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In this paper, we investigate the problem of detecting dynamically evolving signals. We model the signal
as an n dimensional vector that is either zero or has s non-zero components. At each time step t ∈ N the
nonzero components change their location independently with probability p. The statistical problem is to
decide whether the signal is a zero vector or in fact it has non-zero components. This decision is based on
m noisy observations of individual signal components collected at times t = 1, . . . ,m. We consider two dif-
ferent sensing paradigms, namely adaptive and non-adaptive sensing. For non-adaptive sensing, the choice
of components to measure has to be decided before the data collection process started, while for adaptive
sensing one can adjust the sensing process based on observations collected earlier. We characterize the dif-
ficulty of this detection problem in both sensing paradigms in terms of the aforementioned parameters, with
special interest to the speed of change of the active components. In addition, we provide an adaptive sensing
algorithm for this problem and contrast its performance to that of non-adaptive detection algorithms.
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1. Introduction

Detection of sparse signals is a problem that has been studied with great attention in the past.
The usual setting of this problem involves a (potentially) very large number of items, of which
a (typically) much smaller number may be exhibiting anomalous behavior. A natural question
one can ask if it is possible to reliably detect if there are indeed some items showing anomalous
behavior? Questions like this are encountered in a number of research fields. Some examples
include epidemiology where one wishes to quickly detect an outbreak or the environmental risk
factors of a disease (Neill and Moore [27], Kulldorff et al. [21], Huang, Kulldorff and Gregorio
[15], Kulldorff, Huang and Konty [22]), identifying changes between multiple images (Flenner
and Hewer [11]), and microarray data studies (Pawitan et al. [28]) to name a few.

A common point in the examples above is that even though it is not known which items are
anomalous, their identity remains fixed throughout the sampling/measurement process. However,
in certain situations the identity of these items may change over time.

Consider for instance, a signal intelligence setting where one wishes to detect covert commu-
nications. Suppose that our task is to survey a signal spectrum, a small fraction of which may
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be used for communication, meaning that some frequencies would exhibit increased power. On
one hand, we do not know beforehand which frequencies are used, but also the other parties may
change the frequencies they communicate through over time. This means we will be chasing a
moving target. This introduces a further hindrance in our ability to detect whether someone is
using the surveyed signal spectrum for covert communications.

Other motivating examples for such a problem include spectrum scanning in a cognitive radio
system (Li [23], Caromi, Xin and Lai [4]), detection of hot spots of a rapidly spreading dis-
ease (Shah and Zaman [31], Zhu and Ying [37], Luo and Tay [24], Wang et al. [35]), detection
of momentary astronomical events (Thompson et al. [32]) or intrusions into computer systems
(Gwadera, Atallah and Szpankowski [12], Phoha [29]). The main question that we aim to an-
swer in this paper is how the dynamical aspects of the signal affect the difficulty of the detection
problem.

In the more classical framework of the signal detection problem, inference is based on observa-
tions that are collected non-adaptively. However, dealing with time-dependent signals naturally
leads to a setting where measurements can be obtained in a sequential and adaptive manner, us-
ing information gleaned in the past to guide subsequent sensing actions. Furthermore, in certain
situations it is impossible to monitor the entire system at once, but instead one can only partially
observe the system at any given time.

It is known that, in certain situations, adaptive sensing procedures can very significantly out-
perform non-adaptive ones in signal detection tasks (Castro [5]). Hence, our goal is to understand
the differences between adaptive and non-adaptive sensing procedures when used for detecting
dynamically evolving signals, in situations where the system can only be partially monitored.

Contributions

In this paper, we introduce a simple framework for studying the detection problem of time-
evolving signals. Our signal of interest is an n-dimensional vector xt ∈ R

n, where t ∈ N denotes
the time index. We take a hypothesis testing point of view. Under the null the signal is static
and equal to the zero vector for all t , while under the alternative the signal is a time-evolving
s-sparse vector. At each time step t ∈ N, we flip a biased coin independently for each non-zero
signal component to decide if these will “move” to a different location. Thus, the coin bias p

encodes the speed of change of the signal support in some sense. At each time step we are
allowed to select one component of the signal to observe through additive standard normal noise,
and we are allowed to collect up to m measurements. Our goal is to decide whether the signal is
zero or not, based on the collected observations.

We present an adaptive sensing algorithm that addresses the above problem, and show it is
near-optimal by deriving the fundamental performance limits of any sensing and detection pro-
cedure. We do this in both the adaptive sensing and non-adaptive sensing settings for a range
of parameter values p and s. It is easy to see that the above problem can not be solved reliably
unless we are allowed to collect on the order of n/s measurements. When the number of mea-
surements is of this order, we can reliably detect the presence of the signal when the smallest
non-zero component scales roughly like

√
p log(n/s) in the adaptive sensing setting (Theorems

3.1 and 4.2). In the non-adaptive sensing setting detection is possible only when the smallest
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non-zero component scales like
√

log(n/s) (Theorem 4.1). Hence, under the adaptive sensing
paradigm the speed of change influences the difficulty of the detection problem, with slowly
changing signals being easier to detect. Contrasting this, in the non-adaptive sensing setting the
speed of change appears to have no strong effect in the problem difficulty when m is of the order
n/s. When the number of measurements m is significantly larger than n/s the picture changes
quite a bit, and a theoretical analysis of that case is beyond the contribution of this paper. Never-
theless, we provide some simulation results indicating that, in the non-adaptive sensing setting,
the signal dynamics will then influence the detection ability.

Despite its simplicity, the setting introduced in this paper provides a good starting point to
understand the problem of detecting dynamically evolving signals. Although we provide several
answers in this setting many questions remain (both technical and conceptual). We hope that this
work opens the door for many interesting and exciting extensions and developments, some of
which are highlighted in Section 6.

Related work

The setting where the identity of the anomalous items is fixed over time has been widely studied
in the literature. Classically this problem has been addressed when each entry of the vector is
observed exactly once. In this context, both the fundamental limits of the detection problem and
the optimal tests are well understood (see Ingster and Suslina [17,18], Baraud [2], Donoho and
Jin [8] and references therein).

The same problem has been investigated in the adaptive sensing setting as well. In Haupt,
Castro and Nowak [14] the authors provide an efficient adaptive sensing algorithm for identifying
a few anomalous items among a large number of items. These results were generalized in Malloy
and Nowak [26] to cope with a wide variety of distributions. The algorithms outlined in these
works can in principle also be used to solve the detection problem, that is where only the presence
or absence of anomalous items needs to be decided. In Malloy and Nowak [25] and Castro [5],
bounds on the fundamental difficulty of the estimation problem were derived, whereas in Castro
[5] bounds for the detection problems were provided as well.

Our work here has a similar flavor to all the above, but tackling the problem when the anoma-
lous items may change positions while the measurement process is taking place. This brings a
new temporal dimension to the signal detection problems referenced above. Statistical inference
problems pertaining time-dependent signals have been investigated in various settings in the past.
However, the papers referenced below only have varying degrees of connection to the problem
we are considering, as despite our best efforts, we were only able to find a few instances that
resemble our setting.

A setting that has some degree of temporal dependence is the monitoring of multi-channel sys-
tems. This problem was introduced in Zigangirov [38] and later revisited in Klimko and Yackel
[20] and Dragalin [9]. In this setting, each channel of a multi-channel system contains a Wiener
process, a few of which are anomalous and have a deterministic drift. The observer is allowed
to monitor one channel at a time with the goal to localize the anomalous channels as quickly as
possible. Although there is a clear temporal aspect to these problems, the anomalous channels
identity is unchanged during the process.
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Another prototypical example of inference concerning temporal data is change-point detection
in a system involving multiple processes. In this problem, we have multiple sensors observing
stochastic processes. After some unknown time a change occurs in the statistical behavior of
some of the processes, and our goal is to detect when such a change occurs as quickly as possible.
This setting has been studied in Hadjiliadis, Zhang and Poor [13], a Bayesian version of the
problem was investigated in Raghavan and Veeravalli [30], while the authors of Bayraktar and
Lai [3] deal with a version of the above problem where only one of the sensors is compromised.

This setting shares similarities to ours, but there are some key differences. In the change-
point detection setting, once a process becomes anomalous it remains so indefinitely. Since some
processes are bound to exhibit anomalous behavior, the goal is to minimize the detection delay.
Contrasting this, in the setting we consider an anomalous process can revert back to the nominal
state, and there is a possibility that none of the processes are anomalous at any time. Hence,
our goal is to decide between the presence or absence of any anomalous processes over the
measurement horizon.

A set of more closely related work is concerned with the spectrum scanning of multichannel
cognitive radio systems. Here the aim is to quickly and accurately determine the availability
of each spectrum band of a multi-band system where the occupancy status changes over time.
Alternatively one might only aim to quickly find a single band that is available. This problem
has been studied in Li [23] and Caromi, Xin and Lai [4], in which the authors provide efficient
algorithms for the problem at hand. A very similar problem was investigated in Zhao and Ye
[36], where one observes multiple ON/OFF processes and wishes to catch one in the ON state.

Although the underlying models of these problems come very close to the one we consider,
these works are also change-point detection problems in spirit. Hence, a similar comment applies
here as well, namely that the goal of the algorithms of Li [23], Caromi, Xin and Lai [4] and Zhao
and Ye [36] is to detect a change-point while minimizing some notion of regret (such as detection
delay or sampling cost), which is somewhat different to the problem we are aiming to tackle.

Organization

Section 2 introduces the problem setup, including the signal and observation models and the
inference goals. In Section 3, we introduce an adaptive sensing algorithm and analyze its per-
formance. Section 4 is dedicated to the characterization of the difficulty of the detection of dy-
namically evolving signals. In particular, we show that the algorithm presented in Section 3 is
near-optimal, and examine the difference between adaptive and non-adaptive sensing procedures.
In Section 5, we present numerical evidence supporting a conjecture on the non-adaptive sensing
performance limit in the regime when m is of the order n/s. Concluding remarks and avenues
for future research are provided in Section 6.

2. Problem setup

For notational convenience let [k] = {1, . . . , k} where k ∈ N. In our setting the underlying (un-
observed) signal at time t is a n-dimensional vector, where time t ∈N is discrete. Let μ > 0 and
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denote the unknown signal at time t ∈N by x(t) ≡ (x
(t)
1 , . . . , x

(t)
n ) ∈ R

n, where

x
(t)
i =

{
μ if i ∈ S(t),

0 if i /∈ S(t)

and S(t) ⊂ [n] is the support of the signal at time t . We refer to the components of x(t) corre-
sponding to the support S(t) as the active components of the signal at time t . In Section 2.1, we
model the signal as a random process with the property that, at any time, the number of active
components is much smaller than n.

In this idealized model, the active components of x(t) have all same value, which might seem
restrictive at first. However, when the active components have different signs and magnitudes, the
arguments of all the proofs hold throughout the paper with μ playing the role of the minimum
absolute value of the active components. Although a more refined analysis is likely possible,
where the minimum is replaced by a suitable function of the magnitudes of active components,
we choose to sacrifice generality for the sake of clarity (see also Remark 2.4 below).

The signal is only observable through m noisy coordinate-wise measurements of the form

Yt = x
(t)
At

+ Wt, t ∈ [m], (2.1)

where At ∈ [n] is the index of the entry of the signal measured at time t and Wt are indepen-
dent and identically distributed (i.i.d.) standard normal random variables. In the general adaptive
sensing setting At is a (possibly random) measurable function of {Yj ,Aj }j∈[t−1] and Wt is in-
dependent of {x(j),Aj }j∈[t] and {Yj }j∈[t−1]. This means the choice of signal component to be
measured can depend on the past observations. A more restrictive setting is that of non-adaptive
sensing, where the choice of components to be measured has to be made before any data is
collected. Formally, At is independent from {Yj ,Aj }j∈[t−1] for all t ∈ [m].

Remark 2.1. This measurement model is very similar to that of Haupt, Castro and Nowak [14],
Castro [5] and Castro and Tánczos [6], where measurements are of the form

Yt = xAt + �−1
t Wt , t = 1,2, . . . ,

when x is a (time-independent) signal, At are as above, and �t ∈R represent the precision of the
measurements (that can be also chosen adaptively).

In those papers the authors impose a restriction on the total precision used (and not on the
number of measurements). However, since often the precision is related to the amount of time we
have for an observation it is somewhat more appealing to consider fixed precision measurements
instead. See also Remark 2.3 for an alternative model closer in spirit to that of the above papers.

Remark 2.2. Recently Enikeeva, Munk and Werner [10] considered an extension of the classical
sparse signal detection problem in which the measurements are heteroscedastic, and derived the
asymptotic constants of the detection boundary. In principle, a model similar in spirit to the one
presented in that work could also be considered here as well, by assuming that measurements on
active components not only have elevated means, but also variance different to 1.
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The ideas of Enikeeva, Munk and Werner [10] can be used to modify our detection procedure
(in particular the Sequential Thresholding Test – see Algorithm 2) to craft a procedure that can
deal with measurements of different variances. However, the question of heteroscedasticity for
dynamically evolving signals is too rich to be dealt with in the present work.

2.1. Signal dynamics

We consider what might be the simplest non-trivial stochastic model for the evolution of the
signal. Our goal is to model situations where the signal support S(t) changes “slowly” over
time.

For concreteness consider first a particular situation, where we assume that at any time t there
is a single active component (so |S(t)| = 1 for all t ∈ N). We model the support evolution as a
Markov process: the support S(1) is chosen uniformly at random over the set [n] (that is, the
active component is equally likely to be any of the [n] components); for t ≥ 1 we flip a biased
coin with heads probability p ∈ [0,1] independent of all the past, and if the outcome is heads
then S(t+1) is chosen uniformly at random over [n], otherwise S(t+1) = S(t). In words, at each
time instant the active component stays in place with probability 1 − p and “jumps” to another
location with probability p. Thus when p = 1 the signal has a new support drawn uniformly
at random at each time t ∈ N, whereas in case p = 0 the support is chosen randomly at the
beginning and stays the same over time. In general, the parameter p can be interpreted as the
speed of change of the support, with larger values corresponding to a faster rate of change. This
basic model of signal dynamics can be easily generalized to multiple active components model
as follows.

Let s ∈ [n] be the sparsity of our signal. We enforce that |S(t)| = s for t ∈ N, meaning the
signal sparsity does not change over time. For t = 1, S(t) is chosen uniformly at random from the
set {S ⊆ [n] : |S| = s}. For time t ≥ 1, we flip s independent biased coins, each corresponding
to an active component, to decide which components move and which stay in the same place.
Formally take p ∈ [0,1] and let θ

(t)
i ∼ Ber(p) be independent for every i ∈ [s], t ∈ N. Consider

an enumeration of S(t) as S(t) ≡ {S(t)
i }i∈[s]. If θ

(t)
i = 0 component S

(t)
i will also be included in

S(t+1), otherwise it will move. The support set S(t+1) is chosen uniformly at random from the
set {

S ⊂ [n] : |S| = s, S ∩ S(t) = {
S

(t)
i : θ(t)

i = 0
}}

.

For illustration purposes, we provide some simulated results in Figure 1 (n is chosen quite small
for visual clarity only).

Remark 2.3. Although we consider time to be discrete, continuous-time counterparts of this
model are certainly possible (e.g., by taking the transition times to be generated by a Poisson
process). A realistic measurement model in this case would require the variance of the observa-
tion noise to be inversely proportional to the time between consecutive measurements, effectively
playing a similar role to the precision parameter as in Haupt, Castro and Nowak [14], Castro [5].
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(a) (b) (c)

Figure 1. Simulation of the support dynamics with n = 50, s = 5 and (a) p = 0.2; (b) p = 0.5; and
(c) p = 0.8. Components in the support are colored black.

2.2. Testing if a signal is present

In the setting described, one can envision several inference goals. One might try to “track” the
active components of the signal, attempting to minimize the total number of errors over time.
A somewhat different and in a sense statistically easier goal is to detect the presence of a sig-
nal, attempting to answer the question: are there any needles in this moving haystack? This is
the question we pursue in this paper, and it can be naturally formulated as a binary hypothesis
test.

Under the null hypothesis there is no signal present, that is S(t) = ∅ for every t ∈ N. Under
the alternative hypothesis there is a signal support evolving according to the model described
above, for some s ∈ [n] and p ∈ [0,1]. Ultimately, after we collected m observations we have to
decide whether or not to reject the null hypothesis. Formally, let � : {At,Yt }t∈[m] → {0,1} be a
test function where the outcome 1 indicates the null hypothesis should be rejected.

We evaluate the performance of any test � ≡ �({At,Yt }t∈[m]) in terms of the maximum of the
type I and type II error probabilities, which we call the risk of a test R(�). Namely we require

R(�) ≡ max
i=0,1

Pi (� 
= i) ≤ ε, (2.2)

with some fixed ε ∈ (0,1/2), where P0 and P1 denote the probability measure of the observations
and the null and alternative hypothesis, respectively. Later on we also use the notation Ei , i ∈
{0,1} to denote the expectation operator under the null and alternative hypothesis respectively.
Note that both the null and alternative hypothesis are simple in the current setup (as we assume
p and μ to be known). In particular, the density of the observations y = (y1, . . . , ym) under the
alternative can be written as the following mixture:

dP1(y) = E

[ ∏
t∈[m]

g
(
At |{yj ,Aj }j∈[t−1]

)(
1
{
At ∈ S(t)

}
fμ(yt ) + 1

{
At /∈ S(t)

}
f0(yt )

)]
,
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where fμ is the density of a normal distribution with mean μ and variance 1, {S(t)}t∈[m] are
the supports evolving as defined in Section 2, and g(At |{yj ,Aj }j∈[t−1]) is the density of the
sensing action at time t . Note, however, that our detection procedures in Section 3 do not require
knowledge of μ or p.

The main goal of this work is to understand how large the signal strength μ needs to be, as a
function of n, m, s, p and ε to ensure (2.2) is satisfied. To this end, we first propose a specific
adaptive sensing algorithm and evaluate its performance in Section 3. Furthermore in Section 4,
we prove that, in several settings, this algorithm is essentially optimal, by showing lower bounds
on μ that are necessary for detection by any sensing and testing strategy. In the subsequent
sections, we will see that there is a complex interplay between the parameters n, m, s and p in
how they affect the minimum signal strength required for reliable detection.

It is noteworthy to stress that even when we restrict ourselves to the case p = 1 the nature of the
optimal test changes radically depending on the interplay between the remaining parameters n,
m and s. In this case, the signal support is reset at every time t ∈ N, which means that regardless
of the sampling strategy (the choice of At ) we are in the situation akin to a so-called sparse
mixture model. These models are now well understood (see Ingster and Suslina [17,18], Baraud
[2], Donoho and Jin [8] and references therein). We know that in the case of mixture models,
for very sparse signals a type of scan test (which is essentially a generalized likelihood-ratio
test) performs optimally, whereas for less sparse signals a global test based on the sum of all the
observations is optimal. In our case, the interplay between the parameters n, s and m determines
the level of sparsity of the sample under the alternative. This in turn means that when p = 1 the
optimal test and the scaling required for μ, depends on the relation between m and s/n.

The above phenomenon becomes even more complex when p < 1. Note, however, that unless
m is at least of the order of n/s reliable detection is impossible (regardless of the value of p).
The reason behind this is that no sampling strategy will sample an active component under the
alternative in fewer measurements with sufficiently large probability. To see this, consider the
case p = 0 and suppose there is no observation noise. Let the sampling strategy be arbitrary and
let � denote the event that the algorithm does not sample an active component. When m ≤ n/s

we have

P1(�) ≥
(
n−s
m

)(
n
m

) = (n − s)(n − s − 1) · · · (n − s − m + 1)

n(n − 1) · · · (n − m + 1)

≥
(

1 − s

n − m

)m

≥
(

1 − 2s

n

)n/s

.

The expression on the right is bounded away from zero when n/s is large enough. Hence, regard-
less of the sampling strategy, there is a strictly positive probability that no active components are
sampled under the alternative, which shows that (2.2) can not hold for ε smaller than (1− 2s

n
)n/s .

When p > 0, sampling an active component becomes even harder, hence the same rationale
holds.

In this paper, we focus primarily on the regime where the number of measurements m is
only slightly larger than n/s (what might be deemed to be the “small sample” regime). If we
are interested in scenarios where one needs a detection outcome as soon as possible this is the
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interesting regime to consider. Interestingly, when m is significantly larger than n/s the optimal
sensing and testing strategies, as well as the fundamental difficulty of the problem appears to
be quite different than that of the small sample regime, and is an interesting and likely fruitful
direction for future work. In Section 5, we conducted a small numerical experiment illustrating
how the fundamental performance behavior changes in that regime.

Remark 2.4. The results in this paper can be very naturally generalized for signals with different
signs and magnitudes, by considering the class of signals characterized by the minimum signal
magnitude. In the regime where m is of the order of n/s this is essentially the most natural
characterization, since only a very small number of active components will actually be observed
(so a very low magnitude component will hinder the performance of any method). When m

is significantly larger the picture changes quite significantly and pursuing these results is an
interesting avenue for future research beyond the scope of this paper.

3. A detection procedure

In this section, we present an adaptive sensing detection algorithm for the setting in Section 2 and
analyze its performance. To devise such a procedure we use a similar approach as taken by Castro
and Tánczos [6] – first devise a sensible procedure that works when there is no observation noise
(i.e., when Wt ≡ 0), and then make it robust to noise by using sequential testing ideas.

Consider a setting where there is no measurement noise, that is, when measuring a component
of x(t) we know for sure whether that component is zero or not. In such a setting if we find an ac-
tive component we can immediately stop and deem � = 1. Note that it is wasteful to make more
than one measurement per component, and that, before hitting an active component, we have
absolutely no prior knowledge on the location of active components. Therefore an optimal adap-
tive sensing design is random component sampling without replacement. If we look at a large
enough number of randomly chosen components and only observe zeros, it becomes reasonable
to conclude that there are no active components and so we deem � = 0. Bear in mind though
that in case we did not observe any active components we might have simply been unlucky, and
missed them even though they are present. Hence, there is always a possibility for a false negative
decision regardless of how many components we observe, unless p = 0 and m ≥ n − s.

The procedure that we propose is a “robustified” version of the one explained above, so that it
can deal with measurement noise. This is done by performing a simple sequential test to gauge
the identity of the component that we are observing. A natural candidate for this is the Sequential
Likelihood-Ratio Test (SLRT), introduced in Wald [34]. However, the dynamical nature of the
signal causes some difficulties. In particular the identity/activity of the component that we are
observing might change while performing the test, creating many analytic hinderances in the
study of the SLRT performance. We instead use a simplified testing/stopping criteria that is
easier to analyze in such a scenario.

The basic detection algorithm, presented in Algorithm 1, queries components uniformly at
random one after another and tests their identity (whether they are active or not during the sub-
sequent time period) using the sequential test to be described later. Once a component is deemed
to have been active we set � = 1 and stop collecting data. If after examining T components or
exhausting our measurement budget no components are deemed active we set � = 0.
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Algorithm 1: Detection Algorithm
Parameters:

• Number of queries T ∈N

• Queries Q1, . . . ,QT
iid∼ Unif([n])

for j ← 1 to T do
Perform a STT for the component indexed by Qj

If the STT returns “Signal”: set � = 1 and break
If measurement budget is exhausted: set � = 0 and break

end

Formally, let {Qj }j∈[T ] denote the components queried by Algorithm 1. We choose Qj , j ∈
[T ] to be independent Unif([n]) random variables.1 The appropriate number of queries T ≤
m will be chosen later. For each Qj we run a sequential test to determine the identity of that
component. We refer to our sequential test as Sequential Thresholding Test (STT).

To gauge the identity of Qj , j ∈ [T ], the STT algorithm makes multiple measurements at that
coordinate. The exact number of measurements depends on the observed values (in a way we de-
scribe in detail later), and hence it is random. We denote the number of observations collected by
STT at coordinate Qj by Nj . Formally, this means that At = Qj for t ∈ [1+∑j−1

i=1 Ni,
∑j

i=1Ni].
At the end of the j th run of STT (j = 1,2, . . . , T ), the STT returns either that an active com-

ponent was present at coordinate Qj , or that no active component was present at that location.
In the former case there is no need to collect any more samples: Algorithm 1 stops and declares
� = 1. Otherwise we continue with applying STT to coordinate Qj+1. If all T runs of STT
found no signal, or we exhaust our measurement budget, Algorithm 1 stops and returns � = 0.

The sequential test that we use to examine the identity of a queried component is based on
the ideas of distilled sensing introduced and analyzed in Haupt, Castro and Nowak [14] and the
Sequential Thresholding procedure of Malloy and Nowak [26]. The distilled sensing algorithm
is designed to recover the support of a sparse signal (whose active components remain the same
during the sampling process). The main idea there is to use the fact that the signal is sparse and
try to measure active components as often as possible, while not wasting too many measurements
on components that are not part of the support. Our aim here is somewhat similar: on one hand
we wish to quickly identify when the component that we are sampling is non-active so that
we can move on to probe a different location of the signal. On the other hand in case we are
sampling an active component we wish to keep sampling it as long as it is active to collect as
much evidence as possible. However, unlike in the original setting of distilled sensing, we need
to be able to quickly detect that we are sampling an active component, as it will eventually move
away because of the dynamics. To address the last point, the STT algorithm in Algorithm 2 uses
an evolving threshold for detection depending on the number of observations collected.

We present STT in a way that emphasizes that it is a stand-alone routine plugged into the
detection algorithm above, and not necessarily specific to the problem at hand. Hence, when

1In principle one could ensure these are sampled without replacement from [n], but this would only unnecessarily com-
plicate the analysis without yielding significant performance gains.



Are there needles in a moving haystack? 987

Algorithm 2: Sequential Thresholding Test (STT)
Parameters:

• k ∈N, t1 > t2 > · · · > tk > 0
• STT can sequentially observe X(1),X(2), . . . ,X(k)

for j ← 1 to k do

Observe X(j) and compute X
(j) = ∑j

i=1 X(i)/j

If X
(j) ≤ tk : break and declare No signal

If X
(j)

> tj : break and declare Signal
end

discussing STT, the observations the STT makes are denoted by X(1),X(2), . . . . In the context of
Algorithm 1, for the j th call of STT we have X(1),X(2), . . . to be independent normal random

variables with variance one and means respectively x
(Tj )

Qj
x

(Tj +1)

Qj
, . . . , where Tj = 1 + ∑j−1

i=1 Ni .

In words, STT collects at most k measurements sequentially and keeps track of the running
average until one of the stopping conditions is met. The first stopping condition says that once
the running average drops below the threshold tk we stop and declare that there is no signal
present. The second says that if the running average at step j exceeds a threshold tj , we stop
and conclude that a signal component is present. Note that after each measurement the upper
threshold decreases, eventually reaching tk , hence the procedure necessarily terminates after at
most k measurements.

Key to the performance of the STT is a good choice of k and {tj }j∈[k], which is informed by
the following heuristic argument: the sample collected by the detection algorithm consists of T

blocks of measurements, where each block corresponds to an application of STT. Let the block
lengths be denoted by {Nj }j∈[T ]. Suppose for a moment that blocks entirely consist of either
zero mean or non-zero mean measurements. In this case we can simply think of each block
j as a single measurement with mean multiplied by

√
Nj for all j ∈ [T ]. This would reduce

the problem to a detection problem in a T -dimensional vector, each component being normally
distributed and having unit variance. This is a well-understood setting, and we know that in this
case the signal strength needs to scale as

√
logT when there are not too many active components

(see, for instance, Donoho and Jin [8] and the references therein). Recall that we are concerned
with the case where the number of measurements we are allowed to make is of the order n/s.
Hence, we do not expect to encounter active components too many times. This heuristic shows
that we should calibrate STT in a way that when it encounters j consecutive measurements with

elevated mean, it should be able to detect it when μ ≈
√

1
j

logT .2 Furthermore, considering the

tail properties of the Gaussian distribution, it is easy to see that we also need μ �
√

log 1
ε

for
reliable detection. Recalling that j ≤ k, this shows that choosing k greater than logT does not
buy us anything. Informed by the above heuristic argument we choose the parameters of STT so
that the following result holds.

2In this informal discussion, the notations ≈ and � hide constant factors and/or log(1/ε) terms.
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Lemma 3.1. Let ε ∈ (0,1) and define the parameters of STT as

k = ⌊
log(T /2)

⌋
,

tj =
√

c(2ε/T )

j
log

2T

ε
, j ∈ [k],

where

c(x) = 2

(
1 + log log(1/x)

log(1/x)

)
.

Denote the observations available to the STT by X(1), . . . ,X(k) (note that the STT may terminate
without observing all the variables). Then the following holds:

(i) If X(i) iid∼ N (0,1) for i ∈ [k], then STT declares “Signal” with probability at most ε/T .

(ii) For any j ∈ [k], if the X(i) iid∼ N (μ,1) for i ∈ [j ] with

μ ≥
√

c(2ε/T )

j
log

2T

ε
+

√
2 log

4

ε
,

then STT declares “No Signal” with probability at most ε/3.

Note that, for (ii) it suffices for the first j observations to have elevated mean to guarantee the
good performance of the STT.

Proof of Lemma 3.1. For the first part, suppose note that the STT declares “Signal” if at any
time step j ∈ [k] the running average Xj exceeds the threshold tj .

P
(∃j ∈ [k] : X(j) ≥ tj

) ≤
k∑

j=1

P
(
X

(j) ≥ tj
)

≤
k∑

j=1

1

2
exp

(
−j t2

j

2

)

=
�log(T /2)�∑

j=1

1

2
exp

(
−c(2ε/T )

2
log

T

2ε

)

≤ 1

2
log(T /2) ·

(
2ε

T

)c(2ε/T )/2

,

where the first inequality follows by a union bound, and the second inequality is follows by a tail
bound on Gaussian random variables noting that Xj ∼ N (0,1/j). The last expression above is
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at most ε/T , which can be checked by taking the logarithm:

log

(
1

2
log(T /2) ·

(
2ε

T

)c(2ε/T )/2)
= log log(T /2) +

(
1 − log log(T /(2ε))

log(2ε/T )

)
log(2ε/T ) − log 2

= log log(T /2) + log(2ε/T ) − log log
(
T/(2ε)

) − log 2

≤ log
ε

T
.

For the second part, assume the conditions in (ii) hold for μ as given in the lemma. Define the
event

� = {∃i ∈ [j − 1] : X(i) ≤ tk
}
.

Note that if this event happens, we stop and declare “No signal” in one of the first j − 1 steps.

P
(
Declare “No signal”

) = P(�) + P
(
Declare “No signal”

)|�)P(�)

≤ P(�) + P
(
X

(j) ≤ tj |�
)
P(�)

≤ P(�) + P
(
X

(j) ≤ tj
)
.

Using a union bound and the same Gaussian tail bound as before, the last expression can be upper
bounded by

j−1∑
i=1

1

2
exp

(
− i(μ − tk)

2

2

)
+ 1

2
exp

(
−j (μ − tj )

2

2

)
. (3.1)

Considering the first term above, note that

μ − tk ≥ tj +
√

2 log
4

ε
− tk ≥

√
2 log

4

ε
,

since tj ≥ tk (recall that j ≤ k). Hence the first term can be upper bounded as

j−1∑
i=1

1

2
exp

(
− i(μ − tk)

2

2

)
≤ 1

2

j−1∑
i=1

(ε/4)i ≤ ε

2

1

4 − ε
≤ ε/6.

On the other hand, when μ satisfies the inequality above, the second term is simply upper
bounded by (ε/4)j , and so the left-hand-side of (3.1) is less than ε/6 + ε/8 < ε/3. �

Using Lemma 3.1, we can establish a performance guarantee for our detection algorithm.
Though it is possible to derive a result for fixed n and s it is more transparent to state a result for
large n instead, better highlighting the impact of parameter p. Keeping this comment in mind,
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note that 2 ≤ c(x) ≤ 2(1+1/e) ≤ 2
√

2 and c(x) → 2 as x → 0. Thus, keeping ε fixed and letting
T → ∞, we see that if there exists a τ > 1 for which

μ ≥ τ

√
2

j
logT +

√
2 log

4

ε
,

then for T large enough the condition on μ in Lemma 3.1 is satisfied. Furthermore, recall that our
main interest is how the algorithm performs when the time horizon (number of measurements)
is only slightly larger than n/s.

Theorem 3.1. Fix ε ∈ (0,1/3) and assume s ≡ sn = o(n/(logn)2) as n → ∞. The parameter
p ≡ pn is also allowed to depend on n. Set T = 9n

2s
log2

3
ε

and the parameters of STT according
to Lemma 3.1. If the measurement budget is m ≥ 2T the detection algorithm satisfies

R(�) = max
i=0,1

Pi (� 
= i) ≤ ε,

whenever

μ ≥ τ

√
2 max

{
2p,

1

log(n/s)

}
log(n/s) +

√
2 log

4

ε
,

for n large enough and τ > 1 fixed (but arbitrary).

Before we move on to the proof of this result, let us discuss its message. First, note that the
detection algorithm is agnostic about the speed of change p and the signal strength μ, though it
does require knowledge of the sparsity s to set the parameter T .

The number of measurements that we require is a multiple of n/s, which is the minimum
amount necessary to be able to solve the problem (see Section 2.2). Furthermore, when p <

1/(2 log(n/s)) the signal strength needs to scale as
√

log(1/ε), and when p ≥ 2/ log(n/s) it
needs to scale as

√
p log(n/s). This matches the intuition that the speed of change p affects the

problem difficulty in a monotonic fashion. We will show in Section 4 that in the regime m ≈ n/s

this scaling of μ is necessary to reliably solve this detection problem.
In Figure 2, we present an illustration of the above detection algorithm. We can clearly see

the “random” exploration (the black circles) and the “tracking” of active components (the white
circles). Note that in this case the algorithm missed the activity of several components before
being able to finally detect the signal.

Remark 3.1. As we have mentioned in Section 2.2, for now we are interested in the case where
the number of observations we can make is roughly n/s. Note that Theorem 3.1 claims the same
performance guarantee for every m that is at least of order n/s.

In fact, it is not hard to see that the performance of this algorithm does not improve as m

increases, hinting that it is suboptimal for large m. Actually this algorithm completely ignores
the fact that a component might have multiple periods of activity over time, and that activity
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Figure 2. Simulation of support dynamics and detection algorithm with n = 50, s = 5, and p = 0.2 (cor-
responding to the same signal realization as in Figure 1). The algorithm was ran as prescribed by the
Theorem 3.1 with ε = 0.05 and the signal strength μ is given by the expression in the same theorem with
τ = 1. The active signal components are in black. The black and white circles indicate the sample locations
(respectively of non-active and active components). The detection algorithm deemed that a signal is present
after 46 measurements.

evidence from multiple components might be combined for detection, in a more global fash-
ion.

Consider the following simple algorithm: sample components uniformly at random in each
step t ∈ [m]. Then in each step we hit an active component with probability s/n. We then
roughly have ms/n active components in our sample under the alternative. Consider the stan-
dardized sum of our observations. Under the null this follows a standard normal distribution,
whereas under the alternative it is distributed as N(

√
msμ/n,1).

Thus, reliable detection using this simple global algorithm is possible when μ is of the order
n/(

√
ms). Hence, this algorithm clearly outperforms the one above when m is large enough

(compared to n/s). This phenomena is not unlike that present in sparse mixture detection prob-
lems (e.g., as in Ingster and Suslina [17]) where depending on the sparsity a global test might be
optimal.

Proof of Theorem 3.1. In light of Lemma 3.1, the type I error probability is at most ε by a union
bound. Hence, we are left with studying the alternative.

There are two ways that our algorithm can make a type II error. Either the measurement bud-
get is exhausted, or we fail to identify an active component in T runs of STT. We bound the
probability of the first event by ε/3, and of the second event by 2ε/3 ensuring that under the
alternative the probability of error is bounded by ε.

We start with upper bounding the probability of exhausting our measurement budget. Let Nj

denote the number of measurements that STT makes when called for the j th time, for j ∈ [T ].
Note that these random variables are independent and identically distributed, because the com-
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ponents to query are selected uniformly at random independently from the past, the dynamic
evolution of the model is memoryless, and the observation noise is independent. First, we upper
bound E1(N1). Note that 1 ≤ N1 ≤ k, where k = �log(T /2)� by Lemma 3.1. Let � denote the
event that a non-zero mean observation appears at location A1 in any of the first k steps. By the
law of total expectation, we have

E1(N1) ≤ kP1(�) +E1(N1|�).

Note that

P1(�) = P1
(∃t ∈ [k] : A1 ∈ S(t)

) ≤
k∑

t=1

P1
(
A1 ∈ S(t)

)
≤ s

n
+ (k − 1)

s

n − s
≤ ks

n − s
,

since the choice of A1 (and S(1)) is random, and in each subsequent step the probability that a
signal component moves to location A1 is at most s/(n − s) regardless of p. On the other hand,

recalling that tk =
√

c(2ε/T )
k

log T
2ε

≥ √
2 is the lower stopping boundary of STT,

E1(N1|�) = 1 +
k∑

t=2

P0(N1 ≥ t)

≤ 1 +
k∑

t=2

P0(Xt−1 > tk) ≤ 1 +
k∑

t=2

P0(Xt−1 >
√

2)

≤ 1 + 1

2

k−1∑
t=1

e−t ≤ 1 + 1

2(e − 1)
< 3/2.

Hence,

E1(N1) ≤ 1 + 1

2(e − 1)
+ k2s

n − s
< 3/2,

for large enough n, since the last term can be made arbitrarily small by the definition of T , and
the assumption on s. Since N1 is also a bounded random variable, an easy (but crude) way of
proceeding is to use Hoeffding’s inequality to get

P1

(
T∑

j=1

Nj > m

)
= P1

(
T∑

j=1

Nj −E1

(
T∑

j=1

Nj

)
> m −E1

(
T∑

j=1

Nj

))

≤ P1

(
T∑

i=1

Ni −E1

(
T∑

i=1

Ni

)
> T/2

)
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≤ exp

(
− T

2k2

)
= exp

(
− T

2�log(T /2)�2

)
≤ ε/3,

provided T is large enough, which is the case if n is large enough. This shows that the probability
that the measurement budget is exhausted is bounded by ε/3.

The final step in the proof is to guarantee that the algorithm identifies an active component
in one of the T tests with high probability. To show this, we first guarantee that there will be an
instance in the repeated application of STT where the first 1/(2p) observations that the procedure
has access to have elevated mean (when p = 0 we only need that the STT probes an active
component at least once). Then we can apply Lemma 3.1 together with a union bound to conclude
the proof.

Let Tj = 1 + ∑j−1
i=1 Ni denote the time when STT starts for the j th time. Let N =∑T

j=1 1{Qj ∈ S(Tj )} denote the number of times an active component is sampled at the start
of an STT. Note that N ∼ Bin(T , s/n). In these situations, the STT has access to a sequence of
active measurements (of random length). Denote the number of consecutive active observations
these STTs have access to by {ηi}i∈[N ], and for now assume p > 0. Note that ηi ∼ Geom(p) and
{ηi}i∈[N ] are independent. We have

P
(∀i ∈ [N ] : ηi < 1/(2p)

) ≤ P

(
∀i ∈ [N ] : ηi < 1/(2p)

∣∣∣N ≥ log2
3

ε

)
+ P

(
N < log2

3

ε

)
.

On one hand, note that the median of ηi is �−1/ log2(1 − p)� which is greater than 1/(2p). This
can be easily checked by considering the cases p ≥ 1/2 and p < 1/2 separately. Hence, the first
term above can be upper bounded as

P

(
∀i ∈ [N ] : ηi <

⌈−1/ log2(1 − p)
⌉∣∣∣N ≥ log

3

ε

)
≤ 2− log2

3
ε = ε/3.

On the other hand, N ∼ Bin(T , s/n) and so by Bernstein’s inequality,

P

(
N < (1 − δ)

T s

n

)
≤ exp

(
−3δ2

8

T s

n

)
,

for any δ ∈ (0,1). However, note that plugging in the value of T together with δ = 2/3 yields

P

(
N < log2

3

ε

)
= P

(
N < (1 − δ)

T s

n

)
≤ exp

(
−49

48
log2

3

ε

)
< ε/3,

since log2 x > logx for x > 1. So we conclude that the probability that there is no block (out of
T ) with the first 1/(2p) observations active is bounded by 2ε/3. When p = 0, we only need to
control P(N = 0), for which we can simply use the inequality above since log2

3
ε

> 0.
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Finally, if such a block is present the probability STT will not detect it is bounded by ε/3 via
part (ii) of Lemma 3.1, provided

μ ≥
√

c(2ε/T )

min{1/(2p), �log(T /2)�} log

(
T

2ε

)
+

√
2 log

4

ε
,

where one should note that the blocks sampled by the STT are never larger than �log(T /2)�. It is
easily checked that the above condition is met for the choices in the theorem, provided n is large
enough, concluding the proof. �

4. Lower bounds

In this section, we identify conditions for the signal strength that are necessary for the existence
of a sensing procedure to have small risk, namely

R(�) = max
i=0,1

Pi (� 
= i) ≤ ε. (4.1)

We consider first the non-adaptive sensing setting. This is done both for comparison purposes
(to highlight the gains of sensing adaptivity) but also illustrates some of the interesting features
of this problem. In this case, the sensing procedure is simply the choice of when and where to
measure a component, before any data is collected. Then we consider the adaptive sensing setting
to show the near-optimality of the algorithm proposed in Section 3. In both cases, our primary
interests in on the regime m ≈ n/s, as highlighted in Section 2.2.

4.1. Non-adaptive sensing

In the non-adaptive sensing setting, the sampling strategy {At }t∈[m] needs to be specified before
any observations are made. Note that this does not exclude the possibility of having a random
design of the sensing actions.

Common sense tells us that supports that are changing fast are harder to detect than those
that are changing slowly, provided all other parameters are fixed. In other words, the problem
difficulty should be increasing in the parameter p, meaning the signal magnitude μ needed to
ensure (4.1) should grow monotonically in p. Formalizing this heuristic in general turns out to
be technically challenging with the methodologies we are aware of. Because of this we focus on
the two extreme cases: when the signal is static (p = 0), and when the entire signal resets at each
time instance (p = 1).

Remark 4.1. Note that in the case s = 1 it is relatively easy to formalize that the problem
difficulty is non-decreasing in p.

Suppose there exists an algorithm (denoted by Alg) that performs accurate detection for some
p > 0, and suppose we need to perform the detection task of a static signal. The idea is to
transform the signal into one that has the same distribution as if it were generated according
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to the model of Section 2.1 with parameter p, and apply Alg to the modified signal. If such a
transformation is possible than the existence of Alg implies the existence of an accurate detection
procedure – in other words, the problem difficulty is non-decreasing in p.

Such a transformation is easy to construct for s = 1, in fact one can almost follow the de-
scription of the signal model of Section 2.1 word-by-word. Let {θt }t∈[m−1] be i.i.d. Ber(p)

variables and w.l.o.g. θm = 1 – these represent the coin flips in the description of Section 2.1.
Let N = ∑

t∈[m] 1{θt = 1} be the number of times the coin came up heads and τ0 = 0 and
τj = inf{t > τj−1 : θt = 1}, j ∈ [N ] be the instances when the coin came up heads. Finally,
let {πi}i∈[N ] be permutations of [n] drawn independently and uniformly at random (from the set
of possible permutations).

It is clear that a static support that is permuted by πi on the time intervals [τi−1 + 1, τi]
will “look” like a support sequence evolving with parameter p. Formally, one can show that if
S ≡ {S(t)}t∈[m] is a static support sequence (chosen uniformly at random) then S̃ ≡ {S̃(t)}t∈[m]
defined as

S̃(t) =
∑
i∈[N ]

1{t ∈ [τi−1 + 1, τi]πi

(
S(t)

)
is distributed as a support sequence generated according to the model described in Section 2.1
with parameter p. Hence, for s = 1 the problem difficulty is indeed non-decreasing in p.

Nonetheless the authors did not find an obvious way to extend this argument to general spar-
sities, because the signal components change their locations at possibly different times. We note
at this point that if one considered a more restrictive model where the entire support of the signal
would reset simultaneously (a setting perhaps not vastly different to the one we are considering)
would enable an argument similar to the above.

We have the following result for these two extreme cases, which we prove at the end of the
section. Note that these are not asymptotic, and hold for any n, m and s satisfying the assumptions
in the statement.

Theorem 4.1. Let n, s,m ∈ N be fixed (with s ≤ n), consider a setup described in Section 2, and
suppose there is a non-adaptive sensing design and a test � satisfying

R(�) = max
i=0,1

Pi (� 
= i) ≤ ε.

(i) If p = 0, s ≤ n/2, n/s ≤ m and ε ≤ 1/(2e), then necessarily

μ ≥
√

n

2ms
log

(
2n

s2
log

(
1

e
− 4ε

)
+ 1

)
.

(ii) If p = 1 and ε < 1/2, then necessarily

μ ≥
√

log

(
n2

s2m
log

(
4(1 − 2ε)2 + 1

) + 1

)
.
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Considering the case p = 1, the result above tells us that when m scales like n/s, the signal
strength needs to scale as

√
log(n/s) for detection to be possible. This is the same scaling that is

guaranteed by Theorem 3.1. This should come as no surprise, since when p = 1 we have 1{At ∈
S(t)} ∼ Ber(s/n) independently for every t ∈ [m], regardless of the choice of At . Hence, the
resulting measurements {Yt }t∈[m] follow the same mixture distribution under the alternative, no
matter what sampling strategy we use. Although settings like these have been studied extensively
(see Donoho and Jin [8] and references therein), those works consider asymptotic results. As
such, we find it useful to prove a non-asymptotic result for our particular problem, though we
point out that this can be simply established by following the steps of the referenced proofs.

Contrasting with this one has the (arguably) more interesting case when the signal is static
(p = 0). Although the problem of detecting static signals have been the focus of much work
(see, for instance, Ingster and Suslina [17,18]), a key difference in our setting is that the sensing
actions of the experimenter are not fixed, but are free to choose. This results in a qualitatively
different statement, as the following remark attests.

Remark 4.2. In particular, the first part of the theorem above is interesting in its own right.
It tells us that, for static signals, if the experimenter is free to choose the sensing actions, the

signal magnitude needs to scale at least as
√

n
sm

log n

s2 for detection to be possible. It is easy

to see that this rate can (almost) be achieved using a sub-sampling scheme: select roughly n/s

components at random and collect an equal number of samples of each. Average the observations
for each component separately, and declare a signal if any of these averages is above the threshold√

n
sm

log n
s

. Basic calculations show that this procedure has low probability of error.

Contrasting this, the lower bounds of Ingster and Suslina [17,18], which pertain the situation

where we measure each component of the vector exactly once, scale as
√

log n

s2 . Hence, the

additional flexibility of where to sample buys us a multiplicative factor of
√

n
sm

, even though no

feedback from the observations is used. If we can use this feedback, we can also get rid of the
log-factor, as shown in Castro [5].

Remark 4.3. In light of the previous remark, the authors suspect the lower bound in part (i) of the
Theorem is slightly loose. Namely, the term s2 appears to be due to slack in the second moment
method in Equation (4.4), and it might be possible to replace it by s via a more sophisticated
truncation argument.

The result above tells us that in the regime m ≈ n/s, the signal strength needs to scale as√
log(n/s2) for detection to be possible – approximately the same magnitude as required for

p = 1. On the other hand Theorem 3.1 guarantees the existence of an adaptive sensing proce-
dure that reliably detects static signals of constant magnitude (in terms of the parameters n and
s) using roughly n/s measurements. This shows that adaptive sensing gains over non-adaptive
sensing become more pronounced as the speed of change decreases.

Finally, we point out once more that the requirements for the signal strength of Theorem 4.1
are essentially the same for p = 0 and p = 1. Although we did not succeed in proving a result
that holds for any value of p due to technical difficulties, we conjecture that the lower bound or
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general values of p should interpolate between these two extremes. In other words, we suspect
that the problem difficulty is essentially independent of p in the non-adaptive case when m

is of the order (or slightly larger than) n/s. This conjecture is further supported by numerical
simulations of testing error probability presented in Section 5.

Proof of Theorem 4.1. (i) To prove the claim above for p = 0, we use the truncated second
moment method, an approach suggested by Ingster [16] to address problems in the regular second
moment method when the distribution of the likelihood ratio under the null has tails that are too
heavy (and therefore too large of a second moment). First, note that

max
i=0,1

Pi (� 
= i) ≥ 1

2

1∑
i=0

Pi (� 
= i) = 1

2

(
1 − 1

2
E0

(∣∣L(Y ) − 1
∣∣)), (4.2)

where L(Y ) denotes the likelihood-ratio of the observations Y = (Y1, . . . , Ym), and E0 is the
expectation taken with respect to the distribution of the observations Y under the null. The second
equality is well known (see, for instance, Addario-Berry et al. [1]), and can be easily checked
using simple algebraic manipulations.

A common way to proceed is to use either Cauchy–Schwarz’s or Jensen’s inequality to get

E0
(∣∣L(Y ) − 1

∣∣) ≤
√
E0

((
L(Y ) − 1

)2) =
√

Var0
(
L(Y )

)
.

Therefore, to get a lower bound on the risk we need to get a good upper bound on the variance
of the likelihood ratio. This is often referred to as the second moment method. However, in some
cases there is a lot of slack in the bound and the variance is too large to yield interesting results –
so a modification of the above argument is needed.

Let Y denote the sample space, and let L̃(y) : Y → R be an arbitrary function. Instead of using
the Cauchy–Schwarz inequality right away, let us continue the first chain of inequalities as

E0
(∣∣L(Y ) − 1

∣∣) = E0
(∣∣L(Y ) − L̃(Y ) + L̃(Y ) − 1

∣∣)
≤ E0

(∣∣L̃(Y ) − 1
∣∣) +E0

(∣∣L(Y ) − L̃(Y )
∣∣)

≤
√
E0

(
L̃(Y )2

) − 2E0
(
L̃(Y )

) + 1 +E0
(∣∣L(Y ) − L̃(Y )

∣∣).
Furthermore, if L̃(y) ≤ L(y) for every y ∈ Y , then we have

E0
(∣∣L(Y ) − 1

∣∣) ≤
√
E0

(
L̃(Y )2

) − 2E0
(
L̃(Y )

) + 1 + 1 −E0
(
L̃(Y )

)
. (4.3)

In order to proceed, we need to lower bound E0(L̃(Y )) and upper bound E0(L̃(Y )2). To get a
sharp lower bound with this method, we need a good choice for L̃(y). This is often achieved by
truncating the original likelihood-ratio by multiplying with the indicator of a well chosen event.

In our setting the likelihood-ratio can be expressed in a convenient way. Note that under the
null the observations are independent standard normal regardless of the sensing actions, hence

dP0(y) =
∏

t∈[m]
f0(yt ),
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where fμ(·) is the density of a normal random variable with mean μ and variance 1. Under the
alternative, the density of the observations is a mixture. Recall that we are considering the case
p = 0 therefore the signal support S(t) does not change over time, namely S(t) = S for all t ∈ [m].
The conditional density of the observations given the sensing actions A = (A1, . . . ,Am) and the
support S can be written as

dP1(y|A,S) =
∏

t∈[m]

(
1{At ∈ S}fμ(yt ) + 1{At /∈ S}f0(yt )

)
.

Hence the likelihood-ratio can be expressed as

L(y) = E

(
exp

( ∑
t∈[m]

1{At ∈ S} log
fμ(yt )

f0(yt )

))
.

Using the second moment method without truncation, one would need to upper bound the
second moment of the likelihood ratio above. Unfortunately, this yields a loose bound on μ. The
reason is that the second moment will be extremely large when the signal is sampled often, even
if this event is relatively rare. In other words, if

∑
t∈[m] 1{At ∈ S} is large one will face problems.

Note that, since the support is chosen uniformly at random,

E

( ∑
t∈[m]

1{At ∈ S}
)

= ms/n.

However, for certain choices of design
∑

t∈[m] 1{At ∈ S} can be very far from the mean (e.g., if
A1 = · · · = Am then

∑
t∈[m] 1{At ∈ S} is equal to m with probability s/n and zero otherwise).

This causes the second moment of the likelihood ratio to be extremely large. To resolve this issue,
we truncate the likelihood-ratio to exclude these somewhat troublesome instances.

Begin by defining the sets

Abig =
{
i :

∑
t∈[m]

1{At = i} > 2ms/n

}
and Asmall = [n] \ Abig.

In words, for a given sensing design the signal components are divided in two disjoint subsets:
one subset contains signal components that are sampled often, whereas the other contains the
remaining components. A simple pigeon hole principle shows that |Abig| ≤ n/(2s). Now define

L̃(Y ) = E

[
1{S ⊆ Asmall} exp

( ∑
t∈[m]

1{At ∈ S} log
fμ(Yt )

f0(Yt )

)∣∣∣Y]
.

Clearly L̃(y) ≤ L(y) for all y ∈ Y , and so we can apply (4.3) by controlling the first and second
moments of L̃(Y ).

First note that, since the event S ⊆ Asmall does not involve the observations Y we can easily
conclude that

E0
(
L̃(Y )

) = P(S ⊆ Asmall) = E
(
P(S ⊆ Asmall|A)

)
,
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where A ≡ (A1, . . . ,Am). The conditional probability on the right can be lower bounded as

P(S ⊆ Asmall|A) =
(|Asmall|

s

)(
n
s

) = |Asmall|(|Asmall| − 1) · · · (|Asmall| − s + 1)

n(n − 1) · · · (n − s + 1)

≥
( |Asmall| − s + 1

n − s + 1

)s

≥
(

n(1 − 1
2s

) − s + 1

n − s + 1

)s

=
(

1 − n

2s(n − s + 1)

)s

≥
(

1 − 1

s

)s

≥ 1

e
,

where we used |Asmall| ≥ n(1 − 1
2s

) and 1 ≤ s ≤ n/2.
We are left with upper bounding the second moment of L̃(Y ). First, note that in the non-

adaptive sensing setting A = (A1, . . . ,Am) and S are independent. The proof proceeds by careful
conditioning on these random quantities. We use Jensen’s inequality to write

E0
(
L̃(Y )2)
= E0

[(
E

[
1{S ⊆ Asmall} exp

( ∑
t∈[m]

1{At ∈ S} log
fμ(Yt )

f0(Yt )

)∣∣∣Y])2]

≤ E0

[
E

[(
E

[
1{S ⊆ Asmall} exp

( ∑
t∈[m]

1{At ∈ S} log
fμ(Yt )

f0(Yt )

)
︸ ︷︷ ︸

h(S,Y ,A)

∣∣∣Y ,A

])2∣∣∣Y]]
.

At this point it is convenient to introduce an extra random variable S′, independent from S and
identically distributed. Then(

E
[
h(S,Y ,A)|Y ,A

])2 = E
[
h(S,Y ,A)|Y ,A

]
E
[
h
(
S′,Y ,A

)|Y ,A
]

= E
[
h(S,Y ,A)h

(
S′,Y ,A

)|Y ,A
]
.

Therefore, we conclude that

E0
[
L̃(Y )2]
≤ E0

[
1{S ⊆ Asmall}1

{
S′ ⊆ Asmall

}
exp

( ∑
t∈[m]

(
1{At ∈ S} + 1

{
At ∈ S′}) log

fμ(Yt )

f0(Yt )

)]

= E

[
E0

[
1
{
S,S′ ⊆ Asmall

}
exp

( ∑
t∈[m]

(
1{At ∈ S} + 1

{
At ∈ S′}) log

fμ(Yt )

f0(Yt )

)∣∣∣A, S, S′
]]
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= E

[
1
{
S,S′ ⊆ Asmall

} ∏
t∈[m]

E0

[
exp

((
1{At ∈ S} + 1

{
At ∈ S′}) log

fμ(Yt )

f0(Yt )

)∣∣∣A, S, S′
]]

= E

[
1
{
S,S′ ⊆ Asmall

}
exp

(
μ2

∑
t∈[m]

1
{
At ∈ S ∩ S′})]

.

We are now in a good position to finish the bound. Note that, when S,S′ ⊆ Asmall we have∑
t∈[m] 1{At = i} ≤ 2ms/n. It follows that

E0
[
L̃(Y )2]
≤ E

[
E

[
1
{
S,S′ ⊆ Asmall

}
exp

(
μ2

∑
i∈[n]

1
{
i ∈ S ∩ S′} ∑

t∈[m]
1{At = i}

)∣∣∣A]]

≤ E

[
E

[
exp

(
2msμ2

n

∑
i∈[n]

1
{
i ∈ S ∩ S ′})∣∣∣A]]

= E

[
exp

(
λ

∑
i∈[n]

1
{
i ∈ S ∩ S′})]

,

where λ = 2msμ2

n
. The beauty of the last expression is that it no longer involves the sensing

actions or the observations, and depends only on the support. Using the negative association
property of 1{i ∈ S ∩ S ′} as introduced in Joag-Dev and Proschan [19], we can finally bound the
second moment of the truncated likelihood as

E0
(
L̃(Y )2) ≤ E

[
exp

(
λ

∑
i∈[n]

1
{
i ∈ S ∩ S ′})]

= E

[ ∏
i∈[n]

eλ1{i∈S∩S′}
]

≤
∏
i∈[n]

E
[
eλ1{i∈S∩S′}] (4.4)

=
(

1 + s2

n2

(
eλ − 1

))n

=
(

1 + s2

n2

(
e2μ2ms/n − 1

))n

.

We have now all the ingredients needed to complete the proof. Note that, on one hand, if
maxi=0,1 Pi (� 
= i) ≤ ε then necessarily E0[|L(Y ) − 1|] ≥ 2 − 4ε. On the other hand, from
(4.3), we know that

E0
[∣∣L(Y ) − 1

∣∣] ≤
√
E0

(
L̃(Y )2

) − 2E0
(
L̃(Y )

) + 1 + 1 −E0
(
L̃(Y )

)
<

(
1 + s2

n2

(
e2μ2ms/n − 1

))n/2

+ 1

2
.
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This means that

s2

n2

(
e2μ2ms/n − 1

)
>

(
3

2
− 4ε

)2/n

− 1 ≥ 2

n
log

(
3

2
− 4ε

)
,

where the last inequality uses the fact that x − 1 ≥ logx. The final result ensues by simple
algebraic manipulation.

(ii) Proving the claim for p = 1 requires considerably less technical effort. In particular, we
can use the original second moment method, without truncation. Therefore, we simply need to
upper bound the second moment of the likelihood-ratio.

Using essentially the same calculations as before, we get

E0
(
L(Y )2) = E

[
exp

(
μ2

∑
t∈[m]

1
{
At ∈ S(t) ∩ S′(t)})]

.

When p = 1 we have that 1{At ∈ S(t) ∩ S′(t)} ∼ Ber(s2/n2) and these random variables are
independent, so we can simply evaluate the above expression and get

E0
(
L(Y )2) =

(
1 + s2

n2

(
eμ2 − 1

))m

.

Plugging this into the inequalities above (not using the truncation), we get

μ ≥
√

log

(
n2

s2

(
m
√

4(1 − 2ε)2 − 1
) + 1

)
.

The desired result follows by using x − 1 ≥ logx. �

4.2. Adaptive sensing

In the adaptive sensing setting, the decision where to sample at time t can depend on information
gleaned up to that point. For the static case (p = 0) the fundamental limits of the detection
problem using adaptive sensing have been studied in Castro [5]. Those lower bounds are derived
for a slightly more general setting than the one considered here, in that the total precision of
the measurements is constrained, but not the total number of measurements. Nevertheless, this
bound is still valid in our setting, and states that for any adaptive sensing and testing procedure
� if

max
{
P0(� 
= 0),P1(� 
= 1)

} ≤ ε

then necessarily

μ ≥
√

2n

sm
log

1

2ε
.
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In the regime m ≈ n/s the bound states that the signal strength needs scale as
√

log(1/ε). This
coincides (up to constants) with the bound of Theorem 3.1 when p ≤ 2/ log(n/s). This tells us
that when the signal changes slowly enough, the problem is essentially non-dynamic in nature.

On the other extreme end of the spectrum is the case p = 1. We have seen previously that in
this case the non-adaptive and adaptive sensing settings are identical, by virtue of the fact that
1{At ∈ S(t)} ∼ Ber(s/n) for every t ∈ [m] and independent, regardless of the choice of At .

What remains to be understood are the fundamental limits for the intermediate regime.

4.2.1. Non-extreme dynamics (p ∈ (0,1))

For general values of p we start by considering the case s = 1, which we call the 1-sparse case.
This case is considerably simpler to analyze than the general s-sparse setting, as now when-
ever the active component changes the entire signal resets. This effectively creates a number of
independent static signals on the time horizon.

Theorem 4.2. Consider the setup in Section 2 and suppose there exists a test � such that

max
i=0,1

Pi (� 
= i) ≤ ε.

(i) The signal strength must satisfy

μ ≥
√

2n

sm
log

1

4ε
.

(ii) When s = 1 and p ≥ 8/m, then necessarily

μ ≥
√

p

2c
log

(
log

((
5

4
− 4ε

)2

+ 1

2

)
p2n2

4c2m
+ 1

)
,

with c = 6 + 3 log 2.

We provide the proof of Theorem 4.2 at the end of the section. Part (i) holds regardless of the
values of p and s, so it is necessarily loose when p is large. On the other hand part (ii) already
captures the role of the rate of change p, and it is the main contribution in this result.

Let us compare the above bound on μ with the guarantees for Algorithm 1 proved in Theo-
rem 3.1. Note that c and ε are constants. Thus the bound on the signal strength in the above result
scales as

√
p log(p2n2/m). Recall that we are interested in the regime m ≈ n/s and that s = 1,

as we are considering the 1-sparse case. In that setting the bound above scales as
√

p log(p2n).
Also note that the scaling of the performance guarantee of Theorem 3.1 matches that of the
lower bound from Castro [5] when p < 1/ logn. Hence we only need to assess the result of
Theorem 4.2 when p ≥ 1/ logn. In this case, the scaling of that bound is at least as big as√

p(logn − 2 log logn) ≈ √
p logn. This shows near-optimality of the algorithm proposed in

Section 3, in terms of its scaling in the parameters n and p.
Due to technical reasons we were unable to generalize the result for signals of sparsity greater

than one. As noted above, a key feature of the 1-sparse case is that the signal decouples into
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independent static signals over time. This key property is lost when we consider signals with
sparsity greater than one, and this proves to be a major obstacle to obtain a rigorous formal
proof. However, we conjecture that a similar result to the one above holds for s-sparse signals,
with n replaced by n/s. The heuristic behind this is that a general s-sparse signal of dimension
n should behave very much like an s-fold concatenation of an 1-sparse signal of dimension n/s,
when viewed through the lens of one measurement per time-index (one expects this to actually be
a statistical reduction, and this problem should be statistically easier than the original one). For
such a signal the result above would follow directly with the signal dimension n replaced by n/s.

Conjecture 4.1. When p ≥ 8/m, if the risk of an adaptive sensing and test procedure is less or
equal to ε then necessarily

μ ≥
√

p

2c
log

(
log

((
5

4
− 4ε

)2

+ 1

2

)
p2n2

4c2s2m
+ 1

)
,

with c = 6 + 3 log 2.

Proof of Theorem 4.2. We prove the two parts of the statement separately.
(i) The proof is very similar to that of Theorem 3.1 in Castro [5], with small modifications

to be able to deal with dynamically evolving signals (which actually simplify the argument). By
Theorem 2.2 of Tsybakov [33], we have

inf
�

max
i=0,1

Pi (� 
= i) ≥ 1

4
e−KL(P0‖P1), (4.5)

where KL(P0 ‖ P1) denotes the Kullback–Leibler divergence between the distribution of the
data Y under the null and alternative, respectively. This divergence can be simply upper bounded
using Jensen’s inequality as

KL(P0 ‖ P1) = E0
[− logL(Y)

]
≤ E0

[
E

[
−

∑
t∈[m]

1
{
At ∈ S(t)

}
log

fμ(Yt )

f0(Yt )

∣∣∣Y]]
.

Changing the order of integration and expanding the densities fμ(·) and f0(·), we get

KL(P0 ‖ P1) ≤ μ2

2
E

[ ∑
t∈[m]

1
{
At ∈ S(t)

}] = μ2

2

sm

n
,

where the last step follows from the symmetry of the supports. In particular, note that E[1{At ∈
S(t)}|At ] = s/n for every t ∈ [m]. Plugging this bound into the right-hand side of (4.5), using
that the left-hand side of (4.5) is at most ε due to our assumption, and rearranging concludes the
proof of the first claim.
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Figure 3. Illustration of the notation introduced for the proof part (ii) of Theorem 4.2.

(ii) We use the truncated second moment method, as in the proof of Theorem 4.1. Recall that,
from (4.2) and (4.3) , we have

2 max
i=0,1

Pi (� 
= i) ≥ 1 − 1

2

(√
E0

(
L̃(Y )2

) − 2E0
(
L̃(Y )

) + 1 + 1 −E0
(
L̃(Y )

))
,

for any function L̃(·) satisfying L̃(y) ≤ L(y), ∀y ∈ Y , where L(·) is the likelihood function.
To aid the presentation, we begin by introducing some convenient notation, illustrated in Fig-

ure 3. Recall that the variables θ
(t)
i

iid∼ Ber(p), t ∈ [m], i ∈ [s] identify the change points of the
signal. Since now we are dealing with the 1-sparse case we have one variable per time index,
so in what follows we drop the subscript from the previous notation. Furthermore, note that our
time horizon is m, so we enforce θ(m) = 1 as this does not change the model and it is convenient
for the presentation.

Let the total number of change points over the time horizon be N = ∑
t∈[m] 1{θ(t) = 1}. Note

that N − 1 ∼ Bin(m − 1,p). Let τ0 = 0 and for j ∈ N let τj = min{t > τj−1 : θ(t) = 1} denote
the time instances when the signal changes (so τN = m), as illustrated in Figure 3. Note that on
the time intervals [τj + 1, τj+1] the signal is static. Let lj = τj+1 − τj denote the length of these
intervals, and Sj , j ∈ [N ] denote the corresponding signal support. Finally, for any t ∈ [m] let
the number of change points up to time t be N(t) = max{j : τj ≤ t}. It is important to note that
the random variables θ(t) completely determine the variables τj , N(t) and N .

Let us first explicitly write the likelihood of the observations in the model under consideration.
We use the shorthand notation y = {yt }t∈[m], A = {At }t∈[m], S = {S(t)}t∈[m], θ = {θt }t∈[m]. As
before, the density of y under the alternative is a mixture. In particular, denoting the density of
N(μ,1) by fμ, the conditional density of y can be written as

dP1(y|A,S) =
∏

t∈[m]

(
1
{
At ∈ S(t)

}
fμ(yt ) + 1

{
At /∈ S(t)

}
f0(yt )

)

=
∏

j∈[N ]

τj∏
t=τj−1+1

(
1{At ∈ Sj }fμ(yt ) + 1{At /∈ Sj }f0(yt )

)
.

Hence, the likelihood ratio is

L(y) = E

[
E

[
exp

( ∑
j∈[N ]

τj∑
t=τj−1+1

1{At ∈ Sj } log
fμ(yt )

f0(yt )

)∣∣∣θ ,A

]]
,
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where conditioning on θ and A is done in order to conveniently define L̃(y). Consider the event

�c = {∀j : lj ≤ 2c/p},
with some fixed c > 0. This event says that the signal is never static for a time longer than 2c/p.
Note that this event is determined exclusively by the variables {θt }t∈[m]. We define the truncated
likelihood as

L̃(y) = E

[
1{�c}E

[
exp

( ∑
j∈[N ]

τj∑
t=τj−1+1

1{At ∈ Sj } log
fμ(yt )

f0(yt )

)∣∣∣θ ,A

]]
.

As in the proof of Theorem 4.1, we need to upper bound E0(L̃(Y)2) and lower bound
E0(L̃(Y)). We start with the latter. Since the event �c only involves the variables θ , we have

E0
(
L̃(Y)

) = P(�c).

We have the following result, the proof of which is presented in the Appendix.

Lemma 4.1. Consider the event

�c = {∀j : lj ≤ 2c/p}.
In the model described above P(�c) > 1/4 whenever c ≥ 6 + 3 log 2 and p ≥ 8/m.

According to Lemma 4.1, we have an appropriate bound for E0(L̃(Y )) when c ≥ 6 + 3 log 2.
All that remains is to derive an upper bound on the truncated second moment. This can be done
much the same way as in the proof of Theorem 4.1. Using Jensen’s inequality, we have

E0
[
L̃(Y)2] ≤ E0

[
E

[
1{�c}E

[
exp

( ∑
j∈[N ]

τj∑
t=τj−1+1

1{At ∈ Sj } log
fμ(yt )

f0(yt )

)∣∣∣θ ,A

]2]]
.

Note that given θ , the Sj ∼ Unif([n]) and independent for j ∈ [N ]. Let {S ′
j }j∈[N ] be an inde-

pendent copy of {Sj }j∈[N ]. Following the same reasoning as in Theorem 4.1, we can write the
square of the conditional expectation above as the product of two expectations using the random
variables {Sj , S

′
j }j∈[N ], and change the order of the expectations to get

E0
[
L̃(Y)2] ≤ E

[
1{�c}E

[
exp

(
μ2

∑
j∈[N ]

τj∑
t=τj−1+1

1
{
At ∈ Sj ∩ S′

j

})∣∣∣θ ,A

]]
.

So far we have not taken into account the fact that we are allowed an adaptive design. This is
captured by the crude bound below.

τj∑
t=τj−1+1

1
{
At ∈ Sj ∩ S′

j

} ≤ lj 1
{∃t ∈ [τj−1 + 1, τj ] : At ∈ Sj ∩ S′

j

}
.
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Informally this means that, if the used design “hits” the signal at any place in the interval [τj−1 +
1, τj ] it is assumed the design hit the signal in the entire interval (capturing more information).
Furthermore

P
(∃t ∈ [τj−1 + 1, τj ] : At ∈ Sj ∩ S′

j |A, θ
) = P

(
Sj ∈ {

At : t ∈ [τj−1 + 1, τj ]
}|A, θ

)2
.

However, |{At : τj−1 +1 ≤ t ≤ τj }| ≤ τj −τj−1 := lj thus the probability above is bounded from
above by l2

j /n2.
Using all this yields

E0
[
L̃(Y)2] ≤ E

[
1{�c}

∏
j∈[N ]

E
[
exp

(
ljμ

21
{∃t ∈ [τj−1 + 1, τj ] : At ∈ Sj ∩ S′

j

}
μ2)|θ ,A

]]

≤ E

[
1{�c}

∏
j∈[N ]

(
1 + l2

j

n2

(
elj μ2 − 1

))]
.

The last expression is readily upper bounded by the fact that N ≤ m. Although this is a crude
bound3 it is enough for our purposes. Also, on the event �c we have the upper bound lj ≤ 2c/p

for every j ∈ [N ]. We conclude that

E0
(
L̃(Y)2) ≤

(
1 + 4c2

p2n2

(
e2cμ2/p − 1

))m

.

Combining our results yields that if there exists a test for which maxi=0,1 P(� 
= i) ≤ ε, we
must have √(

1 + 4c2

p2n2

(
e2cμ2/p − 1

))m

− 1

2
+ 3

4
≥ 2 − 4ε.

Rearranging gives

4c2

p2n2

(
e2cμ2/p − 1

) ≥ m

√(
5

4
− 4ε

)2

+ 1

2
− 1.

Using the inequality logx ≤ x −1 on the right-hand side, and rearranging concludes the proof. �

5. Numerical evaluation of the non-adaptive lower bound

Although the lower bound in Theorem 4.1 only deals with the extreme cases p ∈ {0,1}, we con-
jecture that in the regime m ≈ n/s the same scaling of μ is necessary for reliable detection,

3In principle one can recall that N − 1 ∼ Bin(m − 1,p) and proceed from there, although it will overcomplicate the

derivation. In any case, this will at most allow us to replace the term p2 by p inside the logarithm in the statement of the
theorem, which is not very relevant.
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regardless of the value of p. To corroborate this conjecture, we provide a brief section of numer-
ical experiments. We numerically estimate the right-hand side of (4.2), which is a lower bound
on the maximal probability of error. We do so for several values of p ∈ [0,1], and for each p we
plot the value of the lower bound as a function of μ.

Note that the sampling strategy has a large impact on the value in question. We know that
when p = 0 a sub-sampling scheme is near-optimal (see Remark 4.2), and so it should also be
reasonable for small values of p. On the other hand, the sampling strategy is irrelevant for p = 1,
and probably essentially irrelevant for large p. This motivates using a sub-sampling scheme in
all the experiments.

Furthermore, note that unless we sample c · n/s different components, the probability P1(∀t ∈
[m] : At /∈ S(t)) can not be small. To ensure an upper bound of ε on the previous probability, we
need to choose c ≡ c(ε) = log(1/ε).

Considering all the above, we set up our experiment as follows. We set n = 5000, s = �n1/4� =
9 and m = c(ε)n/s with ε = 0.05. In this case, sub-sampling reduces to measuring m randomly
selected components (one measurement each). We note that we experimented using multiple
values of s across a wide range of sparsity levels, but found qualitatively the same result in all
cases.

Based on previous work concerning the sparse-mixture model (e.g., Donoho and Jin [8]) we
expect the lower bound to reach the value ε when μ ≈ √

2 log(n/s). Hence, we set μt ≈ t ·√
2 log(n/s), and plot the r.h.s. of (4.2) as a function of t .
The left panel of Figure 4 seems to support our conjecture that the problem difficulty is inde-

pendent of p in the regime m ≈ n/s, as all the curves are on top of each other. Furthermore, since
there is always a non-negligible chance of not sampling a signal component, the lower bound is
bounded away from zero, even as μt grows large.

To contrast this, we present another simulation with the same setup, except that the number
of measurements m � n/s. In particular, we set m = n, but otherwise use the same parameters.
Note that in this case, sub-sampling amounts to sampling c(ε)n/s randomly chosen components,
but now we sample each of these m/(c(ε)n/s) consecutive times.

To keep the two plots on the same horizontal scale, we set μt = t · √(2c(ε)n/sm) log(n/s)

in the right panel of Figure 4. It seems that in this case, the curves are no longer on top of each
other, suggesting that the value of p has an impact on the problem difficulty. Surprisingly, the
curve corresponding to p = 1 is the one that descends the fastest, though the difference is only
marginal. Though the cause of this is unclear, a possible reason might be that for faster signals the
chance of not sampling active components at all is diminished, an effect that is more pronounced
when m is large.

In any case, this shows that in the regime m � n/s the speed of change might have a non-
trivial effect on the problem difficulty. Exploring this is out of the scope of this work, but might
be an interesting topic of future research.

6. Final remarks

In this paper, we studied the problem of the detection of signals that evolve dynamically over
time. We introduced a simple model for the evolution of the signal that allowed us to explic-
itly characterize the difficulty of the problem with a special regard to the effect of the speed
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(a) (b)

Figure 4. R.h.s. of (4.2) as a function of the signal strength μ = t · √2(2c(ε)n/sm) log(n/s), left panel:
m = c(ε) · n/s; right panel: m = n. Curves represent values of p ∈ {0,0.25,0.5,0.75,1}. Plotted values
are the averages based on 100 simulations, and error bars have total length 4 times the standard error
(approximate two-sided 95% confidence intervals). Horizontal dashed line at 0.05.

of change. We also showed the potential advantages that adaptively collecting the observations
bring to the table and showed that these are more and more pronounced as the speed of change
decreases, which is in line with previous results dealing with signal detection using adaptive
sensing. The lower bounds derived in this paper provide a clear picture of the role of the rate of
change parameter p, but unfortunately still do not span the entire range of problems we would
like to consider (e.g., Theorem 4.1 applies only to p = 0,1 and part (ii) of Theorem 4.2 applies
only to s = 1). The latter difficulties appear to be mostly technical and the authors suspect these
might be possible to address with carefully chosen reductions. Our contributions merely scratch
the surface of this interesting problem, and below we highlight a few interesting directions for
future work in this regard.

Large vs. small sample regimes

In this work we focus primarily on the case m ≈ n/s, which may be deemed as the small sam-
ple regime. When the number of measurements m is significantly larger the type of tests and
performance tradeoffs will likely be different, even under the non-adaptive sensing paradigm.
For instance, we expect the signal dynamics to have an effect on performance, meaning that it
is easier to detect signals non-adaptively when p is smaller. Other interesting questions arise in
that setting as well – what is the optimal non-adaptive sensing design? These questions become
even more intriguing when one considers adaptive sensing.
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Restricted dynamics

In the model considered in this paper when signal components change they can move to any
unoccupied location in the signal vector. This assumption simplifies the setup, but in some appli-
cations might be too unrestrictive. For instance, if signal components can only move to adjacent
locations at each time step the effect of the speed of change will likely be less pronounced in the
difficulty of detection (at least for adaptive sensing). Understanding the effect of such restrictions
could prove valuable in certain applications, such as detection of a disease outbreak in a network,
besides being interesting from a theoretical point of view.

Structures

In certain situations the signal support can be assumed to have structure to it, for instance all
anomalous items might be consecutive or have some other pattern. In some cases the structure of
the support has a huge effect on the difficulty of the problems of detection and recovery (see, for
instance, Castro and Tánczos [6,7]). How structural restrictions affect these tasks for dynamically
evolving signals could be a fruitful avenue of research.

Support recovery

Another common question in such settings is how well can we estimate the support of a signal.
That is, instead of deciding only if there are anomalous items or not, we need to determine
which of the items are anomalous. This is also an interesting problem to study for dynamically
evolving signals, although a precise formulation of the objective and performance metric for such
estimators is less immediate than for static signals.

Appendix

Proof of Lemma 4.1. We write

P(�c) ≥ E
({N − 1 > mp/2} ∩ {∀j : lj ≤ cm/N})

= E
[
1{N − 1 > mp/2}E[

1{∀j : lj ≤ cm/N}|N]]
.

We first lower bound the inner conditional probability. Note that if N ≤ c this probability is one
(since cm/N ≥ m and lj ≤ m by definition). When N > c, we will upper bound the probability
of the complementary event.

Note that given N the distribution of θ is uniform from the set of 0–1 sequences of length
m containing exactly N ones, and for which also θm = 1. Hence, to upper bound P(∃j : lj >

cm/N), we simply need to count the number of sequences described above for which we have a
long block.
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We can get an upper bound on this count in the following way. First note that since the last
element of the sequence is always one, we can simply think of sequences of length [m − 1]
containing N − 1 ones. Consider an interval of length cm/N in the set [m − 1]. Now consider
the sequences containing N − 1 ones, and for which there are no ones in the aforementioned
interval. Note that for all such sequences the existence of at least one long interval is guaranteed.
We can simply count how many 0–1 sequences can be generated like this. This number is an
upper bound on the number of 0–1 sequences that have N ones, the last element of the sequence
is one and for which ∃j : lj > cm/N .

We thus have

P(∃j : lj > cm/N |N)

≤ (m − cm/N)

(
m−cm/N

N−1

)(
m−1
N−1

)
= (m − cm/N)

(m − cm/N)(m − cm/N − 1) · · · (m − cm/N − N + 2)

(m − 1)(m − 2) · · · (m − N + 1)

≤ m

m − 1
(1 − c/N)

(
m − cm/N

m − 2

)N−2

<

(
m − cm/N

m − 2

)N−2

.

Now consider the logarithm of the expression above. Using log(1 + x) ≤ x, we get

logP(∃j : lj > cm/N |N) < (N − 2)

(
log

m

m − 2
+ log(1 − c/N)

)
≤ (N − 2)

(
2

m − 2
− c

N

)
≤ − log 2,

whenever c ≥ 6 + 3 log 2, using the fact that 3 ≤ c ≤ N ≤ m.
Hence, P(�c) ≥ P(N −1 > mp/2)/2. All that remains is to use the fact that N −1 ∼ Bin(m−

1,p). For instance, Chebyshev’s inequality yields

P(N − 1 ≤ mp/2) ≤ 4(m − 1)p(1 − p)

(mp)2
≤ 1/2,

when p ≥ 8/m and so the claim is proved. �
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