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In the paradigm of random matrices, one of the most classical object under study is the empirical spectral
distribution. This random measure is the uniform distribution supported by the eigenvalues of the random
matrix. In this paper, we give large deviation theorems for another popular object built on Hermitian random
matrices: the spectral measure. This last probability measure is a random weighted version of the empirical
spectral distribution. The weights involve the eigenvectors of the random matrix. We have previously studied
the large deviations of the spectral measure in the case of scalar weights. Here, we will focus on matrix
valued weights. Our probabilistic results lead to deterministic ones called “sum rules” in spectral theory.
A sum rule relative to a reference measure on R is a relationship between the reversed Kullback–Leibler
divergence of a positive measure on R and some non-linear functional built on spectral elements related to
this measure. By using only probabilistic tools of large deviations, we extend the sum rules to the case of
Hermitian matrix-valued measures.
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1. Introduction

A matrix measure � = (�i,j )i,j of size p on R is a matrix of signed complex measures, such that
�(A) = (�i,j (A))i,j ∈ Hp for any Borel set A ⊂ R. Here, Mp is the set of all p × p matrices
with complex entries and Hp ⊂ Mp is the subset of Hermitian matrices. Further, if for any A,
�(A) is a nonnegative definite matrix we say that � is nonnegative. We denote by Mp(T ) the
set of p × p nonnegative matrix measures with support in T ⊂R, that is, all the scalar measures
�i,j have support in T . Further, Mp,1(T ) is the subset of Mp(T ) of normalized measures �

satisfying �(T ) = 1, where 1 is the p × p identity matrix.
Notice that a matrix measure � may be identified with the collection of scalar measures x∗�x,

with ‖x‖ = 1. Hence, �n converges weakly to � if and only if x∗�nx converges weakly to �

for all unit vectors x.
A natural example of matrix measures comes from an application of the spectral theorem.

More precisely, a Hermitian matrix X of size N × N may be written as UDU∗ where D =
diag(λi) contains the eigenvalues of X and U is the matrix formed by an orthonormal basis of
eigenvectors. Fix 1 ≤ p ≤ N and assume that the system (e1, . . . , ep) of the p first vectors of
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the canonical basis of CN is cyclic, that is, Span{Akei, k ≥ 0, i ≤ p} = C
N . Then, there exists a

unique spectral matrix measure �X ∈ Mp(R) associated with (X; e1, . . . , ep) supported by the
spectrum of X, such that for all k > 0 and 1 ≤ i, j ≤ p

〈
ei,X

kej

〉= ∫
R

xk d�X
i,j (x). (1.1)

For j = 1, . . . ,N , let uj := (Ui,j )i=1,...,p be the j th truncated column of U . Then

�X
p (dx) =

N∑
j=1

uju
∗
j δλj

(dx), (1.2)

where δa is the Dirac measure in a. That is, {λ1, . . . , λN } is the support of �X and u1u
∗
1, . . . ,

uNu∗
N are the weights. Furthermore, as U is unitary we have

∑
j uju

∗
j = 1 so that �X ∈

Mp,1(T ).
In this paper, we deal with random spectral matrix measures. We draw a random matrix X in

HN (with N ≥ p) and consider the spectral measure �X associated with (X; e1, . . . , ep). The
random matrix X is sampled in HN from the distribution

1

ZN
V

e− trNV (X) dX. (1.3)

V is a confining potential and dX is the Lebesgue measure on HN . The eigenvalues of X behave
as a Coulomb gas with distribution

1

ZN
V

∏
1≤i<j≤N

|λi − λj |2
N∏

i=1

e−NV (λi) dλ.

Here, dλ denotes the Lebesgue measure on R
N . Moreover, the distribution of X is invariant under

unitary conjugations, such that the matrix of eigenvectors of X follows the Haar distribution
in the set of N × N unitary matrices, independent of its eigenvalues. In particular, the system
(e1, . . . , ep) is almost surely cyclic and the distribution of the spectral measure does not depend
on this choice of unit vectors. Therefore, we may omit the reference to these vectors in the
definition of �X . The most popular models are the Gaussian Ensemble, corresponding to the
potential V (x) = x2/2, the Laguerre Ensemble, with V (x) = τ−1x − (τ−1 − 1) logx (x > 0,
0 < τ ≤ 1) and the Jacobi Ensemble with V (x) = −κ1 logx − κ2 log(1 − x) (x ∈ (0,1), κ1, κ2 >

0).
Under convenient assumptions on V , as N goes to infinity, the random spectral matrix measure

�X converges to some equilibrium matrix measure depending on V . In this paper, we provide
precise results on the rate of convergence. Indeed, we show that this random object satisfies a
large deviation principle (LDP) and compute precisely the rate function. To be self contained, we
recall in Section 3.2 the definition and useful facts on LDP. The rate function of this LDP is not
obvious. It involves a matrix extension of the reversed Kullback–Leibler information with respect
to the equilibrium matrix measure (see equation (2.5) and Theorem 5.2) and a contribution of the
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outlying eigenvalues. Furthermore, the probabilistic frame of large deviations allows to obtain
important results in mathematical analysis. Namely, it allows to show sum rules. Let us give in a
nutshell what is a sum rule.

One of the most popular sum rule is the Verblunsky’s form of Szegő’s theorem for a probability
measure μ on the unit circle T. The Verblunsky coefficients (αk)k≥0 of μ are complex number

lying in the unit disk related to the orthogonal polynomials in L2(μ). The Szegő–Verblunsky
sum rule1 may be written as

K
(

dθ

2π

∣∣∣μ)= −
∑
k≥0

log
(
1 − |αk|2

)
, (1.4)

where K is the relative entropy or Kullback–Leibler information, defined by

K(ν | μ) =
⎧⎨
⎩
∫
T

log
dν

dμ
dν if ν is absolutely continuous with respect to μ,

∞ otherwise.
(1.5)

Identity (1.4) connects an entropy with a functional of the recursion coefficients, and remains one
of the most important results of the theory of orthogonal polynomials on the unit circle (OPUC)
(see [24] for extensive history and bibliography).

The corresponding result in the theory of orthogonal polynomials on the real line (OPRL) is
the Killip–Simon sum rule [20]. The reference measure is no more the uniform probability but
the semicircle distribution

SC(dx) :=
√

4 − x2

2π
1[−2,2](x) dx. (1.6)

The right-hand side of the sum rule involves now the Jacobi coefficients used in the construction
of the orthogonal polynomial. Further, in the left-hand side appears an extra term corresponding
to a contribution of isolated masses of μ outside [−2,2] (bound states).

In the previous paper [12], we gave an interpretation and a new proof of this result from a
probabilistic point of view. This approach allowed us to prove new sum rules, when the reference
measure is the Marchenko–Pastur distribution

MP(τ )(dx) =
√

(τ+ − x)(x − τ−)

2πτx
1(τ−,τ+)(x) dx, (1.7)

where τ ∈ (0,1], τ± = (1 ± √
τ)2, and also when it is the Kesten–McKay distribution

KMKu−,u+(dx) = Cu−,u+

2π

√
(u+ − x)(x − u−)

x(1 − x)
1(u−,u+)(x) dx,

1See the preface of [24].
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where Cu−,u+ is the normalizing constant. Recently, Breuer et al. [2] published a paper exposing
the method for a non probabilistic audience and applied the probabilistic approach to tackle half
of the Lukic conjecture [3].

Besides, known extensions of Szegő’s theorem [7] and of the Killip–Simon sum rule [4] are
available in the context of matrix-valued measures and the Matrix Orthogonal Polynomials on
the Unit Circle (MOPUC) or Matrix Orthogonal polynomials on the Real Line (MOPRL).

It seems natural to see if the probabilistic methods are robust enough to encompass this matri-
cial framework. We give here a positive answer. For the MOPUC context, see [17] and [14]. The
aim of the present article is precisely to treat the MOPRL case. This allows to give interpretation
and new proof of the Damanik–Killip–Simon sum rule and also to state a matrix version of the
sum rule relative to the Marchenko-Pastur distribution.

Let us explain the main features of our method. As mentioned by several authors ([19], [26]),
the main characteristic of the above sum rules is that both sides are nonegative (possibly infinite)
functionals. We will identify them as rate function of large deviations for some random measures.
Roughly speaking, that means that this sequence of random measures converges to a determinis-
tic limit exponentially fast and the probability of deviating from the limit is measured by the rate
function. We give two different encodings of the randomization with two rate functions IA and
IB , for which the uniqueness of a rate functions yields the equality IA = IB , i.e., the sum rule.

For a Hermitian matrix X of size N × N , let us come back to the spectral measure defined in
(1.1) and (1.2). If we assume further that N = pn for some positive integer n then it is possible
to build a block tridiagonal matrix

Jn =

⎛
⎜⎜⎜⎜⎝

B1 A1

A∗
1 B2

. . .

. . .
. . . An−1

A∗
n−1 Bn

⎞
⎟⎟⎟⎟⎠ (1.8)

such that �X = �Jn . Here, all the blocks of Jn are elements of Mp . The case p = 1 is the most
classical and relies on the construction of the OPRL in L2(�X) (see, for example, [24]). The
general case is more complicated and requires technical tools from the theory of MOPRL (see
[25]). In Section 2, we will recall the construction of such tridiagonal representations.

As a result, we have two encodings of �X: (1.2) and (1.8). Looking for the right-hand side of
a possible sum rule is equivalent to look for a LDP for the encoding by means of the sequence of
blocks Ak and Bk . In the scalar case (p = 1), it is well known that the classical ensembles have
very nice properties [10]. For the Gaussian Ensemble the coefficients appearing in the tridiagonal
matrix are independent with simple distributions. The diagonal terms have Gaussian distribution
while the subdiagonal ones have the so-called χ distributions [10]. We will give in Lemmas 6.1
and 6.2 results in the same spirit, in the general block case both for the Gaussian and Laguerre
ensembles. These properties allow to compute the rate function of the LDP in terms of the blocks
involved in the Jacobi representation. Further, the uniqueness of a rate function leads to our two
main Theorems 2.1 and 2.2 that are sum rules. Theorem 2.1 is the Damanik–Killip–Simon sum
rule which has been proved in [4] by strong analysis tools. For p = 1, it has been proved earlier
in [20]. We recover the result of [4] by using only probabilistic arguments. Up to our knowledge,
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our Theorem 2.2 is new and is the matrix extension of the one we have obtained in [12] for
p = 1. As it is the case for the Damanik–Killip–Simon sum rule, we obtain in Corollary 2.2
consequences for perturbations of positive semidefinite Jacobi operators.

We stress that one of the main differences with purely functional analysis methods is that, for
us, the SC distribution and the free semi-infinite matrix (corresponding to Ak ≡ 1 and Bk ≡ 0,
with 0 the p × p matrix of zeros) do not have a central role. Additionally, the non-negativity of
both sides of the sum rule is automatic.

For the Jacobi ensemble, the method used in the scalar case, based on the Szegő mapping,
is not directly extendible. So, getting a sum rule needs a more careful study. To avoid long
developments here, we keep this point for a forthcoming paper.

Our paper is organized as follows. In Section 2, we first give definitions and tools to handle
MOPRL and spectral measures. Then, we state our main results concerning sum rules for spectral
matrix measures. In Section 3, we introduce random models and state Large Deviations princi-
ples, first for random spectral measures drawn by using a general potential and then for block
Jacobi coefficients in the Hermite and Laguerre cases. Section 4 is devoted to proofs of both sum
rules. The proofs of the LDP’s are in Sections 5 and 6. Finally, some preliminaries on matrix
measures and technical proofs are deferred to a supplementary file [13].

2. Block Jacobi matrices

As for scalar measures, we may also consider a representation of a matrix measure � by a
sequence of Jacobi- or recursion coefficients. In the matrix case, they are now the coefficients
appearing in the recursion of orthogonal matrix polynomials. For details of this construction, we
refer to the supplementary file [13].

First, suppose that � has infinite support. We still have the property that the map f �→ (x �→
xf (x)) defined on the space of matrix polynomials is a right homomorphism and is represented
in the (right-module) basis of orthonormal matrix polynomials by the matrix

J =

⎛
⎜⎜⎝

B1 A1

A∗
1 B2

. . .

. . .
. . .

⎞
⎟⎟⎠ (2.1)

with Bk Hermitian and Ak non-singular the coefficients of the polynomial recursion. Moreover
the measure � is again the spectral measure of the matrix J defined as in (1.1) (Theorem 2.11
of [5]). Let us remark that to each � corresponds a whole equivalence class of Jacobi coeffi-
cients, but there is exactly one representative such that all Ak are Hermitian positive definite
(Theorem 2.8 in [5]) and any other choice A′

k , B ′
k can be written as

A′
k = σ ∗

k−1Akσk, B ′
k = σ ∗

k−1Bkσk−1 (2.2)

with unitary σk , k ≥ 1 and σ0 = 1.
For a finite dimensional matrix X ∈ HN of dimension N = pn, the spectral matrix measure

of �X is supported by at most N points and is in particular not nontrivial. However, if there
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are actually N distinct eigenvalues of X, the recursion coefficients A1, . . . ,An−1 and B1, . . . ,Bn

may still be defined for �X and there is a Jacobi matrix Jn as in (1.8), such that �X = �Jn .
When the measures are supported by [0,∞), there is a specific form of the Jacobi coeffi-

cients following from a decomposition developed in [9]. This leads to a particularly interesting
parametrization, which will be crucial for the Laguerre ensemble. Since it it also of independent
interest, we formulate it as a lemma.

Lemma 2.1. Suppose � is a matrix measure with infinite support in [0,∞). Then, there exist
non-singular Dk,Ck ∈ Mp , such that the Jacobi operator J of � can be decomposed as J =
ZZ∗, where X is the bidiagonal matrix

Z =

⎛
⎜⎜⎝

D1 0

C1 D2
. . .

. . .
. . .

⎞
⎟⎟⎠ . (2.3)

Moreover, if D′
k , C′

k is another sequence defining the same spectral measure, then there are
unitary matrices σk, τk ∈ Mp , such that

D′
k = σkDkτk, C′

k = σk+1Ckτk (2.4)

and there is a unique decomposition such that Dk , Ck are Hermitian and positive definite.

Suppose � is a quasi scalar measure, that is if � = σ · 1 with σ a scalar measure and 
 is a
positive matrix measure with Lebesgue decomposition


(dx) = h(x)σ (dx) + 
s(dx),

where h has values in the set of positive semi-definite p × p Hermitian matrices and the matrix
measure 
s is singular with respect to �. We extend the definition (1.5) by

K(� | 
) := −
∫

log deth(x)σ (dx). (2.5)

We remark that it is possible to rewrite the above quantity in the flavour of Kullback–Leibler
information (or relative entropy) with the notation of [21] or [22], see also Corollary 8 in [17].

2.1. Sum rules

For α− < α+, let Sp = Sp(α−, α+) be the set of all bounded nonnegative measures � ∈ Mp(R)

which can be written as

� = �I +
N+∑
i=1

�+
i δλ+

i
+

N−∑
i=1

�−
i δλ−

i
, (2.6)
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where supp(�I ) ⊂ I = [α−, α+], N−,N+ ∈ N∪ {∞}, �±
i ∈ Hp are of rank 1 and

λ−
1 ≤ λ−

2 ≤ · · · < α− and λ+
1 ≥ λ+

2 ≥ · · · > α+.

If N− (resp. N+) is infinite, then λ−
j converges towards α− (resp. λ+

j converges to α+). Note
that we count atoms outside of [α−, α+] multiple times if their respective weight has rank larger
than 1 and we assume some order on the rank 1 decompositions. Further, we define Sp,1 =
Sp,1(α

−, α+) := {� ∈ Sp(α−, α+) | �(R) = 1}.
2.1.1. The Hermite case revisited

In the scalar frame (p = 1), the Killip–Simon sum rule gives two different expressions for the
divergence between a probability measure and the semicircle distribution (see [20] and [26],
Chapter 3). In the more general case p ≥ 2, it gives two forms for the divergence with respect to

�SC = SC ·1, (2.7)

where SC is defined in (1.6) and supported by [α−, α+] = [−2,2]. We refer to [4], formula (10.4)
and [26], formula (4.6.13) for this matrix sum rule. The block Jacobi matrix associated with �SC
has entries

BSC
k = 0, ASC

k = 1,

for all k ≥ 1. The spectral side of the sum rule involves a contribution of outlying eigenvalues,
for which we define

F+
H (x) :=

⎧⎪⎨
⎪⎩
∫ x

2

√
t2 − 4dt = x

2

√
x2 − 4 − 2 log

(
x + √

x2 − 4

2

)
if x ≥ 2,

∞ otherwise

and F−
H (x) =F+

H (−x). Let G be the very popular function (Cramér transform of the exponential
distribution)

G(x) = x − 1 − logx (x > 0).

We adopt the convention of the functional calculus, so that for X ∈ Hp positive, we have

trG(X) = trX − log detX − p. (2.8)

Here is the first sum rule. This remarkable equality has been first proven by [4]. In Section 4,
we give a probabilistic proof. Indeed, we show that this sum rule is a consequence of two large
deviation results.

Theorem 2.1. Let � ∈ Mp,1(R) be a spectral measure with Jacobi matrix (2.1). If � ∈
Sp,1(−2,2), then

K(�SC | �) +
N+∑
k=1

F+
H

(
λ+

k

)+
N−∑
k=1

F−
H

(
λ−

k

)=
∞∑

k=1

1

2
trB2

k + trG
(
AkA

∗
k

)
,
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where both sides may be infinite simultaneously. If � /∈ Sp,1(−2,2), the right hand side equals
+∞.

We remark that since trG(σAA∗σ ∗) = trG(AA∗) for any unitary σ , the value of the right hand
side in Theorem 2.1 is independent of the choice of σn’s in (2.2). As described in the Introduction,
an important consequence of a sum rule are equivalent conditions for finiteness of both sides. It
is a gem, as defined on p.19 of [26]. The following statement is the gem implied by Theorem 2.1,
it can also be found in Simon’s book [26], combining Theorem 4.6.1 and Theorem 4.6.3 therein.

Corollary 2.1. Assume the Jacobi matrix J is nonnegative definite and let � be the spectral
measure of J . Then

∞∑
n=1

tr
((

AnA
∗
n

)1/2 − 1
)2 + trB2

n < ∞ (2.9)

if and only if

1. � ∈ Sp,1(−2,2).

2.
∑N+

i=1(λk − 2)3/2 +∑N−
i=1(|λi | − 2)3/2 < ∞.

3. If � admits the decomposition

d�(x) = f (x)dx + d�s(x),

where d�s is singular with respect to dx and f is an integrable function of [−2,2] to the set of
nonnegative Hermitian p × p matrices, then∫ 2

−2

√
4 − x2 log detf (x)dx > −∞.

2.1.2. Our new sum rule: The Laguerre case

In the Laguerre case, the central measure is the matrix Marchenko-Pastur law

�MP(τ ) = MP(τ ) · 1, (2.10)

where MP is defined in (1.7) and supported by [α−, α+] with α± = τ± = (1 ± √
τ )2. The block

Jacobi matrix associated with �MP(τ ) has entries:

AMP
k = √

τ · 1 (k ≥ 1), BMP
1 = 1, BMP

k = (1 + τ) · 1 (k ≥ 2)

which corresponds to Dk = 1,Ck = τ · 1.
For the new Laguerre sum rule, we have to replace F±

H by

F+
L (x) =

⎧⎪⎨
⎪⎩
∫ x

τ+

√
(t − τ−)(t − τ+)

tτ
dt if x ≥ τ+,

∞ otherwise
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and

F−
L (x) =

⎧⎪⎨
⎪⎩
∫ τ−

x

√
(τ− − t)(τ+ − t)

tτ
dt if x ≤ τ−,

∞ otherwise.

One of our main results is Theorem 2.2. The proof is again in Section 4.

Theorem 2.2. Assume that the Jacobi matrix J is nonnegative definite and let � be the spectral
measure associated with J . Then for any τ ∈ (0,1], if � ∈ Sp,1(τ

−, τ+),

K(�MP(τ ) | �) +
N+∑
n=1

F+
L

(
λ+

n

)+
N−∑
n=1

F−
L

(
λ−

n

)

=
∞∑

k=1

τ−1 trG
(
DkD

∗
k

)+ trG
(
τ−1CkC

∗
k

)
,

where both sides may be infinite simultaneously and Dk , Ck are as (2.3). If � /∈ Sp,1(τ
−, τ+),

the right hand side equals +∞.

It follows from (2.4), that although the values for Dk , Ck in the decomposition (2.3) are not
unique, the value of the rate function is independent of the choice of representatives for the
measure �. So in particular, they may be chosen Hermitian positive definite. Moreover, for any
choice for Dk , Ck , we remark that the matrices DkD

∗
k and CkC

∗
k are in fact similar to a Hermitian

matrix, hence the sum on the right-hand side in Theorem 2.2 is always real valued.
Similar to the matrix gem, Theorem 2.1, we can formulate equivalent conditions on the ma-

trices Dk , Ck and the spectral measure, which characterize finiteness of the sum. The following
corollary is the matrix counterpart of Corollary 2.4 in [12]. It follows immediately from Theo-
rem 2.2, since F−

L (0) = ∞ and

F±
L

(
τ± ± h

)= 4

3τ 3/4(1 ± √
τ)2

h3/2 + o
(
h3/2) (

h → 0+)
and, for H similar to a Hermitian matrix,

trG(1 + H) = 1

2
trH 2 + o

(‖H‖) (‖H‖ → 0
)
.

Here, ‖ · ‖ is any matrix norm.

Corollary 2.2. Assume the Jacobi matrix J is nonnegative definite and let � be the spectral
measure of J . Then

∞∑
k=1

[
tr
(
DkD

∗
k − 1

)2 + tr
(
CkC

∗
k − τ1

)2]
< ∞ (2.11)
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if and only if

1. � ∈ Sp,1(τ
−, τ+).

2.
∑N+

i=1(λ
+
i − τ+)3/2 +∑N−

i=1(τ
− − λ−

i )3/2 < ∞ and if N− > 0, then λ−
1 > 0.

3. The spectral measure � of J with Lebesgue decomposition d�(x) = f (x)dx + d�s(x)

satisfies

∫ τ+

τ−

√
(τ+ − x)(x − τ−)

x
log det

(
f (x)

)
dx > −∞.

3. Randomization

3.1. Matrix random models

The results of the previous section rely on two classical distributions of random Hermitian matri-
ces: the Gaussian (or Hermite) and the Laguerre (or Wishart) ensemble. We denote by N (0, σ 2)

the centered Gaussian distribution with variance σ 2 > 0. A random variable X taking values in
HN is distributed according to the Gaussian unitary ensemble GUEN , if all real diagonal entries
are distributed as N (0,1) and the real and imaginary parts of off-diagonal variables are indepen-
dent and N (0,1/2) distributed (also called complex standard normal distribution). All entries are
assumed to be independent up to symmetry and conjugation. The random matrix X/

√
N has then

the distribution given by (1.3) and the joint density of the (real) eigenvalues λ = (λ1, . . . , λN) of
X is (see, for example, [1])

gG(λ) = cG

∏
1≤i<j≤N

|λi − λj |2
N∏

i=1

e−λ2
i /2. (3.1)

In analogy to the scalar χ2 distribution, the Laguerre ensemble is the distribution of the square
of Gaussian matrices as follows. If G denotes a N × γ matrix with independent complex stan-
dard normal entries, then GG∗ is said to be distributed according to the Laguerre ensemble
LUEN(γ ) with parameter γ . If γ ≥ N , the eigenvalues have the density (see, for example,
[1])

gL(λ) = c
γ

L

∏
1≤i<j≤N

|λi − λj |2
N∏

i=1

λ
γ−N

i e−λi 1{λi>0}. (3.2)

It is a well-known consequence of invariance under unitary conjugation, that in the classical
ensembles (1.3), the array of random eigenvalues and the random eigenvector (unitary) matrix
are independent. Further, this latter matrix is Haar distributed ([6]). This implies the following
equality in distribution for the weights given in Lemma 3.1 (see Proposition 3.1 in [17]), which
is a matrix version of the beta-gamma relation for scalar random variables. First we need a
definition.
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Definition 3.1. 1. If v1, . . . , vN are independent complex standard normal distributed vectors in
C

p , set Vj = vjv
∗
j for j ≤ N . We say that (V1, . . . , VN) follows the distribution Gp,N on (Hp)N .

2. If U is Haar distributed in the set of N × N unitary matrices, set uj = (Ui,j )1≤i≤p ∈ C
p

and Wj = uju
∗
j for j ≤ N . We say that (W1, . . . ,WN) follows the Dp,N distribution on (Hp)N .

In the scalar case, the array of weights wj = u2
j is uniformly distributed on the simplex

{w1, . . . ,wN ∈ [0,1] :∑i wi = 1}.

Lemma 3.1. If (V1, . . . , VN) follows the distribution Gp,N and if H = ∑N
k=1 Vk , then

(H−1/2V1H
−1/2, . . . ,H−1/2VNH−1/2) follows the distribution Dp,N .

Our main large deviation principle will hold for a general class of p × p matrix measures. We
draw the random eigenvalues λ1, . . . , λN from the absolute continuous distribution P

V
N

dPV
N(λ) = 1

ZN
V

∏
1≤i<j≤N

|λi − λj |2
N∏

i=1

e−NV (λi) dλ. (3.3)

We suppose that the potential V is continuous and real valued on the interval (b−, b+) (−∞ ≤
b− < b+ ≤ +∞), infinite outside of [b−, b+] and limx→b± V (x) = V (b±) with possible limit
V (b±) = +∞. Under the assumption

(A1) Confinement:

lim inf
x→b±

V (x)

log |x| > 2,

the empirical distribution μ
(N)
u of eigenvalues λ1, . . . , λN has a limit μV in probability, which is

the unique minimizer of

μ �→ E(μ) :=
∫

V (x)dμ(x) −
∫∫

log |x − y|dμ(x)dμ(y) (3.4)

and which has a compact support (see [18] or [1]). This convergence can be viewed as a conse-
quence of the LDP for the sequence (μ

(N)
u )N . We need two additional assumptions on μV :

(A2) One-cut regime: the support of μV is a single interval [α−, α+] ⊂ [b−, b+] ( α− < α+).
(A3) Control (of large deviations): the effective potential

JV (x) := V (x) − 2
∫

log |x − ξ |dμV (ξ) (3.5)

achieves its global minimum value on (b−, b+) \ (α−, α+) only on the boundary of this
set.

In the Hermite case, we have V (x) = 1
2x2 and the equilibrium measure μV is the semicircle law

SC as in (2.7). In the Laguerre case, we may set V (x) = τ−1x − (τ−1 − 1) log(x) for τ ∈ (0,1]
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and V (x) = +∞ for negative x. In this case, μV is the Marchenko-Pastur law MP(τ ) as in (2.10).
In both the Hermite and the Laguerre cases, the assumptions (A1), (A2) and (A3) are satisfied.
We need one more definition related to outlying eigenvalues:

F+
V (x) =

⎧⎨
⎩
JV (x) − inf

ξ∈RJV (ξ) if α+ ≤ x ≤ b+,

∞ otherwise,
(3.6)

F−
V (x) =

⎧⎨
⎩
JV (x) − inf

ξ∈RJV (ξ) if b− ≤ x ≤ α−,

∞ otherwise.
(3.7)

One may check that in the Hermite case, F±
V = F±

H and in the Laguerre case, F±
V = F±

L , where
F±

H and F±
L have been defined in the previous section (see, for example, Proposition 3.2 in [12]).

3.2. Large deviations: A general theorem

In order to be self-contained, let us recall the definition of large deviations and we refer to [8] for
more details.

Definition 3.2. Let E be a topological Hausdorff space and let I : E → [0,∞] be a lower semi-
continuous function. We say that a sequence (Pn)n of probability measures on (E,B(E)) satisfies
a large deviation principle (LDP) with rate function I and speed an (an ↗ ∞), if:

(i) For all closed sets F ⊂ E:

lim sup
n→∞

1

an

logPn(F ) ≤ − inf
x∈F

I(x).

(ii) For all open sets O ⊂ E:

lim inf
n→∞

1

an

logPn(O) ≥ − inf
x∈O

I(x).

The rate function I is good if its level sets {x ∈ E | I(x) ≤ a} are compact for all a ≥ 0. We say
that a sequence of E-valued random variables satisfies a LDP if their distributions satisfy a LDP.

To prove our main large deviation principle, we will use a special extension of Baldi’s theorem,
which extends also Bryc’s lemma. A proof of this new theorem is in [11]. It is one of the key tool
for the statements of Section 4 in [12] and it is also useful in [14].

To give the theorem in a general setting, assume that X and Y are Hausdorff topological
vector spaces. Let X ∗ be the continuous dual space of X . We denote by Cb(Y) the set of all
bounded continuous functions ϕ : Y → R. Recall that a point x ∈ X is called an exposed point
of a function F on X , if there exists x∗ ∈ X ∗ (called an exposing hyperplane for x) such that

F(x) − 〈
x∗, x

〉
< F(z) − 〈

x∗, z
〉

(3.8)

for all z �= x.
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Theorem 3.1. Assume that Xn ∈ X and Yn ∈ Y are defined on the same probability space and
that the two sequences (Xn) and (Yn) are exponentially tight. Assume further that

1. There is a set D ⊂ X ∗ containing 0 and functions � : D → R, J : Cb(Y) → R such that
for all x∗ ∈ D and ϕ ∈ Cb(Y)

lim
n→∞

1

n
logE exp

(
n
〈
x∗,Xn

〉+ nϕ(Yn)
)= �

(
x∗)+ J (ϕ). (3.9)

2. If F denotes the set of exposed points x of

�∗(x) = sup
x∗∈D

{〈
x∗, x

〉− �
(
x∗)}

with an exposing hyperplane x∗ satisfying x∗ ∈ D and γ x∗ ∈ D for some γ > 1, then for every
x ∈ {�∗ < ∞} there exists a sequence (xk)k with xk ∈ F such that limk→∞ xk = x and

lim
k→∞�∗(xk) = �∗(x).

Then, the sequence (Xn,Yn) satisfies the LDP with speed n and good rate function

I(x, y) = �∗(x) + IY (y),

where

IY (y) = sup
ϕ∈Cb(Y)

{
ϕ(y) − J (ϕ)

}
.

To apply this theorem in our setting, we remark that X may be taken as the vector space
Ms

p(T ) of bounded signed matrix measures which can be written as � = �1 −�2 with �1,�2 ∈
Mp(T ) and equipped with the weak topology. The continuous dual X ∗ contains the space Cp(T )

of bounded continuous functions f : T →Hp with the pairing

〈f,�〉 = tr
∫

f d�.

Then Theorem 3.1 will give the LDP in Ms
p(T ), and since Mp(T ) is a closed subset, the LDP

in Mp(T ) follows from Lemma 4.1.5 of [8].

3.3. Large deviations: Results

3.3.1. Random measures

Our first LDP holds for p × p matrix measures

�(N) =
N∑

k=1

Wkδλk
,
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whose support (λ1, . . . , λN) is P
V
N distributed and where the distribution of weights (W1, . . . ,

WN) is Dp,N as in the case of classical ensembles. As explained in Section 3.1, this is precisely
the distribution of the spectral measure of (XN ; e1, . . . , ep), with XN an N × N matrix drawn
from the distribution (1.3). Recall that under assumption (A1), the empirical measure of the
eigenvalues converges to an equilibrium measure μV , supported by [α−, α+]. The rate function
of our large deviation principle involves the reference matrix measure

�V = μV · 1.

We recall that F±
V has been defined in (3.6) and (3.7). The following theorem is the matrix

counterpart of Theorem 3.1 in [12]. Note that in the scalar case, we had an additional parameter
β > 0, corresponding to the inverse temperature of the log-gas. In the matrix case, we choose to
fix β = 2 (for complex matrices) due to the nature of the matrix spaces.

Theorem 3.2. Assume that the potential V satisfies the assumptions (A1), (A2) and (A3). Then
the sequence of spectral measures �(N) under PV

N ⊗Dp,N satisfies the LDP in Mp,1(R) in the
weak topology with speed N and good rate function

IV (�) =K(�V | �) +
N+∑
k=1

F+
V

(
λ+

k

)+
N−∑
k=1

F−
V

(
λ−

k

)

if � ∈ Sp,1(α
−, α+) and IV (�) = ∞ otherwise.

Remark 3.1. A natural extension of Theorem 3.2 holds for potentials V = VN depending on N ,
provided that VN converges to a deterministic potential V in an appropriate sense. For example,
it holds if we suppose that VN : R → (−∞,+∞] is a sequence converging to V uniformly
on the level sets {V ≤ M}, where V satisfies assumptions (A1), (A2) and (A3) and such that
VN(x) ≥ V (x).

3.3.2. Jacobi coefficients

In the cases of Hermite and Laguerre ensembles, the particular form of the distribution of the
parameters (B1,A1, . . . ) and (D1,C1, . . .) respectively, allows us to prove further LDP’s for the
spectral measure, independently of Theorem 3.2. Since we need a specific block structure, we
assume N = np. Let Mp,1,c be the set of all compactly supported normalized matrix measures.

Theorem 3.3. Let �(n) be the spectral measure of 1√
np

Xn. Assume that Xn is distributed ac-

cording to the Hermite ensemble GUEN with N = np. Then the sequence (�(n))n satisfies the
LDP in Mp,1,c(R) in the weak topology with speed pn and good rate function

IH (�) =
∞∑

k=1

[
1

2
trB2

k + trG
(
AkA

∗
k

)]
,

where Bk , Ak are the Jacobi coefficients of � as in (2.1) if � is non-trivial and IH (�) = ∞ if
� is trivial.
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Theorem 3.4. Let Yn be distributed according to the Laguerre ensemble LUEN(pγn), with N =
np and γn ≥ n an integer sequence such that n

γn
→ τ ∈ (0,1] and let �(n) be the spectral measure

of 1
pγn

Yn. Then the sequence (�(n))n satisfies the LDP in Mp,1,c([0,∞)) in the weak topology
with speed pn and good rate function

IL(�) =
∞∑

k=1

[
τ−1G

(
DkD

∗
k

)+ G
(
τ−1CkC

∗
k

)]
,

with Dk , Ck as in Lemma 2.1. If � is a trivial measure, we have IL(�) = ∞.

In order to prove LDP’s for the spectral measures in terms of the recursion coefficients, we
need the following results for matrices of fixed size. The first and third are straightforward ex-
tensions of the scalar case, the second one can be found in [15], with small changes to allow a
general sequence of parameters.

Lemma 3.2. (i) If X ∼ GUEp with p fixed, then the sequence ( 1√
n
X)n satisfies the LDP in Hp

with speed n and good rate function

I1(X) = 1

2
trX2.

(ii) Let Yn ∼ LUEp(γn) with a positive sequence (γn)n such that γn

n
→ γ > 0, then the se-

quence ( 1
n
Yn)n satisfies the LDP in Hp with speed n and good rate function

I2(Y ) = γ trG
(
γ −1Y

)

if Y is Hermitian and nonnegative and I2(Y ) = ∞ otherwise.
(iii) Let Z ∼ LUEp(1) with p fixed, that is, Z = vv∗ when v is a vector of independent com-

plex standard normal random variables. Then the sequence ( 1
n
Z)n satisfies the LDP in Hp with

speed n and good rate function

I3(Z) = trZ

if Z is Hermitian of rank 1 and nonnegative and I3(Z) = ∞ otherwise.
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4. Proofs of Theorems 2.1 and 2.2: From large deviations to sum
rules

Proof of Theorem 2.1. Consider the matrix measure �(n) with N = np support points with
density proportional to

∏
1≤i<j≤N

|λi − λj |2
N∏

i=1

e−Nλ2
i /2

and weight distribution Dp,N independent of the support points. By Theorem 3.2, the sequence
(�(n))n satisfies the LDP with speed np and rate function IV , where μV is the semicircle law and
furthermore F±

V =F±
H . That is, the rate function is precisely the left hand side of the equation in

Theorem 2.1. On the other hand, �(n) is also the spectral measure of the random matrix 1√
pn

Xn,

where Xn ∼ GUEpn. By Theorem 3.3, the sequence (�(n))n satisfies also the LDP in the space
of compactly supported matrix measures with speed np and rate function IH , the right-hand side
of the equation in Theorem 2.1. Since a large deviation rate function is unique, we must have
IV (�) = IH (�) for any compactly supported � ∈ Mp,1,c . If � is not compactly supported,
it suffices to remark that the recursion coefficients cannot satisfy supn(‖An‖ + ‖Bn‖) < ∞,
as otherwise J would be a bounded operator. But trB2 + trG(A) diverges as ‖A ‖ → ∞ or
‖B‖ → ∞ and so the right-hand side in Theorem 2.1 equals +∞. �

Proof of Theorem 2.2. Fix τ ∈ (0,1] and let V (x) = τ−1x − (τ−1 − 1) logx for x ≥ 0 and
V (x) = +∞ if x < 0. From Theorem 3.2, we get that under the distribution P

V
N ⊗Dp,N the se-

quence (�(n))n satisfies the LDP with speed N = np and rate function IV . In this case, the
equilibrium measure is the Marchenko-Pastur law MP(τ ) multiplied by 1. Further, we have
F±

V = F±
L . So that, IV is nothing more than the left-hand side of the sum rule in Theorem 2.2.

We would like to combine this result with the LDP in Theorem 3.4, but since this requires inte-
ger parameters, we need to modify the potential slightly. Define γn = �nτ−1� and consider the
eigenvalue distribution with density proportional to

∏
1≤i<j≤N

|λi − λj |2
N∏

i=1

λ
pγn−pn

i e−pγnλi 1[0,∞)(λi). (4.1)

This is the eigenvalue distribution of the matrix 1
pγn

Yn, when Yn ∼ LUEpn(pγn). By Theo-
rem 3.4, the spectral measure of this matrix satisfies the LDP with speed pn and rate function IL

which is the right-hand side of the sum rule in Theorem 2.2. We may as well write the previous
density as

1

ZN
Vn

∏
1≤i<j≤N

|λi − λj |2
N∏

i=1

e−NVn(λi ), (4.2)
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where

Vn(x) = �nτ−1�
n

x −
(�nτ−1�

n
− 1

)
logx (4.3)

for nonnegative x. Then Vn(x) ≥ V (x) for all x and on the sets {x | V (x) ≤ M}, the potentials
Vn converge uniformly to V . Note that the point 0 is included in the level sets of V only if τ = 1.
Therefore, by Remark 3.1, the spectral measure with support point density (4.2) satisfies the
same LDP as under the density P

V
pn and then with rate function IV . This yields IV (�) = IH (�)

for any compactly supported measure �. The extension to measures with non-compact support
follows as in the proof of Theorem 2.1. �

5. Proof of Theorem 3.2: Spectral LDP for a general potential

This section is devoted to the proof of Theorem 3.2. We will follow the track of the proof de-
veloped for the scalar case in [12] and will often refer to this paper for more details. The main
idea is to apply the projective method and study a family of matrix measures restricted to the
support I = [α−, α+] of the equilibrium measure and a fixed number of extremal eigenvalues.
For � ∈ Sp with

� = �I +
N+∑
i=1

�+
i δλ+

i
+

N−∑
i=1

�−
i δλ−

i
(5.1)

as in (2.6), we define the j th projection πj by

πj (�) = �I +
N+∧j∑
i=1

�+
i δλ+

i
+

N−∧j∑
i=1

�−
i δλ−

i
,

that is, all but the j th largest and smallest eigenvalues outside of I = [α−, α+] are omitted
(allowing ties). Note that πj is not continuous in the weak topology. For this reason, we need to
change our topology on Sp by identifying � as in (5.1) with the vector(

�I ,
(
λ+

i

)
i≥1,

(
λ−

i

)
i≥1,

(
�+

i

)
i≥1,

(
�−

i

)
i≥1

)
(5.2)

with λ+
i = α+ and �+

i = 0 if i > N+ and λ−
i = α− and �−

i = 0 if i > N−. Then (5.2) is an
element of the space Mp(I ) × R

N × R
N × HN

p × HN
p , equipped with the product topology.

Analogously to Lemma 4.5 in [12], one can show that on the smaller set Sp,1 of normalized
measures, this topology is (strictly) stronger than the weak topology.

Let for j fixed and N > 2j

λ+(j) = (
λ+

1 , . . . , λ+
j

)
, λ−(j) = (

λ−
1 , . . . , λ−

j

)
.

Then the following joint LDP (Theorem 4.1 in [12]) holds for the largest and/or smallest eigen-
values, where we write R

↑j (resp. R↓j ) for the subset of Rj of all vectors with non-decreasing
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(resp. non-increasing) entries and, with a slight abuse of notation, we write α± for the vector
(α±, . . . , α±) ∈ R

j .

Theorem 5.1. Let j be a fixed integer and the potential V such that (A1), (A2) and the control
condition (A3) are satisfied.

1. If b− < α− and α+ < b+, then the law of (λ+(j), λ−(j)) under P
V
N satisfies the LDP in

R
2j with speed N and good rate function

Iλ±
(
x+, x−)

:=

⎧⎪⎪⎨
⎪⎪⎩

j∑
k=1

F+
V

(
x+
k

)+
j∑

k=1

F−
V

(
x−
k

)
if
(
x+

1 , . . . , x+
j

) ∈R
↓j and

(
x−

1 , . . . , x−
j

) ∈ R
↑j ,

∞ otherwise.

2. If b− = α−, but α+ < b+, the law of λ+(j) satisfies the LDP with speed N and good rate
function

Iλ+
(
x+)= Iλ±

(
x+, α−)=

⎧⎪⎪⎨
⎪⎪⎩

j∑
k=1

F+
V

(
x+
k

)
if
(
x+

1 , . . . , x+
j

) ∈ R
↓j ,

∞ otherwise.

3. If b− < α−, but α+ = b+, the law of λ−(j) satisfies the LDP with speed N and good rate
function

Iλ−
(
x−)= Iλ±

(
α+, x−)=

⎧⎪⎪⎨
⎪⎪⎩

j∑
k=1

F−
V

(
x−
k

)
if
(
x−

1 , . . . , x−
j

) ∈ R
↑j ,

∞ otherwise.

5.1. LDP for the restricted measure and extremal eigenvalues

Suppose now that the distribution of �(N) is as in Theorem 3.2 and the assumptions (A1), (A2)
and (A3) are satisfied. By Lemma 3.1, we may decouple the weights and consider the (non-
normalized) measure

�̃(N) = 1

N

N∑
k=1

vkv
∗
k δλk

, (5.3)

where the entries of v1, . . . , vN ∈ C
p are independent complex standard normal distributed ran-

dom vectors. The original distribution can then be recovered as the pushforward under

�̃ �→ �̃(R)−1/2 · �̃ · �̃(R)−1/2.
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Let I (j) := I \ {λ+
1 , λ−

1 , . . . , λ+
j , λ−

j } denote the interval I without the j largest and smallest

eigenvalues. Analogously, let I+(j) := I \{λ+
1 , . . . , λ+

j } and I−(j) := I \{λ−
1 , . . . , λ−

j }. Then we

write �̃
(N)
I (j)

for the restriction of �̃(N) to I (j). We use the analogous notation for the restrictions

to I+(j), I−(j) and I . The main result in this section is a joint LDP for the restricted measure
and the collection of extremal eigenvalues.

Theorem 5.2. Suppose that the law of eigenvalues and weights is given by P
V
N ⊗ Gp,N and

consider �̃(N) as a random element in Sp with topology induced by (5.2).

1. If b− < α− < α+ < b+, then for any fixed j ∈ N, the sequence (�̃
(N)
I (j), λ

+(j), λ−(j)) sat-
isfies the joint LDP with speed N and good rate function

I
(
�,x+, x−)=K(�V | �) + tr�(I) − p + Iλ±

(
x+, x−).

2. If b− = α−, but α+ < b+ (or b+ = α+, but α− > b−), then, with the same notation as in
Theorem 5.1, (�̃(N)

I+(j)
, λ+(j)) (or (�̃(N)

I−(j)
, λ−(j)), respectively) satisfies the LDP with speed N

and good rate function

I+(�,x+)= I
(
�,x+, α−) (

or I−(�,x−)= I
(
�,α+, x−), respectively

)
.

Proof. We show here only the first part of the theorem, for the other cases just omit the largest or
smallest eigenvalues. To further simplify the notations, set λ±(j) := (λ+

1 , . . . , λ+
j , λ−

1 , . . . , λ−
j ).

First, to show that the sequence (�̃
(N)
I (j), λ

±(j)) is exponentially tight, define the set

Kγ,M = {
(�,λ) ∈ Mp(I ) ×R

2j | �(I) ≤ γ · 1, λ ∈ [−M,M]2j
}
,

which is compact by the remark in Section 1 (here A ≤ B is in the Loewner order). For every
γ > 2

lim sup
N→∞

1

N
logP

(
�̃

(N)
I (j)(I ) > γ

)≤ lim sup
N→∞

1

N
logP

(
1

N

N∑
k=1

vkv
∗
k ≥ γ /2 · 1

)

≤ − trG(γ/2 · 1) = −pG(γ/2),

by Lemma 3.2(ii), where we used the fact that
∑N

k=1 vkv
∗
k follows the LUEp(N) distribution.

Furthermore, by Theorem 5.1 and Assumption (A1), the sequence of λ±(j) is exponentially
tight, such that

lim
γ,M→∞ lim sup

N→∞
1

N
logP

((
�̃

(N)
I (j), λ

±(j)
)

/∈ Kγ,M

)= −∞.

We prove the joint LDP by applying Theorem 3.1. For this, let D be the set of continuous
f : [α−, α+] → Hp such that for all x ∈ [α−, α+], f (x) < 1, i.e., the eigenvalues of f (x) are
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smaller than 1. For f ∈ D and ϕ a bounded continuous function from R
2j to R, we consider the

joint moment generating function

GN(f,ϕ) = E

[
exp

{
N

(
tr
∫

f d�̃
(N)
I (j) + ϕ

(
λ±(j)

))}]
.

Since the weights vkv
∗
k of �̃

(N)
I (j)

are independent, we may first integrate with respect to the vk’s,
so that

GN(f,ϕ) = E

[
exp

(
Nϕ

(
λ±(j)

)) ∏
i:λi∈I (j)

E
[
exp

{
tr
(
f (λi)vkv

∗
k

)} | λ1, . . . , λn

]]
(5.4)

= E

[
exp

(
Nϕ

(
λ±(j)

)) ∏
i:λi∈I (j)

E
[
exp

{
v∗
kf (λi)vk

} | λ1, . . . , λn

]]
. (5.5)

Now, it is clear that for v a standard normal complex vector in C
p and A ∈ Hp such that A < 1,

we have

logE
[
exp

(
v∗Av

)]= − log det(1 − A) =: L(A) (5.6)

so that (5.4) becomes,

GN(f,ϕ) = E
[
exp

{
N
(
μ

(N)
u,I (j)(L ◦ f ) + ϕ

(
λ±(j)

))}]
,

where μ
(N)
u,I (j) is the restriction of the (scalar) empirical eigenvalue distribution to I (j). It remains

to calculate the expectation with respect to P
V
N .

By Theorem 5.1, the extremal eigenvalues λ±(j) of the spectral measure satisfy the LDP
with speed N rate function Iλ± . Since ϕ is bounded, we can conclude from Varadhan’s Integral
Lemma ([8], p. 137)

lim
N→∞

1

N
logE

[
exp

{
Nϕ

(
λ±(j)

)}]= J (ϕ) := sup
y∈R2j

{
ϕ(y) − Iλ±(y)

}
. (5.7)

Since μ
(N)
u satisfies a LDP with speed N2, but we consider only the slower scale at speed N ,

we may replace it by the limit measure μV at a negligible cost. For the exact estimates, we may
follow along the lines of [12] to conclude

lim
N→∞

1

N
logGN(f,ϕ) = lim

N→∞
1

N
logE

[
exp

{
N
(
μV (L ◦ f ) + ϕ

(
λ±(j)

))}]
= �(f ) + J (ϕ),

where

�(f ) =
∫

L ◦ f dμV
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and L is given in (5.6). Let us notice that in [12], A(η) has to be replaced by

A(η) = {∣∣μ(n)
u,I (j)

(
L(f )

)− μV

(
L(f )

)∣∣< η
}
.

Theorem 3.1 yields the LDP for (�̃
(n)
I , λ±) with good rate

I(�,λ) = �∗(�) + Iλ±(λ)

once we show the second assumption therein is satisfied. Theorem 5 of [23] identifies �∗ as

�∗(�) =
∫

L∗(h) dμV +
∫

r

(
d�S

dθ

)
dθ, (5.8)

where:

• L∗ is the convex dual of L,
• r its recession function,
• the Lebesgue-decomposition of � with respect to μV is

d�(x) = h(x)dμV (x) + d�S(x),

• θ is any scalar measure such that �S is absolutely continuous with respect to θ .

We begin by calculating L∗ and r . By definition,

L∗(X) = sup
Y∈Hp

{
tr(XY) − L(Y )

}
.

The function L is convex (as in the scalar case, apply Hölder’s inequality in the definition (5.6))
and analytic. The supremum is then reached at a critical value. We denote by D[F(Y )] the
Fréchet derivative of a function F : Hp →R at Y and look for Y such that

D
[
tr(XY) − L(Y )

]
(Z) = 0 (5.9)

for every Z. It is well known that, as functions of Y for X fixed, D[tr(XY)](Z) = tr(XZ) and
D[log detY ](Z) = tr(Y−1Z) so that (5.9) becomes, by the chain rule,

tr(XZ) − tr
(
(1 − Y)−1Z

)= 0

for every Z i.e. X − (1 − Y)−1 = 0 hence Y = 1 − X−1 and

L∗(X) = tr(X − 1) + log det
(
X−1)= trX − p + log det

(
X−1)= trG(X). (5.10)

The recession function is

r(X) = sup
{
tr(XW) : W < 1

}
.



Sum rules and large deviations for spectral matrix measures 733

If X has a negative eigenvalue, then r(X) = ∞. For X nonnegative definite, the supremum is
attained for W = 1, so that

r(X) = trX. (5.11)

Gathering (5.10) and (5.11) and plugging into (5.8) we get

�∗(�) = tr
∫

hdμV −
∫

log dethdμV − p + tr
∫

d�S

=K(�V | �) + tr�(I) − p.

To show that �∗ satisfies the second assumption of Theorem 3.1, we refer to Section A.2 in [13].
Then (�̃

(N)
I (j), λ

±(j)) satisfies the LDP with speed n and rate function

I
(
�,x±)=K(�V | �) + tr�(I) − p + Iλ±

(
x±)

=K(�V | �) + tr�(I) − p +
j∑

i=1

F+(x+
i

)+F−(x−
i

)

which ends the proof of Theorem 5.2. �

5.2. LDP for the projective family

Theorem 5.3. For any fixed j , the sequence of projected spectral measures πj (�̃
(N)) as ele-

ments of Sp with topology induced by (5.2) satisfies the LDP with speed N and rate function

Ĩj (�̃) =K(�V | �̃) + tr �̃(I ) − p +
N+∧j∑
i=1

(
F+

V

(
λ+

i

)+ tr�+
i

)+
N−∧j∑
i=1

(
F−

V

(
λ−

i

)+ tr�−
i

)
.

Proof. The proof is similar to the proof of Theorem 4.3 in [12] and we omit the details for the
sake of brevity. It is a combination of the LDP in Theorem 5.2 and the LDP of the weights 1

N
�k =

1
N

vkv
∗
k corresponding to the extreme eigenvalues. Indeed �i ∼ LUEp(1), so by Lemma 3.2(iii),

each individual weight 1
N

�k satisfies the LDP with speed N and rate function I3(X) = trX for
nonnegative definite X of rank 1 and I3(X) = ∞ otherwise. The independence of the weights
and an application of the contraction principle complete then the proof. �

In order to come back to a normalized matrix measure in Sp,1, we note that the LDP for
πj (�̃

(N)) also implies the joint LDP for(
πj (�̃

(N)),πj (�̃
(N))(R)

)
,

with the rate function

Ij (�̃,Z) = Ĩj (�̃)
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if �̃(R) = Z and Ij (�̃,Z) = ∞ otherwise. Keeping the weights along the way, we may apply
the projective method (the Dawson–Gärtner Theorem, p. 162 in the book of [8]) to the family
of projections (πj (�̃

(N)),πj (�̃
(N))(R))j and get a LDP for the pair (�̃(N), �̃(N)(R)) with rate

function

I(�̃,Z) = sup
j

Ij (�̃,Z).

This rate function equals +∞ unless �̃(R) = Z and in this case is given by

I(�̃,Z) =K(�V | �̃) + trZ − p +
N+∑
i=1

F
(
λ+

i

)+
N−∑
i=1

F
(
λ−

i

)
. (5.12)

We remark that normalizing the matrix measure is not possible unless we keep track of the total
mass for any j , as the mapping �̃ �→ �̃(R)−1/2�̃�̃(R)−1/2 is not continuous in the topology
(5.2). However, we may now apply the continuous mapping (�̃,Z) �→ Z−1/2�̃Z−1/2 and obtain
a LDP for the sequence of measures �(N) in Sp,1. The rate function is

I(�) = inf
�̃=Z1/2�Z1/2,Z>0

Ĩ(�̃) = inf
Z>0

Ĩ
(
Z1/2�Z1/2).

By (5.12), we need to minimize over positive definite Z ∈ Hp the function

−
∫

log det

(
d(Z1/2�Z1/2)

dμV

)
dμV + trZ − p = −

∫
log det

(
d�

dμV

)
dμV + I2(Z).

The term I2(Z) comes from Lemma 3.2(ii) with γ = 1 and attains its minimal value 0 for Z = 1.
We have obtained the LDP claimed in Theorem 3.2 on the subset Sp,1 in the topology induced

by (5.2). As in Section 4.5 of [12], on Sp,1 this is stronger than the weak topology and the rate
function can be extended to Mp,1 by setting I(�) = ∞ for � /∈ Sp,1. This yields Theorem 3.2.

5.3. Proof of Remark 3.1

Let A be a measurable subset of Mp,1 and set

AN =
{

(λ,W) ∈ R
N ×HN

p

∣∣∣∣
N∑

k=1

Wkδλk
∈ A

}
.

The LDP for �(N) with eigenvalue distribution P
VN

N will follow from the LDP for eigenvalue
distribution P

V
N once we show

lim sup
N→∞

1

N
log

(
P

VN

N ⊗Dp,N

)
(AN) ≤ lim sup

N→∞
1

N
log

(
P

V
N ⊗Dp,N

)
(AN) (5.13)
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and

lim inf
N→∞

1

N
log

(
P

VN

N ⊗Dp,N

)
(AN) ≥ lim inf

N→∞
1

N
log

(
P

V
N ⊗Dp,N

)
(AN). (5.14)

In fact, this does not require A to be closed or open, respectively. For this, let

�V
N(AN) =

∫∫
AN

∏
1≤i<j≤N

|λi − λj |2
N∏

i=1

e−NV (λi) dλdDp,N(W)

and define �
VN

N (AN) analogously, with V replaced by VN . Since VN ≥ V , we have

�
VN

N (AN) ≤ �V
N(AN). (5.15)

To get a reverse inequality, let KN,M be the set of (λ,W) ∈ R
N × HN

p , where V (λi) ≤ M for
all i. Then

�
VN

N (AN) ≥ �
VN

N (AN ∩ KN,M) ≥
(

inf
x:V (x)≤M

eV (x)−VN(x)
)N

�V
N(AN ∩ KN,M).

Since by assumption eV (x)−VN (x) converges to 1 uniformly on {x | V (x) ≤ M}, this implies

lim
N→∞

1

N
log

�
VN

N (AN)

�V
N(AN)

≥ lim
N→∞

1

N
log

�V
N(AN ∩ KN,M)

�V
N(AN)

. (5.16)

If we take now A =Mp,1, then �V
N(AN) = ZV

N and the right-hand side of (5.16) becomes

lim
N→∞

1

N
logPV

N

(∀i : V (λi) ≤ M
)
.

By the LDP for the extreme eigenvalues, Theorem 5.1, and taking into account Assumption (A1),
this limit tends to 0 as M → ∞. Together with (5.15), we have shown that for A =Mp,1

lim
N→∞

1

N
log

�
VN

N (AN)

�V
N(AN)

= lim
N→∞

1

N
log

Z
VN

N

ZV
N

= 0.

Since (P
VN

N ⊗Dp,N)(AN) = (ZV
N)−1�V

N(AN), the inequality (5.15) leads to the inequality (5.13)
and the arguments for (5.16) yield

lim inf
n→∞

1

N
log

(
P

VN

N ⊗Dp,N

)
(AN) ≥ lim inf

N→∞
1

N
log

(
P

V
N ⊗Dp,N

)
(AN ∩ KN,M)

for any M ≥ 0. Letting M → ∞, this implies inequality (5.14), as by the LDP for the extreme
eigenvalues we have

lim
M→∞ lim sup

N→∞
1

N
log

(
P

V
N ⊗Dp,N

)(
Kc

N,M

)= −∞.
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6. Proof of Theorems 3.3 and 3.4

6.1. Hermite block case

The starting point for the proof of Theorem 3.3 is the following block-tridiagonal representation
of the Gaussian ensemble. It is a matrix extension of a famous result of Dumitriu and Edelman
[10]. The proof is deferred to the supplementary file [13].

Lemma 6.1. Let Dk ∼ GUEp and Ck be Hermitian non-negative definite such that C2
k ∼

LUEp(p(n − k)) for k = 1, . . . , n and let all these matrices be independent. Then the p × p

spectral measure of the block-tridiagonal matrix

Gn =

⎛
⎜⎜⎜⎜⎝

D1 C1

C1 D2
. . .

. . .
. . . Cn−1

Cn−1 Dn

⎞
⎟⎟⎟⎟⎠ (6.1)

has the same distribution as the spectral measure of the Hermite ensemble GUEpn.

Proof of Theorem 3.3. By Lemma 6.1, the spectral measure �(n) is also the spectral measure
of the rescaled matrix 1√

np
Gn. If we consider each block entry of this matrix separately, we are

up to a linear change of the speed in the setting of Lemma 3.2. Thus, for any fixed k, the block
D

(n)
k := Dk/

√
np of the matrix in (6.1) satisfies the LDP in Hp with speed pn and rate function

I1. Similarly, if we let C
(n)
k = Ck/

√
np, then the block (C

(n)
k )2 satisfies the LDP with speed pn

and rate function I2 or equivalently, C
(n)
k satisfies the LDP with speed np and good rate

I ′
2(Y ) = I2

(
Y 2)

if Y is nonnegative definite and I ′
2(Y ) = ∞ otherwise. Since the block entries are independent,

we get a joint LDP for any fixed collection (D
(n)
1 ,C

(n)
1 , . . . ,D

(n)
k ) with rate given by the corre-

sponding sum of rate functions I1 and I ′
2.

Now, we follow the strategy developed in [16] for the scalar case. The random matrix measure
�(n) belongs to M1

p,c(R) and may be identified with its sequence of moments. Since the product
topology Tm of the convergence of moments on Mp,1,c(R) is stronger than the trace Tw of the
weak topology, it is enough to prove the LDP with respect to Tw .

For each k > 0, the subset Xk of matrix probability measures with support in [−k, k] is com-
pact for Tm. Since the extremal eigenvalues satisfy the LDP with speed N and a rate function
tending to infinity, we deduce that �(N) is exponentially tight in Tm.

The mapping

m :Mp,1,c(R) → HN0
p , m(�) :=

(
mk(�) :=

∫
xk d�(x)

)
k≥1
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being a continuous injection, the LDP of �(N) in Mp,1,c(R) is then a consequence of the fol-
lowing LDP on the sequence of moments and of the inverse contraction principle (see [8], The-
orem 4.2.4 and the subsequent Remark (a)). �

Proposition 6.1. The sequence (m(�(n))n) satisfies the LDP in HN0
p with speed np and good

rate function Im defined as follows. This function is finite in (m1,m2, . . . ) if and only if there
exists a sequence (B1,A1, . . . ) ∈ HN0

p with Ak > 0, such that

∞∑
k=1

1

2
trB2

k + trG
(
A2

k

)
< ∞

and such that

(mr)i,j = 〈
eiJ

rej

〉
, i, j = 1, . . . , p, r ≥ 1, (6.2)

where J is the infinite block Jacobi matrix with blocks (B1,A1, . . . ) as in (2.1). In that case

Im(m1, . . . ) =
∞∑

k=1

1

2
trB2

k + trG
(
A2

k

)
. (6.3)

Proof. First, as we said in the beginning of this proof, for fixed k, (D(n)
1 ,C

(n)
1 , . . . ,D

(n)
k ) satisfies

the LDP in H2k−1
p with speed np and good rate function

I(k)(D1,C1, . . . ,Dk) =
k∑

j=1

1

2
trD2

j +
k−1∑
j=1

trG
(
C2

k

)
.

If J is the kp × kp Jacobi matrix built from the blocks D1,C1, . . . ,Dk , then the moments
(m1(�

(n)), . . . ,m2k−1(�
(n))) of the spectral measure of J are given by (6.2) and depend con-

tinuously on Dj , Cj . By the contraction principle, the sequence (m1(�
(n)), . . . ,m2k−1(�

(n)))

satisfies the LDP with speed np and good rate function I(k)
m defined as follows. It is infinite in

(m1, . . . ,m2k−1) unless there exist block coefficients (B1,A1, . . . ,Bk) of the kp × kp matrix J

with Ak > 0 such that (6.2) holds. In this case the coefficients are necessarily unique and

I(k)
m (m1, . . . ,m2k−1) = I(k)(B1,A1, . . . ,Bk).

As in the scalar case, we do not consider the even case, since there is no injectivity there.
The Dawson–Gärtner theorem (see [8]) yields the LDP for the whole moment sequence

m(�(n)) in HN0
p with good rate

Im(m1, . . . ) = sup
k≥1

I(k)
m (m1, . . . ,m2k−1).

This supremum is finite if and only if there exists a (unique) sequence (B1,A1, . . . ) of coeffi-
cients satisfying Ak > 0 and (6.2). Note that this implies in particular that (m1, . . . ) is the moment



738 F. Gamboa, J. Nagel and A. Rouault

sequence of a nontrivial measure �. In this case,

Im(m1, . . . ) = sup
k≥1

I(k)(B1,A1, . . . ,Bk) =
∞∑

k=1

(
1

2
trB2

k + trG
(
A2

k

))
.

�

6.2. Laguerre block case

To prove Theorem 3.3, we need the following block-bidiagonal representation, again a matrix
extension of a result of Dumitriu and Edelman [10].

Lemma 6.2. Let m ≥ n and for k = 1, . . . , n let Dk and Ck for k = 1, . . . , n be independent
random non-negative definite matrices in Hp such that

C2
k ∼ LUEp

(
p(n − k)

)
, D2

k ∼ LUEp

(
p(m − k + 1)

)
and define the block matrix

Zn =

⎛
⎜⎜⎜⎜⎝

D1 0

C1 D2
. . .

. . .
. . . 0

Cn−1 Dn

⎞
⎟⎟⎟⎟⎠ .

Then the p × p spectral matrix measure of Ln = ZnZ
∗
n has the same distribution as the spectral

matrix measure of a pn × pn matrix, distributed according to the LUEpn(pm) (m ≥ n).

Proof of Theorem 3.4. As in the proof of Theorem 3.3, we start by looking at the individual
entries of the tridiagonal representation of Lemma 6.2, now multiplied by 1

pγn
. For any k, the

rescaled block 1
pγn

C2
k satisfies by Lemma 3.2 the LDP with speed pγn and rate I2 with γ = τ .

With the speed pn we would like to consider, 1
pγn

C2
k satisfies then the LDP with rate trG(τ−1·)

and, taking the square root, C
(n)
k := 1√

pγn
Ck satisfies the LDP with speed pn and rate function

IC(C) = trG
(
τ−1C2)

for C positive definite and IC(C) = ∞ otherwise. Similarly, if we let D
(n)
k := 1√

pγn
Dk , then

(D
(n)
k )2 satisfies the LDP with speed pγn and rate function I2 of Lemma 3.2 with γ = 1. If we

consider the speed pn and the square root D
(n)
k , this changes the rate to

ID(D) = τ−1 trG
(
D2)

for D positive definite and ID(D) = ∞ otherwise.
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Then we follow the same way as for the Hermite model. The independence of the matrices Ck ,
Dk yields the LDP for any finite vector (D

(n)
1 ,C

(n)
1 ,D

(n)
2 , . . . ,D

(n)
k ,C

(n)
k ) in the sequence space

of Hermitian non-negative definite matrices with speed pn and good rate

ID,C(D1,C1, . . . ,Dk,Ck) =
k∑

j=1

τ−1 trG
(
D2

j

)+ trG
(
τ−1C2

j

)
. (6.4)

Since Dk , Ck determine the moments of the spectral measure of Ln as in Lemma 6.2, we may
conclude as in the Hermite case a LDP for a finite collection of moments of �(n) and then for
the complete sequence of moments m(�(n)) by application of the Dawson–Gärtner theorem.
The resulting good rate function Im is finite in (m1, . . . ) ∈ HN0

p only if (m1, . . . ) is the moment
sequence of a nontrivial measure with support in [0,∞). By Lemma 2.1, this is equivalent to the
existence of a sequence of positive definite matrices D1,C1,D2, . . . such that (m1, . . . ) is the
moment sequence of the spectral measure of J = XX∗ with X as in (2.3). In this case

Im(m1, . . . ) =
∞∑

j=1

τ−1 trG
(
D2

j

)+ trG
(
τ−1C2

j

)
.

Given another sequence D′
k , C′

k generating the same moment sequence (m1, . . . ) as the positive
definite Dk , Ck , we may use Lemma 2.1 to see

trG
(
D2

k

)= trG
(
D′

k

(
D′

k

)∗)
,

trG
(
τ−1C2

k

)= tr
(
τ−1C′

k

(
C′

k

)∗)
.

That is, the value of the rate function is independent of the choice of Jacobi coefficients. The
inverse contraction principle implies then the LDP for the spectral measure �(n). �
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