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In this paper, some general theory is presented for locally stationary processes based on the stationary
approximation and the stationary derivative. Laws of large numbers, central limit theorems as well as de-
terministic and stochastic bias expansions are proved for processes obeying an expansion in terms of the
stationary approximation and derivative. In addition it is shown that this applies to some general nonlinear
non-stationary Markov-models. In addition the results are applied to derive the asymptotic properties of
maximum likelihood estimates of parameter curves in such models.
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1. Introduction

One of the challenges in statistics for stochastic processes is always to develop a general theory
that goes beyond the investigation of specific models. An elegant example are stationary Gaussian
time series or linear time series which are identifiable from the covariance structure or the spectral
density of the process. This leads to such powerful tools as the Whittle-likelihood and quite
general asymptotic results on statistical inference. This linear theory has been extended to locally
stationary processes (cf. [2,3,6], for an overview see [4], Chapter 5) leading again to a general
framework in which problems such as bootstrap methods for locally stationary processes (cf. [12,
21]), testing problems (cf. [17,22]) long memory models (cf. [16,19]) or dynamic non-stationary
factor models (cf. [9,15]) can be considered.

In the nonlinear case, the situation is more challenging since there is no natural framework
similar to the linear Gaussian case. A general theory, however, has been introduced in [29] for
Bernoulli shift processes in combination with the functional dependence measure – an important
example being Markov processes (and also linear processes). By using this calculus, it is possible
to transfer a large number of results from the i.i.d. case to such processes (for instance, M-
estimation [30], empirical process theory [31], high-dimensional covariance matrix estimation
[1] – see also the overview in [32]).

The functional dependence measure for Bernoulli shift processes can also be extended to lo-
cally stationary processes (cf. [33]) leading to a general framework for nonlinear locally sta-
tionary processes. Within this framework for example [36] and [28] discuss quantile regression,
[34] inference for weighted V -statistics and [35] nonparametric regression for locally stationary
processes.
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Another general concept for locally stationary processes is the use of stationary approxima-
tions and derivative processes introduced in the context of time varying ARCH-processes in [8].
The concept has been investigated further in [24] in the context of random coefficient models.
[27] uses the stationary approximation for a definition of local stationarity. The concept has also
been used for diffusion processes in [11].

In this paper, the general theory for nonlinear locally stationary processes will be developed
further. Our contribution is twofold: First, we consider in Sections 2 and 3 processes which
admit an expansion in terms of the stationary approximation and the derivative process, and
prove several asymptotic results for such processes. We then consider in Section 4 a general
Markov-structured locally stationary process and show that it fulfills such an expansion. As a
consequence, all results of Sections 2 and 3 immediately can be applied for such processes. In
addition, we use in Section 5 the stationary approximation and the derivative process to derive
the asymptotic theory for maximum likelihood estimates.

More precisely, we use in Section 2 the stationary approximation to prove global and local laws
of large numbers and a central limit theorem which hold under minimal moment assumptions on
the process. The proofs make use of the asymptotic theory for sums of stationary sequences.
In Section 3, we use the differential calculus connected to derivative processes to derive deter-
ministic and stochastic bias expansions of localized sums. In addition, we show accurate error
estimations of the Wigner-Ville spectrum and the distribution function of the process.

In Section 4, we consider a class of Markov processes and prove that they satisfy the expansion
from Section 3 in terms of the stationary approximation and the derivative process. A difficult
part of the proof is the existence of a continuous modification of the stationary approximation
and the proof that the derivative process can be obtained as the solution of a functional equation.
These results are the prerequisite to apply the functional calculus used in Sections 2 and 3 and
in Section 5 thereafter. We also prove that the functional dependence measure of such processes
decays exponentially. Locally stationary Markov processes have recently also been investigated
with different type of results in [25].

In Section 5, we use these results to investigate nonparametric maximum likelihood estimation
of parameter curves in locally stationary processes. Concluding remarks are given in Section 6.
Some proofs are postponed to the Supplementary Material [7], Supplement A.

2. General asymptotic results for locally stationary processes

In this and the next section, we restrict ourselves to the basic idea of local stationarity, namely that
the nonstationary process Xt,n can be approximated locally by a stationary process X̃t (u) in some
neighborhood of u, that is for those t where |t/n−u| is small. An even better approximation can

usually be achieved by using the derivative process ∂X̃t (u)
∂u

leading heuristically to

Xt,n ≈ X̃t

(
t

n

)
≈ X̃t (u0) +

(
t

n
− u0

)
∂X̃t (u)

∂u

∣∣∣∣
u=u0

+ remainder (1)

(or higher order approximations by using higher order derivative processes). An example are the
processes defined below in (3) and (4) which are investigated in detail in Section 4. In this and the
next section, we explore what kind of results can be obtained just based on this framework where
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in this section we just use the stochastic approximation X̃t (u) (to derive law of large numbers
and central limit theorems) while in the next section we use in addition the derivative process
∂X̃t (u)

∂u
(to derive deterministic and stochastic bias approximations among other results). For a

better understanding, we make some comments about the situation in advance:
(1) In Assumption 2.1(S2) and (S3) we assume that X̃t (u) is almost surely continuous or

continuously differentiable in u respectively. This is a strong assumption since X̃t (u) is initially
defined in most cases pointwise in u as in (4). The existence of continuous or continuously
differentiable versions of X̃t (u) will be proved for (4) in Section 4.

We mention that almost sure differentiability could be replaced by the weaker assumption
of differentiability in Lq (see Remark 4.3 and Proposition 3.3(b)). The stronger assumption of
almost sure differentiability leads to some weaker assumptions in applications (see Remark 3.5)
and has the advantage that several results can be obtained in a more straightforward way and that
the presentation is simpler.

(2) It is obvious that for asymptotic results some form of mixing is needed in addition which
we require in Assumption 2.3. We distinguish between mixing conditions on Xt,n and the sta-
tionary approximation X̃t (u) since our aim is to show that most of the results can be obtained
by only posing mixing assumptions on X̃t (u) which on the other side leads to an additional
approximation error in the results and subsequently in come cases to stronger assumptions.

(3) One of the nice features of Assumptions 2.1 and 2.3 is that, provided they hold for the pro-
cess Xt,n, they then automatically also hold for a large class of functionals g(Xt,n, . . . ,Xt−r+1,n)

(under modified moment assumptions). Thus, all results for the process Xt,n immediately transfer
to g(Xt,n, . . . ,Xt−r+1,n). This is stated in Proposition 2.5 below.

As usual we are working in the infill asymptotic framework with rescaled time t/n ∈ [0,1]
where n denotes the number of observations. We now assume:

Assumption 2.1 (Stationary approximation). Let q > 0 and ‖W‖q := (E|W |q)1/q . Let Xt,n,
t = 1, . . . , n be a triangular array of stochastic processes. For each u ∈ [0,1], let X̃t (u) be a
stationary and ergodic process such that the following holds.

(S1) supu∈[0,1] ‖X̃t (u)‖q < ∞. There exists 1 ≥ α > 0, CB > 0 such that uniformly in t =
1, . . . , n and u,v ∈ [0,1],

∥∥X̃t (u) − X̃t (v)
∥∥

q
≤ CB |u − v|α,

∥∥∥∥Xt,n − X̃t

(
t

n

)∥∥∥∥
q

≤ CBn−α. (2)

(S2) u �→ X̃t (u) is a.s. continuous for all t ∈ Z and ‖ supu∈[0,1] |X̃t (u)|‖q < ∞.

(S3) α = 1 and u �→ X̃t (u) is a.s. continuously differentiable for all t ∈ Z and
‖ supu∈[0,1] |∂uX̃t (u)|‖q < ∞.

(S1) allows us to replace Xt,n by the stationary approximation X̃t (u) with rate |t/n − u|α +
n−α . In many models and statistical applications, α = 1. In Section 4 (cf. Corollary 4.9), we will
show that Assumption 2.1 is fulfilled for example for processes Xt,n defined by the recursion

Xt,n = Gεt

(
Xt−1,n, . . . ,Xt−p,n,

t

n
∨ 0

)
, t ≤ n, (3)
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where (εt )t∈Z are i.i.d. random variables, G : R × R
p × [0,1] → R and a ∨ b := max{a, b}.

Here, εt take the role of i.i.d. innovations which enter the process in the t th step. For u ∈ [0,1],
the stationary approximation X̃t (u), t ∈ Z, in this case is given by the recursion

X̃t (u) = Gεt

(
X̃t−1(u), . . . , X̃t−p(u),u

)
, t ∈ Z, (4)

(or an a.s. continuous modification). We first give some examples which are covered by our
results. These include in particular several classical parametric time series models where the
constant parameters have been replaced by time-dependent parameter curves.

Example 2.2.

(i) The tvAR(p) process: Given parameter curves ai, σ : [0,1] → R (i = 1, . . . , p),

Xt,n = a1

(
t

n

)
Xt−1,n + · · · + ap

(
t

n

)
Xt−p,n + σ

(
t

n

)
εt .

(ii) The tvARCH(p) process (cf. [8]): Given parameter curves ai : [0,1] → R (i = 0, . . . , p),

Xt,n =
(

a0

(
t

n

)
+ a1

(
t

n

)
X2

t−1,n + · · · + ap

(
t

n

)
X2

t−p,n

)1/2

εt .

(iii) The tvTAR(1) process (cf. [36]): Given parameter curves a1, a2 : [0,1] → R, define

Xt,n = a1

(
t

n

)
X+

t−1,n + a2

(
t

n

)
X−

t−1,n + εt ,

where x+ := max{x,0} and x− := max{−x,0}.
(iv) The time-varying random coefficient model (cf. [24]): With some parameter functions

ai(·), i = 0, . . . , p,

Xt,n = a0

(
εt ,

t

n

)
+ a1

(
εt ,

t

n

)
Xt−1,n + · · · + ap

(
εt ,

t

n

)
Xt−p,n.

We now prove laws of large numbers and a central limit theorem. To specify the neces-
sary mixing conditions, we use the uniform functional dependence measure (cf. [13]). Let
εt , t ∈ Z be a sequence of i.i.d. random variables. For t ≥ 0, let Ft := (εt , εt−1, . . .) and
F∗(t−k)

t := (εt , . . . , εt−k+1, ε
∗
t−k, εt−k−1, εt−k−2, . . .), where ε∗

t−k is a random variable which has
the same distribution as ε1 and is independent of all εt , t ∈ Z. For a process Wt = Ht(Ft ) ∈ Lq

with deterministic Ht : RN → R define W
∗(t−k)
t := Ht(F∗(t−k)

t ) and the uniform functional de-
pendence measure

δW
q (k) := sup

t∈Z

∥∥Wt − W
∗(t−k)
t

∥∥
q
. (5)

If Yt is stationary, (5) reduces to the form δY
q (k) = ‖Yk − Y ∗0

k ‖q .
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Assumption 2.3 (Dependence measure). For some q > 0, assume that

(M1) (dependence measure of the stat. approximation) for each u ∈ [0,1], there exists a mea-

surable function H(u, ·) such that X̃t (u) = H(u,Ft ) and δX̃
q (k) := supu∈[0,1] δ

X̃(u)
q (k)

fulfills �X̃
0,q := ∑∞

k=0 δX̃
q (k) < ∞.

(M2) (dependence measure of the process) for each t, n ∈ N, there exists a measurable func-
tion Ht,n such that Xt,n = Ht,n(Ft ) with �X

0,q := ∑∞
k=0 supn∈N δ

X·,n
q (k) < ∞.

(M3) ∂uX̃t (u) = ∂uH(u,Ft ) and δ∂X̃
q (k) := supu∈[0,1] δ

∂uX̃(u)
q (k) is absolutely summable in

the sense that �∂X̃
0,q := ∑∞

k=0 δ∂X̃
q (k) < ∞.

In Section 4, we will show that these assumptions are also fulfilled for models which obey
(3) and (4). Note that (M1) is a mixing condition on X̃t (u) (which in most cases is sufficient
for asymptotic results) while (M2) is a mixing condition on Xt,n. In our results, (M1) or (M2)
are assumed alternatively. In general our goal is to use mainly assumptions on the stationary
approximations, that is, to use (M1) instead of (M2). This also allows Xt,n to have a structure
which is different from Ht,n(Ft ), for instance, contamination with some random noise which is
decreasing in n and is not produced by the innovations εi . Note that posing only (M1) forces us
to replace Xt,n in the proofs by its stationary approximation which naturally leads to an approx-
imation error n−α . In many practical cases, we have α = 1. It can be seen in our results that this
implies negligibility of this error.

For the model X̃t (u) = H(u, ·), Xt,n = Ht,n(Ft ) with (S1), then (M2) implies (M1) while
the reverse implication is false. This can be seen as follows: For arbitrary u ∈ [0,1], choose
tn ∈ {1, . . . , n} with |u − tn/n| ≤ n−α . Then

δX̃(u)
q (k) = ∥∥X̃t (u) − X̃t (u)∗(t−k)

∥∥
q

= ∥∥X̃t (tn/n) − X̃t (tn/n)∗(tn−k)
∥∥

q
+ O

(
n−α

)
= ∥∥Xtn,n − X

∗(tn−k)
tn,n

∥∥
q

+ O
(
n−α

) ≤ sup
n∈N

δ
X·,n
q (k) + O

(
n−α

)
,

which by n → ∞ implies (M1). If for instance for each fixed u ∈ [0,1], X̃t (u) is a simple
AR(1) process X̃t (u) = ∑∞

k=0 α(u)kεt−k with Lipschitz continuous α : [0,1] → (−1,1) and
‖εi‖q < ∞, then it is easy to see that Xt,n = X̃t (t/n) + (εt + · · · + εt−n)n

−2 satisfies (S1) with

q = 1 and α = 1, but δ
X·,n
q (k) = supt |θ(t/n)k +n−2| is not absolutely summable. There are more

counterexamples, see the Supplementary Material [7], Supplement B.

Invariance property of the assumptions with respect to transformations

For some fixed r ∈ N define Zt,n := (Xt,n, . . . ,Xt−r+1,n)
′ and Z̃t (u) := (X̃t (u), . . . ,

X̃t−r+1(u))′. We prove that g(Zt,n) also fulfills Assumptions 2.1 and 2.3 for the following class
of functions g.
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Definition 2.4 (The class Lr (M,C)). We say that a function g : Rr → R is in the class
Lr (M,C) if M ≥ 0 and

sup
y =y′

|g(y) − g(y′)|
|y − y′|1 · (1 + |y|M1 + |y′|M1 )

≤ C, (6)

where |y|1 := ∑r
i=1 |yi |.

Proposition 2.5 (Invariance property of the stationary approximation). Assume that g ∈
Lr (M,C) and q > 0.

(i) If Assumption 2.1(S1), (S2) and Assumption 2.3(M1), (M2) are fulfilled for the process
Xt,n with q̃ = q · (M + 1) and 1 ≥ α > 0, then the same assumptions are fulfilled for the
process g(Zt,n) with q and α.

Now let g in addition be continuously differentiable where the partial derivatives ∂jg, j =
1, . . . , r fulfill ∂jg ∈ Lr (M − 1,C′) with some M ≥ 1.

(ii) If Assumptions 2.1(S3) and 2.3(M1), (M3) are fulfilled for the process Xt,n with q̃ =
q · (M + 1), then the same assumptions are fulfilled for the process g(Zt,n) with q .

The proof is immediate from Hoelder’s inequality and therefore omitted. Let us mention that
the condition ∂jg ∈ Lr (M − 1,C′) is only needed to prove the mixing condition 2.3(M3) since
‖ supu∈[0,1] |∂ug(Z̃0(u))|‖q < ∞ can be shown by using |∂jg(z)| ≤ C(1 + |z|M1 ).

With slight changes, the statements of Proposition 2.5 can be extended to Hoelder continuous
functions which fulfill

sup
y =y′

|g(y) − g(y′)|
|y − y′|β1 · (1 + |y|M1 + |y′|M1 )

≤ C, (7)

with some 1 ≥ β > 0.
In view of the above proposition, all theorems formulated for Xt,n in this and the next section

are, under appropriate moment conditions, also valid for transformations g(Zt,n) of Xt,n. An
important example is the covariance operator g : Rr → R, g(x1, . . . , xr ) = x1xr which leads to
g(Zt,n) = Xt,nXt−r+1,n and fulfills g ∈ Lr (1,1).

Local and global laws of large numbers

The smoothness of Xt,n in time direction can be used to obtain laws of large numbers by only
assuming the existence of the first moment of Xt,n. The key step of the proof is to split the
sum over Xt,n into sums over smaller ranges of t where Xt,n can be approximated by stationary
processes. We will also provide results for localized sums. Usually, we will need the following.

Assumption 2.6 (Localizing kernel). K :R →R is a bounded function, i.e. with some |K|∞ >

0 it holds that supx∈R |K(x)| ≤ |K|∞, and of bounded variation BK with compact support
[− 1

2 , 1
2 ] satisfying

∫
K dx = 1. Let Kb(x) := 1

b
K(x

b
).
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The first part of the following theorem can be seen as a generalization of the ergodic theorem
to non-stationary processes, while the second part provides uniform convergence rates if more
than the first moment is available.

Theorem 2.7 (Law of large numbers). Let q = 1 in (i), (ii) and q > 1 in (iii). Suppose that
Assumption 2.1(S1) holds with some 1 ≥ α > 0 and that Assumption 2.6 holds. Then we obtain
for the process Xt,n (or alternatively for the process g(Zt,n) if Assumption 2.1(S1) is fulfilled for
the process Xt,n with q̃ = q · (M + 1) instead of q) the following results:

(i)

1

n

n∑
t=1

Xt,n →
∫ 1

0
EX̃0(u)du in L1.

(ii) For each u ∈ (0,1)

1

nb

n∑
t=1

K

(
t/n − u

b

)
· Xt,n → EX̃0(u) in L1

as n → ∞, nb → ∞ and b = bn → 0.
(iii) Additionally, suppose that Assumption 2.3(M1) holds with q , α. Then∥∥∥∥∥ sup

u∈[0,1]

∣∣∣∣∣ 1

nb

n∑
t=1

K

(
t/n − u

b

)
· (Xt,n −EXt,n)

∣∣∣∣∣
∥∥∥∥∥

q

≤ BKp

(q − 1)2
�X̃

q,0 · n1/q−1b−1 + 2CBBK · n−αb−1.

(8)

If q > 2, then there exist constants C1, C2 not depending on n, b such that for all x > 0:

P

(
sup

u∈[0,1]

∣∣∣∣∣ 1

nb

n∑
t=1

K

(
t/n − u

b

)
· (Xt,n −EXt,n)

∣∣∣∣∣ > x

)

≤ 2C1(BK�X̃
0,q )qn1−qb−q

(x/2)q
+ 8G1−2/q

(
C2n

1/2bx

2BK�X̃
0,q

)

+ (2BKCB)q

(x/2)q
· (n−αb−1)q

,

(9)

with positive constants C1, C2 not depending on n, b and Gγ (y) := ∑∞
j=1 e−jγ y2

a

Gaussian-like tail function. Gγ (y) can be replaced by exp(−cy2) for some c > 0.

Remark 2.8.

(i) The additional O(n−αb−1) or O((n−αb−1)q̃ ) terms in (8) and (9), respectively, can be
omitted under Assumption 2.3(M2). In this case, one has to replace �X̃

0,q̃
by �X

0,q̃
.
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(ii) For q > 1, b = o(n
1− 1

q ) and n = o(b1/α), the results of Theorem 2.7(ii) and Proposi-
tion 3.3 (which is about bias expansion) can be used to obtain uniform convergence of the
mean estimator μ̂b(u) := 1

nb

∑n
t=1 K(

t/n−u
b

)Xt,n towards μ(u) := EX̃0(u) in the sense
that

sup
u∈[ b

2 ,1− b
2 ]

∣∣μ̂b(u) − μ(u)
∣∣ p→ 0.

A central limit theorem

We provide local and global central limit theorems under minimal moment conditions which
are useful in particular to find asymptotic distributions of (nonparametric) estimators of locally
stationary processes, see Section 5. For the proofs, we need the dependence condition from As-
sumption 2.3(M1). Assumption 2.1(S2), namely ‖ supu∈[0,1] |X̃t (u)|‖q < ∞, is crucial to show a
Lindeberg-type condition under minimal moment conditions.

Theorem 2.9 (Central limit theorem – global version). Let Assumption 2.6 hold. Suppose
that Assumptions 2.1(S1), (S2) and 2.3(M1) hold with some q ≥ 2 and α > 1

2 . Define Sn :=∑n
t=1(Xt,n −EXt,n) (if Xt,n is replaced by g(Zt,n) in the assertions below the same assumptions

must be fulfilled with q̃ = q · (M + 1) instead of q). Then we have the following invariance
principle:

{S�nu�/
√

n,0 ≤ u ≤ 1} d→
{∫ u

0
σ(v)dB(v),0 ≤ u ≤ 1

}
,

where B(v) is a standard-Brownian motion and the long-run variance σ 2(v) is given by

σ 2(v) =
∑
k∈Z

Cov
(
X̃0(v), X̃k(v)

)
. (10)

The condition α > 1
2 can be omitted under Assumption 2.3(M2).

Finally, we present a simple localized version of the central limit theorem for general locally
stationary processes.

Theorem 2.10 (Central limit theorem – local version). Let Assumption 2.6 hold. Suppose that
Assumptions 2.1(S1), (S2) and 2.3(M1) hold with some q ≥ 2 and 1 ≥ α > 0 (if Xt,n is replaced
by g(Zt,n) in the assertion below the same assumptions must be fulfilled with q̃ = q · (M + 1)

instead of q). Then for all u ∈ (0,1), provided that
√

nb · n−α → 0, b → 0 and nb → ∞:

1√
nb

n∑
t=1

K

(
t/n − u

b

)
· {Xt,n −EXt,n} d→ N

(
0,

∫
K(x)2 dx · σ 2(u)

)

with σ 2(u) defined in (10).
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3. Differential calculus for nonstationary processes

In this section, we prove almost sure and uniform Lq Taylor expansions of Xt,n and invent a kind
of differential calculus for locally stationary processes. Below we will use this stronger kind of
approximation for proving deterministic and stochastic bias expansions. While deterministic bias
expansions are used to bound the expectation of expressions which include Xt,n, stochastic bias
expansions can be used to replace the whole localized sum by a localized sum of the stationary
process X̃t (u) which is much easier to analyze with known tools. We also prove results on the
spectrum and the empirical distribution function.

3.1. Taylor expansions and expansions of localized sums

Proposition 3.1 (Taylor expansion). Suppose that Assumption 2.6 holds. Suppose that Assump-
tion 2.1 holds for some q > 0. Then we have for all u ∈ [0,1] and t = 1, . . . , n:

X̃t

(
t

n

)
= X̃t (u) +

(
t

n
− u

)
· ∂uX̃t (u) + Rt,n a.s. (11)

If | t
n

− u| = o(1), then it holds that Rt,n = oa.s.(| t
n

− u|). Furthermore,

1

n

n∑
t=1

Kb

(
t

n
− u

)
X̃t

(
t

n

)

= 1

n

n∑
t=1

Kb

(
t

n
− u

)
X̃t (u) + 1

n

n∑
t=1

Kb

(
t

n
− u

)(
t

n
− u

)
∂uX̃t (u) + Rn a.s.

(12)

holds and |Rn| ≤ |K|∞ · b · sup|v−u|≤b |∂uXt (v) − ∂uXt (u)| = oa.s.(b).

If one is interested in the approximation of moments of localized sums (as it may be the case
in bias expansions in nonparametric frameworks), the following theorem is appropriate. It also
closes the gap between the locally stationary process Xt,n and its approximation X̃t (t/n).

Corollary 3.2 (Almost sure and Lq expansion of localized sums). Suppose that Assump-
tion 2.6 holds. Suppose that Assumption 2.1 holds for some q ≥ 1. Then for each fixed u ∈ (0,1),∥∥∥∥∥1

n

n∑
t=1

Kb

(
t

n
− u

)
· Xt,n − 1

n

n∑
t=1

Kb

(
t

n
− u

)
· X̃t

(
t

n

)∥∥∥∥∥
q

= O
(
n−1),

and the expansion (12) is valid with ‖Rn‖q = o(b).

It is also possible to use expansions similar to above if the sum is not localized by a kernel. An
example can be found in the proof of Theorem 2.7.



1022 R. Dahlhaus, S Richter and W.B. Wu

3.2. Bias expansions

In nonparametric statistics, bias expansions play an important role to control the mean squared
error (MSE) of estimators. Here we give an approach to estimate the deterministic bias term
involving locally stationary processes. In recent years (for instance due to model selection via
contrast minimization) a more careful analysis of the stochastic part in the calculation of the
MSE became important. We make a contribution to this topic via a stochastic bias expansion
which allows us to remove the bias from a localized sum 1

n

∑n
t=1 Kb(

t
n

−u)Xt,n such that only a

localized sum over a stationary process 1
n

∑n
t=1 Kb(

t
n

− u)X̃t (u) remains for which much more
theoretical work was done. To obtain bias expansions of smaller order than O(b) we have to
assume differentiability of the upcoming expectations which is ensured by assuming Assump-
tion 2.1(S3). To emphasize some differences that occur when Assumption 2.1(S3) is changed to
differentiability in Lq , we state the deterministic bias expansion for both settings and comment
in Remark 3.5.

Proposition 3.3 (Deterministic bias expansion). Suppose that Assumption 2.6 holds. Let q ≥ 1.
Suppose that Assumption 2.1(S1) is fulfilled with some 1 ≥ α > 0, then we have uniformly in
u ∈ [0,1]:

1

n

n∑
t=1

Kb

(
t

n
− u

){
EXt,n −EX̃t (t/n)

} = O
(
n−α

)
, (13)

and

1

n

n∑
t=1

Kb

(
t

n
− u

){
EX̃t (t/n) −EX̃0(u)

} = O
(
bα

) + O
(
n−1). (14)

Now assume additionally that K is symmetric.

(a) If Assumption 2.1(S3) holds, then (13) is valid with α = 1 and we have uniformly in u ∈
[ b

2 ,1 − b
2 ]

1

n

n∑
t=1

Kb

(
t

n
− u

){
EX̃t (t/n) −EX̃0(u)

} = o(b) + O
(
n−1). (15)

(b) Suppose that [0,1] → Lq , u �→ X̃0(u) is Fréchet differentiable with derivative D̃t (u), i.e.
for all u ∈ [0,1],

lim
h→0

∥∥∥∥ X̃0(u + h) − X̃0(u)

h
− D̃0(u)

∥∥∥∥
q

= 0. (16)

Then the statement of (a) holds.
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The proof of (13) and (14) follows from the Hoelder inequality and the fact that K has bounded
variation and thus is bounded. To prove (15), note that

X̃t (t/n) = X̃t (u) +
(

t

n
− u

)
· ∂uX̃t (u) +

∫ t/n

u

{
∂uX̃t (s) − ∂uX̃t (u)

}
ds.

As long as | t
n

− u| ≤ b, we have

∣∣∣∣E
∫ t/n

u

{
∂uX̃t (s) − ∂uX̃t (u)

}
ds

∣∣∣∣ ≤ b · sup
|u−s|≤b

∥∥∂uX̃t (s) − ∂uX̃t (u)
∥∥

1 = o(b),

since u �→ ∂uX̃t (u) is continuous and ‖ supu |∂uX̃t (u)|‖1 < ∞. Finally, because K has bounded
variation and is symmetric,

1

n

n∑
t=1

Kb

(
t

n
− u

){
EX̃t (t/n) −EX̃t (u)

}

= 1

n

n∑
t=1

Kb

(
t

n
− u

)
·
(

t

n
− u

)
·E[

∂uX̃t (u)
] + o(b)

= O
(
n−1) + o(b).

The proof of (b) follows by using∣∣∣∣∣1

n

n∑
t=1

Kb

(
t

n
− u

){
EX̃t (t/n) −EX̃t (u)

}∣∣∣∣∣
≤ 1

n

n∑
t=1

Kb

(
t

n
− u

)(
t

n
− u

)∥∥∥∥ X̃t (t/n) − X̃t (u)
t
n

− u
− D̃t (u)

∥∥∥∥
1

+ 1

n

n∑
t=1

Kb

(
t

n
− u

)(
t

n
− u

)
ED̃t (u) = o(b) + O

(
n−1).

Remark 3.4. Note that in the situation of Proposition 3.3, derivative processes were used to
get o(b) instead of O(b) in (14). Even smaller rates can be obtained by using higher order
derivative processes together with higher order kernels. If we assume that u �→ X̃t (u) has a twice
continuously differentiable modification and K is symmetric, we obtain a bias decomposition
whose structure is well-known:

1

nb

n∑
t=1

K

(
t/n − u

b

){
EXt,n −EX̃0(u)

}

=
∫

x2K(x)dx ·E[
∂2
uX̃t (u)

] · b2 + o
(
b2) + O

(
n−1).
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Remark 3.5 (Almost sure v.s. Lq differentiability). Let us briefly comment on the different
conditions in Proposition 3.3(a), (b). In (a) we ask for a.s. differentiability of u �→ X̃0(u) while
(b) asks for differentiability in Lq which is weaker. If we want to apply Proposition 3.3 to g(Zt,n)

with some function g ∈ Lr (M,C) which is continuously differentiable, then there occur some
differences due to the different natures of the conditions:

• If Assumption 2.1(S3) is fulfilled for q ′ = q(M + 1), then Assumption 2.1(S3) is fulfilled
for the process g(Zt,n) with q (cf. Proposition 2.5(ii) and the comment afterwards) and we
obtain (15) by Proposition 3.3(a).

• If (16) holds, we have to assume additionally that all the derivatives ∂jg (j = 1, . . . , r) are
Hoelder continuous with polynomially growing Hoelder constant, that is, with some γ > 0,

sup
y =y′

|∂jg(y) − ∂jg(y′)|
|y − y′|γ1 · (1 + |y|M−1

1 + |y′|M−1
1 )

< ∞,

to obtain (16) for X̃◦
t (u) = g(Z̃t (u)) with derivative D◦

t (u) = ∂zg(Z̃t (u)) · Dt(u).

Note that we have to ask g to be slightly more smooth when using differentiability in Lq .

We now prove the stochastic bias expansion. It turns out that we have to bound moments
of sums of the upcoming derivative processes ∂uX̃t (u) which means that we have to pose de-
pendence conditions on ∂uX̃t (u). This is done via Assumption 2.3(M3). Using the projection
operator Pj · := E[·|Fj ] − E[·|Fj−1], we can bound moments of sums of ∂uX̃t (u) by moments
of martingales which can then be bounded with results from [18]. It can be shown (similar to
[29], Theorem 1(i) and (ii)) that for some shift process Wt = Ht(Ft ) with measurable Ht it holds
for q ≥ 1:

‖Pt−kWt‖q ≤ δW
q (k). (17)

Proposition 3.6 (Stochastic bias expansion). Suppose that Assumptions 2.1 and 2.3(M3) are
fulfilled for some q ≥ 2. Assume that K is symmetric. Then we have

sup
u∈[ b

2 ,1− b
2 ]

∥∥∥∥∥1

n

n∑
t=1

Kb

(
t

n
− u

){
Xt,n − X̃t (u)

}∥∥∥∥∥
q

= o(b) + O
(
n−1). (18)

Proof of Proposition 3.6. To prove (18), we can show similarly as in (13) that

1

n

n∑
t=1

∣∣∣∣Kb

(
t

n
− u

)∣∣∣∣ · ∥∥Xt,n − X̃t (t/n)
∥∥

q
= O

(
n−1).
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To deal with 1
n
‖∑n

t=1 Kb(
t
n

− u)(X̃t (t/n) − X̃t (u))‖q , we use the expansion (12) together with
the result ‖Rn‖q = o(b) from Corollary 3.2. It therefore remains to analyze

1

n

∥∥∥∥∥
n∑

t=1

Kb

(
t

n
− u

)(
t

n
− u

)
· {∂uX̃t (u) −E∂uX̃t (u)

}∥∥∥∥∥
q

+ 1

n

n∑
t=1

Kb

(
t

n
− u

)(
t

n
− u

)
·E∂uX̃t (u).

While the second term is O(n−1) by stationarity, the first term is bounded by

1

n

∞∑
k=0

∥∥∥∥∥
n∑

t=1

Kb

(
t

n
− u

)(
t

n
− u

)
Pt−k∂uX̃t (u)

∥∥∥∥∥
q

≤ q1/2

nb

∞∑
k=0

(
n∑

t=1

(
Kb

(
t

n
− u

)
·
(

t

n
− u

))2∥∥Pt−k∂uX̃t (u)
∥∥2

q

)1/2

≤ q1/2|K|∞b1/2

n

∞∑
k=0

δ∂uX̃(u)
q (k) = q1/2|K|∞b1/2

n
�X̃

0,q

by Theorem 2.1 in [18] and (17). �

The main advantage of a stochastic bias expansion is that we can reduce a sum over locally
stationary processes to a sum over stationary processes by keeping the terms stochastic. This
allows for instance to apply large deviation results for stochastic processes which usually have a
simpler and more closed form.

Remark 3.7 (An application of the stochastic bias expansion: Deviation inequalities). Sup-
pose that the assumptions of Proposition 3.6 are fulfilled with q = 2. Assume that EX̃t (u) = 0.
Then we have for γ > 0,

P

(∣∣∣∣∣1

n

n∑
t=1

Kb(u − t/n)Xt,n

∣∣∣∣∣ > γ

)

≤ P

(∣∣∣∣∣1

n

n∑
t=1

Kb(u − t/n)X̃t (u)

∣∣∣∣∣ >
γ

2

)

+ 1

(γ /2)2

∥∥∥∥∥1

n

n∑
t=1

Kb(u − t/n)
(
Xt,n − X̃t (u)

)∥∥∥∥∥
2

2

.

By Proposition 3.6, the second term on the right-hand side is o(b) + O(n−1), that is, has bias
order. For the first term, one can use deviation results for stationary processes.
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3.3. Differentiability of functionals

The existence of derivative processes allows an expansion of the corresponding mean Eg(Zt,n)

into the mean of the corresponding stationary version Eg(Z̃t (u)). This can be applied to various
functionals such as expectations, covariances, the Wigner-Ville spectrum and the distribution
function. The following result is an immediate Corollary from Lemma 2.5 applied to some g ∈
Lr (M,C). Recall Zt,n = (Xt,n, . . . ,Xt−r+1,n)

′ and Z̃t (u) = (X̃t (u), . . . , X̃t−r+1(u))′.

Proposition 3.8. Assume that g ∈ Lr (M,C). Suppose that Assumption 2.1(S1) is fulfilled for
some 1 ≥ α > 0 and q = M + 1. Then we have uniformly for t = 1, . . . , n:

Eg(Zt,n) = Eg

(
Z̃t

(
t

n

))
+ O

(
n−α

) = Eg
(
Z̃t (u)

) + O

(
n−α +

∣∣∣∣ t

n
− u

∣∣∣∣
α)

. (19)

If additionally Assumption 2.1(S3) is fulfilled and g is continuously differentiable with partial
derivatives ∂jg ∈ Lr (M − 1,C′), j = 1, . . . , r , then u �→ Eg(Z̃t (u)) is continuously differen-
tiable with derivative

∂uEg
(
Z̃t (u)

) =
r∑

j=1

E
[
∂jg

(
X̃t (u), . . . , X̃t−r+1(u)

) · ∂uX̃t−j+1(u)
]
. (20)

The result of Proposition 3.8 enables us to get expansions of the mean, the covariance and
the distribution function of Xt,n. Suppose in the following that Assumption 2.1 holds for some
q ≥ M + 1.

Corollary 3.9 (Mean expansion, M = 0). Choosing g : R→R, g(y) = y yields

EXt,n = EX̃t (t/n) + O
(
n−1),

where μ(u) := EX̃0(u) is continuously differentiable with derivative ∂uμ(u) = E∂uX̃0(u).

Corollary 3.10 (Covariance expansion, M = 1). Fix r > 0. Define the covariances γ (u, r) :=
Cov(X̃t (u), X̃t−r (u)). Choosing g : Rr+1 → R, g(y) = y1yr+1, we obtain uniformly for t =
1, . . . , n:

γt,n(r) := Cov(Xt,n,Xt−r,n) = γ

(
t

n
, r

)
+ O

(
n−1) (21)

and γ (u, r) is continuously differentiable with derivative

∂uγ (u, r) = Cov
(
∂uX̃0(u), X̃r (u)

) + Cov
(
X̃0(u), ∂uX̃r (u)

)
.

Similar expansions can be derived for higher-order cumulants and also for the Wigner-Ville
spectrum (cf. [14]).

As a last application of Proposition 3.8, we present an expansion of the distribution function
of Xt,n which may also be used to approximate quantiles of locally stationary processes.
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Example 3.11 (Expansion of the distribution function). Suppose that Assumption 2.1 holds
with q = 1. Assume that the i.i.d. random variables εt , t ∈ Z have a Lipschitz continuous and
continuously differentiable distribution function Fε with Lipschitz constant Lε and derivative fε .
Let the processes Xt,n and X̃t (u) obey the recursion equations (3) and (4).

Assume that (ε, y,u) �→ Gε(y,u) is continuously differentiable and that the derivative
∂εGε(y,u) ≥ δG > 0 is uniformly bounded from below by some positive constant δG > 0. By
the inverse function theorem we know that there exists a continuously differentiable inverse
x �→ H(x,y,u) of ε �→ Gε(y,u). Finally, assume that for all x ∈R, the expressions

C(x) := sup
u∈[0,1]

sup
y =y′

|H(x,y,u) − H(x,y′, u)|
|y − y′|1

are finite.
Put Yt−1,n = (Xt−1,n, . . . ,Xt−p,n)

′, Ỹt−1(u) = (X̃t−1(u), . . . , X̃t−p(u))′. In this situation, it
holds that the distribution function of Xt,n,

FXt,n(x) = E
[
P
(
Gεt (Yt−1,n, t/n) ≤ x|Ft−1

)] = E
[
Fε

(
H(x,Yt−1,n, t/n)

)]
can be approximated by the distribution function FX̃t (u)

(x) := P(X̃t (u) ≤ x) by

∣∣FXt,n(x) − F
X̃t (t/n)

(x)
∣∣

≤ Lε

∥∥H(x,Yt−1,n, t/n) − H
(
x, Ỹt−1(t/n), t/n

)∥∥
1

≤ LεC(x)

p∑
j=1

∥∥Xt−j−1,n − X̃t−j−1(t/n)
∥∥

1 ≤ pCBLε · C(x) · n−1

Furthermore u �→ F
X̃t (u)

(x) is differentiable with derivative

∂uFX̃t (u)
(x)

= E
[
fε

(
H

(
x, Ỹt−1(u),u

)) · (〈∂2H
(
x, Ỹt−1(u),u

)
, ∂uỸt−1(u)

〉 + ∂3H
(
x, Ỹt−1(u),u

))]
.

4. Nonlinear locally stationary processes

In this section, we show in a sequence of theorems that the Markov processes given by (3) and
(4) fulfill Assumption 2.1 and the mixing conditions of Assumption 2.3. Furthermore, we prove
that the derivative process can be obtained as the solution of a functional equation. The existence
of these processes and their properties have previously been derived for tvAR models (cf. [4]),
tvARCH models (cf. [8]) and random coefficient models (cf. [24]). The situation in the present
case is however different since the process (3) is only defined by a recursion and the explicit
solution is usually not available for the calculations. To prove the results, we state the following
elementary assumptions on the recursion function Gε(y,u). Let ∂1G, ∂2G denote the derivatives
of G w.r.t. y and u, respectively.
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Assumption 4.1. In the model (3), (4) we assume with Yt−1,n = (Xt−1,n, . . . ,Xt−p,n)
′ and

Ỹt−1(u) = (X̃t−1(u), . . . , X̃t−p(u))′ that there exists q > 0, χ = (χ1, . . . , χp) ∈ R
p

≥0 with |χ |1 =∑p

i=1 χi < 1 and y0 ∈ R
p such that with q ′ := min{q,1}:

(L1) supu∈[0,1] ‖Gε0(y0, u)‖q < ∞, and (with |z|χ,q ′ := (
∑p

i=1 |zi |q ′ · χi)
1/q ′

the weighted
q ′-norm)

sup
u∈[0,1]

sup
y =y′

‖Gε0(y,u) − Gε0(y
′, u)‖q

|y − y′|χ,q ′
≤ 1. (22)

(L2) (y,u) �→ Gε(y,u) is continuous for all ε, ‖ supu∈[0,1] |Gε0(y0, u)|‖q < ∞, and

∥∥∥∥ sup
u∈[0,1]

sup
y =y′

|Gε0(y,u) − Gε0(y
′, u)|

|y − y′|χ,q ′

∥∥∥∥
q

≤ 1. (23)

(L3) (y,u) �→ Gε(y,u) is continuously differentiable for all ε, ‖ supu∈[0,1] |∂2Gε0(y0, u)|‖q <

∞, and

Ci :=
∥∥∥∥ sup

u∈[0,1]
sup
y =y′

|∂iGε0(y,u) − ∂iGε0(y
′, u)|1

|y − y′|1,q ′

∥∥∥∥
q

< ∞, i = 1,2. (24)

Furthermore, assume that either (a) (23) holds for q/2 instead of q or (b) y �→ ∂1Gε(y,u)

is constant for all ε, u.
(L4) For some 0 < α ≤ 1, it holds that

C := sup
u∈[0,1]

∥∥C
(
Ỹt (u)

)∥∥
q

< ∞ where

C(y) := sup
u =u′

‖Gε0(y,u) − Gε0(y,u′)‖q

|u − u′|α .

(25)

Let us briefly discuss the conditions in Assumption 4.1.

Remark 4.2.

(i) Note that (L1)–(L3) impose increasingly strong smoothness assumptions on the recursion
function Gε(y,u). While (L1)–(L3) are directly verifiable, (L4) includes conditions on
the stationary approximation X̃t (u). Note that the upcoming theorems also state proper-
ties of X̃t (u). Their results can be used to verify (L4).

(ii) The condition (L2) means that the mapping y �→ Gε(y,u) can be viewed as a contraction
in the space of continuous functions C[0,1] which in turn implies the a.s. continuity of
the limit. (L3) is necessary to ensure that y �→ Gε(y,u) is a contraction in C1[0,1].

(iii) Condition (L3)(a) or (b) is necessary due to the product in (28). Note that by Hoelder’s
inequality, (L3)(a) follows from (23) if q ≥ 2. The inequality |z|q ≤ |z|q ′ for 0 < q ′ ≤ q ,

z ∈R
p implies that (L3)(a) is fulfilled if (23) holds with

∑p

i=1 χ
1/2
i < 1.
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(iv) For p > 1, the conditions stated in Assumption 4.1 may lead to non-optimal restrictions
on G which is due to the general formulation. One way to circumvent this is by posing
conditions on the mth iteration of G instead of G itself. Some models like tvAR(p) or
tvARCH(p) also allow a reformulation to a p-dimensional recursion with only one lag.
Since our aim is to cover a wide range of models with simple conditions, we will not
discuss these approaches in detail.

Remark 4.3 (Almost sure calculus v.s. Lq calculus). As mentioned in the beginning of this
paper, many of the statistical applications in Section 3 can be proved by only assuming differen-
tiability of u �→ X̃t (u) in Lq , an example was given in Proposition 3.3(b). As pointed out by a
referee, to obtain Lq differentiability, Assumptions 4.1(L2), (L3) can be weakened. Technically,
proving differentiability of u �→ X̃t (u) then corresponds to analyzing smoothness properties of
a fixed point of the iteration (4). As analytic results in [20] suggest, the main difference is a de-
crease in smoothness assumptions that have to be posed on G, namely G is no longer needed to
be continuously differentiable but only differentiable a.e. and the suprema in (23) and (24) can
be taken outside. This theory would also include tvT AR processes (cf. Example 2.2).

There are some drawbacks when using only Lq calculus and no a.s. statements. As already
mentioned in Remark 3.5, one has to pose slightly more smoothness conditions on g if one
wants to apply the theory to processes g(Zt,n). Moreover, it seems that a Lindeberg-type con-
dition which is used in the proof of the global CLT Theorem 2.9 can only be shown under
Assumption 2.1(S2) when only second moments are available. To ensure 2.1(S2), we have to ask
for 4.1(L2) in view of Theorem 4.6.

Existence and uniqueness of Xt,n and X̃t (u)

We now establish existence and uniqueness under mild contraction conditions.

Proposition 4.4.

(i) Existence of a stationary approximation: Suppose that Assumption 4.1(L1) holds. Then for
all u ∈ [0,1], the recursion (4) has an a.s. unique Ft -measurable, stationary and ergodic
solution X̃t (u) = H(u,Ft ) and we have with some C > 0 and 0 < ρ < 1:

sup
u∈[0,1]

δX̃(u)
q (k) ≤ Cρk, sup

u∈[0,1]

∥∥X̃0(u)
∥∥

q
< ∞.

(ii) Existence of the nonstationary process: Under the above conditions, there exists an a.s.
unique Ft -measurable solution of (3) with Xt,n = Ht,n(Ft ), where Ht,n are measurable
functions. Furthermore, supn∈N supt=1,...,n ‖Xt,n‖q < ∞ and with some C > 0 and 0 <

ρ < 1:

sup
n∈N

δ
X·,n
q (k) ≤ Cρk.

The proof of (i) for fixed u ∈ [0,1] is similar to the proof in [23], Theorem 5.1. Since we
state the results uniformly in u ∈ [0,1], we will give the proof in the Supplementary Material
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[7] for completeness. Since the definition of Xt,n and X̃t (0) coincide for t ≤ 0, existence and
uniqueness of Xt,n follow from the existence and uniqueness of X̃t (0). Therefore, the existence
statement in (ii) is an immediate corollary of (i).

A uniform Lq approximation

We now prove that Xt,n can be approximated by the stationary process X̃t (u) uniformly in a
Lq -sense.

Lemma 4.5. Suppose that Assumption 4.1(L1), (L4) hold. Then

sup
u =u′

‖X̃t (u) − X̃t (u
′)‖q

|u − u′|α ≤ C

(1 − |χ |1)1/q ′ . (26)

Furthermore, we have:

sup
t=1,...,n

∥∥Xt,n − X̃t (t/n)
∥∥

q
≤ Cpα

( |χ |1
(1 − |χ |1)2

)1/q ′

· n−α. (27)

Note that the approximation error in (27) cannot be avoided – cf. [4], (49), for the tvAR(1)

case (with a different error due to different assumptions).

Existence of continuous modifications and derivative processes

Proposition 4.4 gives the almost sure uniqueness of X̃t (u) for each u ∈ [0,1], but not continuity
of u �→ X̃t (u) since this involves uncountably many points u ∈ [0,1]. In order to guarantee
the existence of a continuous or even differentiable modification X̂t (u) of X̃t (u) we have to
impose stronger conditions on the recursion function G in (3) (X̂t (u) is a modification of X̃t (u)

if for all u ∈ [0,1], X̂t (u) = X̃t (u) a.s.). A natural way would be to apply extensions of the
Kolmogorov–Chentzov theorem, but they usually contain tradeoffs in their conditions between
moment assumptions and smoothness of the process which usually leads to either strong moment
or smoothness assumptions which may not be useful in practice. Furthermore it does not use the
specific structure of the process which is known and we could not give a bound for moments of
supu∈[0,1] |X̂t (u)|. We therefore use a different approach.

Theorem 4.6 (Existence of a continuous modification). Suppose that Assumption 4.1(L2)
holds. Then for each t ∈ Z, there exists a continuous modification (X̂t (u))u∈[0,1] of (X̃t (u))u∈[0,1]
from Proposition 4.4 with supu∈[0,1] |X̂t (u)| ∈ Lq .

Remark 4.7. In the case Gε(y,u) = G̃ε(y, θ0(u)) with some parameter curve θ0 : [0,1] → 

(cf. Section 5), the supremum taken over u ∈ [0,1] in (23) restricts the parameter space .
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If additionally Assumption 4.1(L3) is fulfilled, Theorem 4.6 also holds under the weaker con-

dition supu∈[0,1] ‖ supy =y′
|Gε0 (y,u)−Gε0 (y′,u)|

|y−y′|χ,q′ ‖q ≤ 1 which leads to larger admissible parameter

spaces . For details, see Proposition A.3 in Supplement A.

In the following, we assume that (y,u) �→ Gε(y,u) is differentiable in both components. For
the moment, assume that there exists a modification (X̂t (u))u∈[0,1] of the process (X̃t (u))u∈[0,1]
with differentiable paths and denote the derivative by ∂uX̂t (u). Then the following recursion
equation for Dt(u) = ∂uX̂t (u), obtained by differentiating (4) should hold a.s.:

Dt(u) = 〈
∂1Gεt

(
Ỹt−1(u),u

)
,
(
Dt−1(u), . . . ,Dt−p(u)

)′〉 + ∂2Gεt

(
Ỹt−1(u),u

)
. (28)

This is shown in the next theorem. The first part is devoted to the existence of a solution Dt(u) of
the recursion (28) given the existence of the process X̃t (u) from Theorem 4.4; in the second part
we prove that X̃t (u) has a differentiable modification with respect to u and that the derivative
coincides with Dt(u). Both X̃t (u) and Dt(u) are uniquely determined by (4) and (28).

Theorem 4.8 (Existence of derivative processes). Suppose that Assumptions 4.1(L2), (L3)
hold. Then the following statements are true.

(i) Existence of the first derivative process: For all u ∈ [0,1], the recursion (28) has a unique
stationary and ergodic solution Dt(u) = H̃ (u,Ft ) with some measurable H and it holds
that

δD(u)
q (k) ≤ Cρk, sup

u∈[0,1]
∥∥Dt(u)

∥∥
q

< ∞

with some C > 0, 0 < ρ < 1.
(ii) Differentiability:

(a) There exists a continuously differentiable modification (X̂t (u))u∈[0,1] of the process
(X̃t (u))u∈[0,1] from Proposition 4.4 such that for all u ∈ [0,1] it holds that ∂uX̂t (u) =
Dt(u) a.s.

(b) supu∈[0,1] |∂uX̂t (u)| ∈ Lq .

Finally, let us summarize the results from this section in the following corollary.

Corollary 4.9. Let Assumption 4.1 be fulfilled. Then modifications of the a.s. unique solutions
of (3) and (4) fulfill Assumptions 2.1 and 2.3.

For some models, it is possible to obtain explicit expressions for the corresponding derivative
processes.

Example 4.10 (Explicit representations for derivative processes).

(i) The tvAR(p) process Xt,n = ∑p

j=1 aj (
t
n
)Xt−j,n + εt has the corresponding stationary

approximation X̃t (u) = ∑p

j=1 aj (u)X̃t−j (u) + εt which has an explicit representation

X̃t (u) = ∑∞
j=0 ψj(u) · εt−j with differentiable ψj : [0,1] → R (j = 0,1,2, . . .). It is
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easy to see that ∂uX̃t (u) = ∑∞
j=0 ∂uψj (u) ·εt−j is the a.s. uniquely determined derivative

process.
(ii) Similarly to (i), it is easy to see that general linear processes X̃t (u) = ∑∞

j=0 ψj (u) · εt−j

with differentiable ψj : [0,1] → R (j = 0,1,2, . . .) have derivative process ∂uX̃t (u) =∑∞
j=1 ∂uψj (u) · εt−j under appropriate summability conditions.

(iii) For tvARCH(p) processes, explicit expressions for the derivative processes were ob-
tained in [8].

In the following, we will write X̃t (u) even if we mean the differentiable modification to keep
notation simple. Since all our results only involve countably many observations, this will not
cause any problems.

Higher order derivative processes

Under additional assumptions, one can show uniform Lq Hoelder properties of the first derivative
process:

Proposition 4.11 (Hoelder property of the first derivative process). Suppose that Assump-
tion 4.1(L2), (L3) hold. Additionally assume that for some 1 ≥ α2 > 0 and i = 1,2 it holds
component-wise:

Di := sup
u

∥∥Di

(
Ỹt (u)

)∥∥
q

< ∞, Di(y) := sup
u =u′

‖∂iGε0(y,u) − ∂iGε0(y,u′)‖q

|u − u′|α2
. (29)

Then

sup
u =u′

‖∂uX̃t (u) − ∂uX̃t (u
′)‖q/2

|u − u′|α2
≤ C,

with some constant C > 0.

If X̃t (u) has a twice continuously differentiable modification and (y,u) �→ Gε(y,u) is twice
continuously differentiable, then the following recursion equation for ∂2

uX̃t (u) should hold:

∂2
uX̃t (u) = 〈

∂1Gεt

(
Ỹt−1(u),u

)
, ∂2

uỸt−1(u)
〉

+ 〈
∂2

1Gεt

(
Ỹt−1(u),u

)
∂uỸt−1(u), ∂uỸt−1(u)

〉
+ 2

〈
∂1∂2Gεt

(
Ỹt−1(u),u

)
, ∂uỸt−1(u)

〉 + ∂2
2Gεt

(
Ỹt−1(u),u

)
.

(30)

Using the same techniques as in Theorem 4.8, one can find similar conditions as in Assump-
tion 4.1 such that a second (or even higher) order derivative process ∂2

uX̃t (u) exists. Let us point
out an interesting anomaly in the case of second order derivatives that is also existent for higher
order derivatives: Due to the additional products in (30) it turns out that, in general, one has to
assume 2qth moments of X̃t (u) to guarantee the existence of the qth moment of ∂2

uX̃t (u). The
formalization of this is beyond the scope of this paper, but in Proposition 4.11 one already can
see the imbalance of moments in the assumption and the obtained result.
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A simulation study

To quantify the quality of the approximations given in Lemma 4.5 and Proposition 3.1, we con-
sider the tvARCH(1) model

Xt,n :=
(

a0 + a1

(
t

n

)
X2

t−1,n

)1/2

εt

with a0 := 0.2, a1(u) = 0.95u2 and ε0 ∼ N(0,1). Note that if t/n tends to 1, the values of Xt,n

are more dependent to each other than for smaller values of t/n. We generated realizations of
Xt,n, X̃t (

t
n
) with n = 500 (see Figure 1(a), (b) for a realization of Xt,n and Xt,n − X̃t (

t
n
)).

In Figure 1(c), we have the plotted empirical 5%- and 95%-quantile curves of the difference
Xt,n − X̃t (

t
n
) for N = 1000 replications. It can be seen that with stronger dependence, the quality

of the approximation Xt,n ≈ X̃t (
t
n
) gets worse as it is suggested by the bound in Lemma 4.5.

Second, we consider the approximation quality of X̃t (t/n) by X̃t (u) and X̃t (u) + ( t
n

−
u)∂uX̃t (u), respectively. Since these approximations are only working locally (for |t/n − u| �
1), we compare them by dividing the whole time line t = 1, . . . , n into subsets (ui − b,ui + b],
where b = 25 and ui = (2i − 1)b for i = 1, . . . ,10. In Figure 1(d), empirical 5%- and 95%-
quantile curves obtained from N = 1000 replications for the differences X̃t (

t
n
) − X̃t (ui) and

X̃t (
t
n
) − X̃t (ui) − ( t

n
− ui)∂uX̃t (ui) (where t ∈ (ui − b,ui + b]) are depicted, respectively. We

emphasize that the improvement of the (pointwise) approximation X̃t (
t
n
) by taking into account

the derivative process is remarkable. However, both approximations again get worse if the de-
pendence of Xt,n to earlier values increases.

5. Application to maximum likelihood estimation

In this section, we investigate the asymptotic properties of maximum likelihood estimates for
parameter curves of locally stationary models which can be written in the form (3). The results
are in particular derived by using the asymptotic results and the differential calculus of Sections 2
and 3. More precisely, we investigate the recursively defined model

Xt,n = G̃εt

(
Xt−1,n, . . . ,Xt−p,n, θ0

(
t

n

))
, t = 1, . . . , n, (31)

where now the function Gε(y,u) from (3) has been replaced by G̃ε(y, θ0(u)) with the unknown
parameter curve θ0 : [0,1] →  ⊂ R

d which is to be estimated. Our goal is to obtain estimators
for θ0(·) based on Xt,n, t = 1, . . . , n with a quasi maximum likelihood approach.

Suppose for the moment that ε �→ Gε(y, θ) is continuously differentiable for all ε, y, u and
that the derivative ∂εG̃ε(y, θ) ≥ δG > 0 is bounded uniformly from below with some constant
δG > 0. This ensures that the new innovation εt has an impact on the value of Xt,n which is
not too small. Under these conditions, there exists a continuously differentiable inverse x �→
H(x,y, θ) of ε �→ Gε(y, θ) (see also Example 3.11).
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Figure 1. Top: (a) Realization of one Xt,n, t = 1, . . . , n. (b) Difference Xt,n − X̃t (
t
n ) for one re-

alization. Bottom: (c) empirical 5%- and 95%-quantile curves of Xt,n − X̃t (
t
n ) for N = 1000 repli-

cations. (d) Solid and Dashed: empirical 5%- and 95%-quantile curves of X̃t (
t
n ) − X̃t (ui) and

X̃t (
t
n )− X̃t (ui)− ( t

n −ui)∂uX̃t (ui) for t ∈ (ui − b,ui + b] (grey thin vertical dotted lines) and N = 1000
replications, respectively. Here, b = 25 and ui = (2i − 1)b (black thick vertical dotted lines), i = 1, . . . ,10.

Suppose that ε0 has a continuous density fε . The negative conditional log likelihood of Xt,n =
x given (Xt−1,n, . . . ,Xt−p,n) = y and θ0(·) ≡ θ is then

�(x, y, θ) = − logfε

(
H(x,y, θ)

) − log ∂xH(x, y, θ). (32)

In the following derivations, we do not make use of the specific structure of �. This means
especially that we allow for model misspecifications due to a false density fε . Many authors
prefer the case of a Gaussian density fε(x) = (2π)−1/2 exp(−x2/2) because then a minimizer θ
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of � can be interpreted as a minimum (quadratic) distance estimator (see [5] in the tvAR case,
[8] in the tvARCH case).

Based on this we define �t,n(θ) := �(Xt,n, Yt−1,n, θ). Let b ∈ (0,1) be a bandwidth K a kernel
function as considered in Assumption 2.6. We define the local negative log conditional likelihood

Ln,b(u, θ) := 1

n

n∑
t=p+1

Kb

(
t

n
− u

)
· �t,n(θ).

For u ∈ [0,1], the estimator of θ0(u) is defined via

θ̂b(u) := arg min
θ∈

Ln,b(u, θ). (33)

Asymptotic results

We will now discuss conditions such that θ̂b(·) is consistent and asymptotically normal. A conve-
nient way to formulate these results is to make a structural assumption on �: We suppose that � is
Lipschitz continuous in its components with at most polynomially increasing Lipschitz constant.
To make this more precise, we introduce the class L̃p+1(M,C) of functions using the definition
of Lr (M,C) from Definition 2.4.

Definition 5.1 (The class L̃p+1(M,C)). We say that a function g : Rp+1 ×  → R is in the
class L̃p+1(M,C) with C = (Cz,Cθ ) and constants Cz,Cθ ≥ 0 and M ≥ 0 if for all z ∈ R

p+1,
θ ∈  it holds that g(·, θ) ∈ Lp+1(M,Cz) and g(z, ·) ∈ Ld(0,Cθ (1 + |z|M+1

1 )).

As in Section 2, a generalization to Hoelder-type conditions (7) in the first component of g

is possible. It turns out in Theorem 5.2 that the (pointwise) consistency of θ̂b can be obtained
by posing conditions on the likelihood of the corresponding stationary process which is defined
via L(u, θ) := E[�̃t (u, θ)] with �̃t (u, θ) := �(X̃t (u), Ỹt−1(u), θ). Especially if � is taken to be of
the form (32) with fε the standard Gaussian density, the properties of L(u, θ) are usually well
known from the maximum likelihood theory of the stationary process Xt(θ) and therefore are
easy to verify (see also Example 5.5).

To prove consistency, we have to inspect Ln,b(u, θ) which consists of summands of the form
�(Xt,n, Yt−1,n, θ). Since � ∈ L̃p+1(M,C), these terms behave like polynomials of degree M + 1
in Xt,n. We mainly need the law of large numbers Proposition 2.7(ii) and the statements about de-
terministic bias expansions Proposition 3.3. The conditions therein require Assumption 2.1(S1)
with q = M + 1. Translated to the Markov process setting in this section, we have to assume
Assumption 4.1(L1), (L4) with q = M + 1 by the results from Section 4.

Theorem 5.2 (Pointwise and uniform consistency of θ̂b). Let Assumption 2.6 hold. Assume
that � ∈ L̃p+1(M,C) for some M ≥ 0. Suppose that Assumption 4.1(L1), (L4) holds with some
1 ≥ α > 0 and q = M + 1.

Furthermore suppose that for all u ∈ [0,1], θ0(u) ∈ int() is the unique minimizer of L(u, θ)

over θ ∈ , where  ⊂R
d is a compact set. Then:
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(i) For all u ∈ (0,1) with b → 0 and bn → ∞:

θ̂b(u)
p→ θ0(u).

(ii) If additionally q > M + 1 and b = o(n
1− M+1

q ) and θ0(·) is continuous, we have

sup
u∈[ b

2 ,1− b
2 ]

∣∣θ̂b(u) − θ0(u)
∣∣ p→ 0.

Remark 5.3. Note that in nearly all cases, the conditions of Assumption 4.1(L4) assumed in
Theorem 5.2 implicitly impose a Hoelder continuity condition on θ0(·); see also Example 5.5.

Proof of Theorem 5.2. (i) For fixed u ∈ [0,1] and θ ∈ , it holds that �(·, ·, θ) ∈ Lp+1(M,Cz).
Application of Theorem 2.7(ii) (see also Remark 2.8(ii)) leads to

Ln,b(u, θ) = 1

n

n∑
t=1

Kb

(
t

n
− u

)
· �(Xt,n, Yt−1,n, θ)

p→ E�
(
X̃t (u), Ỹt−1(u), θ

) = L(u, θ).

The function θ �→ L(u, θ) is continuous since∣∣L(u, θ) − L
(
u, θ ′)∣∣ ≤ ∥∥�

(
X̃t (u), Ỹt−1(u), θ

) − �
(
X̃t (u), Ỹt−1(u), θ ′)∥∥

1

≤ Cθ · ∣∣θ − θ ′∣∣
1 ·

(
1 +

(
p∑

j=0

∥∥X̃t (u)
∥∥

M+1

)M+1)
.

It remains to show stochastic equicontinuity of Ln,h(u, θ): Define h :Rp+1 → R, h(z) = Cθ(1+
|z|M+1

1 ). Fix η > 0. We have

∣∣Ln,b(u, θ) − Ln,b

(
u, θ ′)∣∣ ≤ ∣∣θ − θ ′∣∣

1 · 1

n

n∑
t=1

∣∣∣∣Kb

(
t

n
− u

)∣∣∣∣ · h(Xt,n, Yt−1,n).

Obviously, h ∈ Lp+1(M,C) with some constant C > 0. Application of Proposition 2.7(ii) to
K/

∫
K dx and h (see also Remark 2.8(ii)) yields for all u ∈ (0,1):

1

n

n∑
t=1

∣∣∣∣Kb

(
t

n
− u

)∣∣∣∣ · h(Xt,n, Yt−1,n)
p→

∫
|K|dx ·Eh

(
X̃t (u), Ỹt−1(u)

) =: c(u). (34)

Choosing δ = η
2c(u)

yields

P

(
sup

|θ−θ ′|1≤δ

∣∣Ln,b(u, θ) − Ln,b

(
u, θ ′)∣∣ > η

)

≤ P

(∣∣∣∣∣1

n

n∑
t=1

∣∣∣∣Kb

(
t

n
− u

)∣∣∣∣ · h(Xt,n, Yt−1,n) − c(u)

∣∣∣∣∣ > c(u)

)
→ 0 (n → ∞).
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This gives supθ∈ |Ln,b(u, θ) − L(u, θ)| p→ 0. By standard arguments (cf. [26], Theorem 5.7),
the proof is complete.

To prove (ii), we apply Theorem 2.7(iii) on �(Xt,n, Yt−1,n, θ) with q̃ = q
M+1 > 1 (see also

Remark 2.8(ii)) to obtain for each θ ∈  that

sup
u∈[0,1]

∣∣Ln,b(u, θ) −ELn,b(u, θ)
∣∣ = Op

(
n

M+1
q

−1
b−1).

By Proposition 3.3 and the bounded variation of K , we have sup
u∈[ b

2 ,1− b
2 ] |ELn,b(u, θ) −

L(u, θ)| = O(bα) + O((nb)−1), which yields sup
u∈[ b

2 ,1− b
2 ] |Ln,b(u, θ) − L(u, θ)| p→ 0. Simi-

larly we can strengthen (34) to

sup
u∈[ b

2 ,1− b
2 ]

∣∣∣∣∣1

n

n∑
t=1

∣∣∣∣Kb

(
t

n
− u

)∣∣∣∣ · h(Xt,n, Yt−1,n) − c(u)

∣∣∣∣∣ p→ 0.

Now define c := infu c(u) > 0 (by continuity of c(·)). Choosing δ = η
2c

yields

P

(
sup

u∈[ b
2 ,1− b

2 ]
sup

|θ−θ ′|1≤δ

∣∣Ln,b(u, θ) − Ln,b

(
u, θ ′)∣∣ > η

)

≤ P

(
sup

u∈[ b
2 ,1− b

2 ]

∣∣∣∣∣1

n

n∑
t=1

∣∣∣∣Kb

(
t

n
− u

)∣∣∣∣ · h(Xt,n, Yt−1,n) − c(u)

∣∣∣∣∣ > c

)
→ 0 (n → ∞).

So we have seen that sup
u∈[ b

2 ,1− b
2 ] supθ∈ |Ln,b(u, θ) − L(u, θ)| p→ 0. Standard arguments give

the result (see also the Supplementary Material [7]). �

We now provide a central limit theorem for θ̂b including a bias decomposition. Let ∇ denote
the derivative with respect to θ . To use a standard Taylor expansion from M-estimation theory,
we need the existence of ∇� ∈ L̃p(M ′,C′) and ∇2� ∈ L̃p(M ′′,C′′). To apply the local central
limit theorem 2.10 to ∇Ln,b(u, θ), we additionally need Assumption (S2) with q = 2(M ′ + 1)

which is fulfilled if Assumption 4.1(L2) is valid for q = 2(M ′ + 1).

Theorem 5.4 (A central limit theorem for θ̂b). Additionally to Theorem 5.2(i), suppose that �

is twice continuously differentiable w.r.t. θ and

• ∇� ∈ L̃p+1(M
′,C′) for some M ′ ≥ 0, ∇2� ∈ L̃p+1(M

′′,C′′) for some M ′′ ≥ 0,
• Assumption 4.1(L1), (L4) is fulfilled with q = max{2(M ′ + 1),M ′′ + 1} and some 1 ≥ α′ >

0, Assumption 4.1(L2) is fulfilled with q = 2(M ′ + 1).

Assume that the model is correct in the weak sense that E[∇ �̃(u, θ0(u))|Ft−1] = 0, i.e.
∇ �̃t (u, θ0(u)) is a martingale difference sequence with respect to (Ft ). Let b → 0, nb → ∞
and bn1−2α = o(1).
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(i) Then we have for nb1+2α′ = o(1):

√
nb

(
θ̂b(u) − θ0(u)

) d→ N

(
0,

∫
K(x)2 dx · V (u)−1I (u)V (u)−1

)
, (35)

where I (u) := E[∇ �̃t (u, θ0(u))∇ �̃t (u, θ0(u))′] and V (u) := ∇2L(u, θ0(u)) is assumed to
be positive definite.

(ii) If additionally ∇� is continuously differentiable and Assumption 4.1(L3) is fulfilled for
q = M ′ + 1, then we have for nb3 = O(1):

√
nb

(
θ̂b(u) − θ0(u) − b · V −1(u)E∂u∇�

(
X̃t (u), Ỹt−1(u), θ0(u)

) ·
∫

K(x)x dx

)

d→ N

(
0,

∫
K(x)2 dx · V (u)−1I (u)V (u)−1

)
,

so the result (35) remains true if K is symmetric.

Proof of Theorem 5.4. The conditions on ∇2� imply that the function u �→ ∇2L(u, θ) =
E[∇2�̃t (u, θ)] is continuous. Note that by Theorem 2.10, we have

√
nb∇Ln,b

(
u, θ0(u)

)
= 1√

nb

n∑
t=p+1

K

(
t/n − u

b

)(∇�
(
Xt,n, Yt−1,n, θ0(u)

) −E∇�
(
Xt,n, Yt−1,n, θ0(u)

))

d→ N

(
0,

∫
K(x)2 dx · σ 2(u)

)
,

where σ 2(u) = ‖∑∞
l=0 P0∇�̃t (u, θ0(u))‖2

2 = I (u) by the martingale difference property. Fur-
thermore,

1√
nb

n∑
t=1

K

(
t/n − u

b

)
E∇�

(
Xt,n, Yt−1,n, θ0(u)

)

= 1√
nb

n∑
t=1

K

(
t/n − u

b

)(
E∇�

(
Xt,n, Yt−1,n, θ0(u)

) −E∇�
(
X̃t (u), Ỹt−1(u), θ

))

= 1√
nb

n∑
t=1

K

(
t/n − u

b

)(
E∇�

(
X̃t (t/n), Ỹt−1(t/n), θ0(u)

) −E∇�
(
X̃t (u), Ỹt−1(u), θ

))

+ O
(√

n1−2αb
)
.
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Proposition 3.3 gives that the first term is O(
√

nb1+2α′
) in the case of (i). In case of (ii), the first

term has the form

1√
nb

n∑
t=1

K

(
t/n − u

b

)
·
(

t

n
− u

)
·E[

∂u∇�
(
X̃t (u), Ỹt−1(u), θ

)]∣∣
θ=θ0(u)

+ O
(
(nb)−1/2) + o

(√
nb3

)
and is o(

√
nb3) + O((nb)−1/2) if K is symmetric. Since ∇2� fulfills the same assumptions as �

in Theorem 5.2, we can mimic its proof and obtain

sup
θ∈

∣∣∇2Ln,b(u, θ) − ∇2L(u, θ)
∣∣ p→ 0.

By continuity of θ �→ ∇2L(u, θ), we obtain for each sequence θ̃n
p→ θ0(u) that∣∣∇2Ln,b(u, θ̃n) − V (u)

∣∣ ≤ ∣∣∇2Ln,b(u, θ̃n) − ∇2L(u, θ̃n)
∣∣ + ∣∣∇2L(u, θ̃n) − ∇2L

(
u, θ0(u)

)∣∣
p→ 0.

Standard arguments now give the result. �

The results of Theorem 5.4(ii) show that under the existence of derivative processes, one can
choose the MSE-optimal rate b ∼ n−1/3 for the bandwidth, keeping θ̂b(u) still asymptotically
unbiased. This result can be used in several applications, for instance, for bootstrapping Xt,n via
the recursion (31) with estimated errors ε̂t = H(Xt,n, Yt−1,n, θ̂b(t/n)), t = p + 1, . . . , n.

An important special case is the case of Gaussian conditional likelihoods combined with non-
linear autoregressive models. Specific examples for these are given in Example 2.2.

Example 5.5 (Nonlinear autoregressive models). In this example, we discuss the model
G̃ε(y, θ) = μ(y, θ) + σ(y, θ)ε, where μ,σ :Rp ×  →R satisfy

sup
θ

sup
y =y′

|μ(y, θ) − μ(y′, θ)|
|y − y′|χ,1

+ sup
θ

sup
y =y′

|σ(y, θ) − σ(y′, θ)|
|y − y′|χ,1

‖ε0‖2 ≤ 1 (36)

with some χ ∈ R
p

≥0 with |χ |1 < 1. Assume that Eε0 = 0 and Eε2
0 = 1 and that θ0 is Hoelder-

continuous with exponent α. Then Assumption 4.1(L2) is fulfilled with q = 2.
If we choose fε to be the standard Gaussian density, we obtain from (32):

�(x, y, θ) = 1

2

(
x − μ(y, θ)

σ (y, θ)

)2

− 1

2
logσ 2(y, θ) + const. (37)

Furthermore assume that

sup
y

sup
θ =θ ′

|μ(y, θ) − μ(y, θ ′)|
|θ − θ ′|1 · (1 + |y|1) < ∞, sup

y
sup
θ =θ ′

|σ(y, θ) − σ(y, θ ′)|
|θ − θ ′|1 · (1 + |y|1) < ∞. (38)
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Let σ(·) ≥ δσ be uniformly bounded from below with some δσ > 0. Then � ∈ L̃p+1(1,C) with
some C > 0, and Assumption 4.1(L1), (L4) is fulfilled with q = 2 and α from above.

Fix u ∈ [0,1]. Suppose that

μ
(
Ỹt−1(u), θ

) = μ
(
Ỹt−1(u), θ0(u)

)
and σ

(
Ỹt−1(u), θ

) = σ
(
Ỹt−1(u), θ0(u)

)
a.s.

implies θ = θ0(u). Then θ �→ L(u, θ) has a unique minimum in θ = θ0(u) since log(x) ≤ x − 1
if and only if x = 1 and x2 ≥ 0 if and only if x = 0 and, omitting the argument Ỹt−1(u),

2
(
L(u, θ) − L

(
u, θ0(u)

)) = E

(
μ(θ) − μ(θ0(u))

σ (θ)

)2

+E

[
log

σ(θ)2

σ(θ0(u))2
− 1 + σ(θ0(u))2

σ(θ)2

]
≥ 0.

If additionally  is compact and θ0(u) ∈ int(), the assumptions of Theorem 5.2 are fulfilled
and we obtain for θ̂b defined by (33):

θ̂b(u)
p→ θ0(u).

We now will show asymptotic normality of θ̂b. To keep the presentation simple, we will assume
σ(·, ·) ≡ 1, Eε4

0 < ∞ and replace Eε2
0 = 1 by Eε2

0 = σ 2
0 > 0. Note that Assumption 4.1(L2) is

fulfilled with q = 4. Then, omitting the arguments (y, θ) of μ, we have

∇�(x, y, θ) = −(x − μ)∇μ, ∇2�(x, y, θ) = ∇μ · ∇μ′ − (x − μ)∇2μ.

This shows E[∇�(X̃t (u), Ỹt−1(u), θ0(u))|Ft−1] = 0 and I (u) = E[∇� ·∇�′] = σ 2
0 E[∇μ ·∇μ′] =

σ 2
0 V (u) with V (u) := ∇2L(u, θ0(u)). If additionally

sup
θ

sup
y =y′

|∇μ(y, θ) − ∇μ(y′, θ)|1
|y − y′|1 < ∞, sup

y
sup
θ =θ ′

|∇μ(y, θ) − ∇μ(y, θ ′)|1
|θ − θ ′|1(1 + |y|1) < ∞ (39)

and similar assumptions are fulfilled for ∇2μ, then we have ∇�,∇2� ∈ L̃p+1(1,C′) with some
C′ > 0. This shows that all conditions of the first part of Theorem 5.4 are fulfilled and we obtain
for b → 0, nb → ∞ and nb3 = o(1):

√
nb

(
θ̂b(u) − θ0(u)

) d→ N
(
0, σ 2

0 · V (u)−1). (40)

If additionally, μ, ∇μ and θ0 are continuously differentiable and

sup
θ

sup
y =y′

|∂iμ(y, θ) − ∂iμ(y′, θ)|1
|y − y′|1 < ∞ (i = 1,2), (41)

then ∇� is continuously differentiable and Assumption 4.1(L3) is fulfilled with q = 2. If K is
symmetric, all conditions of the second part of Theorem 5.4 are fulfilled and we obtain (40) even
if nb3 = O(1).
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We close this section by using the results of Example 5.5 in a more specific example of the
tvExpAR(1) process which is a locally stationary version of the ExpAR(1) process discussed in
[10]. Up to now, there is no asymptotic theory available for parameter estimators in this model;
we show that our theory immediately provides consistency and asymptotic normality of the cor-
responding maximum likelihood estimator.

Example 5.6 (Maximum likelihood estimation in the tvExpAR(1) process). Assume that
there exists θ0 : [0,1] →  (where the image of θ0 is in the interior of ) with  := {θ ∈R : 0 ≤
θ ≤ ρ} and some fixed ρ > 0, 0 < |a0| < 1 such that

Xt,n = a0 exp

(
−θ0

(
t

n

)
X2

t−1,n

)
Xt−1,n + εt , t = 1, . . . , n.

Assume that Eε0 = 1, Eε2
0 = σ 2

0 > 0 and Eε4
0 < ∞. It is easily seen that this model fulfills the

smoothness assumptions (36), (38), (39) and (41) with μ(y, θ) := a0 exp(−θy2)y and σ(·, ·) ≡
1. Let X̃t (u) denote the corresponding stationary approximation of Xt,n. Identifiability of θ is
obtained due to

E
[(

μ
(
X̃t (u), θ

) − μ
(
X̃t (u), θ ′))2] ≥ a2

0E
[
exp

(−2ρX̃0(u)2)X̃0(u)6] · ∣∣θ − θ ′∣∣2
,

since E[exp(−2ρX̃t (u)2)X̃t (u)6] = 0 would imply X̃t (u) = 0 a.s. which is a contradiction to
E[X̃t (u)2] ≥ σ 2

0 which follows from the recursion of X̃t (u). Let θ̂b(u) be defined by (33) based
on the likelihood (37) and let Assumption 2.6 hold. We obtain for b → 0, bn → ∞:

θ̂b(u)
p→ θ0(u),

and for nb3 = O(1):
√

nb
(
θ̂b(u) − θ0(u)

) d→ N
(
0, σ 2

0 V (u)−1),
where V (u) = a2

0E[exp(−2θ0(u)X̃0(u)2)X̃0(u)6].

6. Concluding remarks

In this paper, we have made some steps towards a general asymptotic theory for nonlinear locally
stationary processes. A key role in our derivations is played by the local stationary approxima-
tion, the derivative process, the corresponding Taylor-expansion and the resulting differential
calculus.

Just based on this local approximation we were able to prove laws of large numbers, a central
limit theorem, and stochastic and deterministic bias approximations – results which have not been
proved so far for general locally stationary processes. For example, for the global strong law of
large numbers we need only the existence of the first order moment of the process. It should be
noted that for these results we concluded from local assumptions to global results such as the
strong law of large numbers and the central limit theorem. A simulation displayed in Figure 1
shows that the pointwise approximation of Xt,n by X̃t (u) and ∂uX̃t (u) works quite well.
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We also showed that these results can be applied to a general nonlinear time series model with a
nonstationary Markov structure which includes several nonlinear models. As another application
we derived the asymptotic properties of the maximum likelihood estimator for such processes.
The result is proved by applying the differential calculus of the derivative process.
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10.3150/17-BEJ1011SUPP; .pdf). Supplement A: Proofs of Section 2, 4 and 5. This supple-
ment contains the remaining proofs for Sections 2, 4 and 5. Supplement B: Discussion of the
Assumptions 2.3(M1), (M2). This supplement contains another counterexample where Assump-
tion 2.3(M1) is satisfied but not (M2).
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