θ)

[
(θ̂n − θ0)

⊗3]∣∣)

�
(

max
i≤p

An,ii (θ0)
)
E

(
sup
θ

∣∣An(θ0)∂
3
θHn(θ)An(θ0)

∣∣|ûn|3
)

� o(1)
{
E
(|ûn|r

)} 3
r = o(1)‖ûn‖3

r → 0.

Also, for any s > 1 small enough we have

E
(∣∣∂θHn(θ̂n)[θ̂n − θ0]

∣∣s) � E
(|
n|s |ûn|s

)+E

(
sup
θ

∣∣�n(θ)
∣∣s |ûn|2s

)

� ‖ûn‖s
r + ‖ûn‖2s

r � 1 + ‖ûn‖2s
r ,

thereby E(|∂θHn(θ̂n)[θ̂n − θ0]|) → 0, concluding that E(R1,n) → 0.

For handling E(R2,n), it suffices to observe that R2,n = | log(|�n(θ̂n)|/|�0|)| P−→ 0 and that for
any s′ ∈ (1, q/p),

E
(
R

s′
2,n

) ≤ E
(∣∣log

∣∣�n(θ̂n)
∣∣∣∣s′ + ∣∣log |�0|

∣∣s′)
� E

(
sup
θ∈�

λ
−ps′
min

(
�n(θ)

)+ sup
θ∈�

∣∣�n(θ)
∣∣s′ + λ

−ps′
min (�0) + |�0|s′)� 1.
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Here, in the second step, we used the same inequality as in the second step of (7.5).
To deduce E(R3,n) → 0, we note that R3,n = |{�0 + op(1)}[û⊗2

n ] − �−1
0 [{�0[ûn]}⊗2]| =

op(1), since ûn = �−1
0 
n + op(1) as was mentioned in the proof of Theorem 3.7(ii). The uni-

form integrability of (R3,n)n can be verified in a similar manner to the previous case. The proof
is complete.

7.4. Proof of Theorem 4.5

Under Assumptions 4.1 to 4.4, the argument in [47], Section 6, ensures the PLDI: for every L > 0
we can find a constant CL > 0 such that

P

(
sup

(u1,θ2)∈{r≤|u1|}×�2

Z
1
n(u1; θ1,0, θ2) ≥ e−r

)
+ P

(
sup

u2∈{r≤|u2|}
Z

2
n(u2; θ1,0, θ2,0) ≥ e−r

)
≤ CL

rL

for any n > 0 and r > 0. This implies that the inequality (3.3) holds (see Remark 3.6). Assump-
tion 3.1 readily follows by making use of the lemmas in [47], Section 6, hence we omit them (see
[15], Section 5.3, for some details).

7.5. Proof of Theorem 4.11

It is enough to check the conditions [H1] and [H2] of [43].
The condition [H1] is a regularity conditions concerning the processes X and b, and the non-

degeneracy of the diffusion-coefficient function S(x, θ). As a consequence of Assumption 4.9(i)
and the compactness of �, we get

inf
ω∈�,t≤T ,θ∈�

exp
(
X′

t θ
)
> 0.

Based on this inequality, it is straightforward to verify [H1].
The condition [H2] is the non-degeneracy of the random field in the limit: for every L > 0,

there exists CL > 0 such that

P
(
χ0 ≤ r−1)≤ CL

rL
, r > 0,

where

χ0 := inf
θ �=θ0

1

2T |θ − θ0|2
∫ T

0

{
X′

t (θ − θ0) + (exp
(
X′

t (θ0 − θ)
)− 1

)}
dt.

Since exp(x) = 1 + x + 1
2 exp(ξx)x2 for some ξ satisfying 0 < ξ < 1, letting x = X′

t (θ0 − θ) we
obtain

X′
t (θ − θ0) + {exp

(
X′

t (θ0 − θ)
)− 1

}
= 1

2
exp
(
ξX′

t (θ0 − θ)
)(

X′
t (θ0 − θ)

)2
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= 1

2
exp
(
ξX′

t (θ0 − θ)
)
(θ0 − θ)′XtX

′
t (θ0 − θ)

≥ 1

2
exp(−C0)(θ0 − θ)′XtX

′
t (θ0 − θ)

for some C0 > 0. Hence,

χ0 ≥ exp(−C0)

4T
inf

θ �=θ0

∫ T

0 (θ0 − θ)′XtX
′
t (θ0 − θ) dt

|θ − θ0|2 � λmin

(∫ T

0
XtX

′
t dt

)
,

so that P(χ0 ≤ r−1) ≤ P{λmin(
∫ T

0 XtX
′
t dt) ≤ r−1} � CLr−L. The proof is complete.

7.6. Proof of Theorem 5.1

We only prove (5.2) because (5.3) can be handled analogously. We basically follow Fasen and
Kimmig [16].

(i) Let �m0 be nested in �m (pm0 < pm). Define the map f : �m0 → �m by f (θm0) = Fθm0 +
c, where F and c satisfy that Hm0,n(θm0) =Hm,n(f (θm0)) for any θm0 ∈ �m0 . If f (θm0,0) �= θm,0,
then Hm0,0(θm0,0) = Hm,0(f (θm0,0)) < Hm,0(θm,0) and the assumption of the optimal model is
not satisfied. Hence, we have f (θm0,0) = θm,0.

By the Taylor expansion of Hm,n around θ̂m,n, we may write

Hm0,n(θ̂m0,n) = Hm,n

(
f (θ̂m0,n)

)
= Hm,n(θ̂m,n)

− 1

2

(
θ̂m,n − f (θ̂m0,n)

)′(−∂2
θm
Hm,n(θ̃m,n)

)(
θ̂m,n − f (θ̂m0,n)

)
,

where θ̃m,n
P−→ θm,0 as n → ∞. Also, f (θ̂m0,n) − θm,0 = f (θ̂m0,n) − f (θm0,0) = F(θ̂m0,n −

θm0,0). Since a−1
n (θ̂m,n − f (θ̂m0,n)) = a−1

n (θ̂m,n − θm,0) − Fa−1
n (θ̂m0,n − θm0,0) = Op(1),

�m0,n(θ̂m0,n) = Op(1) and �m,n(θ̂m,n) = Op(1), we have

P
(
QBIC(m0)

n − QBIC(m)
n < 0

)
= P

{(
θ̂m,n − f (θ̂m0,n)

)′(−∂2
θm
Hm,n(θ̃m,n)

)(
θ̂m,n − f (θ̂m0,n)

)
+ log det

(−∂2
θm0

Hm0,n(θ̂m0,n)
)− log det

(−∂2
θm
Hm,n(θ̂m,n)

)
< 0
}

= P
[{

a−1
n

(
θ̂m,n − f (θ̂m0,n)

)}′(−a2
n∂

2
θm
Hm,n(θ̃m,n)

){
a−1
n

(
θ̂m,n − f (θ̂m0,n)

)}
+ log det

(−a2
n∂

2
θm0

Hm0,n(θ̂m0,n)
)

− log det
(−a2

n∂
2
θm
Hm,n(θ̂m,n)

)
< pm loga−2

n − pm0 loga−2
n

]
= P

[{
a−1
n

(
θ̂m,n − f (θ̂m0,n)

)}′
�m,n(θ̃m,n)

{
a−1
n

(
θ̂m,n − f (θ̂m0,n)

)}



2324 S. Eguchi and H. Masuda

+ log det
(
�m0,n(θ̂m0,n)

)− log det
(
�m,n(θ̂m,n)

)
< (pm − pm0) loga−2

n

]
→ 1

as n → ∞.
(ii) Let Hm,0(θm) �= Hm0,0(θm0,0) a.s. for every θm ∈ �m. Because of (5.1) and the conver-

gences θ̂m0,n
P−→ θm0,0 and θ̂m,n

P−→ θm,0, we have

a2
nHm0,n(θ̂m0,n) = a2

nHm0,n(θm0,0) + op(1) =Hm0,0(θm0,0) + op(1),

a2
nHm,n(θ̂m,n) = a2

nHm,n(θm,0) + op(1) =Hm,0(θm,0) + op(1).

Since Hm0,0(θm0,0) >Hm,0(θm,0) a.s. and a2
n loga−2

n → 0,

P
(
QBIC(m0)

n − QBIC(m)
n < 0

)
= P

{−2Hm0,n(θ̂m0,n) + 2Hm,n(θ̂m,n) + log det
(−a2

n∂
2
θm0

Hm0,n(θ̂m0,n)
)

− log det
(−a2

n∂
2
θm
Hm,n(θ̂m,n)

)
< (pm − pm0) loga−2

n

}
= P

{
a2
n

(
Hm0,n(θ̂m0,n) −Hm,n(θ̂m,n)

)
> op(1)

}
= P

{
Hm0,0(θm0,0) −Hm,0(θm,0) > op(1)

}
= P

{
Hm0,0(θm0,0) −Hm,0(θm,0) > 0

}+ o(1)

→ 1

as n → ∞.

7.7. Proof of Theorem 5.3

If both m1 �= m1,0 and m2 �= m2,0 hold, then we have

P
(
QBIC

(m1,0,m2,0)
n − QBIC(m1,m2)

n ≥ 0
)

≤ P
(
QBIC

(m1,0,m2,0)
n − QBIC

(m1,0,m2)
n ≥ 0

)
(7.6)

+ P
(
QBIC

(m1,0,m2)
n − QBIC(m1,m2)

n ≥ 0
)
.

Applying the proof of Theorem 5.1(i) we see that the both terms in the right-hand side tends to
zero, hence the claim. The other cases are similar and simpler.

7.8. Proof of Theorem 5.5

As with Theorem 5.1(i), under assumptions of Theorem 5.5 we can deduce that

P
(
QBIC

(m1,0)
n − QBIC(m1)

n < 0
)→ 1, (7.7)
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which means that P(m∗
1,n = m1,0) → 1. This together with Theorem 5.1(i) then gives

P
(
QBIC

(m2,0|m∗
1,n)

n − QBIC
(m2|m∗

1,n)

n ≥ 0
)

= P
(
QBIC

(m2,0|m∗
1,n)

n − QBIC
(m2|m∗

1,n)

n ≥ 0,m∗
1,n = m1,0

)
+ P
(
QBIC

(m2,0|m∗
1,n)

n − QBIC
(m2|m∗

1,n)

n ≥ 0,m∗
1,n �= m1,0

)
≤ P
(
QBIC

(m2,0|m1,0)
n − QBIC

(m2|m1,0)
n ≥ 0

)+ P
(
m∗

1,n �= m1,0
)→ 0,

completing the proof.
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