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Optimal adaptive inference in random design
binary regression
RAJARSHI MUKHERJEE and SUBHABRATA SEN

Department of Statistics, Stanford University, Sequoia Hall, 390 Serra Mall, Stanford, CA 94305-4065,
USA. E-mail: rmukherj@stanford.edu; ssen90@stanford.edu

We construct confidence sets for the regression function in nonparametric binary regression with an un-
known design density – a nuisance parameter in the problem. These confidence sets are adaptive in L2

loss over a continuous class of Sobolev type spaces. Adaptation holds in the smoothness of the regression
function, over the maximal parameter spaces where adaptation is possible, provided the design density is
smooth enough. We identify two key regimes – one where adaptation is possible, and one where some
critical regions must be removed. We address related questions about goodness of fit testing and adaptive
estimation of relevant infinite dimensional parameters.
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In many epidemiological studies, a binary response variable Y is independently observed on
a population of individuals along with multiple covariates X to explain the variability in the re-
sponse. In the context of epidemiological studies, the probability of observing a specific outcome
conditional on the covariates is often referred to as the propensity score. Estimating propensity
score type functions from observed data is often of interest, and these estimates are subsequently
used in multiple inferential procedures such as propensity score matching [50], inverse probabil-
ity weighted inference [49] etc. In the context of semiparametric inference for missing data type
problems, a nice exposition to the importance of understanding questions of similar flavor can be
found in [56].

Historically, regression models with binary outcomes have been approached through both
parametric [40] and nonparametric lenses [2,51]. Although parametric regression has the nat-
ural advantage of being simpler in interpretation and implementation, it often lacks the desired
complexity required to capture varieties of dependence between covariates and outcomes. Non-
parametric binary regression attempts to address this question, but it has its own share of short-
comings – the two major concerns being dependence on a priori knowledge about the true un-
derlying regression function class and ease of implementation. Motivated by these, in this paper
we study inference (estimation, testing, and confidence sets) in binary regression problems un-
der nonparametric models having random covariates with unknown design density, with primary
focus on adaptation over function classes.

To fix ideas, suppose we observe data (xi , yi)
n
i=1, where xi ∈ [0,1]d and yi ∈ {0,1}. Consider

the binary regression model

E(y|x)= P(y = 1|x)= f (x), y ∈ {0,1},x∼ g. (0.1)
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For the rest of the paper, we assume g to be absolutely continuous with respect to the Lebesgue
measure on [0,1]d . Owing to the binary nature of the outcomes, the model is completely
parametrized by the tuple (f, g) and admits a likelihood representation

l(y,x|f,g)= f (x)y
(
1− f (x)

)1−y
g(x). (0.2)

We will be interested in making inferences about the regression function f (treating g as an
unknown nuisance function), assuming f and g belong to Sobolev type spaces B

β

2,∞(M) and

B
γ

2,∞(M ′) respectively – see Section 4.1 for a precise definition.
It is worth noting that, whereas an adaptive inference framework for Gaussian and density set-

tings is well studied ([8,27–29,33,53] for goodness of fit testing, [9,14,15,30,32,35–37] for adap-
tive estimation, and [5,7,10,21,25,38,39,48,54] for honest adaptive confidence sets), the corre-
sponding inferential questions in binary regression, with design density unknown, have received
less attention.

In many instances, results in estimation and hypothesis testing for a non-Gaussian setup might
be derived from a related Gaussian setup by appealing to the theory of asymptotic equivalence
of experiments. However, it is well known that such equivalence only takes effect above certain
threshold of smoothness for the underlying functions of interest. Also, asymptotic equivalence
of regression models with multidimensional covariates and random covariate density is a lesser
studied subject. Therefore the question of adaptive estimation for binary regression with multi-
variate random design cannot be addressed by simply invoking results from asymptotic equiva-
lence. Moreover, the theory of asymptotic equivalence of experiments does not throw any light
on the construction of adaptive confidence balls – one of the main questions of interest in this
paper.

We also note that in contrast to the usual framework for random design Gaussian regression
problems, we consider a setup where the design density is unknown – hence a nuisance parameter
in the problem. Although [11] comments briefly on the case of nonparametric regression with
uniformly random design density, these do not extend to the unknown design density case. Our
setup, while being more realistic, makes our proofs technically more involved. The basic heuristic
for our analysis is that in case the unknown design density is smooth enough, modulo certain
modifications (to be made precise later), the “effect of estimating” the unknown design density
is negligible compared to the errors in making inference for the unknown regression function.

In particular, the main results of this paper are summarized below.

(a) We produce estimators of underlying regression and design density which apart from
jointly adapting over desired regimes of smoothness in an L2 sense has the additional property
of satisfying suitable boundedness (in both point-wise and Besov type norm sense) properties if
the underlying functions are also similarly bounded (see Theorem 1.1).

(b) We provide complete solution (lower and upper bounds) to the problem of asymptotic min-
imax goodness of fit testing with both simple and composite null hypotheses (see Theorem 1.2)
and unknown design density. An analogous result (with sharp asymptotics) for simple null hy-
pothesis in Gaussian regression with multi-dimensional covariates with known design density
and regression function having at least d

4 derivatives was developed by [29].
(c) We provide theory for adaptive confidence sets which complements those obtained in den-

sity [7] and sequence models [11,48] (see Theorem 1.3). A part of the adaptation theory for
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Hölder balls was sketched briefly in [46] using the theory of higher order influence functions,
where honest adaptation was possible in parts of the parameter space. Our results are over Besov
balls, where following ideas of [7], we identify regions of the parameter space where adaptation
is not possible without removing parts of the parameter space. We make this more precise in
Section 1.

(d) All of our procedures are based on second order U-statistics constructed from projection
kernels of suitable wavelet bases. We therefore extend the exponential inequality obtained in [7]
to more general second order U-statistics based on wavelet projection kernels (See Lemma 4.1).
For the case of testing of composite alternatives (1.3), this also adds to the chi-square type em-
pirical wavelet coefficient procedure of [12].

Notation

The results in this paper are mostly asymptotic in nature and thus requires some standard
asymptotic notations. If an and bn are two sequences of real numbers then an � bn (and
an � bn) implies that an/bn →∞ (respectively an/bn → 0) as n →∞. Similarly an � bn

(and an � bn) implies that lim infan/bn = C for some C ∈ (0,∞] (and lim supan/bn = C for
some C ∈ [0,∞)). Alternatively, an = o(bn) will also imply an � bn and an =O(bn) will imply
that lim supan/bn = C for some C ∈ [0,∞)). We comment briefly on the various constants ap-
pearing throughout the text and proofs. Given that our primary results concern convergence rates
of various estimators, we will not emphasize the role of constants throughout and rely on fairly
generic notation for such constants. In particular, for any fixed tuple v of real numbers, C(v) will
denote a constant depending on elements of v only. Throughout the paper, we shall use EP and
PP to denote expectation and probability under the measure P , and I will stand for the indicator
function. For any linear subspace L ⊆ L2[0,1]d , let �(h|L) denote the orthogonal projection
of h onto L under the Lebesgue measure. Finally, for suitable functions h : [0,1]d → R, we
let ‖h‖q := (

∫
[0,1]d |h(x)|q dx)1/q and ‖h‖∞ := supx∈[0,1]d |h(x)| denote the usual Lq and L∞

semi-norm of h, respectively.

Organization

The rest of the paper is organized as follows. In Section 1, we describe the main results along
with the definition of honest adaptive confidence sets. Section 2 discusses our choice of model
and places it in the broader perspective of heteroscedastic nonparametric regression. We collect
the technical details (definition of Besov type spaces along with discussion on compactly sup-
ported wavelet bases) and proofs of the main theorems in Section 3. In Section 4, we discuss
the assumptions made in the paper and scope of future research. Finally, we collect the proofs of
certain technical lemmas in the Appendix.

1. Main results

We outline our main results in this section. We work with certain smoothness classes for both
the regression and design density with suitable additional assumptions on the boundedness. For
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conciseness of notation, we define,

P
(
β,γ,M,M ′,BL,BU

)=
⎧⎨⎩ (f, g) : f ∈ B

β

2,∞(M),g ∈ B
γ

2,∞
(
M ′),0 < f < 1,

0 < BL ≤ g ≤ BU,

∫
g(x) dx= 1

⎫⎬⎭ . (1.1)

Above and throughout the paper, by the pair (f, g) we shall refer to the probability measure P

generated according to (0.2) by the regression function f and marginal density g respectively.
Therefore, by an abuse of notation, we will refer to the elements of P interchangeably as either
the pair (f, g) or the corresponding probability measure P . We will always assume that the radius
and boundedness parameters (M,M ′,BL,BU) are known to us. There are indeed some subtleties
involved in inference without the knowledge of these parameters. These issues can be dealt with
using our arguments adapted to Theorem 4 of [7]. The lower and upper bound requirements on
the design density can also be relaxed to a certain extent at the cost of more involved proofs.
However, for focused discussion, these will not be addressed in this paper. For notational brevity,
we will henceforth denote P(β, γ,M,M ′,BL,BU) simply as P(β, γ ).

1.1. Adaptive estimation of parameters

Our first result establishes the existence of certain rate optimal estimators for the regression and
design density in our setup. We further establish that these estimators satisfy certain additional
boundedness properties almost surely, which is invaluable for subsequent inference in this setup.

Theorem 1.1.

1. Let 0 < γmin < γmax be given. There exists a sequence of estimators ĝ of the design density
g and constant C, both depending on (M ′, γmin, γmax,BU), such that for each γ ∈ [γmin, γmax]
and β > 0,

sup
P∈P(β,γ )

EP

[‖ĝ− g‖2
2

] ≤ Cn
− 2γ

2γ+d ,

lim inf
n→∞ inf

P∈P(β,γ )
PP

[
ĝ ∈ B

γ

2,∞(C)
] = 1,

and there exists constants 0 < B ′
L ≤ B ′

U (depending on BL, BU ) such that B ′
L ≤ ĝ ≤ B ′

U almost
surely. Further, there exists a universal constant c > 0 such that

inf
ĝ

sup
P∈P(β,γ )

EP

[‖ĝ − g‖2
2

]≥ cn
− 2γ

2γ+d .

2. Let 0 < βmin ≤ βmax, γmin < γmax be given. If γmin > βmax, there exists a sequence of
estimators f̂ and constant C, both depending on (M,M ′,BU ,BL,βmin, βmax, γmax), such that
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for every β ∈ [βmin, βmax] and γ ∈ [γmin, γmax]

sup
P∈P(β,γ )

EP

[‖f̂ − f ‖2
2

] ≤ Cn
− 2β

2β+d ,

lim inf
n→∞ inf

P∈P(β,γ )
PP

[
f̂ ∈ B

β

2,∞(C)
] = 1,

and there exist constants CL ≤ CU (depending on BL and BU ) such that CL ≤ f̂ ≤ CU almost
surely. Further, there exists a constant c > 0, independent of n, such that

inf
f̂

sup
P∈P(β,γ )

EP

[‖f̂ − f ‖2
2

]≥ cn
− 2β

2β+d .

The proof of Theorem 1.1 is outlined in Section 4.4.

Remark 1. The result of Theorem 1.1 part 1 is similar to that in [7]. It is worth noting that
results of the kind stating that ĝ ∈ B

γ

2,∞(M∗) with high probability uniformly over P(β, γ ) for
a suitably large constant M∗ is not too hard to show. However, our proof shows that a suitably
bounded estimator ĝ, which adapts over smoothness and satisfies ĝ ∈ B

γ

2,∞(M∗) with probability

larger than 1 − 1
nθ uniformly over P(β, γ ), for any θ > 0 and correspondingly large enough

M∗. Additionally, the results of Theorem 1.1 part 2 are relatively less common in an unknown
design density setting. Indeed, adaptive estimation of regression function with random design
over Besov type smoothness classes has been obtained by model selection type techniques by [4]
for the case of Gaussian errors. Our results in contrast, as remarked in Section 3, hold for any
regression model with bounded outcomes and compactly supported covariates having suitable
marginal design density.

Remark 2. The dependence of our constants on γmax stems from deciding the regularity of the
wavelet basis used. Once we fix a wavelet basis with regularity S > γmax, the dependence of our
constants on γmax can be reduced to dependence on S.

1.2. Construction of confidence sets

To tackle the question of adaptive confidence sets in our setup, we need to first analyze the
goodness of fit problem in this setup. The next theorem characterizes the minimax testing rate
for our problem. The proof is deferred to Section 4.2. To this end, we introduce the parameter
spaces

P0(β, γ ) =
{
(f, g) : f ≡ 1/2, g ∈ B

γ

2,∞
(
M ′),BL < g < BU,

∫
g(x) dx= 1

}
,

P
(
β,γ,ρ2

n

) =
⎧⎪⎪⎨⎪⎪⎩

(f, g) : f ∈ B
β

2,∞(M),

∥∥∥∥f − 1

2

∥∥∥∥2

2
> ρ2

n, g ∈ B
γ

2,∞
(
M ′),

BL < g < BU,

∫
g(x) dx= 1

⎫⎪⎪⎬⎪⎪⎭ .
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Further, for β1 > β2, we define,

P
(
β1, β2, γ, ρ2

n

)=
⎧⎨⎩ (f, g) : f ∈ B

β2
2,∞(M),

∥∥f −B
β1
2,∞(M)

∥∥2
2 > ρ2

n,

g ∈ B
γ

2,∞
(
M ′),BL < g < BU,

∫
g(x) dx= 1

⎫⎬⎭ .

Finally we recall P(β, γ ) defined in (1.1).

Theorem 1.2.

1. Consider the testing problem

H0 : P ∈P0(β, γ ) vs. H1 : P ∈P
(
β,γ,ρ2

n

)
,

for γ > β . We have:

• For any 0 < α < 1, there exists D > 0 sufficiently large (depending on α, M , M ′) and a test

φ such that for ρ2
n =Dn

− 4β
4β+d

lim sup
n→∞

(
sup

P∈P0(β,γ )

PP [φ = 1] + sup
P∈P(β,γ,ρ2

n)

PP [φ = 0]
)
≤ α. (1.2)

• For any test φ which satisfies (1.2) introduced above, the corresponding sequence ρ2
n satis-

fies

lim inf
n→∞ ρ2

n � n
− 4β

4β+d .

2. Consider the testing problem

H0 : P ∈P(β1, γ ) vs. H1 : P ∈ P
(
β1, β2, γ, ρ2

n

)
, (1.3)

for β2 < β1 and γ > 2β2. Then:

• For any 0 < α < 1, there exists D > 0 sufficiently large (depending on α, M , M ′) and a test

φ such that for ρ2
n =Dn

− 4β2
4β2+d

lim sup
n→∞

[
sup

P∈P(β1,γ )

PP [φ = 1] + sup
P∈P(β1,β2,γ,ρ2

n)

PP [φ = 0]
]
≤ α. (1.4)

• For any test φ which satisfies (1.4) introduced above, the corresponding sequence ρ2
n satis-

fies

lim inf
n→∞ ρ2

n � n
− 4β2

4β2+d .

A few remarks are in order about the results above. First, it is interesting to note whether the
complexity of the null hypothesis affects the minimal rate of separation between the null and the
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alternative necessary to carry out the test. Our result answers this question in the negative. As
mentioned earlier, although the results appear to be of similar flavor to those in [7,12], the rig-
orous derivations require careful understanding and modifications to accommodate for the effect
of estimating an unknown density. A possible approach to the testing problem (1.3) can be the
method of [12] without further modification. However, such an approach results in unbiased esti-
mation of ‖�(fg|L)‖2

2 for appropriate subspaces L⊂ L2[0,1]d instead of ‖�(f |L)‖2
2 required

for understanding the minimum separation ‖f − B
β1
2,∞(M)‖2

2. Instead, our proof shows that un-

der the alternative, the quantity ‖�(f
g

ĝ
|L)‖2

2 is also large enough for suitable subspaces L. This
quantity is easier to estimate modulo the availability of a nice estimator ĝ – which is in turn
guaranteed by Theorem 1.1. However, this also necessitates modifying the testing procedure of
[12] suitably to incorporate the effect of estimating g. We make this more clear in the proof of
Theorem 2.

Next, we outline the construction of honest adaptive confidence sets in our setup. We briefly
introduce the relevant notions for convenience. A confidence set Cn = C(x1, y1, . . . ,xn, yn) is a
random measurable subset of L2. We define the L2 radius of a set C as

|C| = inf
{
τ :C ⊂ {ψ : ‖ψ − g‖2 ≤ τ

}
for some g

}
.

We seek to determine the maximal parameter spaces Pn so that adaptive confidence sets exist.
We define a confidence set Cn = Cn(x1, y1, . . . ,xn, yn) to be honest over a sequence of models
Pn if

inf
P∈Pn

EP [f ∈Cn] ≥ 1− α − rn, (1.5)

where rn → 0 as n→∞ and α < 1 is a fixed level of confidence. Further, we call a confidence
set Cn adaptive over a sequence of models Pn if there exists a constant C depending on the
known parameters of the model space Pn such that

sup
P∈Pn∩P(β,γ )

PP

[|Cn|2 ≥ Cn
− 2β

2β+d
]≤ α′, (1.6)

where 0 < α′ < 1 is a fixed constant.
Now we define the parameter spaces over which we will produce honest adaptive confi-

dence sets in L2. For given interval of smoothness of regression function [βmin, βmax] such
that βmax > 2βmin, we define a grid following ideas from [7]. With N = �log2(

βmax
βmin

)� define

βj = 2j−1βmin, j = 1, . . . ,N . With this notation, we define

Fn

(
M∗) = B

βN

2,∞(M)∪
(

N−1⋃
j=1

Bβj

2,∞
(
M,M∗ρn(βj )

))
,

Pn

(
M∗,M ′, γ

) =
⎧⎨⎩ (f, g) : f ∈Fn

(
M∗),0 < f < 1, g ∈ B

γ

2,∞
(
M ′),

BL ≤ g ≤ BU,

∫
g(x) dx= 1

⎫⎬⎭ ,
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where Bβj

2,∞(M,M∗ρn(βj ))= {h ∈ B
βj

2,∞(M) : ‖h−B
βj+1
2,∞ (M)‖2 ≥M∗ρn(βj )}, ρn(β) =

n
− 2β/d

4β/d+1 , and the choice of M∗ is solely guided by M , M ′, βmin, βmax, BL, BU and can be
read off from the proof of the next theorem.

Theorem 1.3. Let 0 < βmin ≤ βmax, 2βmax < γmin ≤ γmax be given. Then there exists a confi-
dence set Cn depending only on the tuple (M,M ′, βmin, βmax, γmin, γmax,BL,BU ,α,α′) which
is honest and adaptive in the sense of (1.5) and (1.6) over

⋃γmax
γ=γmin

Pn(M
∗,M ′, γ ), whenever

M∗ is large enough.

Theorem 1.3 is proved in Section 4.3. It is of interest to determine whether the models
⋃

γ Pn,
are in some sense, the maximal spaces over which adaptation is possible. We note that the testing
lower bounds established in Theorem 1.2 part 2 above imply that

⋃
γ Pn is indeed the largest

parameter space, up to multiplicative constants of ρn(βj ), j = 1, . . . ,N , over which adaptation
is possible. Moreover, results of the flavor of [7], Theorem 3, can be recovered from the proof of
Theorem 1.3.

2. Choice of binary regression model

In this section, we comment on our choice of binary regression model.
Regarding the generality of our model choice, there are two main points that need addressing.

The first concerns the framing of model (0.1) without going through a link function – as is the
general custom for generalized linear models. Indeed for a link function formulation as

E(y|x)= θ
(
h(x)

)
, y ∈ {0,1},x∼ g, (2.1)

for θ a distribution function of a symmetric random variable (probit, logistic etc.), our results still
go through provided θ satisfies some regularity conditions. In general for a smooth function θ ,
the function θ(h(x)) shares the smoothness index of h and identifying f := θ ◦ h lands us back
in model (0.1). To keep things simple, we work with model (0.1) throughout.

The second point to note is that we have not considered the fixed design case in our set up.
The fixed design problem can be addressed similarly with more straightforward generalization
of ideas from [7,48], and [12] due to lack of extra nuisance parameter g. We omit this for the
sake of brevity.

The other point worth discussing concerns the generalizability of the binary regression model
to more general nonparametric regression models. In this context note that, additive Gaussian
noise is the simplest example of a situation where the regression function can be parametrized
separately from other components of the model such as conditional variance given the covari-
ates. This facilitates the development of a satisfying adaptation theory, even over large classes of
unknown design densities. In non-Gaussian settings, given a likelihood specification for the con-
ditional distribution of outcomes given covariates, one can attempt to produce a similar theory
for adaptive inference.

As a step towards a general theory of adaptive inference in nonparametric regression, we con-
sider the case of binary outcomes. Binary regression automatically belongs to a heteroscedastic
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variance regime – a more challenging scenario in general [1,3,16–19]. However, it is different
from standard heteroscedastic additive Gaussian noise regression problems in that the mean re-
gression function is intimately tied to the conditional variance and shares the same smoothness.
In this case, the simplicity of the conditional distribution of the outcome given regressors allows
us to answer the question of adaptive inference to some degree of generality.

Finally, we remark that most of our results actually hold not only for the case of binary re-
gression, but also for any regression model with bounded outcomes and compactly supported co-
variates having suitable marginal design density. It is for the proof of matching lower bounds to
show that our results are asymptotically rate optimal, that we need the binary regression model.

3. Discussion

Although we have tried to describe adaptive confidence sets for binary regression to some degree
of generality, it is instructive to discuss some of the assumptions made in the process. Through-
out our paper, we assume a lower bound of smoothness on the marginal density g of x. Although
our assumption is not sharp, we believe that such an assumption on the marginal density of x is
necessary to a certain extent. This ensures that we learn about g at a rate fast enough so that it
does not reflect too adversely on the inference for f . One can also wonder if the requirement
γmin > 2βmax in Theorem 1.3 can be relaxed. Using results from [46], it is possible to further
reduce our lower bound on the smoothness of g in the context of adaptive confidence sets over
smoothness of f satisfying βmin < βmax < 2βmin. It remains an interesting and challenging ques-
tion to understand the sharp lower bound on the smoothness for g under which one no longer
derive results similar to those obtained here in the other regime that is, 2βmin < βmax. In a fu-
ture project, we plan to investigate this issue with special focus on using higher order influence
functions [45,46]. Indeed, even in the case of non-adaptive inference, [45,46] require certain
smoothness lower bounds on the unknown design density. A related point of view for construct-
ing honest adaptive confidence sets is often in the context of “self similar” functions – a case
where construction of fully adaptive honest confidence sets are possible without further remov-
ing parts of the self similar function spaces [6,21,31,41,43,44,54]. Although we do not pursue
this in our paper, it is possible to use ideas from our paper to answer similar questions.

4. Technical details

4.1. Wavelets and Besov spaces

In this section, we collect some facts about wavelets and Besov spaces. We also introduce some
notation that we use later. For d > 1, consider expansions of functions h ∈ L2([0,1]d) on an
orthonormal basis of compactly supported bounded wavelets of the form

h(x)=
∑
k∈Zd

〈
h,ψ0

0,k

〉
ψ0

0,k(x)+
∞∑
l=0

∑
k∈Zd

∑
v∈{0,1}d−{0}d

〈
h,ψv

l,k

〉
ψv

l,k(x),
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where the base functions ψv
l,k are orthogonal for different indices (l, k, v) and are scaled and

translated versions of the 2d S-regular base functions ψv
0,0 with S > β , that is, ψv

l,k(x) =
2ld/2ψv

0,0(2
lx− k)=∏d

j=1 2
l
2 ψ

vj

0,0(2
lxj − kj ) for k = (K1, . . . , kd) ∈ Z

d and v = (v1, . . . , vd) ∈
{0,1}d with ψ0

0,0 = φ and ψ1
0,0 = ψ being the scaling function and mother wavelet of regu-

larity S, respectively as defined in one dimensional case. As our choices of wavelets, we will
throughout use compactly supported scaling and wavelet functions of Cohen–Daubechies–Vial
type with S first null moments[13]. In view of the compact support of the wavelets, for each res-
olution level l and index v, only O(2ld ) base elements ψv

l,k are non-zero on [0,1]; let us denote
the corresponding set of indices k by Zl obtaining the representation,

h(x) =
∑

k∈ZJ0

〈
h,ψ0

J0,k

〉
ψ0

J0,k
(x)+

∞∑
l=J0

∑
k∈Zl

∑
v∈{0,1}d−{0}d

〈
h,ψv

l,k

〉
ψv

l,k(x), (4.1)

where J0 = J0(S) ≥ 1 is such that 2J0 ≥ S [13,23]. Thereafter, letting for any h ∈ L2[0,1]d ,
‖〈h,ψ l′,·〉‖2 be the vector L2 norm of the vector (〈h,ψv

l′,k′ 〉 : k′ ∈Zl′ , v ∈ {0,1}d), define

B
β

2,∞(M) :=

⎧⎪⎪⎨⎪⎪⎩
h ∈L2

([0,1]d) : ‖h‖β,2 := 2J0β
∥∥〈h,ψ0

J0,·
〉∥∥

2

+ sup
l≥J0

2lβ

(∑
k∈Zd

∑
v∈{0,1}d−{0}d

〈
h,ψv

l,k

〉2) 1
2 ≤M

⎫⎪⎪⎬⎪⎪⎭ . (4.2)

We will be working with projections onto subspaces defined by truncating expansions as above
at certain resolution levels. For example letting

Vj := span
{
ψv

l,k, J0 ≤ l ≤ j, k ∈Zl , v ∈ {0,1}d}, j ≥ J0 (4.3)

one immediately has the following orthogonal projection kernel onto Vj as

KVj
(x1,x2)=

∑
k∈ZJ0

ψ0
J0,k

(x1)ψ
0
J0,k

(x2)+
j∑

l=J0

∑
k∈Zl

∑
v∈{0,1}d−{0}

ψv
l,k(x1)ψ

v
l,k(x2). (4.4)

Owing to the MRA property of the wavelet basis, it is easy to see that KVj
has the equivalent

representation as

KVj
(x1,x2)=

∑
k∈Zj

∑
v∈{0,1}d

ψv
jk(x1)ψ

v
jk(x2). (4.5)

We will also consider,

Wj := span
{
ψv

j,k, k ∈Zj , v ∈ {0,1}d − {0}d}, j ≥ J0 (4.6)

and the corresponding orthogonal projection kernel onto Wj as

KWj
(x1,x2)=

∑
k∈Zj

∑
v∈{0,1}d−{0}d

ψv
j,k(x1)ψ

v
j,k(x2). (4.7)
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4.2. Proof of Theorem 1.2

We will describe the proof of Theorem 1.2 in this section. To this end, we will crucially utilize
Lemma 4.1. The proof will be deferred to the Appendix B. The U-statistics appearing in this
paper are mostly based on projection kernels sandwiched between arbitrary bounded functions.
This necessitates generalizing the U-statistics bounds obtained in [7]. In particular, we are inter-
ested in tail bounds of U-statistics based on kernel R(O1,O2)= L(O1)KVj

(X1,X2)L(O2) and
R(O1,O2)= L(O1)KWj

(X1,X2)L(O2) where O= (Y,X) and Y ∈R,X ∈ [0,1]d . Assume that
|L(O)| ≤ B (which corresponds to our situation).

Lemma 4.1. There exists constant C := C(B,BU ,S) > 0 such that

P

(∣∣∣∣ 1

n(n− 1)

∑
i1 �=i2

R(Oi1,Oi2)−E
(
R(O1,O2)

)∣∣∣∣≥ t

)

≤ e−Cnt2 + e
−Ct2

a2
1 + e

−Ct
a2 + e

−C
√

t√
a3 ,

where a1 = 1
n−1 2

jd
2 , a2 = 1

n−1 (

√
2jd

n
+ 1), a3 = 1

n−1 (

√
2jd

n
+ 2jd

n
), R(O1,O2) =

L(O1)KVj
(X1,X2)L(O2) or R(O1,O2) = L(O1)KWj

(X1,X2)L(O2) with KVj
and KWj

con-
structed using compactly supported wavelet bases of regularity S, O = (Y,X), |L(O)| ≤ B

almost surely O, and X ∈ [0,1]d has density g such that g(x)≤ BU for all x ∈ [0,1]d .

4.2.1. Proof of part 1

We will first introduce a test with the desired properties. We use the statistic

T = 1

n(n− 1)

∑
1≤i �=j≤n

(yi − 1/2)KVj0
(xi ,xj )(yj − 1/2).

Here, we choose j0 = � 2
4β+d

log2 n�. We reject this test when |T |> C 2j0d/2

n
, for some constant

C to be chosen appropriately. We first control the Type I error for this test. We have, under

P ∈ P0(β, γ ), EP [T ] = 0. Applying Lemma 4.1, we obtain PP [|T |> C 2j0d/2

n
] ≤ e−C . Thus, the

Type I error may be controlled at the desired level α by choosing the cut-off C sufficiently large.
To control the Type II error, we fix P ∈P(β, γ,ρ2

n). In this case, we have,

EP [T ] =
∥∥�Vj0

(
(f − 1/2)g

)∥∥2
2 =

∥∥(f − 1/2)g
∥∥2

2 −
∥∥�V⊥

j0

(
(f − 1/2)g

)∥∥2
2

≥ B2
Lρ2

n −
2C(M,M ′)√

1− 2−2β
2−2j0β,

where the last line follows since γ > β , using arguments similar to the proof of Lemma 4.5.
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Thus we have,

PP

[
|T |> C

2j0d/2

n

]
= 1− PP

[
|T | ≤C

2j0d/2

n

]
,

PP

[
|T | ≤ C

2j0d/2

n

]
≤ PP

[∣∣T −EP [T ]
∣∣≥EP [T ] −C

2j0d/2

n

]
≤ PP

[∣∣T −EP [T ]
∣∣≥ B2

Lρ2
n −C′n−

4β
4β+d

]
,

where C′ depends on BL, M , M ′. The proof is completed by an application of Lemma 4.1, upon

setting ρ2
n =Dn

− 4β
4β+d for some constant D sufficiently large.

Next, we establish a matching (up to constants) lower bound on the testing rate for this

problem. Assume that ρ2
n � n

− 4β
4β+d . The proof of the lower bound is then based on Theo-

rem 2.1 of [47]. In particular, let H : [0,1]d → R be a C∞ function supported on [0, 1
2 ]d

such that
∫

H(x) dx = 0 and
∫

H 2(x) dx = 1 and let k = �c0n
2d

4β+d � for some c0 > 0. Now

suppose that �1, . . . ,�k be the translates of the cube k− 1
d [0, 1

2 ]d that are disjoint and con-
tained in [0,1]d . Letting x1, . . . ,xk denote the bottom left corners of these cubes, we set for
λ= (λ1, . . . , λk) ∈ {−1,+1}k ,

fλ = 1

2
+
(

1

k

) β
d

k∑
j=1

λjH
(
(x− xj )k

1
d
)
.

The construction ensures that fλ ∈ B
β

2,∞(M) (H can be chosen to guarantee desired M) for

every λ= (λ1, . . . , λk) ∈ {−1,+1}k and ‖fλ− 1
2‖2

2 = ( 1
k
)

2β
d . Therefore, by the choice of k, each

fλ corresponds to a measure in the alternative hypothesis. Choose π to be the uniform prior
on {−1,+1}k . We use the notation of Theorem 2.1 of [47], let us partition the sample space
χ = {0,1} × [0,1]d into χj = {0,1} ×�j, j = 1, . . . , k and the remaining set. Letting Pλ and
Qλ be the probability measure on {0,1} × [0,1]d corresponding to likelihood (0.2) for f = fλ

and f ≡ 1
2 respectively, its obvious that Pλ(χj ) = Qλ(χj ) = pj (say), since

∫
H(x) dx = 0.

Also, pj ∈ 1
k
[B,B] for fixed constants B , B . Moreover, δ =maxj supλ

∫
χj

(q−p)2

pλ

dμ
pj

since p =∫
pλ dπ(λ) = ∫

f
y
λ (1 − fλ)

1−y dπ(λ) = 1
2 = q . Finally, pλ − q = pλ − p = (fλ − 1

2 )y( 1
2 −

fλ)
1−y implies that a = b = maxj supλ

∫
�j

(fλ− 1
2 )2

pj
∈ k−

2β
d [B,B]. Therefore, by Theorem 2.1

of [47] if ρ(P1,P2) denotes the Hellinger affinity between two probability measures P1, P2
defined on the same probability space

ρ

(∫
Pλd

(
π(λ)

)
,

∫
Qλd

(
π(λ)

))≥ 1−C
n2

k
k−

4β
d ,

which can be made arbitrarily close to one for large enough c0. This proves the theorem since if
the Hellinger affinity is bounded away from 1, then there does any consistent sequence of tests
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distinguishing between the null hypothesis and the easier alternative corresponding to the fλ’s
constructed above [57].

4.2.2. Proof of part 2

We will construct a test with the desired properties below. The proof of the testing lower bound
follows from the argument outlined for the previous part of the Theorem. Our proof is similar in
spirit to that of [12], though the details are considerably different.

Similar to the argument for the previous part, we set j0 = � 2
4β2+d

log2 n�. We assume that we

have data {xi , yi}2n
i=1. We split it into two equal parts and use the second part to construct the

estimator ĝ of the design density g introduced in Theorem 1.1. Throughout the proof, Ei,P [·]
will denote the expectation with respect to the ith half of the sample, with the other half held
fixed, under the distribution P . For J0 ≤ l ≤ j0, we construct the test statistics

Tn(l)= 1

n(n− 1)

∑
1≤i �=j≤n

yi

ĝ(xi )
KWl

(xi ,xj )
yj

ĝ(xj )
.

By Markov inequality, there exits a constant C∗ such that

PP

[‖ĝ− g‖2
2 > C∗2

n
− 2γ

2γ+d
]
<

α

4
. (4.8)

We will condition on this event throughout this proof. The construction of the test depends on
the following two lemmas.

Lemma 4.2. For 0 < α < 1, there exists ζ sufficiently large such that

PP

⎡⎢⎢⎣
∀J0 ≤ l ≤ j0,∣∣∣∣Tn(l)−

∥∥∥∥�Wl

(
f

g

ĝ

)∥∥∥∥2

2

∣∣∣∣≤ ζ

√
2(l+j0)d/2

n2
+ 2ld/4

‖�Wl
(f

g

ĝ
)‖2

2

n

⎤⎥⎥⎦≥ 1− 3α/4.

Lemma 4.3.

• Under H0, supJ0≤l≤j0
(‖�Wl

(f
g

ĝ
)‖2 − ( M

2lβ1
+ C∗

B ′L
n
− γ

2γ+d )) ≤ 0 with probability at least

(1− α/4).

• Let {τl : J0 ≤ l ≤ j0} be a sequence of numbers satisfying
∑j0

l=J0
τl ≤ 3

4

√
Dn

− 2β2
4β2+d . Then

under (f, g) ∈ H1, with probability at least 1 − α/4, there exists J0 ≤ l ≤ j0 such that
‖�Wl

(f
g

ĝ
)‖2 ≥ M

2lβ1
+ τl .

Before proving these two lemmas, we first complete the proof of the theorem assuming the
validity of these two lemmas.

We consider the test � which rejects if at least one of the Tn(l) > C̃l , where

C̃l =
(

M

2lβ1
+ C∗

B ′
L

n
− γ

2γ+d + ζ
2(l+j0)d/8

√
n

)2

(4.9)



712 R. Mukherjee and S. Sen

for ζ suitably large, to be chosen appropriately. We will use the following deviation bounds to
control the Type I and II errors of this testing procedure.

We first control the Type I error of this procedure. Under H0, with probability at least 1− α,
for all J0 ≤ l ≤ j0,

Tn(l) ≤
∥∥∥∥�Wl

(
f

g

ĝ

)∥∥∥∥2

2
+ ζ

2(l+j0)d/4

n
+ ζ2ld/8

‖�Wl
(f

g

ĝ
)‖2√

n

≤
(

M

2lβ1
+ C∗

B ′
L

n
− γ

2γ+d

)2

+ ζ 2 2(l+j0)d/4

n
+ 2ζ

2(l+j0)d/8

√
n

(
M

2lβ1
+ C∗

B ′
L

n
− γ

2γ+d

)

≤
(

M

2lβ1
+ C∗

B ′
L

n
− γ

2γ+d + ζ
2(l+j0)d/8

√
n

)2

,

where we assume that ζ > 1 without loss of generality. This controls the Type I error.
To control the Type II error, we fix (f, g) ∈ P(β1, β2, γ, ρ2

n). Using Lemma 4.3, there exits
J0 ≤ l ≤ j0 such that ∥∥∥∥�Wl

(
f

g

ĝ

)∥∥∥∥
2
≥ M

2lβ1
+ τl,

where we choose τl = C1(n
− γ

2γ+d + 2(l+j0)d/8√
n

). Thus with probability at least (1− α), we have,

Tn(l) ≥
∥∥∥∥�Wl

(
f

g

ĝ

)∥∥∥∥2

2
− ζ

√
2(l+j0)d/2

n2
+ 2ld/4

‖�Wl
(f

g

ĝ
)‖2

2

n

≥
∥∥∥∥�Wl

(
f

g

ĝ

)∥∥∥∥
2

(∥∥∥∥�Wl

(
f

g

ĝ

)∥∥∥∥
2
− ζ

2ld/8

√
n

)
− ζ

2(l+j0)d/4

n

≥
(

M

2lβ1
+ τl

)(
M

2lβ1
+ τl − ζ

2ld/8

√
n

)
− ζ

2(l+j0)d/4

n

≥
(

M

2lβ1
+ τl

)(
M

2lβ1
+ τl/2

)
− ζ

2(l+j0)d/4

n
,

where we choose C1 > 2ζ . Now, choosing C1 even larger, specifically C2
1 > 4ζ , it follows that

ζ 2(l+j0)d/4

n
≤ τ 2

l /4. Thus for some J0 ≤ l ≤ j0, with probability at least 1− α,

Tn(l) ≥
(

M

2lβ1
+ τl

2

)2

≥
(

M

2lβ1
+ C∗

B ′
L

n
− γ

2γ+d + ζ
2(l+j0)d/8

√
n

)2

,

provided we choose C1 > 2C∗/B ′
L. This controls the Type II error of this test.

The proof of the theorem will now be completed with the proofs of Lemma 4.2 and Lemma 4.3
in the next two subsections.
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4.2.3. Proof of Lemma 4.2

The proof of this lemma can indeed be completed by invoking Lemma 4.1, which yields a much
stronger control of the tail bound than demanded by Lemma 4.2. However, for the sake of sim-
plicity we provide simpler proof by simple union bound and Chebyshev’s inequality. The proof
follows by an argument similar to [12], Lemma 4.2. We have, for J0 ≤ l ≤ j0,

E1,P

[
Tn(l)

]= ∥∥∥∥�Wl

(
f

g

ĝ

)∥∥∥∥2

2
var1,P

[
Tn(l)

]≤ C(S,BL,BU)

(‖�Wl
(f

g

ĝ
)‖2

2

n
+ 2ld

n2

)
.

The validity of the variance bound of the last display above, follows from Hoeffding’s decom-
position, boundedness of f , g, ĝ, and standard properties of compactly supported wavelet bases.
Therefore, we have, using union bound and Chebyshev’s inequality,

PP

[
∃l, J0 ≤ l ≤ j0,

∣∣∣∣Tn(l)−
∥∥∥∥�Wl

(
f

g

ĝ

)∥∥∥∥2

2

∣∣∣∣> ζ

√
2(l+j0)d/2

n2
+ 2ld/4

‖�Wl
(f

g

ĝ
)‖2

2

n

]

≤
j0∑

l=J0

EP

[
P1,P

[∣∣∣∣Tn(l)−
∥∥∥∥�Wl

(
f

g

ĝ

)∥∥∥∥2

2

∣∣∣∣> ζ

√
2(l+j0)d/2

n2
+ 2ld/4

‖�Wl
(f

g

ĝ
)‖2

2

n

]]

≤
j0∑

l=J0

EP

[
var1,P [Tn(l)]

ζ 2[ 2(l+j0)d/2

n2 + 2ld/4
‖�Wl

(f
g

ĝ
)‖2

2

n
]

]

≤ C(S,BL,BU)

ζ 2

j0∑
l=J0

[
2−(j0−l)d/2 + 2−ld/4].

The proof follows upon noting that
∑j0

l=J0
2−(j0−l)d/2 ≤ 2d/2

2d/2−1
and

∑j0
l=J0

2−ld/4 ≤ 2−J0d/4

1−2−d/4 .

4.2.4. Proof of Lemma 4.3

Let us consider f ∈ B
β1
2,∞(M). Setting �̂= g−ĝ

ĝ
, we have, for J0 ≤ l ≤ j0,∥∥∥∥�Wl

(
f

g

ĝ

)∥∥∥∥
2
≤ ∥∥�Wl

(f )
∥∥

2 +
∥∥�Wl

(f �̂)
∥∥

2.

For f ∈ B
β1
2,∞(M), it follows from definition that ‖�Wl

(f )‖2 ≤ M

2lβ1
. Recalling the definition of

C∗ from (4.8), the property of ĝ from Theorem 1.1, and using the contraction property of the
norm under projections, we have with probability at least (1− α/4),

∥∥�Wl
(f �̂)

∥∥2
2 ≤ ‖f �̂‖2

2 ≤
(

C∗

B ′
L

)2

n
− 2γ

2γ+d .

Combining, we get the desired result for functions f ∈ B
β1
2,∞(M).
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Next, we consider functions f ∈ B
β2
2,∞(M) such that ‖f −B

β1
2,∞(M)‖2 > ρn. We first note that

for any h ∈ B
β1
2,∞(M),

∥∥�Vj0
(f )− h

∥∥
2 ≥ ρn −

∥∥f −�Vj0
(f )

∥∥
2 ≥

5

6
ρn

if D is chosen large enough. This implies that with probability at least (1− α/4), we have,∥∥∥∥�Vj0

(
f

g

ĝ

)
− h

∥∥∥∥
2
≥ 5

6
ρn −

∥∥�Vj0
(f �̂)

∥∥
2 ≥

3

4
ρn

for n sufficiently large, if γ > 2β2. Thus, if {τl : J0 ≤ l ≤ j0} is a sequence of numbers such that
3
4ρn ≥∑j0

l=J0
τl , following the argument of [12], Lemma 4.1, it is easy to see that there exists

J0 ≤ l ≤ j0 such that ‖�Wl
(f

g

ĝ
)‖2 ≥ M

2lβ1
+ τl . We choose

τl = C1

(
n
− γ

2γ+d + 2(l+j0)d/8

√
n

)
,

where C1 will be chosen suitably. It is easy to see that for any chosen C1,
∑

l τl ≤ 3
4ρn can be

enforced by choosing D sufficiently large.

4.3. Proof of Theorem 1.3

This proof idea is motivated by [7]. For β ∈ [βmin, βmax] and 2βmax < γ < γmax consider
P = (f, g) ∈ Pn(M

∗,M ′, γ ) ∩ P(β, γ ). Recall the finite grid {β1, . . . , βN } used for the con-

struction of the parameter spaces Pn(M
∗,M ′, γ ). We define Fn(M

∗, j)= Bβj

2,∞(M,M∗ρn(βj )),

j = 1, . . . ,N − 1, Fn(M
∗,N)= B

βN

2,∞(M). In addition, we set, for j ∈ {1, . . . ,N},

Pn

(
j,M∗,M ′, γ

)=
⎧⎨⎩ (h, g) : h ∈Fn

(
M∗, j

)
,0 < h < 1, g ∈ B

γ

2,∞
(
M ′),

BL < g < BU,

∫
g(x) dx= 1

⎫⎬⎭ .

Recall further the test � introduced in the proof of Theorem 1.2 part 2. Note that cut-off for
the test, as in (4.9), depends on the smoothness of g. However, a close inspection of the proof
reveals that the only requirement on the smoothness of g is that of being at least as large as
twice the maximum smoothness of f . Since, our estimator ĝ is an adaptive estimator of g, and
γmin > 2βmax, we can use γmin in the cut-off (4.9) for the test � , maintaining the validity of
the results. The test � with β = βj will be referred to as �(j). We first test the hypothesis
H0 : h ∈ Fn(M

∗,2) vs. H1 : h ∈ Fn(M
∗,1) at level α/4N . If we reject H0, we set β̂ = β1 and

stop. Otherwise we continue. At the j th step, 1 < j < N − 1, we test H0 : h ∈ Fn(M
∗, j + 1)

vs. H1 : h ∈ Fn(M
∗, j) using the appropriate test �(j) at level α/(4N). If we reject H0 at step

j , we set β̂ = βj and stop. Otherwise we continue – if none of the hypotheses are rejected,
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we set β̂ = βN . This procedure determines the “shell” in which f belongs. Once this has been
accomplished, we construct a confidence set using ideas introduced in [48].

Without loss of generality, we assume we have data {xi , yi : 1 ≤ i ≤ 3n}. We split the data
into three equal parts – the estimator f̂ outlined in Theorem 1.1 and β̂ described above are
constructed from the first, while the adaptive estimator of the design density ĝ introduced in
Theorem 1.1 is constructed from the second part. We condition on the events {f̂ ∈ B

β

2,∞(C′)}
and {ĝ ∈ B

γ

2,∞(C′)} which happen with probability at least 1− rn (for C′ large enough depend-
ing on M , M ′, BU , BL, γmax) uniformly over Pn(M

∗,M ′, γ ) ∩ P(β, γ ), for some vanishing
sequence rn. Finally, we set j1 = � 2

4β̂+d
log2(n)�. Using the data {(xi , yi) : 1≤ i ≤ n}, we con-

struct the following U-statistic.

Ûn = 1

n(n− 1)

∑
2n+1≤i1 �=i2≤3n

(yi1 − f̂ (xi1))

ĝ(xi1)
KVj1

(xi1,xi2)
(yi2 − f̂ (xi2))

ĝ(xi2)
.

For any h ∈ L2, we define τ 2
n (h) = C1

n
‖h − f̂n‖2

2 + C22j1

n(n−1)
, for constants C1, C2 to be chosen

later. Finally, we define the set

Cn(β)=
{

h : ‖h− f̂ ‖2
2 ≤ Ûn +C(M,BL,BU)

(
n
− 4β

4β+d + n
− β

2β+d n
− γmin

2γmin+d
)+ z(α)τn(h)

}
,

with z(α)≥ 1/α. We will show that the set Cn(β̂) is a confidence set with the desired properties.
Throughout the rest of the proof EP,S[·] for P ∈ Pn(M

∗,M ′, γ ) and S ⊂ {1,2,3} will denote
expectation under the distribution P conditional on the subset of the data corresponding to the
subset S.

Let i0 = i0(f ) ∈ {1, . . . ,N} denote the unique index such that f ∈Fn(M
∗, i0). We prove that

uniformly over P ∈Pn(M
∗,M ′, γ )∩P(β, γ ), PP (β̂ �= βi0)≤ α/2. Indeed, β̂ < βi0 implies that

one of the test �(j), j = 1, . . . , i0 − 1 has rejected the true null hypothesis. Thus,

sup
P∈Pn(i0,M

∗,M ′,γ )

PP [β̂ < βi0] ≤
∑
i<i0

sup
P∈Pn(i0,M

∗,M ′,γ )

EP

[
�(i)

]
<

α

4
.

Similarly, β̂ > βi0 essentially implies that one of the tests �(i), i > i0 fails to reject the null
hypothesis. Therefore

sup
P∈Pn(i0,M

∗,M ′,γ )

PP [β̂ > βi0] ≤
∑
i>i0

sup
P∈Pn(i0,M

∗,M ′,γ )

EP

[
1−�(i)

]≤ α

4
.

Combining, we have, supP∈Pn(i0,M
∗,M ′,γ ) PP [β̂ �= βi0] ≤ α

2 . Now, we have,

PP

[
f ∈ Cn(β̂)

]≥ PP

[
f ∈Cn(βi0)

]− α

2
.

Thus, honesty of the confidence set follows provided we establish that PP [f ∈ Ĉn(βi0)] ≥ 1−
α/2 uniformly on Pn(i0,M

∗,M ′, γ ). To this end, we note that setting �̂ = ĝ−g
g

, we have that
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for a deterministic constant C(M,BL,BU),

EP,{2,3}[Ûn] =
∥∥∥∥�Vj1

(f − f̂n)
g

ĝ

∥∥∥∥2

2

= ∥∥�Vj1
(f̂n − f )

∥∥2
2 +

∥∥�Vj1

(
(f̂n − f )�̂

)∥∥2
2

+ 2
〈
�Vj1

(f̂n − f ),�Vj1

(
(f̂n − f )�̂

)〉
= ‖f̂n − f ‖2

2 −
∥∥�V⊥

j1
(f̂n − f )

∥∥2
2 +

∥∥�Vj1

(
(f̂n − f )�̂

)∥∥2
2

+ 2
〈
�Vj1

(f̂n − f ),�Vj1

(
(f̂n − f )�̂

)〉
≥ ‖f̂n − f ‖2

2 −C
(
M,M ′, βmax

)
n
− 4βi0

4βi0
+d

− 2
∥∥�Vj1

(f̂n − f )
∥∥

2

∥∥�Vj1

(
(f̂n − f )�̂

)∥∥
2

≥ ‖f̂n − f ‖2
2 −C

(
M,M ′, βmax,BL,BU

)(
n
− 4βi0

4βi0
+d + n

− βi0
2βi0

+d
n
− γ

2γ+d
)
.

Further, we have, using Hoeffding decomposition conditional on samples {2,3},
Ûn −EP,{2,3}[Ûn] = L+R,

L= 2

n

3n∑
i=2n+1

∑
k∈Zj1 ,

v∈{0,1}d

[
(yi − f̂n(xi ))

ĝ(xi )
ψv

j1,k
(xi )−

〈
(f̂n − f )

g

ĝ
,ψv

j1,k

〉]〈
(f̂n − f )

g

ĝ
,ψv

j1,k

〉
,

R = 1

n(n− 1)

∑
2n+1≤i1 �=i2≤3n

∑
k∈Zj1 ,

v∈{0,1}d

[
(yi1 − f̂n(xi1))

ĝ(xi1)
ψv

j1,k
(xi1)−

〈
(f̂n − f )

g

ĝ
,ψv

j1,k

〉]

×
[
(yi2 − f̂n(xi2))

ĝ(xi2)
ψv

j1,k
(xi2)−

〈
(f̂n − f )

g

ĝ
,ψv

j1,k

〉]
.

Using the orthogonality of the linear and non-linear term in Hoeffding’s decomposition, we can
bound the variance of Ûn by the sum of the variances of L and R. The variance of the linear term
may be bounded by the second moment and using the boundedness of f , f̂n, ĝn, we have that

varP,{2,3}[L] ≤ C(S,BL,BU)

n

∥∥∥∥�Vj1
(f − f̂n)

g

ĝ

∥∥∥∥2

2
.

By a proof similar to that of controlling �1 in Lemma B.2, we have that for a deterministic
constant C(βmax, γmax,M,BL,BU)

varP,{2,3}[R] ≤ C(S,BL,BU)2j1

n(n− 1)
.



Binary regression 717

Finally, we set

τn(f )2 = C(S,BL,BU)

n

∥∥(f − f̂n)
∥∥2

2 +
C(S,BL,BU)2j1

n(n− 1)
.

By an application of Chebyshev inequality, we have,

PP,{2,3}
[∣∣Ûn −EP,{2,3}[Ûn]

∣∣> Cτn(f )
] ≤ varP,{2,3}[Ûn]

C2τn(f )2
≤ 1

C2
.

Thus for C chosen appropriately, the above probability may be controlled at any pre-specified
level α/2.

Based on our construction, we have for a C′ = C(M,M ′, βmax,BL,BU),

PP

(
f ∈ Cn(βi0)

) = PP

(‖f − f̂ ‖2
2 ≤ Ûn +C′(n− 4βi0

4βi0
+d + n

− βi0
2βi0

+d
n
− γmin

2γmin+d
)+ z(α)τn(f )

)
≥ PP

[∣∣Ûn −EP,{2,3}[Ûn]
∣∣≤ z(α)τn(f )

]≥ (1− α

2

)
.

Finally, we establish that the L2 diameter of this set adapts to the underlying smoothness.
Assume P ∈ Pn(M

∗,M ′, γ ) ∩ P(β, γ ) and the following calculations are uniform over this
parameter space. The deterministic terms in the diameter term are respectively, of the order

n
− 2βi0

4βi0
+d = o(n

− β
2β+d ) (as β < βi0+1 < 2βi0 ) and n

− βi0
2βi0

+d
n
− γmin

2γmin+d which, by some tedious

algebra, is also o(n
− 2β

2β+d ) since β < βi0+1 < 2βi0 , γmin > 2βi0+1. The random part of τn(f )2 is

also oP (n
− 2β

2β+d ) as f̂n is an adaptive estimator and ‖ g

ĝ
‖∞ ≤ BU

B ′L(BL)
= C(BU ,BL). Finally, the

leading term for the diameter is contributed by

EP [Ûn] = EP

[∥∥∥∥�Vj1
(f − f̂n)

g

ĝ

∥∥∥∥2

2

]
≤C(BU ,BL)‖f̂n − f ‖2

2,

which is OP (n
− 2β

2β+d ) as f̂n is adaptive. This completes the proof.

4.4. Proof of Theorem 1.1

4.4.1. Proof of part 1

Without loss of generality assume that we have data {xi , yi}2n
i=1. We split it into two equal parts

and use the second part to construct the estimator ĝ of the design density g. Throughout the proof,
Ei,P [·] will denote the expectation with respect to the ith half of the sample, with the other half
held fixed, under the distribution P . Throughout, we choose the regularity of our wavelet bases
to be larger than γmax for the desired approximation and moment properties to hold. As a result
our constants depend on γmax.
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Let 2jmind = �n 1
2βmax/d+1 �, 2jmaxd = �n 1

2βmin/d+1 �, 2lmind = �n 1
2γmax/d+1 �, and 2lmaxd =

�n 1
2γmin/d+1 � and define T1 = [jmin, jmax] ∩ N and T2 = [lmin, lmax] ∩ N. Let ĝl =

1
n

∑2n
i=n+1 KVl

(xi , x).
Now, let

l̂ =min

{
j ∈ T2 : ‖ĝj − ĝl‖2 ≤ C∗

√
2ld

n
,∀l ∈ T2 s.t. l ≥ j

}
,

where C∗ is a constant (depending on γmax, BU ) that can be determined from the proof hereafter.
Thereafter, consider the Lepski-type estimator g̃ := ĝ

l̂
[34,35]. The following lemma states the

mean squared properties of g̃.

Lemma 4.4 (Theorem 2 of [7]). For any γmin ≤ γ ≤ γmax,

sup
P∈P(β,γ )

EP ‖g̃ − g‖2
2 ≤ (C)

2d
2γ+d n

− 2γ
2γ+d ,

with a large enough positive constant C depending on M and BU .

Although the proof of Lemma 4.4 can be found in [7], since we need certain steps of the proof
in our subsequent analysis, we provide the proof again in the Appendix C.1.

Now we prove that lim infn→∞ infP∈P(β,γ ) PP [g̃ ∈ B
γ

2,∞(C)] = 1 for large enough con-

stant C. Indeed, for any C > 0 and l′ ≥ J0, (letting for any h ∈ L2[0,1]d , ‖〈h,ψ l′,·〉‖2 be the
vector L2 norm of the vector(〈

h,ψv
l′,k′

〉 : k′ ∈Zl′ , v ∈ {0,1}d − {0}d).
Then,

PP

(
2l′γ ∥∥〈g̃,ψ l′,·〉

∥∥
2 > C

)
=

lmax∑
l=lmin

PP

(
2l′γ ∥∥〈ĝl ,ψ l′,·〉

∥∥
2 > C, l̂ = l

)
I
(
l′ ≤ l

)

=
l∗∑

l=lmin

PP

(
2l′γ ∥∥〈ĝl ,ψ l′,·〉

∥∥
2 > C, l̂ = l

)
I
(
l′ ≤ l

)
(4.10)

+
lmax∑

l=l∗+1

PP

(
2l′γ ∥∥〈ĝl ,ψ l′,·〉

∥∥
2 > C, l̂ = l

)
I
(
l′ ≤ l

)

≤
l∗∑

l=lmin

PP

(
2l′γ ∥∥〈ĝl ,ψ l′,·〉

∥∥
2 > C

)
I
(
l′ ≤ l

)+ lmax∑
l=l∗+1

PP (l̂ = l)I
(
l′ ≤ l

)

≤
l∗∑

l=lmin

PP

(
2l′γ ∥∥〈ĝl ,ψ l′,·〉

∥∥
2 > C

)
I
(
l′ ≤ l

)+∑
l>l∗

2e−C′2ld/2I
(
l′ ≤ l

)
,
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where the last inequality follows from (C.7) for a suitable C′ (depending on BU and the wavelet
basis choice). Now,

PP

(
2l′γ ∥∥〈ĝl ,ψ l′,·〉

∥∥
2 > C

)
≤ PP

(
2l′γ ∥∥〈ĝl ,ψ l′,·〉 −EP

(〈ĝl ,ψ l′,·〉
)∥∥

2 > C/2
)

+ PP

(
2l′γ ∥∥EP

(〈ĝl ,ψ l′,·〉
)∥∥

2 > C/2
)

= PP

(
2l′γ ∥∥〈ĝl ,ψ l′,·〉 −EP

(〈ĝl ,ψ l′,·〉
)∥∥

2 > C/2
)

if C > 2M ′. Therefore, from (4.10), one has for any C > 2M ′,

PP

(
2l′γ ∥∥〈ĝ,ψ l′,·〉

∥∥
2 > C

)
≤

l∗∑
l=lmin

PP

(
2l′γ ∥∥〈ĝl ,ψ l′,·〉 −EP

(〈ĝl ,ψ l′,·〉
)∥∥

2 > C/2
)
I
(
l′ ≤ l

)
(4.11)

+
∑
l>l∗

2e−C′2ld/2I
(
l′ ≤ l

)
.

It remains to control ‖〈ĝl ,ψ l′,·〉 − EP (〈ĝl ,ψ l′,·〉)‖2 appropriately. To this end, note that when
l′ ≤ l,∥∥〈ĝl ,ψ l′,·〉 −EP

(〈ĝl ,ψ l′,·〉
)∥∥2

2

= 1

n2

2n∑
i=n+1

∑
k′,v

(
ψv

l′,k′(xi )−EP

(
ψv

l′,k′(xi )
))2

+ 1

n2

∑
n+1≤i1 �=i2≤2n

∑
k′,v

(
ψv

l′,k′(xi1)−EP

(
ψv

l′,k′(xi1)
))(

ψv
l′,k′(xi2)−EP

(
ψv

l′,k′(xi2)
))

.

Note that the second term of the above summand is a type U-statistics of order 2 analyzed in
Lemma 4.1. We make use of this fact below.

PP

(
22l′γ ∥∥〈ĝl ,ψ l′,·〉 −EP

(〈ĝl ,ψ l′,·〉
)∥∥2

2 > C2/4
)

≤ PP

(
1

n2

2n∑
i=n+1

∑
k′,v

(
ψv

l′,k′(xi )−EP

(
ψv

l′,k′(xi )
))2

>
C2/8

22l′γ

)

+ PP

⎛⎜⎜⎜⎝
∣∣∣∣ 1

n2

∑
n+1≤i1 �=i2≤2n,

k′,v

(
ψv

l′,k′(xi1)−EP

(
ψv

l′,k′(xi1)
))

×(ψv
l′,k′(xi2)−EP

(
ψv

l′,k′(xi2)
)) ∣∣∣∣> C2/8

22l′γ

⎞⎟⎟⎟⎠
= I + II.
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To control I note that for any fixed x ∈ [0,1]d∑
k′,v

(
ψv

l′,k′(x)−EP

(
ψv

l′,k′(x)
))2 ≤ C

(
ψ0

0,0,ψ
1
0,0, γmax

)
2l′d ,

and therefore

EP

∑
k′,v

(
ψv

l′,k′(x)−EP

(
ψv

l′,k′(x)
))2 ≤ C

(
ψ0

0,0,ψ
1
0,0, γmax

)
2l′d .

Therefore by Hoeffding’s Inequality,

I ≤ PP

(
1

n

2n∑
i=n+1

∑
k′,v

(
ψv

l′,k′(xi )−EP

(
ψv

l′,k′(xi )
))2

>
nC2/8

22l′γ

)

≤ 2e
−C(ψ0

0,0,ψ
1
0,0,γmax)

n

22l′d (
nC2/8

22l′γ )2

.

Finally, arguing similar to Lemma 4.1 we also have that for a constant C(BU,γmax)

II ≤ e
−Ct(l′)2

a1(l′)2 + e
−Ct(l′)

a2(l′) + e
−C

√
t (l′)√

a3(l′) ,

where t (l′)= C2/8
22l′γ , a1(l

′)= 1
n−1 2

l′d
2 , a2(l

′)= 1
n−1 (

√
2l′d
n
+ 1), and a3(l

′)= 1
n−1 (

√
2l′d
n
+ 2l′d

n
).

Therefore, for C > 2M ′∑
l′≥J0

PP

(
2l′γ ∥∥〈g̃,ψ l′,·〉

∥∥
2 > C

)

≤
∑
l′≥J0

l∗∑
l=lmin

PP

(
2l′γ ∥∥〈ĝl ,ψ l′,·〉 −EP

(〈ĝl ,ψ l′,·〉
)∥∥

2 > C/2
)
I
(
l′ ≤ l

)
+
∑
l′≥J0

∑
l>l∗

2e−C′2ld/2I
(
l′ ≤ l

)
(4.12)

≤
l∗∑

l=lmin

l∑
l′=J0

2e
−C(ψ0

0,0,ψ
1
0,0,γmax)

n

22l′d (
nC2/8

22l′γ )2

+
l∗∑

l=lmin

l∑
l′=J0

(
e
−Ct(l′)2

a1(l′)2 + e
−Ct(l′)

a2(l′) + e
−C

√
t (l′)√

a3(l′) )+ l∗∑
l=lmin

l∑
l′=J0

2e−C′2ld/2
.

Some tedious calculations now show that the last term in the display above converges to 0 uni-
formly in P ∈ P(β, γ ) as n→∞. This, along with the definition of B

γ

2,∞(C), completes the

proof of lim infn→∞ infP∈P(β,γ ) PP [g̃ ∈ B
γ

2,∞(C)] = 1 for sufficiently large constant C depend-
ing on (M ′,BU ,γmax).
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However this g̃ does not satisfy the desired point-wise bounds. To achieve this let ψ be a C∞
function such that ψ(x)|[BL,BU ] ≡ x while BL

2 ≤ ψ(x) ≤ 2BU for all x. Finally, consider the
estimator ĝ(x) = ψ(g̃(x)). We note that (g(x) − ĝ(x))2 ≤ (g(x) − g̃(x))2 – thus ĝ is adaptive
to the smoothness of the design density. The boundedness of ĝ follows immediately from the
construction. Finally, we wish to show that almost surely, the constructed estimator belongs to
the Besov space with the same smoothness, possibly of a different radius. This is captured by the
next lemma. The proof is deferred to Section C.2.

Lemma 4.5. For all h ∈ B
β

2,∞(M), ψ(h) ∈ B
β

2,∞(C(M,β)), where C(M,β) is a universal con-

stant dependent only on M , β and independent of h ∈ B
β

2,∞(M).

The lower bound of the minimax estimation error follows in our case by the results of [7], by
setting f ≡ 0 in the prior used for the construction of the lower bound.

4.4.2. Proof of part 2

For the construction of f̂ , construct the estimator ĝ of the design density g as above from second
part of the sample and let f̂j (x)= 1

n

∑n
i=1

yi

ĝ(xi )
KVj

(xi ,x). Now, let

ĵ =min

{
j ∈ T1 : ‖f̂j − f̂l‖2 ≤ C∗∗

√
2ld

n
,∀l ∈ T1 s.t. l ≥ j

}
,

where C∗∗ is a suitable constant (depending on BU , BL, γmax) to be decided later. Thereafter,
consider the estimator f̃ := f̂

ĵ
.

Let j∗ =min{j : C1∗2−jβ ≤ C2∗
√

2jd

n
}, and note that for any x ∈ [0,1]d ,∫ ∣∣EP,1

(
f̂j (x)

)− f (x)
∣∣2 dx

=
∫ ∣∣∣∣�(f

g

ĝ
|Vj

)
(x)− f (x)

∣∣∣∣2 dx

=
∫ ∣∣∣∣�(f

(
g

ĝ
− 1

)∣∣∣∣Vj

)
(x)−�

(
f |V ⊥

j

)
(x)|22 dx

=
∫ ∣∣∣∣�(f

(
g

ĝ
− 1

)∣∣∣Vj

)
(x)

∣∣∣∣2 dx+
∫ ∣∣�(f |V ⊥

j

)
(x)
∣∣2
2 dx

=
∥∥∥∥�(f

(
g

ĝ
− 1

)∣∣∣Vj

)∥∥∥∥2

2
+ ∥∥�(f |V ⊥

j

)∥∥2
2

≤
∥∥∥∥f(g

ĝ
− 1

)∥∥∥∥2

2
+C2

1M22−jβ .
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Therefore,

EP,2

∫ ∣∣EP,1
(
f̂j (x)

)− f (x)
∣∣2 dx

≤ EP,2

∥∥∥∥f(g

ĝ
− 1

)∥∥∥∥2

2
+C2

1M22−jβ (4.13)

≤
(

BU

B ′
L

)2(
C
(
M ′,BU

)) 2
2γ+d n

− 2γ
2γ+d +C2

1M22−jβ .

Since γmin > βmax, we have from the definition of j∗ (4.13) that there exists a constant C1∗
depending on M , M ′, BU , BL, γmax such that

EP,2

∫ ∣∣EP,1
(
f̂j∗(x)

)− f (x)
∣∣2 dx ≤ C2

1∗2−2j∗β. (4.14)

Also by Rosenthal’s (Lemma A.1) and Jensen’s Inequality, there exists a constant C(q) for
q ≥ 2 such that

EP,1
(∣∣f̂j (x)−EP,1

(
f̂j (x)

)∣∣q)
≤ C(q)

nq

[
2n∑

i=n+1

EP,1

(∣∣∣∣ yi

ĝ(xi )
KVj

(xi ,x)

∣∣∣∣q)
(4.15)

+
(

2n∑
i=n+1

EP,1

(∣∣∣∣ yi

ĝ(xi )
KVj

(xi ,x)

∣∣∣∣2)
)q/2]

≤ C
q

2∗/2

nq
× [n(2jd

)q−1 + nq/2(2jd
)q/2]

,

where the last inequality in the above display follows by using standard facts about compactly
supported wavelet basis having regularity larger than γmax [24] and the fact that the constructed
ĝ from the second half of the sample lies point-wise in [BL

2 ,2BU ]. The constant C2∗ therefore
depends on q , the wavelet basis used, BU and BL. Therefore, by the choice of j ∈ T1, we have
that for all x ∈ [0,1]d ,

EP,1
(∣∣f̂j (x)−EP,1

(
f̂j (x)

)∣∣q) ≤ C
q

2∗
(

2jd

n

)q/2

. (4.16)

Therefore, using (4.14) and (4.16), we have the following bias-variance decomposition bound.

EP

(‖f̂j∗ − f ‖2
2

) = EP,2

∫
EP,1

(∣∣f̂j∗(x)− f (x)
∣∣2)dx

= EP,2

[∫
EP,1

(∣∣f̂j∗(x)−EP,1
(
f̂j∗(x)

)∣∣2)dx
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+
∫

EP,1
(∣∣EP,1

(
f̂j∗(x)

)− f (x)
∣∣2)dx

]

≤ C2
1∗2−2j∗β +C2

2∗
(

2j∗d

n

)
≤ 2d+1(C2

1∗ +C2
2∗
)
n
− 2β

2β+d .

Therefore, by definition of ĵ and j∗,

EP

(‖f̃ − f ‖2
2I
(
ĵ ≤ j∗

)) ≤ 2EP

(‖f̃ − f̂j∗‖2
2I
(
ĵ ≤ j∗

))+ 2EP

(‖f̂j∗ − f ‖2
2

)
(4.17)

≤ 2
((

C∗∗)2 + 2d+1(C2
1∗ +C2

2∗
))

n
− 2β

2β+d .

By Cauchy–Schwarz inequality,

EP

(‖f̃ − f ‖2
2I
(
ĵ > j∗

)) ≤ jmax∑
j=j∗+1

√
EP

(‖f̂j − f ‖4
2

)√
PP (ĵ = j). (4.18)

Now, by (4.15) with q = 2

EP,1
(
f̂j (x)−EP,1

(
f̂j (x)

))4 ≤ C(BU,BL,γmax)

[(
2jd

n

)3

+
(

2jd

n

)2]
(4.19)

≤ C(BU,BL,γmax)

by our choice of 2jmaxd . Also, by standard arguments [24], |EP,1(f̂j (x))| = |�(f
g

ĝ
|Vj )(x)| ≤

C(BU,BL,γmax) for all x ∈ [0,1]d . Therefore by (4.19),

EP

(‖f̂j − f ‖4
2

)
≤ 8EP,2

[∫
EP,1

(
f̂j (x)−EP,1

(
f̂j (x)

))4
dx+

∫ (
EP,1

(
f̂j (x)

)− f (x)
)4

dx
]

≤ C(BU ,BL,γmax).

Also, for any constant C′′

PP (ĵ = l) ≤
∑
j>j∗

PP

(
‖f̂j − f̂j∗‖2 > C∗∗

√
2jd

n

)

≤
∑
j>j∗

EP,2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
PP,1

⎛⎜⎝∥∥f̂j∗ −EP,1(f̂j∗)
∥∥

2 >
C∗∗

2

√
2jd

n

− ∥∥EP,1(f̂j∗)−EP,1(f̂j )
∥∥

2

⎞⎟⎠
+ PP,1

(∥∥f̂j −EP,1(f̂j )
∥∥

2 >
C∗∗

2

√
2jd

n

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
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≤
∑
j>j∗

EP,2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

PP,1

⎛⎜⎜⎜⎝
∥∥f̂j∗ −EP,1(f̂j∗)

∥∥
2 >

C∗∗

2

√
2jd

n

−
∥∥∥∥�(f

g

ĝ

∣∣∣Vj∗
)
−�

(
f

g

ĝ

∣∣∣Vj

)∥∥∥∥
2

⎞⎟⎟⎟⎠
+ PP,1

(∥∥f̂j −EP,1(f̂j )
∥∥

2 >
C∗∗

2

√
2jd

n

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.20)

≤
∑
j>j∗

EP,2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PP,1

(∥∥f̂j∗ −EP,1(f̂j∗)
∥∥

2 >

(
C∗∗

2

√
2jd

n
−C′′

√
2j∗d

n

))

+ PP,1

(∥∥f̂j −EP,1(f̂j )
∥∥

2 >
C∗∗

2

√
2jd

n

)

+ I
(∥∥∥∥�(f

g

ĝ

∣∣∣Vj∗
)
−�

(
f

g

ĝ

∣∣∣Vj

)∥∥∥∥
2
> C′′

√
2j∗d

n

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
≤
∑
j>j∗

2e−C2jd/2 +
∑
j>j∗

PP,2

(∥∥∥∥�(f
g

ĝ

∣∣∣Vj∗
)
−�

(
f

g

ĝ

∣∣∣Vj

)∥∥∥∥
2
> C′′

√
2j∗d

n

)
,

where the inequality in the last display holds by Lemma A.2 since max{y, 1
ĝ(x)

} ≤ C(BL), for a

C > 0 (depending on M , M ′, BU , BL, γmax, C′′, C∗∗) if C∗∗ is chosen large enough (depending
on M , M ′, BU , BL, γmax) such that C∗∗ > 2C′′. C′′ will be chosen later in the proof to be large
enough depending on the known parameters of the problem, which in turn will imply that C∗∗
can be chosen large enough depending on the known parameters of the problem as well. Finally,

∑
j>j∗

PP,2

(∥∥∥∥�(f
g

ĝ

∣∣∣Vj∗
)
−�

(
f

g

ĝ

∣∣∣Vj

)∥∥∥∥
2
> C′′

√
2j∗d

n

)

≤
∑
j>j∗

PP,2

(∥∥�(f |Vj∗)−�(f |Vj )
∥∥

2 >
C′′

2

√
2j∗d

n

)
(4.21)

+
∑
j>j∗

PP,2

(∥∥∥∥�(f

(
g

ĝ
− 1

)∣∣∣Vj∗
)
−�

(
f

(
g

ĝ
− 1

)∣∣∣Vj

)∥∥∥
2
>

C′′

2

√
2j∗d

n

)
= I + II.

Since f ∈ B
β

2,∞(M) and choice of j∗, we have from (C.2) that for C′′ chosen sufficiently large
(depending on M , M ′ and γmax), one has that I = 0. Control of II is more delicate, but can be
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handled as below. Using the fact that projection contracts norm, we have

II ≤
∑
j>j∗

PP,2

(∥∥∥∥�(f

(
g

ĝ
− 1

)∣∣∣Vj∗
)∥∥∥∥

2
>

C′′

4

√
2j∗d

n

)

+
∑
j>j∗

PP,2

(∥∥∥∥�(f

(
g

ĝ
− 1

)∣∣∣Vj

)∥∥∥∥
2
>

C′′

4

√
2j∗d

n

)
(4.22)

≤ 2
∑
j>j∗

PP,2

(
‖ĝ− g‖2 >

B ′
LC′′

4BU

√
2j∗d

n

)
.

The last term in the above display can be bounded using the following lemma.

Lemma 4.6. Assume γmin > βmax. Then for constants C1,C2,C3 > 0 (depending on M , M ′,
BU , BL, γmax) one has

sup
P∈P(β,γ )

PP,2

(
‖ĝ− g‖2 >

B ′
LC′′

4BU

√
2j∗d

n

)
≤ C1(lmax − lmin)

2(e−C22(j∗−lmax)d/2 + e−C32lmind/2)
.

The proof of the lemma involves arguments exactly similar to those involved in the proof of
Theorem 1.1 Part 1 and a sketch of the arguments is deferred to Appendix C.

Plugging in the result of Lemma 4.6 into (4.22), and thereafter using the facts that γmin > βmax,
lmax, jmax are both poly logarithmic in nature, along with equations (4.21), (4.20), (4.19),
and (4.18), followed by some straightforward but tedious algebra, we have the existence of
an estimator f̃ depending on M , M ′, BU , BL, βmin, βmax, γmax, such that for every (β, γ ) ∈
[βmin, βmax] × [γmin, γmax],

sup
P∈P(β,γ )

EP ‖f̃ − f ‖2
2 ≤ Cn

− 2β
2β+d ,

with a large enough positive constant C depending on M , M ′, BU , BL, βmin, γmax.
The proof of lim infn→∞ infP∈P(β,γ ) PP [f̃ ∈ B

β

2,∞(C)] = 1, can be done along the lines of

the proof of lim infn→∞ infP∈P(β,γ ) PP [g̃ ∈ B
γ

2,∞(C)] = 1, since using (4.12) and the fact that
γmin > βmax one can show using arguments similar to proof of Lemma 4.5 that for sufficiently
large C, f

g

ĝ
∈ B

β

2,∞(C), with suitably high probability uniformly over P ∈P(β, γ ).

The construction of a f̂ from this f̃ and demonstrating its desired properties is very similar to
the derivation of ĝ from g̃, and hence is omitted.

Next, we derive the lower bound on the estimation error. The proof will be deferred to the
Appendix C.4.
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Lemma 4.7. There exists a constant c > 0, independent of n, such that

inf
f̂n

sup
P∈P(β,γ )

EP

[‖f̂n − f ‖2
2

]≥ cn
− 2β

2β+d . (4.23)

This completes the proof of Theorem 1.1.

Appendix A: Technical lemmas

Since the estimators arising in this paper also have a linear term, we will need the following
standard Bernstein and Rosenthal type tail and moment bounds [42].

Lemma A.1. If O1, . . . ,On ∼ P are i.i.d. random vectors such that |L(O)| ≤ B almost surely P,
then for q ≥ 2 one has for large enough constants C(B) and C(B,q)

P

(∣∣∣∣∣1n
n∑

i=1

(
L(Oi )−E

(
L(Oi )

))∣∣∣∣∣≥ t

)
≤ 2e−nt2/C(B),

and

E

(∣∣∣∣∣
n∑

i=1

(
L(Oi )−E

(
L(Oi )

))∣∣∣∣∣
q)

≤
[

n∑
i=1

E
(∣∣L(Oi )−E

(
L(Oi )

)∣∣q)+ [ n∑
i=1

E
(∣∣L(Oi )−E

(
L(Oi )

)∣∣2)]q/2]

≤ C(B,q)n
q
2 .

We will also need the following concentration inequality for linear estimators based on wavelet
projection kernels, proof of which can be done along the lines of proof of Equation (27) of [22]
or Theorem 5.1.13 of [23].

Lemma A.2. Consider i.i.d. observations Oi = (Y,X)i , i = 1, . . . , n where Xi ∈ [0,1]d with
marginal density g. Let m̂(x) = 1

n

∑n
i=1 L(Oi )KVl

(Xi ,x), such that max{‖g‖∞,‖L‖∞} ≤ BU .

If 2ld

n
≤ 1, there exists C,C1,C2 > 0, depending on BU and scaling functions ψ0

0,0, ψ1
0,0 respec-

tively, such that

E
(∥∥m̂−E(m̂)

∥∥
2

)≤C

√
2ld

n
,

and for any x > 0

P

(
n
∥∥m̂−E(m̂)

∥∥
2 >

3

2
nE
(∥∥m̂−E(m̂)

∥∥
2

)+√C1n2ld/2x +C22ld/2x

)
≤ e−x.
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Appendix B: Proofs of U-statistics deviation results

The following tail bound for second order degenerate U-statistics [23] is due to [20] with con-
stants by [26] and is crucial for our calculations.

Lemma B.1. Let Un be a degenerate U-statistic of order 2 with kernel R based on an i.i.d.
sample W1, . . . ,Wn. Then there exists a constant C independent of n, such that

P

[∣∣∣∣∑
i �=j

R(W1,W2)

∣∣∣∣≥ C
(
�1
√

u+�2u+�3u
3/2 +�4u

2)]≤ 6 exp(−u),

where, we have,

�2
1 =

n(n− 1)

2
E
[
R2(W1,W2)

]
,

�2 = n sup
{
E
[
R(W1,W2)ζ(W1)ξ(W2)

] :E[ζ 2(W1)
]≤ 1,E

[
ξ2(W1)

]≤ 1
}
,

�3 =
∥∥nE[R2(W1, ·)

∥∥ 1
2∞,

�4 = ‖R‖∞.

We use this lemma to establish Lemma 4.1.

Proof. Let us analyze R(O1,O2)= L(O1)KVj
(X1,X2)L(O2) first. The proof for R(O1,O2)=

L(O1)KWj
(X1,X2)L(O2) is analogous. By Hoeffding’s decomposition one has

1

n(n− 1)

∑
i1 �=i2

R(Oi1,Oi2)−E
(
R(O1,O2)

)

= 2

n

n∑
i1=1

[
EOi1

R(Oi1,Oi2)−ER(Oi1,Oi2)
]

+ 1

n(n− 1)

∑
i1 �=i2

[
R(Oi1,Oi2)−EOi1

R(Oi1,Oi2)

−EOi2
R(Oi1,Oi2)+ER(Oi1,Oi2)

]
:= T1 + T2.

B.1. Analysis of T1

Noting that T1 = 2
n

∑n
i1=1 H(Oi1) where H(Oi1)= E(R(Oi1,Oi2 |Oi1))−ER(Oi1 ,Oi2) we con-

trol T1 by standard Hoeffding’s Inequality. First note that,∣∣H(Oi1)
∣∣ = ∣∣∣∣∑

k∈Zj

∑
v∈{0,1}d

[
L(Oi1)ψ

v
jk(Xi1)E

(
ψv

jk(Xi2)L(Oi2)
)− (E(ψv

jk(Xi2)L(Oi2)
))2]∣∣∣∣
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≤
∑
k∈Zj

∑
v∈{0,1}d

∣∣L(Oi1)ψ
v
jk(Xi1)E

(
ψv

jk(Xi2)L(Oi2)
)∣∣

+
∑
k∈Zj

∑
v∈{0,1}d

(
E
(
ψv

jk(Xi2)L(Oi2)
))2

.

First, by standard compactness argument for the wavelet bases,

∣∣E(ψv
jk(X)L(O)

)∣∣ ≤ ∫ ∣∣E(L(O)|X= x
)(

2
jd
2

d∏
l=1

ψ
vl

00

(
2j xl − kl

))∣∣∣∣∣∣g(x)
∣∣dx

(B.1)
≤ C(B,BU ,S)2−

jd
2 .

Therefore, ∑
k∈Zj

∑
v∈{0,1}d

(
E
(
ψv

jk(Xi2)L(Oi2)
))2 ≤ C(B,BU ,S). (B.2)

Also, using the fact that for each fixed x ∈ [0,1]d , the number indices k ∈Zj such that x belongs
to support of at least one of ψv

jk is bounded by a constant depending only on ψ0
00 and ψ1

00.
Therefore combining (B.1) and (B.2),∑

k∈Zj

∑
v∈{0,1}d

∣∣L(Oi1)ψ
v
jk(Xi1)E

(
ψv

jk(Xi2)L(Oi2)
)∣∣

(B.3)
≤ C(B,BU ,S)2−

jd
2 2

jd
2 = C(B,BU ,S).

Therefore, by (B.3) and Hoeffding’s Inequality,

P
(|T1| ≥ t

)≤ 2e−C(B,BU ,S)nt2
. (B.4)

B.2. Analysis of T2

Since T2 is a degenerate U-statistics, it’s analysis is based on Lemma B.1. In particular,

T2 = 1

n(n− 1)

∑
i1 �=i2

R∗(Oi1,Oi2),

where

R∗(Oi1,Oi2)=
∑
k∈Zj

∑
v∈{0,1}d

{ (
L(Oi1)ψ

v
jk(Xi1)−E

(
ψv

jk(Xi1)E
(
L(Oi1)|Xi1

)))
× (L(Oi2)ψ

v
jk(Xi2)−E

(
ψv

jk(Xi2)E
(
L(Oi2)|Xi2

)))} .

Letting �i, i = 1, . . . ,4 being the relevant quantities as in Lemma B.1, we have the following
lemma.
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Lemma B.2. There exists a constant C = C(B,BU ,S) such that

�2
1 ≤ C

n(n− 1)

2
2jd , �2 ≤ Cn, �2

3 ≤ Cn2jd , �4 ≤ C2
jd
2 .

Proof. First we control �1. To this end, note that by simple calculations, using bounds on L, g,
and orthonormality of ψv

jk’s we have,

�2
1 =

n(n− 1)

2
E
({

R∗(O1,O2)
}2)≤ 3n(n− 1)E

(
R2(O1,O2)

)
= 3n(n− 1)E

(
L2(O1)K

2
Vj

(X1,X2)L
2(O2)

)
≤ 3n(n− 1)B4

∫ ∫ [∑
k∈Zj

∑
v∈{0,1}d

ψv
jk(x1)ψ

v
jk(x2)

]2

g(x1)g(x2) dx1 dx2

≤ 3n(n− 1)B4B2
U

∫ ∫ [∑
k∈Zj

∑
v∈{0,1}d

ψv
jk(x1)ψ

v
jk(x2)

]2

dx1 dx2

= 3n(n− 1)B4B2
U

∑
k∈Zj

∑
v∈{0,1}d

∫ (
ψv

jk(x1)
)2

dx2

∫ (
ψv

jk(x2)
)2

dx2

≤ C(B,BU ,S)n(n− 1)2jd .

Next we control

�2 = n sup
{
E
(
R∗(O1,O2)ζ(O1)ξ(O2)

) : E(ζ 2(O1)
)≤ 1,E

(
ξ2(O2)

)≤ 1
}
.

To this end, we first control∣∣E(L(O1)KVj
(X1,X2)L(O2)ζ(O1)ξ(O2)

)∣∣
=
∣∣∣∣∫ E

(
L(O1)ζ(O1)|X1 = x1

)
KVj

(x1,x2)E
(
L(O2)ξ(O2)|X2 = x2

)
g(x2)g(x2) dx1 dx2

∣∣∣∣
=
∣∣∣∣∫ E

(
L(O)ζ(O)|X= x

)
�
(
E
(
L(O)ξ(O)|X= x

)
g(x)|Vj

)
g(x) dx

∣∣∣∣
≤
(∫

E
2(L(O)ζ(O)|X= x

)
g2(x) dx

) 1
2
(∫

�2(
E
(
L(O)ξ(O)|X= x

)
g(x)|Vj

)
dx
) 1

2

≤
(∫

E
(
L2(O)ζ 2(O)|X= x

)
g2(x) dx

) 1
2
(∫

E
(
L2(O)ξ2(O)|X= x

)
g2(x) dx

) 1
2

≤ B2BU

√
E
(
ζ 2(O1)

)
E
(
ξ2(O2)

)≤ B2BU .



730 R. Mukherjee and S. Sen

Above we have used Cauchy-Schwartz Inequality, Jensen’s Inequality, and the fact that projec-
tions contract norm. Also,∣∣E(E(L(O1)KVj

(X1,X2)L(O2)|O1
)
ζ(O1)ξ(O2)

)∣∣
= ∣∣E[L(O1)�

(
E
(
L(O1)g(X1)|X1

)|Vj

)
ζ(O1)ξ(O2)

]∣∣
= ∣∣E[L(O1)�

(
E
(
L(O1)g(X1)|X1

)|Vj

)
ζ(O1)

]∣∣∣∣E(ξ(O2)
)∣∣

≤
∣∣∣∣∫ �

(
E
(
L(O)ζ(O)|X= x

)
g(x)|Vj

)
�
(
E
(
L(O)|X= x

)
g(x)|Vj

)
dx

∣∣∣∣≤ B2BU,

where the last step once again uses contraction property of projection, Jensen’s Inequality, and
bounds on L and g. Finally, by Cauchy-Schwartz Inequality and (B.2),

E
[
E
(
L(O1)KVj

(X1,X2)L(O2)
)
ζ(O1)ξ(O2)

]
≤
∑
k∈Zj

∑
v∈{0,1}d

E
2(L(O)ψv

jk(X)
)≤ C(B,BU ,S).

This completes the proof of �2 ≤ C(B,BU ,S)n. Turning to �3 = n‖E[(R∗(O1, ·))2]‖1/2∞ we
have that (

R∗(O1,o2)
)2 ≤ 2

[
R(O1,o2)−E

(
R(O1,O2)|O1

)]2
+ 2

[
E
(
R(O1,O2)|O2 = o2

)−E
(
R(O1,O2)

)]2
.

Now,

E
[
R(O1,o2)−E

(
R(O1,O2)|O1

)]2
≤ 2E

(
L2(O1)K

2
Vj

(X1,x2)L
2(o2)

)+ 2E

(∑
k∈Zj

∑
v∈{0,1}d

L(O1)ψ
v
jk(X1)E

(
ψv

jk(X2)L(O2)
))2

≤ 2B4B2
U

∑
k∈Zj

∑
v∈{0,1}d

(
ψv

jk(x2)
)2 + 2E

(
H 2(O2)

)≤ C(B,BU ,S)2jd ,

where the last inequality follows from arguments along the line of (B.3). Also, using inequalities
(B.2) and (B.3)[

E
(
R(O1,O2)|O2 = o2

)−E
(
R(O1,O2)

)]2
=
[∑

k∈Zj

∑
v∈{0,1}d

E
(
L(O1)ψ

v
jk(X1)

)(
E
(
L(O1)ψ

v
jk(X1)

)−ψv
jk(x2)L(o2)

)]2

≤ C(B,BU ,S).
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This completes the proof of controlling �3. Finally, using compactness of the wavelet basis,∥∥R(·, ·)∥∥∞ ≤ B2 sup
x1,x2

∑
k∈Zj

∑
v∈{0,1}d

∣∣ψv
jk(x1)

∣∣∣∣ψv
jk(x2)

∣∣≤ C(B,BU ,S)2jd .

Combining this with arguments similar to those leading to (B.3), we have �4 ≤ C(B,BU ,S)2jd .
�

Therefore, using Lemma B.1 and Lemma B.2 we have

P

(
|T2| ≥ C(B,BU ,S)

n− 1

(√
2jd t + t +

√
2jd

n
t

3
2 + 2jd

n
t2
))

≤ 6e−t .

Finally using 2t
3
2 ≤ t + t2 we have,

Pf

[|T2|> a1
√

t + a2t + a3t
2] ≤ 6e−t , (B.5)

where a1 = C(B,BU ,S)
n−1 2

jd
2 , a2 = C(B,BU ,S)

n−1 (

√
2jd

n
+ 1), and a3 = C(B,BU ,S)

n−1 (

√
2jd

n
+ 2jd

n
). Now if

h(t) is such that a1
√

h(t)+ a2h(t)+ a3h
2(t)≤ t , then one has by (B.5),

P
[|T2| ≥ t

] ≤ P
[|T2| ≥ a1

√
h(t)+ a2h(t)+ a3h

2(t)
]≤ 6e−6h(t).

Indeed, there exists such an h(t) such that h(t) = b1t
2 ∧ b2t ∧ b3

√
t where b1 = C(B,BU ,S)

a2
1

,

b2 = C(B,BU ,S)
a2

, and b3 = C(B,BU ,S)√
a3

. Therefore, there exists C = C(B,BU ,S) such that

P
[|T2| ≥ t

]≤ e
−Ct2

a2
1 + e

−Ct
a2 + e

−C
√

t√
a3 . (B.6)

B.3. Combining bounds on T1 and T2

Applying union bound along with (B.4) and (B.6) completes the proof of Lemma 4.1. �

Appendix C: Remaining technical details for adaptive
estimation

C.1. Proof of Lemma 4.4

To analyze the estimator g̃, we begin with standard bias variance analysis for the candidate
estimators ĝl .
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Note that for any x ∈ [0,1]d , using standard facts about compactly supported wavelet basis
having regularity larger than γmax [24], one has for a constant C1 depending only on the wavelet
basis used, ∥∥EP (ĝl)− g

∥∥2
2 =

∥∥�(g|Vl)− g
∥∥2

2 ≤C2
1M ′22−2ld

γ
d . (C.1)

Above we have used the fact that

sup
h∈B

γ

2,∞(M)

∥∥h−�(h|Vl)
∥∥

2 ≤ C1M
′2−lγ . (C.2)

Also by Rosenthal’s Inequality [42], there exists a constant C(q) for q ≥ 2 such that

EP

(∣∣ĝl(x)−EP

(
ĝl(x)

)∣∣q)
≤ C(q)

nq

[
2n∑

i=n+1

EP

(∣∣KVl
(xi ,x)

∣∣q)+( 2n∑
i=n+1

EP

(∣∣KVl
(xi ,x)

∣∣2))q/2]

≤ C
q

2 /2

nq
× [n(2ld

)q−1 + nq/2(2ld
)q/2]

,

where the last inequality follows using standard facts about compactly supported wavelet basis
having regularity larger than γmax [24] with a constant C2 that depends only on q and the wavelet
basis used. Therefore, for q ≥ 2, by the choice of l ∈ T2, we have that for all x ∈ [0,1]d ,

EP

(∣∣ĝl(x)−EP

(
ĝl(x)

)∣∣q) ≤ C
q

2

(
2ld

n

)q/2

. (C.3)

Therefore, we have the following bias-variance decomposition.

EP

(‖ĝl − g‖|22
)

=
∫

EP

(∣∣ĝl(x)− g(x)
∣∣2)dx

(C.4)

=
[∫

EP

(∣∣ĝl(x)−EP

(
ĝl(x)

)∣∣2)dx+
∫

EP

(∣∣EP

(
ĝl(x)

)− g(x)
∣∣2)dx

]
≤C2

1M ′22−2lγ +C2
2

(
2ld

n

)
.

Let l∗ =min{l :C1M
′2−lγ ≤ C2

√
2ld

n
}. This implies that

∥∥EP (ĝl∗)− g
∥∥2

2 ≤C2
1M ′22−2l∗γ ≤ C2

2

(√
2l∗d

n

)2

≤ 2dC2
2

(
C1

C2
M ′
) 2d

2γ+d

n
− 2γ

2γ+d .
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Therefore, by definition of l̂ and l∗,

EP

(‖g̃− g‖2
2I
(
l̂ ≤ l∗

)) = EP,2
(‖g̃ − g‖2

2I
(
l̂ ≤ l∗

))
≤ 2EP,2

(‖g̃− ĝl∗‖2
2I
(
l̂ ≤ l∗

))+ 2EP,2
(‖ĝl∗ − g‖2

2

)
(C.5)

≤ 2d+1((C∗)2 + 2
)
C2

2

(
C1

C2
M ′
) 2d

2γ+d

n
− 2γ

2γ+d .

Using Cauchy–Schwarz inequality, we have,

EP

(‖g̃− g‖2
2I
(
l̂ > l∗

)) ≤ jmax∑
l=l∗

√
EP,2

(‖ĝl − g‖4
2

)√
PP,2(l̂ = l). (C.6)

Now, by (C.1), (C.3), choice of l ∈ T2, and Jensen’s Inequality

EP,2
(‖ĝl − g‖4

2

) = EP,2

(∫ ∣∣ĝl(x)− g(x)
∣∣2 dx

)2

≤ EP,2

∫ ∣∣ĝl(x)− g(x)
∣∣4 dx

≤ C4
1M ′42−4lγ +C4

2

(
2ld

n

)2

≤ C4
1M ′4 +C4

2 .

Next, note that for l > l∗,

PP,2(l̂ = l)

≤
∑
l>l∗

PP,2

(
‖ĝl − ĝl∗‖2 > C∗

√
2ld

n

)

≤
∑
l>l∗

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
PP,2

(∥∥ĝl∗ −EP,2(ĝl∗)
∥∥

2 >
C∗

2

√
2ld

n
− ∥∥EP,2(ĝl∗)−EP,2(ĝl)

∥∥
2

)
+ PP,2

(∥∥ĝl −EP,2(ĝl)
∥∥

2 >
C∗

2

√
2ld

n

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

≤
∑
l>l∗

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
PP,2

(∥∥ĝl∗ −EP,2(ĝl∗)
∥∥

2 >
C∗

2

√
2ld

n
− ∥∥�(g|Vl∗)−�(g|Vl)

∥∥
2

)
+ P

(∥∥ĝl −EP,2(ĝl)
∥∥

2 >
C∗

2

√
2ld

n

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (C.7)

≤
∑
l>l∗

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
PP,2

(∥∥ĝl∗ −EP,2(ĝl∗)
∥∥

2 >
C∗

2

√
2ld

n
− 2C2

√
2l∗d

n

)
+ P

(∥∥ĝl −EP,2(ĝl)
∥∥

2 >
C∗

2

√
2ld

n

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
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≤
∑
l>l∗

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
PP,2

(∥∥ĝl∗ −EP,2(ĝl∗)
∥∥

2 >

(
C∗

2
− 2C2

)√
2ld

n

)
+ P

(∥∥ĝl −EP,2(ĝl)
∥∥

2 >
C∗

2

√
2ld

n

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

≤
∑
l>l∗

2e−C2ld/2
,

for a C > 0 (depending on BU and the wavelet basis choice) if C∗ is chosen large enough (de-
pending on M ′ and BU ) such that C∗ > 2C2. In the fourth and fifth of the above series of in-
equalities, we have used (C.2) and the definition of l∗ respectively. The last line follows by an
argument similar to results in Section 3.1 of [22]. Finally combining equations (C.5), (C.6) and
(C.7), we have the existence of an estimator g̃ depending on BU , γmin, and γmax, such that for
every (β, γ ) ∈ [βmin, βmax] × [γmin, γmax],

sup
P∈P(β,γ )

EP ‖g̃− g‖2
2 ≤ Cn

− 2γ
2γ+d ,

with a large enough positive constant C depending on M , BU , γmin.

C.2. Proof of Lemma 4.5

We will utilize the equivalent definition of Besov space in terms of moduli of smoothness. We
define the forward difference operator �h(f )(x) = f (x + h) − f (x) and the operator �r

h =
�h(�

r−1
h ) for r ≥ 2, where �1

h =�. Next, for t > 0 and r a natural number greater than β , we
define the modulus of smoothness ωr(f, t) = sup|h|≤t ‖�r

h(f )‖2. Finally, we define the Besov
semi-norm |f |

B
β
2,∞

= supt>0 ωr(f, t)/tβ . Finally, we define

B
β

2,∞(M)= {f ∈L2 : ‖f ‖
B

β
2,∞

= ‖f ‖2 + |f |Bβ
2,∞

≤M
}
. (C.8)

It is a standard fact [24] that (C.8) is an equivalent definition of a Besov space. Further, the
supremum in the definition of |f |

B
β
2,∞

may be restricted to 0 < t < 1. Throughout this proof, we

work with B
β

2,∞(M) defined by (C.8) without loss of generality. We first consider the case when
0 < β < 1. In this case, it is easy to see that ‖φ(f )‖2 < C(φ), for some universal constant C(φ)

depending on φ and independent of f . Next, we control the term |φ(f )|
B

β
2,∞

. Using Mean Value

Theorem, we have,

�h

(
φ(f )

)
(x)= φ

(
f (x + h)

)− φ
(
f (x)

)= φ′(ξ)�h(f )(x),

for some ξ ∈ [min{f (x), f (x+h)},max{f (x), f (x+h)}]. This naturally implies ω1(φ(f ), t)≤
‖φ‖∞ω1(f, t), which gives us the desired claim in this case.
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Next, we consider the case when β > 1. We note that for any r ≥ 1, we have, �r
h(f )(x) =∑r

k=0

(
r
k

)
(−1)r−kf (x + kh). Setting r = �β�, we have, by Taylor expansion for φ,

�r
h

(
φ(f )

)
(x) =

r∑
k=0

(
r

k

)
(−1)r−kφ

(
f (x + kh)

)
=

r∑
k=0

(
r

k

)
(−1)r−k

[
φ′
(
f (x)

)
�kh(f )(x)+ φ′′(ξ(x))

2

(
�kh(f )(x)

)2
]

= φ′
(
f (x)

)
�r

h

(
φ(f )

)
(x)+�(x,h).

Thus we have, ‖�r
h(φ(f ))‖2 ≤ ‖φ′‖∞‖�r

h(φ(f ))‖2 + ‖�(·, h)‖2. To control ‖�‖2, we use

the fact that B
β

2,∞(M)⊂ B
β−1/2∞,∞ (C(M,β)), where ⊂ stands for the usual embedding operation

(results of similar flavor can be found in [52,55]). This naturally implies that (�kh(f )(x))2 �
(kh)2β−1. Thus,we have,

sup
0<t<1

sup|h|≤t ‖�(·, h)‖2

tβ
≤ C(M,β)tβ−1.

This completes the proof.

C.3. Proof of Lemma 4.6

Indeed, ĝ = ψ(g̃), where ψ(x) is C∞ function which is identically equal to x on [BL,BU ]
and has universally bounded first derivative. Therefore, it is enough to prove Lemma 4.6 for g̃

instead of ĝ and thereby invoking a simple first order Taylor series argument along with the fact
that ψ(g) ≡ g owing to the bounds on g. The proof of the lemma is therefore very similar to
the proof of adaptivity of ĝ (by dividing into cases where the chosen l̂ is larger and smaller than
l∗ respectively and thereafter invoking Lemma A.2) and therefore we simply state the main idea
and omit the details. The crux of the argument for proving Lemma 4.6 relies on the fact that by

Lemma A.2, any ĝl for l ∈ T2 suitably concentrates around g in a radius of the order of
√

2ld

n
,

and Lepski’s method chooses an index l̂ ≤ l∗ with high probability. Thereafter one uses the fact
that γmin > βmax, and consequently 2ld � 2jd for any (j, l) ∈ T1 × T2.

C.4. Proof of Lemma 4.7

The proof will follow the usual approach of lower bounding the estimation error by a re-
lated “testing” problem [57]. We will equip our parameter space with the distance function

d((f, g), (f ′, g′))=
√
‖f − f ′‖2

2 + ‖g− g′‖2
2.

We will use M distributions in our derivation of the lower bound – M will be chosen appro-
priately later. The distributions C = {(fi, gi) : 1 ≤ i ≤M} are chosen as follows: we set gi = 1
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for all i, that is, we set the design density to be uniform. Next, we set j0 = � d
2β+d

log2 n�. Let

fi(x)= 1

2
+ ε2−j0(1/2+β/d)

∑
k∈Zj0

∑
v∈{0,1}d−{0}

αv
i,kψ

v
j0,k

(x),

where each αv
i,k ∈ {0,1}. The constant ε > 0 is chosen sufficiently small such that 0≤ fi ≤ 1 for

all x ∈ [0,1]d . Thus we have, for (f, g), (f ′, g′) ∈ C,

d
(
(f, g),

(
f ′, g′

))2 = ∥∥f − f ′
∥∥2

2 = ε2 1

n

∑
v∈{0,1}d−{0}

ρ
(
αv

i·, αv
i′·
)
,

where αv
i· = (αv

i,k) and ρ(·, ·) is the Hamming distance between two vectors on the hypercube.

For each v ∈ {0,1}d − {0}, we apply the Varshamov–Gilbert Lemma (Lemma 2.9 of [57]) to

select (αv
i,·) with mutual separation at least 1

8n
d

2β+d . The Varshamov–Gilbert Lemma guarantees

the existence of such a subset with size at least 2
1
8 n

d
2β+d

. Thus we have, with M = 2
2d−2

8 n
d

2β+d
,

for any (f, g), (f ′, g′) ∈ C,

d
(
(f, g),

(
f ′, g′

))2 ≥ (2d − 2)ε2

8
n
− 2β

2β+d .

We denote the joint distribution of {xl , yl : 1≤ l ≤ n} under the parameters (fi, gi) by Pi . Thus
we have, χ2(Pi ,P0)= [1+ χ2((fi, gi), (f0, g0))]n − 1.

Finally, we note that 1+χ2((fi, gi), (f0, g0))= E0[( fi (x1)
y1 (1−fi (x1))

(1−y1)

1/2 )2] = 4E0[f 2
i (x1)+

(1−f (xi ))
2], where E0[·] represents the expectation with respect to (f0, g0). Setting fi = 1/2+

ψi , we have,

1+ χ2((fi, gi), (f0, g0)
)= 1+ 4E0

[
ψi(x1)

2]≤ 1+ 4
(
2d − 2

)
ε2n

− 2β
2β+d .

Thus χ2(Pi ,P0) ≤ exp(4(2d − 2)ε2n
d

2β+d ) ≤ δM , for some 0 < δ < 1/8 if ε > 0 is chosen
sufficiently small. This allows us to complete the proof by an application of Theorem 2.7 in [57].
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