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The change-point problem is reformulated as a penalized likelihood estimation problem. A new non-convex
penalty function is introduced to allow consistent estimation of the number of change points, and their
locations and sizes. Penalized likelihood methods based on LASSO and SCAD penalties may not satisfy
such a property. The asymptotic properties for the local solutions are established and numerical studies are
conducted to highlight their performance. An application to copy number variation is discussed.
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1. Introduction

The change-point problems for the sequence of independent random variables have received
considerable attention and found applications in various fields including econometrics, genetics,
meteorology studies, engineering etc.; see, for example, [3,10,16,20,27,28,33], and [12]. In the
change-point problems with the sample size n, the total number of possible configurations is 2n−1

as there are n − 1 potential change points. If n is large, it becomes computationally intractable
to apply the best subset approach and investigate all 2n−1 possible change-point models. Lai and
Xing [21] reviewed the Bayesian approach for the change-point problems. By assuming that the
number of change-points is known, [1] and [2] consider a maximum likelihood approach and de-
velop an algorithm based on dynamic programming. For the unknown number of change-point
cases, dynamic programming methods are also developed in [5,10,20,28], and [4] etc. However,
it should be noted that the “at most” O(n2) computational complexity of various dynamic pro-
gramming methods can be achieved only if the objective function can be updated in O(1) time
when a new observation is included. This may not be true in general unless the objective func-
tion is chosen as the sum of squares or likelihood function for the Gaussian random variables
in change-in-mean and change-in-variance cases. In general, all terms in the log-likelihood have
to be re-estimated based on the new estimated parameters. Therefore, the updating time may
depend on the running sample size since the last change-point. Li and Sieling [26] proposed an
O(n) algorithm for the change-point detection based on the idea of FDR-control. However, the
computation of the FDR requires Monte-Carlo simulation that is computational intensive.

Recently, [14,16], and [29] consider a penalized likelihood approach of the change-point prob-
lems based on the LASSO penalty of [31]. Such penalized likelihood approach requires neither
the prior knowledge of the number of change points nor computationally intensive Monte-Carlo
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simulation. Moreover, due to the convexity, the negative penalized likelihood function admits a
unique local solution. This property allows the researchers to establish the asymptotic theory eas-
ily under the assumption of diminishing variance as described in [29]. However, the estimation of
the number of change points is not guaranteed to be consistent if the variance is not diminishing.

In the literature of regression analysis, various non-convex penalties have been introduced, for
example, the SCAD penalty of [8], the bridge penalty of [9] and [11], and the unbounded penalty
of [24]. For the change-point detection problems, if suitable local quadratic approximation strat-
egy (see, e.g., [17]) is used, the Hessian matrix of the penalized likelihood becomes tridiagonal,
unlike those in the usual high-dimensional regression problems. Therefore, the resulting change-
point detection method can be implemented efficiently in iterative O(n) steps. However, there
is a lack of literature on the application of the non-convex penalties to the change-point prob-
lems. One difficulty related to the use of the non-convex penalties is the non-uniqueness of the
local solutions. If the SCAD penalty is used in the change-point problems, the oracle property
that the true model is one of the local solutions can be established in a similar manner as in
many literatures of regression, for example, [8]. However, simulation results suggest that the lo-
cal solution obtained numerically does not always give consistent estimation of the number of
change points. Suppose that there is one change point at 500 in Figure 1. It is found that the
LASSO and SCAD penalties could select a consecutive change pattern, while the Bridge and un-
bounded penalties tend to detect a single sharp change. This illustrates that in the change-point
problems, the LASSO and SCAD estimators could have difficulty in identifying the true num-
ber of change points. In this paper, new penalty functions called modified unbounded (modified
bridge) penalty are constructed by combining the non-convex unbounded (bridge) penalty and
the convex LASSO penalty. These new penalty functions allow all local solutions within a search
space exhibit a trinity of consistencies of (i) the number of change points, (ii) their locations, and
(iii) their sizes. Such a trinity is termed the true identification property in this paper.

The paper is organized as follows. In Section 2, the change-point problem is stated and the
penalized likelihood method is described. The main results of the local solutions to the penalized
likelihood function are presented in Section 3. In addition, the asymptotic properties of the local
solutions under different kinds of penalty functions are compared. An algorithm for obtaining
the proposed estimator is described in Section 4. A simulation study is conducted in Section 5
to investigate the finite-sample performance of the proposed method. Section 6 contains a real
data example, followed by the concluding remarks in Section 7. In Appendix A, we examine the
conditions for each of the 2n−1 possible configurations to give a local solution to the penalized
likelihood function. For such purpose, the idea of restricted local solution is introduced. In Ap-
pendix B, the proofs of the theorems in Section 3 are provided, making use of the concepts and
propositions developed in Appendix A.

2. Change-point problems

In this section, a change-point model is described and a penalized likelihood method is proposed.
The modified unbounded (modified bridge) penalty function is introduced in Section 2.2. To
support our choice of the proposed modified unbounded (modified bridge) penalty function, the
theoretical properties of the change-point estimators based on the modified unbounded penalty
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Figure 1. Plots of consecutive changes of LASSO (a) and SCAD (b) and sharp change of bridge (c) and
unbounded penalty (d). The true model has one change point at 500.

(modified bridge) function and other penalty functions are further compared in Section 3. In
Section 2.3, a search space is introduced. In Section 3, the asymptotic behaviors of the local
solutions inside the search space are studied in details.

2.1. Model specification

Let Xi , i = 1,2, . . . , n be independent random variables from the density function f (x; θ i ,φ).
Here, θ = (θT

1 , . . . , θT
n )T , where θ i = (θi1, . . . , θip)T ∈ � ⊂ Rp is allowed to be time-varying

while φ ∈ � ⊂ Rq is assumed to be constant.
The data-generating process is described as follows. Suppose that X1,X2, . . . ,Xn are equally-

spaced observations collected over the time interval [0,1]. There are k true change points at 0 =
q(0) < q(1) < q(2) < · · · < q(k) < q(k+1) = 1. Here, k is finite and fixed, as commonly assumed
in the literatures on the change-point problems, for example, in [2]. The true value of φ is φ0.
For � = 1,2, . . . , k + 1, and [nq(�−1)] ≤ i < [nq(�)], the true value of parameter θ i is θ

(�)
0 . Here,

the notation [x] refers to the smallest integer ≥ x.
The following regularity assumptions are used throughout the paper.
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(R1) Both � and � are compact. The search space (to be described in Section 2.3) is a subset
of �n × � containing the true parameter vector as an interior point.

(R2) For all i = 1,2, . . . , n, the following quantity is bounded:

sup
θ i∈�,φ∈�

∣∣E∂3 logf (Xi, θ i ,φ)
∣∣.

Here, ∂3 refers to any third order partial derivative with respect to the components of (θ i ,φ). In
addition, for any κ > 0 and 0 < ε < κ/2,

sup
θ i∈�,φ∈�

max
1≤a<b≤n,b−a≥nκ

(b − a)−1/2

∣∣∣∣∣
b∑

i=a

[
∂m logf (Xi, θ i ,φ) − E∂m logf (Xi, θ i ,φ)

]∣∣∣∣∣
= op

(
nε
)
.

Here, m = 1,2,3 and ∂m refers to any mth order partial derivative with respect to the components
of (θ i ,φ).

(R3) For the matrices E∇2
θθ logf (Xi, θ i ,φ), i = 1,2, . . . , n, θ i ∈ �, φ ∈ �, the smallest

eigenvalue is bounded below and the largest eigenvalue is bounded above by some positive con-
stants.

(R4) EXiX
T
i is finite for all i = 1,2, . . . , n.

The proposition below gives examples where condition (R2) holds. Condition (R3) requires
that the model is identifiable. If Xi is multivariate normal and is generated by a factor model,
detecting changes in the factor loading can be problematic unless extra identifiability constraints
are imposed. Other conditions are standard and are not discussed here.

Proposition 2.1. Condition (R2) holds for sequence of exponential family random variables Xi

with density function of the form

f (Xi, θ i ,φ) = exp
{
GT (θ i ,φ)H(Xi)

}
if E[Ha(X)]si < ∞ for any s > 0. Here, G(·) and H(·) are vector-valued functions and are
continuous and differentiable up to order 3 over � × �. The notation Ha refers to a component
of H .

The proposition can be established using Lemma 3.1 of [22] by choosing hs = 1 and s to be
sufficiently large. Condition R2 guarantees that if κ > 0 and 0 < ε < κ/2 are chosen, the stan-
dard arguments based on Taylor expansion are applicable to the function

∑b
i=a logf (Xi, θ i ,φ)

corresponding to any sub-series. The Hessian matrix can always be approximated by its expected
value provided that a and b are separated by at least a distance of nκ . Moreover, the third order
terms in the Taylor expansion are ignorable.
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2.2. Penalized likelihood estimation

To allow piecewise structure in the estimation of (θT
1 , . . . , θT

n )T , consider the following negative
penalized likelihood function:

Qλ(θ ,φ) = −
n∑

i=1

logf (Xi; θ i ,φ) +
n−1∑
i=1

Pλ

(‖ξ i‖
)
,

where Pλ(·) is a penalty function, ξ i = θ i − θ i+1, and ‖ξ i‖ is the L2 norm.
The asymptotic properties of the penalized likelihood estimation are closely related to the

choice of the penalty function Pλ(·). Comparing to the regression problem, the role played
by the penalty function Pλ(·) is more important than the likelihood as illustrated in the fol-
lowing example. To gain some intuitions, it is interesting to compare θa and θb described
below. For θa , θa

1 = θa
2 = · · · = θa

[n/2] = 1 and θa
[n/2]+1 = θa

[n/2]+2 = · · · = θa
n = 2. For θb ,

θb
1 = θb

2 = · · · = θb
[n/2] = 1, θb

[n/2]+1 = 1.5, and θb
[n/2]+2 = θb

[n/2]+3 = · · · = θb
n = 2. Though

there are two detected change-points in θb , they are adjacent to each other. Comparing to θb , θa

gives sparser representation of the solution. Different penalty functions Pλ(·) exhibit different
preferences of θa and θb . In the regression problems, if two of the components in the coefficient
vector differ by some O(1) quantities, standard arguments can be used to show that the likeli-
hoods differ by an Op(n) quantity under certain regularity conditions on the model matrix. If n

is sufficiently large, the sign of such Op(n) can further be determined according to the ergodic
theorem or the law of large numbers. However, this is not true in the change-point problems.
Here, the likelihoods at (θa,φ) and (θb,φ) differ only by an Op(1) quantity

− logf (X[n/2]+1;2,φ) + logf (X[n/2]+1;1.5,φ).

Moreover, the sign of such Op(1) quantity cannot be predicted using the law of large num-
bers even though n is sufficiently large. Therefore, the difference in the penalty functions,
Pλ(1)−2Pλ(0.5) actually plays a more important role in distinguishing θa from θb . Four penalty
functions that are commonly used in regression analysis are discussed in what follows. The abil-
ities of such penalty functions to distinguish θa from θb are studied in particular. Below, we
see that these four penalty functions have both pros and cons. To overcome the difficulties in
the change-point problem, a new penalty function that we call modified unbounded penalty is
introduced.

LASSO: Pλ(z) = λ|z|. It has been introduced in [31] for variable selection in the regression
analysis. Note that the penalty terms corresponding to θa and θb are the same. Therefore, θa

cannot be distinguished from θb based on the difference Pλ(1) − 2Pλ(0.5). Unlike the regres-
sion problem where the sign of the difference in the likelihoods can be predicted, it is far more
difficult to distinguish θa from θb in the change-point problem if the LASSO penalty is used.
This explains the consecutive change patterns observed in the simulation studies. The LASSO
penalty does not prefer a sparse representation of the solution.
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SCAD: It is defined as

Pλ(z) =

⎧⎪⎨⎪⎩
λ|z|, |z| ≤ n−1λ,

−(nz2 − 2aλ|z| + n−1λ2)/[2(a − 1)
]
, n−1λ < |z| ≤ an−1λ,

(a + 1)n−1λ2/2, |z| > an−1λ

for some a > 2. Usually, a = 3.7 is chosen according to the suggestion in [8]. As in the case of
LASSO, the penalty terms corresponding to θa and θb are the same if n is sufficiently large by
the definition of the SCAD penalty. Therefore, like the LASSO penalty, the SCAD penalty does
not show preference of the sparse representation of the solution.

Bridge: Pλ(z) = λ|z|γ (0 < γ < 1). It was introduced in [9].
Unbounded penalty: Pλ(z) is defined as

λ

{
log�(1/τ) + log τ

τ
+ z2

2νg(z2; τ, ν)
+ (τ − 2) logg(z2; τ, ν)

2τ
+ g(z2; τ, ν)

τ

}
(τ > 2, ν > 0),

where

g
(
z2; τ, ν)= 1

4

{
2 − τ +

√
(2 − τ)2 + 8τz2

ν

}
.

This penalty function is derived from a random effect model by [24]. Unlike the LASSO and
SCAD penalties, the bridge and unbounded penalties prefers θa over θb if the tuning parameter
is large enough so that the difference in the likelihoods is dominated. However, both bridge and
unbounded penalties are non-differentiable at the origin, giving challenges in both theory and
computation.

Modified unbounded (modified bridge) penalty: To achieve the true identification property in
the change-point problems, we introduce a new class of penalty functions of the form

Pλ(z) =
{

Pλ(z), if |z| > B,

Pλ(B) − λ∗(B − |z|), otherwise,

where Pλ(z) is chosen as the unbounded penalty or bridge penalty. For simplicity, the notation
Pλ(z) is used instead of Pλ,λ∗(z) though λ∗ is involved. Figure 2 shows a schematic diagram
of the modified unbounded penalty. For z ≤ B , the LASSO penalty is used while for z > B ,
the unbounded penalty is used. Here, λ and λ∗ are two tuning parameters and B is chosen such
that n−1P ′

λ(B) → ∞. In [35], the elastic net is constructed by combining the quadratic penalty
and the LASSO penalty. In this paper, the similar idea is applied and the unbounded penalty is
replaced by the LASSO penalty near the origin. It should be noted that the SCAD penalty also
has LASSO portion near the origin.

In this paper, the following definition of local minimum is adopted. This definition is also
applicable for the bridge and unbounded penalties, where P ′

λ(0+) = ∞.
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Figure 2. Plot of the modified unbounded penalty function.

Definition 2.1. Let ∇i be the gradient operator with respect to θ i . Then, a point (θ̂ , φ̂) is said to
be a local minimum if there exists a neighborhood N (θ̂ , φ̂) such that for all

(θ ,φ) ∈N (θ̂ , φ̂) − {(θ ,φ) ∈ �n × � : θ i = 0 for some i = 1,2, . . . , n
}
,

we have

(φ − φ̂)T ∇φQλ(θ ,φ) +
n∑

i=1

(θ i − θ̂ i )
T ∇iQλ(θ ,φ) < 0. (2.1)

2.3. Search space

To establish the estimation theory of the non-convex penalties, the main difficulty is the non-
uniqueness of the local solution. Moreover, the possibilities that there exist both consistent and
inconsistent local solutions cannot be ruled out easily. To overcome such difficulties, a search
space is proposed. In Section 3, the consistency theory of the local solutions inside the search
space is established. The properties of the local solutions outside the search space are also dis-
cussed in Section 3.

Before describing the search space, some notations are introduced. For (θ ,φ) ∈ �n × �, let
θ (1), . . . , θ (k′+1), � = 1,2, . . . , k′ + 1 be the distinct values of θ . The detected number of change
points is defined as k′. For � = 1,2, . . . , k′ + 1, define �(�), the length of the detected regime as
n(�)/n where n(�) is the number of θ i that share the same value of θ (�). For � = 1,2, . . . , k′, set
ξ (�) = θ (�) − θ (�+1). A change point in a local solution refers to the first observation in a regime.

Consider the search space

ℵ =
{
(θ ,φ) ∈ �n × � : min

�∈{1,2,...,k′+1}
�(�) > nκ−1 and min

�∈{1,2,...,k′}
∥∥ξ (�)

∥∥> n−δ
}
.

Here, κ > 0 and δ > 0 are chosen fulfilling the following conditions.

Conditions on SCAD penalty

(SCAD1) λ = nα for some 1/2 < α < 1.
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(SCAD2) α < κ < 1.
(SCAD3) 0 < δ < κ − α.

Conditions on bridge penalty

(BR1) λ = nα for some γ /2 < α < 1.
(BR2) α < κ < 1.
(BR3) 0 < δ < (κ − α)/(2 − γ ).

Conditions on unbounded penalty

(UB1) λ = nα for some 0 < α < 1.
(UB2) α < κ < 1.
(UB3) 0 < δ < (κ − α)/2.

Conditions on modified unbounded penalty

(MUB1) λ = nα for some 0 < α < 1 and λ∗ = nβ for some max{1/2, α} < β < 1 such that
2β − α < 1.

(MUB2) 2β − α < κ < 1.
(MUB3) 0 < δ < (κ − α)/2.

Conditions on modified bridge penalty

(MBR1) λ = nα for some γ /2 < α < 1 and λ∗ = nβ for some max{1/2, α} < β < 1 such that
(2 − γ )β − α < 1 − γ .

(MBR2) (2 − γ )β − α < κ(1 − γ ) < 1 − γ .
(MBR3) 0 < δ < (κ − α)/(2 − γ ).
(MBR4) If dim(�) > 1, further assume that

−α

γ
+ 1 − κ

2
< − 1 − α

2 − γ
.

Remark on condition MBR4: Suppose that α = 1/2 is chosen. When κ is chosen close to one,
the bound for γ is close to one too. When κ is chosen close to 1/2, that is, the minimum value
allowed, the bound for γ becomes γ < 3 − √

5 ≈ 0.7639. Then, one can see that α = 1/2 and
γ < 0.7639 guarantee condition MBR4.

The permissible ranges of the parameters κ > 0 and δ > 0 are closely related to the chance that
the local solution obtained numerically is consistent. It is natural to prefer a penalty that allows
a wider space ℵ. This will further be explained in Section 3. The numerical issues are discussed
in Section 4.

Through the search space ℵ, we impose restrictions on the minimum distance between two
consecutive detected change points. In doing so, the number of detected change points is not al-
lowed to increase too fast as the sample size grows. This rules out inconsistent local solutions. On
the other hand, k′ is allowed to increase as the sample size grows so as to ensure that consistent
solutions with finitely many detected change points are included in ℵ.

Though the local solution to the non-convex penalty function is not necessarily unique, we
show that this search space rules out most of inconsistent local solutions while keeping con-
sistent solutions. The properties of an accepted local solution are established in Theorems 3.1
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and 3.2. Discussion on a certain class of local solutions outside the search space is also provided
in Section 3.3.

It is an interesting future research direction to develop rigorous methods for the constrained
optimization within the search space and study the influences of δ and κ on the probability that
the optimal value is attained on the boundary.

3. Main results

In this section, we investigate the asymptotic behavior of the penalized likelihood estimation.
In Section 3.1, the results of the local solutions lying inside ℵ are presented. In Section 3.2,
the estimation bias due to the penalty terms is discussed. Going beyond ℵ, we show that if the
SCAD penalty is used, there exists a class of local solutions exhibiting the consecutive change
patterns. That means there is a sequence of consecutive change points in the estimation. On the
contrary, the bridge, unbounded, modified bridge, and modified unbounded penalties discourage
the consecutive change pattern and therefore allow higher degree of sparsity in the local solution.
The consecutive change patterns in the local solution are discussed in Section 3.3.

3.1. True identification property of the non-convex penalties

The main theorems on the true identification property are presented under various kinds of non-
convex penalties.

Theorem 3.1 shows that for SCAD, bridge, and unbounded penalties, the number of change
points in the local solutions within the search space ℵ is bounded by 2k. In Theorem 3.2, the
upper limit 2k can further be reduced to k if the modification to the unbounded penalty function
or bridge penalty function is considered instead. The true identification property can then be
established.

Theorem 3.1. For the SCAD (bridge, unbounded) penalty and the search space ℵ satisfying
SCAD1–SCAD3 (BR1–BR3, UB1–UB3), properties (i) and (ii) in the following hold:

(i) The oracle property is satisfied,

Pk = P

(
There exists a local solution to Qλ(θ ,φ) with

k′ = k change points at
[nq(1)]

n
, . . . ,

[nq(k)]
n

∣∣∣k)→ 1.

This guarantees that the search space ℵ is non-empty.
(ii) A bound of k′, the number of the detected change points is given as

P
(
All local solutions of Qλ(θ ,φ) in ℵ have k′ ≤ 2k|k)→ 1.

For the LASSO penalty, property (iii) holds:
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(iii) Take λ = O(nα) for some 0 < α < 1. If α = 1/2, P0 → C for some C ∈ (0,1). If 1/2 <

α < 1, P0 → 1. If 1/2 ≤ α < 1 and k > 0, Pk → 0. That means the oracle property does not hold
for the LASSO penalty unless k = 0.

Though all of the SCAD, bridge, and unbounded penalties exhibit oracle property, the propo-
sition below suggests that the unbounded penalty allows a wider search space ℵ than other two
penalties.

Proposition 3.1. (i) For the SCAD penalty, SCAD1–SCAD3 are all satisfied if 0 < δ < 1/2,
1/2 + δ < κ < 1, and 1/2 < α < κ − δ are chosen. (ii) For the bridge penalty, BR1–BR3 are
all satisfied if 0 < δ < 1/2, γ /2 + (2 − γ )δ < κ < 1, and γ /2 < α < κ − (2 − γ )δ are chosen.
(iii) For the unbounded penalty, UB1–UB3 are all satisfied if 0 < δ < 1/2, 2δ < κ < 1, and
0 < α < κ − 2δ are chosen.

Proposition 3.1 suggests that for a given 0 < δ < 1/2, the lower bounds for the choice of κ

under SCAD, bridge, and unbounded penalties are 1/2+ δ, γ /2+ (2−γ )δ, and 2δ, respectively.
Such bound is the smallest under the unbounded penalty. That means, the restriction on the search
space is the weakest under the unbounded penalty. For example, if the unbounded penalty is used,
δ = 1/4, κ = 3/4, and α = 1/8 can be chosen to give ℵ = {(θ ,φ) ∈ �n × � : min�(�) > n−1/4

and min‖ξ (�)‖ > n−1/4, � = 1,2, . . . , k′}. If the SCAD penalty is used, δ = 1/4, κ = 7/8, and
α = 9/16 can be selected to give ℵ = {(θ ,φ) ∈ �n × � : min�(�) > n−1/8and min‖ξ (�)‖ >

n−1/4}. From ℵ, we see that any fixed small minimum length of the detected regime and any
fixed small minimum change in the true model can be identified if the sample size n is sufficiently
large.

Theorem 3.1 implies that if the tuning parameters are chosen appropriately, the SCAD, bridge,
and unbounded estimators satisfy

P
(
All local solutions of Qλ(θ ,φ) in ℵ have k′ = 0|k = 0

)→ 1.

For these three penalties, when k = 0, k′ = 0 is the unique solution within ℵ as sample size tends
to infinity. The numerical study in Section 5 shows that when k = 0 the unbounded penalty seems
to achieve the true identification property in the fastest rate as the sample size grows. Note that
for k > 0, the consistency is not guaranteed by Theorem 3.1. However, if the modified bridge
and the modified unbounded penalties are used instead, Theorem 3.2 below further guarantees
the true identification property that all local solutions within a search space exhibit a trinity of
consistent estimations of (i) the number of change points, (ii) their locations, and (iii) their sizes.

Theorem 3.2. For the modified unbounded (modified bridge) penalty and the search space ℵ
satisfying conditions MUB1–MUB3 (MBR1–MBR4), the estimator with the modified unbounded
(modified bridge) penalty satisfies the true identification property:

(i) The oracle property is satisfied,

Pk = P

(
There exists a local solution to Qλ(θ ,φ) with k′ = k

at
[nq(1)]

n
, . . . ,

[nq(k)]
n

∣∣∣k > 0

)
→ 1.
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This guarantees that the search space ℵ is non-empty.
(ii) The estimation of the number of change points is consistent,

P
(
All local solutions of Qλ(θ ,φ) in ℵ have k′ = k|k)→ 1.

(iii) The estimations of the locations and the sizes of change points are consistent. Let β be a
constant in condition MUB1 for modified unbounded penalty (MBR1 for modified bridge penalty)
and ε > 0 be arbitrarily small. For � = 1,2, . . . , k, let q̂(�) be the location of the �th change point
in the local solution, that is, the first time point with a new value of θ̂ . Then∣∣q̂(�) − q(�)

∣∣≤ Op

(
nβ+ε−1) and

∥∥θ̂ (�) − θ
(�)
0

∥∥≤ Op

(
nβ+ε−1)

with probability going to one.

3.2. Estimation bias due to the non-convex penalty terms

In this subsection, we study the bias in the estimation due to the penalty term. To avoid the dif-
ficulty related to the non-uniqueness of the local solution, we only compare the oracle penalized
likelihood estimator and the oracle maximum likelihood estimator defined below.

Consider the oracle penalized likelihood solution (θ̂
(1)

, . . . , θ̂
(k+1)

, φ̂) as if all the locations of
change points are known in advance, which minimizes

−
k+1∑
�=1

[nq(�)]−1∑
i=[nq(�−1)]

logf
(
Xi; θ (�),φ

)+ k∑
�=1

Pλ

(∥∥θ (�) − θ (�+1)
∥∥).

Note that the existence of such oracle penalized likelihood solution is guaranteed by (i) of Theo-
rems 3.1 and 3.2.

Consider the oracle maximum likelihood estimator (θ̂
(1)

λ=0, . . . , θ̂
(k+1)

λ=0 , φ̂λ=0), which mini-
mizes

−
k+1∑
�=1

[nq(�)]−1∑
i=[nq(�−1)]

logf
(
Xi; θ (�),φ

)
.

In the following theorem, we study the order of the bias θ̂
(�) − θ̂

(�)

λ=0 for various penalties.

Theorem 3.3. (i) For the bridge, modified bridge, unbounded, and modified unbounded penal-

ties, θ̂
(�) − θ̂

(�)

λ=0 = Op(λ/n).

(ii) For the SCAD penalty, θ̂
(�) − θ̂

(�)

λ=0 = 0 with probability going to one.

In the regression problems, [8] showed that if the SCAD penalty is used, at least one of the
local solutions is asymptotically equivalent to the oracle maximum likelihood estimator obtained
as if the true subset of relevant covariates is known in advance. Theorem 3.3(ii) suggests that this
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holds in the change-point problems too. For the unbounded and bridge penalties, if λ = O(nα)

is chosen, the bias is Op(1/n1−α). From the assumptions BR1 abd UB1, α > γ/2 has to be
chosen for the bridge penalty and α > 0 has to be chosen for the unbounded penalty. Thus, the
unbounded penalty can be chosen to allow less asymptotic shrinkage, and therefore less bias than
the bridge penalty.

3.3. Beyond the search space ℵ
It is possible that there exist local solutions outside the search space ℵ. In this section, a class
of local solutions with consecutive change pattern is studied. Such kind of local solutions falls
outside ℵ. We show that for sufficiently large sample size n, the bridge, unbounded, modified
bridge, and modified unbounded penalties are all able to rule out such kind of local solutions
while LASSO and SCAD penalty are not. Therefore, bridge, unbounded, modified bridge, and
modified unbounded penalties have tendencies of encouraging sparsity.

Suppose that the true model has one change point (k = 1). Let KL = 0,±1,±2, . . . be a
given constant. Let k′ > 1. The probability of detecting a consecutive change with k′ consecutive
change points is given as

Pk′ = P

(
There exists a local solution to Qλ(θ ,φ)

with k′ > 1 at
[nq(1)] + KL

n
,
[nq(1)] + KL + 1

n
, . . . ,

[nq(1)] + KL + k′ − 1

n

∣∣∣k = 1

)
.

Theorem 3.4. (i) For the LASSO penalty, if λ = O(nα) and 1/2 ≤ α < 1, Pk′ → C for some
constant C < 1.

(ii) For the SCAD penalty, if n−1/2λ → ∞ and n−1λ → 0, Pk′ → 1.
(iii) For the unbounded and bridge penalties, if λ → ∞, Pk′ → 0.
(iv) For the modified unbounded and modified bridge penalties, if λ → ∞, n−1λ∗ → 0, and

λ∗/max{n1/2, λ} → ∞, then, Pk′ → 0.

This implies that a model with a consecutive change with k′ > 1 can be a unique LASSO
solution when k = 1. For the SCAD penalty to allow an oracle solution, it requires n−1/2λ → ∞.
Thus, it cannot rule out the consecutive change when k = 1.

4. Algorithm

The majorization-minimization algorithm in [17] can be used to obtain a local solution to the pe-
nalized likelihood function under all of the LASSO, SCAD, bridge, unbounded, modified bridge,
and modified unbounded penalties discussed in Sections 2 and 3.

Let � =∑n
i=1 logf (Xi, θ i ,φ) and

Aλ =
n−1∑
i=1

P ′
λ(‖θ i − θ i+1‖ + ε)√‖θ i − θ i+1‖2 + ε

vivT
i ,
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where vi = (0, . . . ,0,1,−1,0, . . . ,0)T with ith and i + 1th elements 1 and −1, respectively.
Following [17], a small ε is used to avoid the singularity problem in the computation. Here,
we choose ε = 10−8. Then, the approximated solution is close to the solution of the penalized
likelihood Qλ(θ ,φ) and thus, the trinity of consistent estimation can be achieved. However, it
should be noted that the local solution obtained from such approximation strategy never include
exact zeros. Therefore, a threshold value is needed. In our simulation studies, a change of size
less than 10−5 is regarded as zero.

The updating formula is given by

θ̂new = θ̂old − (−∂2�/∂θ∂θT + Aλ

)−1
(−∂�/∂θ + Aλθ̂old).

All quantities on the right-hand side are evaluated at θ̂old. Note that ∂2�/∂θ∂θT is a diagonal
matrix and Aλ is a banded matrix with bandwidth 1. Thus, this updating step can be carried out
very efficiently with O(n) computational burden by using the sparse matrix technique in [13].
We choose the tuning parameter λ by minimizing the Bayesian information criterion:

BIC(λ) = −2
n∑

i=1

logf (Xi; θ̂ i , φ̂) + e(λ) log(n),

where (θ̂1, . . . , θ̂n, φ̂) is the solution from the Newton–Raphson algorithm and e(λ) is the num-
ber of effective parameters:

e(λ) = tr
((−∂2�/∂θ∂θT + Aλ

)−1(−∂2�/∂θ∂θT
))

.

Alternatively, we may use the Akaike information criterion or cross-validation. But, since cross-
validation is a time-consuming procedure and AIC tends to choose too many change points, we
will not consider them further.

The numerical procedure is summarized in Algorithm 1.

Algorithm 1 Pseudo code for the penalized likelihood estimation
• Initial values
while max |θ̂new − θ̂old| > 10−7 do

• Compute Aλ

• Solve (−∂2�/∂θ∂θT + Aλ

)
δ̂θ = (−∂�/∂θ + Aλθ̂old)

by implementing forward substitution: O(n) for the banded matrix.
• θ̂new = θ̂old − δ̂θ

end while
• Compute BIC
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Figure 3. Plot of four penalty functions: LASSO, SCAD, bridge and unbounded penalty.

5. Numerical studies

In this section, the finite-sample behavior of various change-point detection methods are investi-
gated.

We consider the LASSO, SCAD, bridge, unbounded, modified unbounded, and modified
bridge penalties. A plot of the first four commonly used penalty functions is given in Figure 3.
In the simulation study, the tuning parameters λ in all of the six penalty functions considered are
chosen based on the Bayesian information criterion. Other tuning parameters are chosen accord-
ing to the regularity conditions in Section 2.3. For the bridge and the modified bridge penalty, we
choose γ = 1/2. For both the unbounded penalty and the modified unbounded penalty, τ = 30
and ν = 1 are considered. For the modified bridge and modified unbounded penalty, given the
sample size n, B = 1/n and λ∗ = n0.6 are used.

The performance of the proposed methods are also compared with those of three existing
R-packages of change-point detection, namely changepoint (PELT) by [19], Segmentor3IsBack
(SEG) by [6], and stepR (SMUCE) by [15]. These packages are developed based on the pruned
exact linear time algorithm of [20], the pruned dynamic programming segmentation algorithm of
[28], and the simultaneous multiscale change-point estimator of [10], respectively. The method
of [20] is developed based on the algorithm of [18] by using a pruning step and the computa-
tional cost is linear in n. Such a method leads to a substantially more accurate estimation than
binary segmentation, one of the most widely used change-point search methods. Frick et al. [10]
propose to estimate an unknown step function by minimizing the number of change points over
the acceptance region of a multiscale test. They provide asymptotic confidence sets for the un-
known step function and its change points. In addition, simultaneous multiscale change-point
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estimator is shown to exhibit optimal detection rate of vanishing signals as n → ∞. Rigaill [28]
exploits on a pruned dynamic programming algorithm for detecting multiple change points of an
independent random process and demonstrates that its computational complexity is linear in n.

To use PELT and SEG, penalty on the model complexity has to be specified. For PELT pack-
age, BIC is chosen. For SEG package, oracle penalty of [23], BIC, and modified BIC of [34] can
be considered. Here, the oracle penalty is used. Note that when the same penalty function is used,
PELT and SEG produce the same output for the change-point problem because they optimize a
common objective function. Since BIC penalty is chosen for PELT, the results of SEG with BIC
is not reported here. As we shall see, PELT is slightly better than SEG in various cases, which
would imply that the penalty used by PELT is preferred to that of SEG. The differences between
PELT and SEG are caused by penalty. The initial value for the penalized likelihood estimators is
chosen as the SEG estimator. To measure performance for parameter estimation, mean root mean
squared errors of estimators are considered:√√√√ n∑

i=1

‖θ̂ i − θ i‖2/n.

In the simulation studies, the number of true change points varies from 0 to 4 and the length of
each segment between change points varies from 100 to 300. The jump size at change points is 1.
The simulation results are presented in Tables 1–4. In the first column of each table, rep(x, y)

means that y observations have mean x. In each of the four examples shown below, a replication
of 100 times is considered.

Example 5.1. Case k = 0: X1, . . . ,Xn (n = 300,700) are generated independently from
N(0,1). Table 1 shows the frequency table of the detected number of change points. We see
that the penalized likelihood method with the modified unbounded, the modified bridge and
the bridge select the true model with remarkably high frequency when n = 300 and perfectly
when n = 700. The unbounded also identifies the true model perfectly when n = 700. Under this
setting, the modified unbounded, modified bridge, bridge and SCAD show that the asymptotic
property described in Theorems 3.1 and 3.2 holds well. Overall, the modified unbounded, the
modified bridge and the bridge methods perform the best.

Example 5.2. Case k = 1: X1, . . . ,Xn (n = 200,600) are generated independently from
N(θi,1) with θi = 0 for 1 ≤ i ≤ n/2, and θi = 1 for (n/2 + 1) ≤ i ≤ n. Simulation results in
Table 2 show that SMUCE, the modified unbounded, the modified bridge and the bridge methods
work the best. The influence of tuning parameters γ and τ in the modified bridge and modified
unbounded penalties on the performance of change point detection are examined. The segmen-
tation is relatively insensitive to the choice of the parameters. A typical result is reported in
Figure 4 where γ = 0.3,0.4,0.5,0.6 and τ = 20,30,40,50.

Example 5.3. Case k = 3: X1, . . . ,Xn (n = 400,1200) are generated independently from
N(θi,1) with θi = 0 for 1 ≤ i ≤ n/4, θi = 1 for (n/4 + 1) ≤ i ≤ n/2, θi = 0 for (n/2 + 1) ≤ i ≤
3n/4 and θi = 1 for (3n/4 + 1) ≤ i ≤ n. The simulation results in Table 3 show that the modified
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Table 1. Frequency of the estimated number of change points, and the means of the root mean square error
values for estimators when the true model does not have a change point (Example 5.1)

Simul 1 Method 0 1 2 3 ≥4 mean RMSE(μ̂)

rep(0,300) Lasso 91 5 1 0 3 0.003
SCAD 94 1 3 1 1 0.007
Bridge 99 1 0 0 0 0.004
Unbounded 95 5 0 0 0 0.004
Modified bridge 99 1 0 0 0 0.004
Modified unbounded 98 2 0 0 0 0.004
PELT 96 4 0 0 0 0.005
SEG 94 3 2 0 1 0.007
SMUCE 93 7 0 0 0 0.006

Simul 2 Method 0 1 2 3 ≥4 mean RMSE(μ̂)

rep(0,700) Lasso 94 3 0 0 3 0.002
SCAD 99 1 0 0 0 0.002
Bridge 100 0 0 0 0 0.001
Unbounded 100 0 0 0 0 0.002
Modified bridge 100 0 0 0 0 0.001
Modified unbounded 100 0 0 0 0 0.001
PELT 98 2 0 0 0 0.002
SEG 97 2 1 0 0 0.002
SMUCE 98 2 0 0 0 0.001

unbounded is the best when n = 400 while the SMUCE is the best when n = 1200. Overall, the
modified unbounded is the best.

Example 5.4. Case k = 4: X1, . . . ,Xn (n = 500,1500) are generated independently from
N(θi,1) with θi = 0 for 1 ≤ i ≤ n/5, θi = 1 for (n/5 + 1) ≤ i ≤ 2n/5, θi = 2 for (2n/5 + 1) ≤
i ≤ 3n/5 , θi = 3 for (3n/5 + 1) ≤ i ≤ 4n/5, and θi = 4 for (4n/5 + 1) ≤ i ≤ n. The simulation
results in Table 4 show that when n = 500, the modified unbounded, the modified bridge and
the bridge penalties perform better than all other methods. However, when n = 1500, SMUCE
performs as good as the modified unbounded, the modified bridge and the bridge methods.

Overall, the modified unbounded and the modified bridge methods work the best for detecting
change points in mean. In general, LASSO and SCAD methods tend to select too many change
points, and have larger RMSE(μ̂). SMUCE method works well when n is large. However, it
works poorer than SEG method when k = 4 with small sample. SEG method tends to select too
many change points when k is small. In summary, the modified unbounded and the modified
bridge methods outperform the existing methods in the change-point problems.

In addition to the mean change scenarios, two interesting change point scenarios are consid-
ered: (1) a change in variance and (2) a change in the shape parameter of a gamma distribution.
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Table 2. Frequency of the estimated number of change points, and the means of the root mean square error
values for estimators when the true model has a change point (Example 5.2)

Simul3 Method 0 1 2 3 ≥4 mean RMSE(μ̂)

rep(0,100), rep(1,100) Lasso 0 76 4 2 28 0.037
SCAD 0 84 13 2 1 0.037
Bridge 1 98 1 0 0 0.028
Unbounded 0 95 5 0 0 0.036
Modified bridge 0 99 1 0 0 0.028
Modified unbounded 0 99 1 0 0 0.029
PELT 0 92 8 0 0 0.032
SEG 0 88 9 2 1 0.035
SMUCE 0 99 1 0 0 0.027

Simul4 Method 0 1 2 3 ≥4 mean RMSE(μ̂)

rep(0,300), rep(1,300) Lasso 0 70 2 0 28 0.013
SCAD 0 98 2 0 0 0.009
Bridge 0 100 0 0 0 0.008
Unbounded 0 95 5 0 0 0.015
Modified bridge 0 99 1 0 0 0.009
Modified unbounded 0 99 1 0 0 0.008
PELT 0 97 3 0 0 0.009
SEG 0 96 4 0 0 0.009
SMUCE 0 99 1 0 0 0.008

In this simulation study, we consider the modified unbounded and the modified bridge methods
only because they perform the best in the mean change scenarios and their performances will be
compared to those of the three existing change-point detection methods.

Example 5.5. Change in variance: X1, . . . ,Xn (n = 500) are generated independently from
N(0, σ 2

i ) with σi = 1 for 1 ≤ i ≤ n/2, and σi = 5 for (n/2 + 1) ≤ i ≤ n. Simulation results
in Table 5 show that the modified unbounded method work the best in terms of RMSE.

Note that the oracle penalty of [23] involves the variance of Xi which is supposed to be con-
stant. The generalization of the oracle penalty to the changing variance cases is not trivial. There-
fore, the results of SEG method are omitted here.

Example 5.6. Change in the shape parameter of a gamma distribution: X1, . . . ,Xn (n = 600)

are generated independently from Gamma(αi,1) with αi = 1 for 1 ≤ i ≤ n/2, and αi = 5 for
(n/2 + 1) ≤ i ≤ n. Due to a lack of available packages implementing the dynamic programming
methods for gamma random variables, the PELT, SEG, and SMUCE are run as if the data is from
change-in-mean Gaussian model. Simulation results in Table 6 show that the modified bridge and
modified unbounded methods work the best. For illustration purpose, histograms of the identified
change points for four methods are provided in Figure 5. Compared to PELT, SEG and SMUCE,
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Table 3. Frequency of the estimated number of change points, and the means of the root mean square error
values for estimators when the true model has three change points (Example 5.3)

Simul5 Method 0 1 2 3 4 ≥5 mean RMSE(μ̂)

rep(0,100), rep(1,100) Lasso 0 0 0 96 1 3 0.112
rep(0,100), rep(1,100) SCAD 0 5 2 88 3 2 0.047

Bridge 0 0 0 84 14 2 0.034
Unbounded 0 2 4 93 1 0 0.064
Modified bridge 0 0 0 96 4 0 0.040
Modified unbounded 0 0 0 97 3 0 0.034
PELT 0 0 0 91 9 0 0.034
SEG 0 0 0 84 14 2 0.035
SMUCE 0 0 7 93 0 0 0.039

Simul6 Method 0 1 2 3 4 ≥5 mean RMSE(μ̂)

rep(0,300), rep(1,300) Lasso 0 0 0 92 4 4 0.039
rep(0,300), rep(1,300) SCAD 0 0 0 88 10 2 0.013

Bridge 0 0 0 95 5 0 0.011
Unbounded 0 0 0 95 5 0 0.012
Modified bridge 0 0 0 98 2 0 0.014
Modified unbounded 0 0 0 99 1 0 0.011
PELT 0 0 0 98 2 0 0.010
SEG 0 0 0 95 5 0 0.011
SMUCE 0 0 0 100 0 0 0.011

the modified unbounded method shows a much sharper peak, which implies its superiority in
detecting the true change point.

It should be noted that the “at most” O(n2) computational complexity of various dynamic pro-
gramming methods, including PELT, SEG, and SMUCE can be achieved only if the maximum
log-likelihood can be updated in O(1) time when a new observation is included. This is true for
the Gaussian random variables in both change-in-mean and change-in-variance cases. However,
the log-likelihood of gamma random variables cannot be updated in deterministic O(1) time
because the corresponding maximum likelihood estimation problem does not have analytic so-
lution. Therefore, the deterministic O(n2) computational burden is not guaranteed. On the other
hand, the proposed algorithm presented in Section 4 is still iterative O(n) complexity.

In the following example, the computational speeds of different methods are compared. To
avoid difficulties in comparing algorithms developed from different programming languages,
computational time is normalized so that the times of running 100 replications with n = 1400 are
unity for all methods under comparison.

Example 5.7. Consider the change-point model with k = 1 in Example 5.2. In the simulation,
sample sizes are chosen as n = 1400 + 600 ∗ (i − 1) for i = 1, . . . ,5. Here, in addition to PELT,
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Table 4. Frequency of the estimated number of change points, and the means of the root mean square error
values for estimators when the true model has four change points (Example 5.4)

Simul7 Method 1 2 3 4 ≥5 mean RMSE(μ̂)

rep(0,100), rep(1,100) Lasso 0 0 0 41 59 0.050
rep(2,100), rep(3,100) SCAD 0 0 0 97 3 0.034
rep(4,100) Bridge 0 0 1 98 1 0.034

Unbounded 0 0 0 95 5 0.062
Modified bridge 0 0 0 99 1 0.034
Modified unbounded 0 0 0 99 1 0.034
PELT 0 0 0 88 12 0.035
SEG 0 0 0 95 5 0.034
SMUCE 0 0 24 76 0 0.061

Simul8 Method 1 2 3 4 ≥5 mean RMSE(μ̂)

rep(0,300), rep(1,300) Lasso 0 0 0 17 83 0.018
rep(2,300), rep(3,300) SCAD 0 0 0 98 2 0.010
rep(4,300) Bridge 0 0 0 100 0 0.010

Unbounded 0 0 0 95 5 0.030
Modified bridge 0 0 0 100 0 0.010
Modified unbounded 0 0 0 100 0 0.010
PELT 0 0 0 97 3 0.012
SEG 0 0 0 97 3 0.011
SMUCE 0 0 0 100 0 0.010

SEG, SMUCE and MUB, [25] FDR control method (FDRSeg) is considered in our comparative
study. The R-package FDRSeg by [26] is used and its current version employs a computationally
intensive Monte-Carlo step to obtain the null distribution of the multiscale statistic proposed in
their paper. In this study, 30 repetitions are used in the Monte-Carlo step. For each of the above
five methods and five sample sizes, the simulation is repeated for 100 times. The normalized
computational times are obtained by dividing the average run-times by the average run-time for
n = 1400 so that the normalized times are unit-free. Figure 6 shows a plot of the normalized time
against the sample size n. SEG shows the slowest increasing rate and the proposed method is
comparable to PELT, SMUCE and FDRSeg.

In the above example, a Gaussian case that favors SEG, PELT and SMUCE is considered.
However, it is not clear how to extend these methods to general non-Gaussian models without
increasing computational complexity, which is an interesting future research.

6. Application to copy number variations

In this section, we apply the proposed method to the copy number variation for the dataset
GM13330 of Corriel human tumor cell lines in [30]. After filtering out missing data, the dataset
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Figure 4. Change point detection (Case k = 1) using modified bridge and modified unbounded penalties
under different values of γ (upper panel) and τ (lower panel). The solid lines denote the estimated mean
parameters θi .

consists of 2077 log2-intensity ratio measurements of copy number variation on the autosomal
chromosomes 1-22 and X chromosome obtained from microarray-based comparative genomic
hybridization of tumor cells and reference cells. Let Xi = θi + εi , i = 1,2, . . . ,2077 be the log2-
intensity ratio measurements. Here, θi is the mean function and εi are independent and identically
distributed normal random variables that account for measurement errors. As in [16] and [32],
assume that θi is a piecewise constant function. The change points of Xi can be interpreted as

Table 5. Frequency of the estimated number of change points for variance, and the means of the root mean
square error values for estimators when the true model has a change point in variance (Example 5.5)

Simul9 Method 0 1 2 3 ≥4 mean RMSE(σ̂ 2)

rep(0,250), rep(1,250) Modified bridge 0 95 4 1 0 3.162
Modified unbounded 0 96 3 1 0 2.873
PELT 0 96 2 2 0 4.278
SMUCE 0 96 4 0 0 3.271
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Table 6. Frequency of the estimated number of change points for the shape parameter of gamma distribu-
tion, and the means of the root mean square error values for estimators when the true model has a change
point in the shape parameter (Example 5.6)

Simul10 Method 0 1 2 3 ≥4 mean RMSE(μ̂)

rep(1,300), rep(5,300) Modified bridge 0 98 2 0 0 0.021
Modified unbounded 0 98 2 0 0 0.019
PELT 0 0 0 0 100 1.316
SEG 0 72 4 15 9 0.113
SMUCE 0 2 1 1 96 0.434

the start and end positions of the mutated regions, which is informative in medical genetics and
cancer diagnosis [30].

Figure 7 shows the plots of Xi overlaid with the estimated varying coefficient θ̂i by us-
ing the (a) LASSO, (b) modified unbounded, (c) modified bridge methods, (d) PELT, (e) SEG
and (f) SMUCE, respectively. The modified unbounded penalty method detects only 4 change
points at i = 82,129,429, and 446. The first two and the last two correspond to chromosome 1
(156 276,240 000) and chromosome 4 (173 943,184 000), respectively, where the numbers in the
parentheses are the positions in the chromosomes. The sizes of the change points obtained by the
modified unbounded penalty are 0.493,−0.563,−0.779 and 0.827, respectively. The modified

Figure 5. Histograms of the identified change points for the modified unbounded penalty, PELT, SMUCE,
and SEG.
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Figure 6. Comparison of (normalized) computational times for five change-point detection methods: PELT,
SEG, SMUCE, MUB and FDRSeg.

Figure 7. Plots of log2-intensity ratios (black circles) from an array CGH experiment [30] overlaid with
detected change points (solid lines) by (a) LASSO, (b) the modified unbounded penalty, (c) the modified
bridge penalty, (d) PELT, (e) SEG and (f) SMUCE.



638 C.T. Ng, W. Lee and Y. Lee

bridge penalty method gives very similar results. It detects 4 change points at the same 4 points.
The sizes of the change points by the modified bridge method are 0.482,−0.554,−0.759 and
0.807 in order, so the shrinkages are heavier than those of the modified unbounded penalty. On the
other hand, the LASSO method detects more change points, with several consecutive changes,
for examples, from i = 155 to 160, from i = 296 to 301 and from i = 407 to 414. The greatest
distance between two adjacent change points within a consecutive change is 8. Compared to the
modified unbounded and modified bridge methods, the LASSO seems to split interesting regimes
into too many pieces. It is also interesting to observe that the LASSO tends to over-smooth the
mean function comparing to the modified bridge penalty and the modified unbounded penalty
counterparts. For example, the difference in the means of the first two regimes are smaller for
the LASSO method. This phenomenon can be explained intuitively below. Compare two time-
varying coefficients θa and θb that share the same change points and differ in the components
of only one of the regimes. First, the difference in the log likelihoods depends on the length of
this regime. If this regime is short, it is possible that the difference in the log likelihoods is dom-
inated by the difference in the penalty terms. For example, if both the size of change point and
the length of the regime are O(1), the penalty always dominates the log likelihoods if λ → ∞
is chosen. Then, we can see the so-called over-smoothing. For the modified bridge and modified
unbounded penalties, P ′

λ(z) is much smaller than λ if z is far away from zero. This makes the
LASSO penalty different from other penalties.

PELT detects no change point while SMUCE gives too many change points. SEG gives 4
change points at the same locations as those of the modified unbounded penalty method, but the
sizes of the change points are 0.500,−0.568,−0.790 and 0.837, which are greater than those of
the modified unbounded penalty method.

7. Concluding remarks

The oracle property means that there exists a local solution that is consistent with the true model.
However, it cannot guarantee that the local solution obtained numerically is the consistent one.
In the change-point problems, we show that by combining the non-convex unbounded (bridge)
penalty with the convex LASSO penalty, the true identification property that all local solutions
are consistent can be achieved within a search space.

Our current theory is very general so it can be used to detect the changes in any kinds of pa-
rameters in sequence of independent random vectors, for example, the change in variance and the
change in the regression coefficients. For the regression problem, it would be useful to impose
the extra assumptions that the covariates are finite-dimensional, random, independent, and identi-
cally distributed. These assumptions are used to rule out the possibility of time-varying nuisance
parameters. Our current theory does not allow time-varying nuisance parameters. However, the
detailed theory and algorithm should be investigated thoroughly in the future research.

Appendix A: Restricted local solution

To study the theoretical properties of the local minimums of Qλ(θ ,φ), we examine the possibility
of each of the 2n−1 configurations to give a local solution to the penalized likelihood function.
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For a given configuration, we call a local minimum point of Qλ(θ ,φ) under this configuration,
if exists a restricted local solution. Below, the precise definitions of restricted local solutions are
given. The conditions for a restricted local solution to be a local solution are provided in the
following propositions. In Appendix B, we further show that such conditions hold only if the
configuration is consistent with the true model.

Definition A.1. Restricted local solution without change point: Consider the function

Q∗
λ

(
θ (1),φ

)= −
n∑

i=1

logf
(
Xi; θ (1),φ

)
.

Let (θ̂
(1)

, φ̂) be the local minimum of Q∗
λ(θ

(1),φ). The restricted local solution corresponding to

the above negative likelihood function is defined as θ̂1 = · · · = θ̂n = θ̂
(1)

.

Definition A.2. Restricted local solution with k′ change points: Let 1 = t (0) < t(1) < t(2) < · · · <
t(k

′) < t(k
′+1) = n + 1 be given indexes. Consider the function

Q∗
λ

(
θ (1), . . . , θ (k′+1),φ

)
= −

k′+1∑
�=1

t (�)−1∑
i=t (�−1)

logf
(
Xi; θ (�),φ

)+ k′∑
�=1

Pλ

(∥∥ξ (�)
∥∥).

Let (θ̂
(1)

, . . . , θ̂
(k′+1)

, φ̂) be the local solution with θ̂
(�) �= θ̂

(�+1)
for all � = 1,2, . . . , k′. The re-

stricted local solution corresponding to the above function is defined as θ̂ t (�−1) = · · · = θ̂ t (�)−1 =
θ̂

(�)
for � = 1,2, . . . , k′ + 1.

Definition A.3. Restricted local solution with consecutive change: Let 1 �= t (1) ≤ n be a given
index. The restricted local solution with k′ change points at t (1), t (1) + 1, . . . , t (1) + k′ − 1 is
called a restricted local solution with consecutive change.

It should be noted that a local solution to Qλ(θ ,φ) is a restricted local solution while a re-
stricted local solution is not necessarily a local solution to Qλ(θ ,φ). The conditions for the local
minimality of restricted local solution are given in the following proposition.

Proposition A.1. The restricted local solution without change point (see Definition A.1) is a
local minimum of Qλ(θ ,φ) if and only if maxi ‖S(1)

i ‖ < P ′
λ(0+), where S(1)

0 = 0 and S(1)
i =

S(1)
i−1 − ∇θ logf (Xi; θ̂ (1)

, φ̂) for i = 1,2, . . . , n − 1.
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Proof. Let a = (aT
1 , . . . ,aT

n ,bT )T be a unit vector. To establish the sufficiency, consider the
directional derivative of Qλ (as a function of ξ1, ξ2, . . . , ξn−1, θ

(1),φ) along the direction a,

DaQλ

(
0, . . . ,0, θ̂

(1)
, φ̂
)

= lim
ε→0

bT ∇φQλ

(
εa1, . . . , εan−1, θ̂

(1) + εan, φ̂ + εb
)

+
n∑

i=1

aT
i ∇iQλ

(
εa1, . . . , εan−1, θ̂

(1) + εan, φ̂ + εb
)

= bT ∇φL
(
0, . . . ,0, θ̂

(1)
, φ̂
)+ n∑

i=1

aT
i ∇iL

(
0, . . . ,0, θ̂

(1)
, φ̂
)+P ′

λ(0+)

n−1∑
i=1

‖ai‖

=
n−1∑
i=1

aT
i ∇iL

(
0, . . . ,0, θ̂

(1)
, φ̂
)+P ′

λ(0+)

n−1∑
i=1

‖ai‖

≥ −
n−1∑
i=1

‖ai‖ · ∥∥∇iL
(
0, . . . ,0, θ̂

(1)
, φ̂
)∥∥+P ′

λ(0+)

n−1∑
i=1

‖ai‖.

Here, we have used the fact that

∇φL
(
0, . . . ,0, θ̂

(1)
, φ̂
)= ∇nL

(
0, . . . ,0, θ̂

(1)
, φ̂
)= 0.

Therefore, ∥∥∇iL
(
0, . . . ,0, θ̂

(1)
, φ̂
)∥∥< P ′

λ(0+) for all i = 1,2, . . . , n − 1

is sufficient for the local minimality. Necessity is obvious. �

The general results of k′ > 0 are stated without proof as follows.

Proposition A.2. Let 1 ≤ t (1) < t(2) < · · · < t(k
′) < t(k

′+1) = n + 1 be given indexes. Suppose

that (θ̂
(1)

, . . . , θ̂
(k′+1)

, φ̂) is a differentiable local solution of the function Q∗
λ(θ

(1), . . . , θ (k′+1),

φ) (see Definition A.2). Then, the corresponding restricted local solution is a local minimum of
Qλ(θ ,φ) if and only if

(i) the function

Q∗
λ

(
θ (1), . . . , θ (k′+1),φ

)= −
k′+1∑
�=1

t (�)−1∑
i=t (�−1)

logf
(
Xi; θ (�),φ

)+ k′∑
�=1

Pλ

(∥∥ξ (�)
∥∥)

admits a local minimum (θ̂
(1)

, . . . , θ̂
(k′+1)

, φ̂) fulfilling θ̂
(�) �= θ̂

(�+1)
for � = 1,2, . . . , k′,
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(ii) maxi=1,...,t (�)−t (�−1)−1 ‖S�
i ‖ <P ′

λ(0+) for � = 1,2, . . . , k′ + 1, where

S(1)
0 = 0, S(2)

0 = −P ′
λ

(∥∥ξ̂ (1)∥∥) · j(1), . . . , S(k′+1)
0 = −P ′

λ

(∥∥ξ̂ (k′)∥∥) · ĵ(k
′),

and

S(�)
i = S(�)

i−1 − ∇θ logf
(
Xt(�)+i−1; θ̂

(�)
, φ̂
)
.

Here ĵ(�) = ξ̂
(�)

/‖ξ̂ (�)‖ for � = 1,2, . . . , k′.
If (i) holds, the local minimum point of Qλ(θ ,φ), (θ̂

(1)
, . . . , θ̂

(k′+1)
, φ̂) satisfies the following

first-order conditions:

−
t (1)−1∑
i=1

∇θ logf
(
Xi; θ̂ (1)

, φ̂
)= −P ′

λ

(∥∥ξ̂ (1)∥∥) · ĵ(1),

−
t (2)−1∑
i=t (1)

∇θ i
logf

(
Xi; θ̂ (2)

,φ
)= −[P ′

λ

(∥∥ξ̂ (2)∥∥) · ĵ(2) −P ′
λ

(∥∥ξ̂ (1)∥∥) · ĵ(1)
]
,

...

−
t (k

′)−1∑
i=t (k

′−1)

∇θ logf
(
Xi; θ̂ (k′)

, φ̂
)= −[P ′

λ

(∥∥ξ̂ (k′)∥∥) · ĵ(k
′) −P ′

λ

(∥∥ξ̂ (k′−1)∥∥) · ĵ(k
′−1)
]
,

−
n∑

i=t (k
′)
∇θ logf

(
Xi; θ̂ (k′+1))=P ′

λ

(∥∥ξ̂ (k′)∥∥) · ĵ(k
′),

−
t (1)−1∑
i=1

∇φ logf
(
Xi; θ̂ (1)

, φ̂
)− · · · −

n∑
i=t (k

′)
∇φ logf

(
Xi; θ̂ (k′+1)

, φ̂
)= 0.

Remark A.1. Proposition A.2 requires that (θ̂
(1)

, . . . , θ̂
(k′+1)

, φ̂) is a differentiable point of
Q∗

λ(θ
(1), . . . , θ (k′+1),φ). For the modified unbounded (modified bridge) penalty, the search space

ℵ does not include any solutions with a change point of size B . Therefore, Proposition A.2 is
applicable within ℵ. Going beyond ℵ, extra arguments are needed to rule out the possibility of
non-differentiability in the proof of Theorem 3.4.
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Appendix B: Proofs of the main theorems

B.1. Conventions

Throughout this paper, the following notations are used. The notations for the true model are
as follows. Let k be the true number of change points. The true values of the parameters are
θ0

i = θ
(�)
0 for i = [nq(�−1)], [nq(�−1)] + 1, . . . , [nq(�)] − 1, � = 1,2, . . . , k + 1. Define ξ

(�)
0 =

θ
(�)
0 − θ

(�+1)
0 for � = 1,2, . . . , k. The notations for the estimated model are as follows. Let k′ + 1

be the number of non-zero ξ̂ i in vector ξ̂ . The parameters are θ̂ i = θ̂
(�)

for i = t (�−1), t (�−1) +
1, . . . , t (�) − 1, � = 1,2, . . . , k′ + 1. Let n(�) = t (�) − t (�−1), for � = 1,2, . . . , k′ + 1. Define

ξ̂
(�) = θ̂

(�) − θ̂
(�+1)

for � = 1,2, . . . , k′. To describe the regimes in vector ξ̂ that contain at least
one true change point, the following conventions are needed.

Convention B.1. For any two sequences xn and yn, that xn dominates yn or xn � yn means
limn→∞ P(|yn/xn| > M) → 0 for any constants M > 0.

Convention B.2. Suppose that there are k� true change points in the estimated regime �, where
� = 1,2, . . . , k′ + 1. Let n

(�)
1 , n

(�)
2 , . . . , n

(�)
k�+1 be the lengths of the sub-regimes split by such k�

true change points, E
(�)
1 , . . . ,E

(�)

k�+1
and Var(�)1 , . . . ,E

(�)

k�+1
be the expectations and variances

taken under the true parameter value of (θ ,φ) in the sub-regimes of estimated regime �. Define

(θ̄
(1)

, θ̄
(2)

, . . . , θ̄
(k′+1)

) and φ̄ using equations

n
(�)
1 E

(�)
1 ∇θ logf

(
X; θ̄ (�)

, φ̄
)+ · · · + n

(�)

k�+1
E

(�)

k�+1
∇θ logf

(
X; θ̄ (�)

, φ̄
) = 0

for all � = 1,2, . . . , k′ + 1 and

k′+1∑
�=1

{
n

(�)
1 E

(�)
1 ∇θ logf

(
X; θ̄ (�)

, φ̄
)+ · · · + n

(�)

k�+1
E

(�)

k�+1
∇θ logf

(
X; θ̄ (�)

, φ̄
)} = 0.

Define

H̄(�) = n
(�)
1

n(�)
Var(�)1 ∇ logf

(
X; θ̄ (�)

, φ̄
)+ · · · + n

(�)
k�+1

n(�)
Var(�)k�+1 ∇ logf

(
X; θ̄ (�)

, φ̄
)
.

Convention B.3. Define the following types of regimes in the estimated mean function θ̂ i accord-
ing to the number of true change point(s) included:

1. N: no true change point,
2. R: one change point, the length of the right portion dominates that of the left,
3. L: one change point, the length of the left portion dominates that of the right,
4. M: two change points, the length of the middle portion dominates both the left and the right.
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Remark B.1. Note that Lemma B.4 guarantees that as n → ∞, with probability goes to one all
regimes in all local solutions belong to one of the above-mentioned four types of regimes.

Convention B.4. For the unbounded penalty, if ‖ξ‖ → 0, the following approximations are used
throughout the proof,

Pλ

(‖ξ‖) ≈ λτ−1(τ − 2) log‖ξ‖,
∇Pλ

(‖ξ‖) ≈ λτ−1(τ − 2)‖ξ‖−1j,

∇2Pλ

(‖ξ‖) ≈ λτ−1(τ − 2)‖ξ‖−2(I − 2jjT
)
,

where j = ξ/‖ξ‖.

B.2. Proofs

Proof of Theorem 3.1. Results (i) and (iii) follow immediately from Lemmas B.5 and B.6. Let
a be the number of Type N regimes and b be the number of non-Type N regimes. To prove
(ii), it suffices to show that Type N regimes (see Convention B.3) cannot be neighbors of each
other. If this is so, a ≤ b + 1. Since a non-Type N regime must contains at least one true change
point, b ≤ k. Then, k′ = a + b − 1 ≤ 2k. By contradiction suppose that regimes � and � + 1 are
Type N. Let δ and κ be chosen as in conditions SCAD1–SCAD3 for SCAD penalty, UB1–UB3
for unbounded penalty, and BR1–BR3 for bridge penalty. From Lemma B.1,∥∥ξ̂ (�)∥∥= ∥∥θ̂ (�) − θ̂

(�+1)∥∥<
∥∥θ̂ (�) − θ̄

(�)∥∥+ ∥∥θ̂ (�+1) − θ̄
(�+1)∥∥≤ 2Cn−δ.

Here, we have used the fact that θ̄
(�) = θ̄

(�+1)
as both regimes � and � + 1 are type N regimes.

If constant C in Lemma B.1 is chosen to be less than 1/2, condition SCAD3 for SCAD penalty
(UB3 for unbounded penalty, BR3 for bridge penalty) is violated. �

Proof of Theorem 3.2(i). The result follows from Lemmas B.5 and B.6. �

Proof of Theorem 3.2(ii). Consider the four types of regimes described in Convention B.3.
Lemma B.4 guarantees with probability goes to one that all regimes fall into these four types. To
complete the proof, it suffices to establish (a) adjacent to Type R or N regime must be regime
of Type R or M on the right, (b) adjacent to Type L or N regime must be regime of Type L or
M on the left, (c) adjacent to Type L or M regime must be regime of Type L or N on the right,
(d) adjacent to Type R or M regime must be regime of Type R or N on the left. These are for
ensuring that each detected change point has one and only one true change point in its proximity.

Results (c) and (d) are trivial as true change points must be separated by a distance of at
least Op(n). The proof of (b) is symmetric to that of (a). To prove (a), we need to rule out the
possibilities of Type L and N regimes on the right using Lemma B.7 for modified unbounded
penalty and Lemma B.8 for modified bridge penalty.



644 C.T. Ng, W. Lee and Y. Lee

First, �1 and �2 required in Lemmas B.7 and B.8 are chosen. Let regime �1 be either a Type R
regime or a Type N next to neither Type N nor Type R regime on the right. If the closest non-Type
N regime on the right of regime � is of Type R, M, or none, set �2 as the last of these consecutive
Type N regimes, otherwise, set �2 as the Type L regime.

The above-mentioned choice of �1 and �2 guarantees that the dominating portions of the
regime �1 and the adjacent regime on the left (regime �2 and the adjacent regime on the right)
if exists are from two different true regimes. This guarantees that conditions (i), (iii), and (iv) in
Lemmas B.7 and B.8 hold. For condition (ii), consider the case where regime �1 is of Type R,
regime �2 is of Type N, and �2 = k′ +1. Other cases can be handled in the same manner. First, we

have θ̄
(k′) − θ̄

(k′+1) = 0. Second, θ̄
(�1) − θ̄

(�1+1) = Op(n
(�1)
1 /n(�1)). For the modified unbounded

penalty, Lemma B.4, n
(�1)
1 (the dominated portion in regime �1) is ≤ Op(λ∗). Using condition

MUB2, that is 2β − α < κ , we have n
(�1)
1 /n(�1) is dominated by (λ/n(�1))1/2. Similarly, for the

modified bridge penalty, n
(�1)
1 /n(�1) is dominated by (λ/n(�1))1/(2−γ ). �

Proof of Theorem 3.2(iii). That |q̂(�) − q(�)| ≤ λ∗/n ≤ Op(nβ+ε−1) is a direct consequence of
Lemma B.4. Consider

θ̂
(�) − θ

(�)
0 = θ̂

(�) − θ̄
(�) + θ̄

(�) − θ
(�)
0 .

From the consistency of k′ in Theorem 3.2(ii) and the consistency of q̂(�), all regimes in θ̂ must
have lengths Op(n). Then, Lemma B.2 together with standard arguments based on the central

limit theorem suggest that ‖θ̂ (�) − θ̄
(�)‖ ≤ Op(nmax{α,1/2}−1) which is ≤ Op(nβ+ε−1) under the

condition MUB1 (MBR1). In addition, using |q̂(�) − q(�)| < Op(nβ+ε) and standard arguments

based on Taylor expansion, ‖θ̄ (�) − θ
(�)
0 ‖ ≤ Op(nβ+ε−1). �

Proof of Theorem 3.3. It is a direct consequence of Lemma B.2. �

Proof of Theorem 3.4. Consider Definition A.3 and the first-order conditions described in
Proposition A.2:

−
t (1)−1∑
i=1

∇θ logf
(
Xi; θ̂ (1)

, φ̂
)= −P ′

λ

(∥∥ξ̂ (1)∥∥) · ĵ(1),

−∇θ logf
(
Xt(1); θ̂ (2)

, φ̂
)= −[P ′

λ

(∥∥ξ̂ (2)∥∥) · ĵ(2) −P ′
λ

(∥∥ξ̂ (1)∥∥) · ĵ(1)
]
,

...
(B.1)

−∇θ logf
(
Xt(1)+k′−2; θ̂

(k′)
, φ̂
)= −[P ′

λ

(∥∥ξ̂ (k′)∥∥) · ĵ(k
′) −P ′

λ

(∥∥ξ̂ (k′−1)∥∥) · ĵ(k−1)
]
,

−
n∑

i=t (1)+k′−1

∇θ logf
(
Xi; θ̂ (k′+1)

, φ̂
)=P ′

λ

(∥∥ξ̂ (k′)∥∥) · ĵ(k
′),

−
t (1)−1∑
i=1

∇φ logf
(
Xi; θ̂ (1)

, φ̂
)− · · · −

n∑
i=t (1)+k′−1

∇φ logf
(
Xi; θ̂ (k+1)

, φ̂
)= 0.
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Let � be the event that condition (i) in Proposition A.2 holds. To obtain P(�), we consider

approximations to ĵ(1), ĵ(2), . . . , ĵ(k
′), θ̂

(1)
, . . . , θ̂

(k′+1)
, and φ̂. Below, we discuss P(�) under

different penalties. For the modified unbounded (modified bridge) penalty, further arguments are

provided to rule out the possibility of ‖θ̂ (�)‖ = B for some � = 1,2, . . . , k′ (see Remark A.1).

LASSO penalty: Suppose that condition (i) in Proposition A.2 holds. That means, the equation

(B.1) admits a solution. First, from the first and the k′th equations in (B.1), θ̂
(1)

and θ̂
(k′+1)

consistently estimates θ
(1)
0 and θ

(2)
0 since P ′

λ(·) is constant λ and n−1λ → 0. This can be shown
using standard arguments based on Taylor expansion are applicable. Then, from the second to
(k′ − 1)th equations in (B.1),

ĵ(1) ≈ ĵ(2) ≈ · · · ≈ ĵ(k
′) ≈ θ̂

(1) − θ̂
(k′+1)

‖θ̂ (1) − θ̂
(k′+1)‖

≈ θ
(1)
0 − θ

(2)
0

‖θ (1)
0 − θ

(2)
0 ‖

.

Otherwise, the right-hand sides diverge while the left-hand sides are finite. Here, we claim that

λĵ(k
′+1) − λĵ(1) is nearly perpendicular to ĵ(1), that is θ

(1)
0 − θ

(k′+1)
0 approximately. To see this,

consider λĵ(k
′+1) − λĵ(1) as the base of an isosceles triangle formed by λĵ(1) and λĵ(k

′+1). If
ĵ(1) ≈ ĵ(k

′+1), the angle between λĵ(1) and λĵ(k
′+1) is small. Therefore, the base angle is close

to a right angle. Let θ(X) be a point lying on the line segment from θ
(1)
0 to θ

(2)
0 such that

∇ logf (X; θ(X),φ0) is perpendicular to θ
(1)
0 −θ

(2)
0 . Asymptotically, we have θ̂

(k′+1) ≈ θ(Xt(1) ).

Consider θ̂
(1) ≈ θ

(1)
0 , θ̂

(k′+1) ≈ θ
(2)
0 , and φ̂ ≈ φ0. Event � can be approximated as

θ
(1)
0 < θ(Xt(1) ) < · · · < θ(Xt(1)+k′−1) < θ

(k′+1)
0 .

It can be seen that P(�) converges to neither zero nor one.
SCAD penalty: Under the regularity condition (R3), the functions

logf
(
Xt(1); θ (2),φ

)
, . . . , logf

(
Xt(1)+k′−2; θ (k′),φ

)
must have maximums fulfilling the following equations

∇ logf
(
Xt(1); θ̂ (2)

, φ̂
)= · · · = ∇ logf

(
Xt(1)+k′−2; θ̂

(k′)
, φ̂
)= 0.

Since k′ is finite, the quantities ξ̂
(1)

, ξ̂
(2)

, . . . , ξ̂
(k′)

are all Op(1). Consequently,

P ′
λ

(∥∥ξ̂ (1)∥∥)=P ′
λ

(∥∥ξ̂ (2)∥∥)= · · · =P ′
λ

(∥∥ξ̂ (k′)∥∥)= 0.

Such quantities ξ̂
(1)

, ξ̂
(2)

, . . . , ξ̂
(k′)

fulfills equation (B.1). Therefore, P(�) → 1.
Bridge and unbounded penalties: If � holds, the second to (k′ − 1)th equations in (B.1) im-

plies both

P ′
λ

(∥∥ξ̂ (1)∥∥)≈P ′
λ

(∥∥ξ̂ (2)∥∥)≈ · · · ≈ P ′
λ

(∥∥ξ̂ (k′)∥∥)
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and

ĵ(1) ≈ ĵ(2) ≈ · · · ≈ ĵ(k
′).

Otherwise, the right-hand sides diverge while the left-hand sides are finite. If θ̂
(2)

bisects the line

segment joining θ̂
(1)

and θ̂
(3)

, although the stationary point may exist, it is not a local minimum.
To see this, consider the second derivatives of Q∗

λ with respect to θ (2), which can be approximated
as

−∇(2)
θθ logf

(
Xt(1); θ̂ (2)

, φ̂
)+ λτ−1(τ − 2)

∥∥ξ̂ (2)∥∥−2[
I − 2ĵ(2)

(
ĵ(2)
)T ]

for the unbounded penalty and

−∇(2)
θθ logf

(
Xt(1); θ̂ (2)

, φ̂
)+ λγ

∥∥ξ̂ (2)∥∥γ−2[
I − (2 − γ )ĵ(2)

(
ĵ(2)
)T ]

for bridge, see Convention B.4. Left multiplying by (ĵ(2))T and right multiplying by ĵ(2), the
penalty-related part which is negative dominates. The second derivative is no longer positive
definite.

Modified bridge and modified unbounded penalties: Consider the following four exhaustive
and mutually exclusive cases.

(i) ‖ξ̂ (�)‖ ≤ B for all � = 1,2, . . . , k′. Under the assumption that k′ is finite, θ̂ i , i =
1,2, . . . , n differ each other only by some op(1) quantities. Then, it can be checked using stan-
dard arguments based on Taylor expansion that all θ̂ i , i = 1,2, . . . , n have at least Op(1) dis-

tance from either θ
(1)
0 or θ

(2)
0 . Then, maxi=1,...,t (1)−1 ‖S(1)

i ‖ = Op(n) cannot be bounded by λ∗.
Indeed, this is necessary due to the local minimality of Qλ(θ ,φ) along the directions of θ i for
i = 1, . . . , t (1) − 1.

(ii) ‖ξ̂ (�)‖ > B for at least one � = 1,2, . . . , k′ and ‖ξ̂ (�)‖ = B for at least one � =
1,2, . . . , k′. Without loss of generality assume that ‖ξ̂ (1)‖ = B and ‖ξ̂ (2)‖ > B . Then, we have
the first-order condition

−
t (1)−1∑
i=1

∇θ logf
(
Xi; θ̂ (1)

, φ̂
)− ∇θ logf

(
Xt(1); θ̂ (2)

, φ̂
) = −P ′

λ

(∥∥ξ̂ (2)∥∥) · ĵ(2). (B.2)

Standard arguments show that θ̂
(1)

consistently estimates θ
(1)
0 . In addition,

max
i=1,...,t (1)−1

∥∥S(1)
i

∥∥= Op

(
nmax{1/2,α})= op

(
λ∗).

However, the local minimality of Qλ(θ ,φ) along the directions of θ t (1) requires that

λ∗ <
∣∣S(1)

t(1)−1
− ∇θ logf

(
Xt(1); θ̂ (2)

, φ̂
)∣∣< P ′

λ(B).

Here, Pλ(·) is the unbounded (bridge) penalty function. This is impossible because

∇θ logf (Xt(1); θ̂ (2)
, φ̂) is Op(1) quantity but λ∗ � λ from Condition MUB1 (MBR1).
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(iii) ‖ξ̂ (�)‖ > B for one of � = 1,2, . . . , k′ and ‖ξ̂ (�)‖ �= B for all � = 1,2, . . . , k′. Without

loss of generality, assume that ‖ξ̂ (1)‖ > B . Then, P ′
λ(‖ξ̂

(k′)‖) = λ. This suggests that θ̂
(k′+1)

consistently estimates θ
(2)
0 . Consider the sum of the first two equations in (B.1),

−
t (1)−1∑
i=1

∇θ logf
(
Xi; θ̂ (1)

, φ̂
)− ∇θ logf

(
Xt(1); θ̂ (2)

, φ̂
)= −P ′

λ

(∥∥ξ̂ (2)∥∥) · ĵ(2).

Similarly, θ̂
(1)

consistently estimates θ
(1)
0 . However, this is impossible because the left-hand-side

of the second equation in (B.1) is Op(1) while the right-hand side is Op(λ∗).
(iv) ‖ξ̂ (�)‖ > B for two or more � = 1,2, . . . , k′ and ‖ξ̂ (�)‖ �= B for all � = 1,2, . . . , k′. With-

out loss of generality assume that ‖ξ̂ (�)‖ > B for � = 1 and � = k′. Adding up the second to
(k′ − 1)th equations in (B.1),

−
k′∑

�=2

∇θ logf
(
Xt(1)+�−2; θ̂

(�)
, φ̂
)= −[P ′

λ

(∥∥ξ̂ (k′)∥∥) · ĵ(k
′) −P ′

λ

(∥∥ξ̂ (1)∥∥) · ĵ(1)
]
.

Note that the left-hand side is Op(1). Then, the same arguments as in the proofs of bridge and
unbounded penalties are then applicable to derive contradiction.

�

B.3. Technical lemmas

In this subsection, the regularity conditions R1–R4 are assumed without mentioning.

Lemma B.1. Let C > 0 be arbitrary constant and δ be defined in condition SCAD3 for SCAD
penalty (UB3 for the unbounded penalty, BR3 for the bridge penalty, MUB3 for the modified
unbounded penalty, and MBR3 for the modified bridge penalty). Then, under conditions SCAD1–
SCAD3 (UB1–UB3, BR1–BR3, MUB1–MUB3, MBR1–MBR3), with probability going to one, all

restricted local solution in ℵ has ‖θ̂ (�) − θ̄
(�)‖ < Cn−δ for all � as n → ∞ (see Convention B.2

for the notation of θ̄
(�)

).

Proof. Let �∗ be a regime with ‖θ̂ (�) − θ̄
(�)‖ ≥ Cn−δ . Proposition A.2 suggests that

−
t (�

∗)−1∑
i=t (�

∗−1)

∇θ logf
(
Xi; θ̂ (�∗)

, φ̂
)

(B.3)
= −[P ′

λ

(∥∥ξ̂ (�∗)∥∥) · ĵ(�
∗) −P ′

λ

(∥∥ξ̂ (�∗−1)∥∥) · ĵ(�
∗−1)

]
.

Consider the Taylor expansion of the left-hand-side of (B.3) around (θ̄
(�∗)

, φ̄).
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For the SCAD (bridge, unbounded, modified bridge, modified unbounded) penalty, SCAD1–
SCAD3 (BR1–BR3, UB1–UB3, MBR1–MBR3, MUB1–MUB3) guarantees that n(�∗) → ∞ and
δ < κ/2. Therefore, the left-hand side, with the second-order term of Taylor expansion dominat-
ing the first order term, has order ≥ Op(nκ−δ). Let ε > 0 be arbitrarily small. Condition R2 and
triangular inequality suggests that

max
{
P ′

λ

(∥∥ξ̂ (�∗)∥∥),P ′
λ

(∥∥ξ̂ (�∗−1)∥∥)}≥ 1

2

∥∥∥∥∥
t (�

∗)−1∑
i=t (�

∗−1)

∇θ logf
(
Xi; θ̂ (�∗)

, φ̂
)∥∥∥∥∥≥ Op

(
nκ−δ+ε

)
.

Such bound does not depend on the location of the change points in θ̂ . Without loss of gen-

erality, suppose that P ′
λ(‖ξ̂

(�∗−1)‖) ≥ Op(nκ−δ). For the SCAD cases, P ′
λ(‖ξ̂

(�∗−1)‖) ≤ λ =
Op(nα). Then, Op(nκ−δ) ≤ Op(nα), violating condition SCAD3. For the unbounded penalty

cases, P ′
λ(‖ξ̂

(�∗−1)‖) ≥ Op(nκ−δ) implies that ‖ξ̂ (�∗−1)‖ ≤ Op(nα−κ+δ). However, this vi-

olates UB3 since ‖ξ̂ (�∗−1)‖ ≥ O(n−δ). Similarly, for the bridge penalty cases, ‖ξ̂ (�∗−1)‖ ≤
Op(n(α−κ+δ)/(1−γ )) violates BR3. Modified bridge and modified unbounded penalties can be
handled using the same arguments as above. �

Lemma B.2. Suppose that conditions SCAD1–SCAD3 for SCAD penalty (UB1–UB3 for the
unbounded penalty, BR1–BR3 for the bridge penalty, MUB1–MUB3 for the modified unbounded
penalty, and MBR1–MBR3 for the modified bridge penalty) hold. Then, for any restricted local
solution (θ̂ , φ̂) in ℵ, φ̂ and the distinct values of θ̂ can be approximated as follows:

φ̂ − φ̄ ≈ 1

n
H̄−1

φφ|θLφ|θ ,

θ̂
(1) − θ̄

(1) ≈ 1

n(1)

(
H̄(1)

θθ

)−1
L

(1)
θ − 1

n

(
H̄(1)

θθ

)−1H̄(1)
θφ H̄−1

φφ|θLφ|θ

− 1

n(1)

[
H̄(1)

θθ

]−1P ′
λ

(∥∥ξ̂ (1)∥∥)ĵ(1),

θ̂
(2) − θ̄

(2) ≈ 1

n(2)

(
H̄(2)

θθ

)−1
L

(2)
θ − 1

n

(
H̄(2)

θθ

)−1H̄(2)
θφ H̄−1

φφ|θLφ|θ

− 1

n(2)

[
H̄(2)

θθ

]−1[P ′
λ

(∥∥ξ̂ (2)∥∥)ĵ(2) −P ′
λ

(∥∥ξ̂ (1)∥∥)ĵ(1)
]
,

... ≈ ...

θ̂
(k′) − θ̄

(k′) ≈ 1

n(k′)
(
H̄(k′)

θθ

)−1
L

(k′)
θ − 1

n

(
H̄(k′)

θθ

)−1H̄(k′)
θφ H̄−1

φφ|θLφ|θ

− 1

n(k′)
[
H̄(k′)

θθ

]−1[P ′
λ

(∥∥ξ̂ (k′)∥∥)ĵ(k′) −P ′
λ

(∥∥ξ̂ (k′−1)∥∥)ĵ(k′−1)
]
,

θ̂
(k′+1) − θ̄

(k′+1) ≈ 1

n(k′+1)

(
H̄(k′+1)

θθ

)−1
L

(k′+1)
θ − 1

n

(
H̄(k′+1)

θθ

)−1H̄(k′+1)
θφ H̄−1

φφ|θLφ|θ

+ 1

n(k′+1)

[
H̄(k′+1)

θθ

]−1P ′
λ

(∥∥ξ̂ (k′)∥∥)ĵ(k′).
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Here,

H̄φφ|θ = 1

n

k′+1∑
�=1

n(�)
[
H̄(�)

φφ − H̄(�)
φθ

(
H̄(�)

θθ

)−1H̄(�)
θφ

]
,

L
(�)
θ =

t (�)−1∑
i=t (�−1)

∇θ logf
(
Xi; θ̄ (�)

, φ̄
)
,

Lφ|θ =
k′+1∑
�=1

t (�)−1∑
i=t (�−1)

[∇φ − H̄(�)
φθ

(
H̄(�)

θθ

)−1∇θ

]
logf

(
Xi; θ̄ (�)

, φ̄
)
.

Proof. For simplicity, consider only the case k′ = 1. Consider the first-order conditions for
restricted local solution (see Definition A.2 and Proposition A.2). Lemmas B.1 and condi-
tion SCAD1–SCAD2 (UB1–UB2, BR1–BR2, MUB1–MUB2, MBR1–MBR2) guarantees that
minn(�) → ∞ and that the bias introduced by the penalty term does not diverge. Then, the stan-
dard arguments based on the central limit theorem can be applied on such first-order conditions.
In addition, the third-order remainder terms in the Taylor expansion of the log-likelihood func-

tion (as a function of θ (1), . . . , θ (k′+1) and φ) around (θ̄
(1)

, . . . , θ̄
(k′+1)

, φ̄) are ignorable. Then,
we have the following approximations:⎛⎜⎜⎝

θ̂
(1) − θ̄

(1)

θ̂
(2) − θ̄

(2)

φ̂ − φ̄

⎞⎟⎟⎠ ≈

⎛⎜⎜⎜⎝
n(1)H̄(1)

θθ 0 n(1)H̄(1)
θφ

0 n(2)H̄(2)
θθ n(2)H̄(2)

θφ

n(1)H̄(1)
φθ n(2)H̄(2)

φθ n(1)H̄(1)
φφ + n(2)H̄(2)

φφ

⎞⎟⎟⎟⎠
−1

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−P ′
λ

(∥∥ξ̂ (1)∥∥) · ĵ(1) +
t (1)−1∑
i=1

∇θ logf
(
Xi; θ̄ (1)

, φ̄
)

+P ′
λ

(∥∥ξ̂ (1)∥∥) · ĵ(1) +
n∑

i=t (1)

∇θ logf
(
Xi; θ̄ (2)

, φ̄
)

2∑
�=1

t (�)−1∑
i=t (�−1)

∇φ logf
(
Xi; θ̄ (�)

, φ̄
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(see the notations defined in Convention B.2). Here, Taylor expansion is applied to the log-
likelihood function only. The penalty terms are not approximated. After algebraic manipulations,
we get

φ̂ − φ̄ ≈
{

2∑
�=1

n(�)
[
H̄(�)

φφ − H̄(�)
φθ

(
H̄(�)

θθ

)−1H̄(�)
θφ

]}−1

×
{

2∑
�=1

t (�)−1∑
i=t (�−1)

[∇φ − H̄(�)
φθ

(
H̄(�)

θθ

)−1∇θ

]
logf

(
Xi; θ̄ (�)

, φ̄
)}

,
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θ̂
(1) − θ̄

(1) ≈ 1

n(1)

(
H̄(1)

θθ

)−1

{
−P ′

λ

(∥∥ξ̂ (1)∥∥) · ĵ(1) +
t (1)−1∑
i=1

∇θ logf
(
Xi; θ̄ (1)

, φ̄
)}

− (H̄(1)
θθ

)−1H̄(1)
θφ (φ̂ − φ̄),

θ̂
(2) − θ̄

(2) ≈ 1

n(2)

(
H̄(2)

θθ

)−1

{
+P ′

λ

(∥∥ξ̂ (1)∥∥) · ĵ(1) +
n∑

i=t (1)

∇θ logf
(
Xi; θ̄ (2)

, φ̄
)}

− (H̄(2)
θθ

)−1H̄(2)
θφ (φ̂ − φ̄).

The desired results follow immediately. �

Lemma B.3. Suppose that conditions UB1–UB3 for the unbounded penalty (BR1–BR3 for the
bridge penalty, MUB1–MUB3 for the modified unbounded penalty, and MBR1–MBR3 for the
modified bridge penalty) hold. Then, all restricted local solutions (θ̂ , φ̂) in ℵ satisfy

S(�)
i = −y(�)

i − mi −P ′
λ

(∥∥ξ̂ (�−1)∥∥) · ĵ(�−1) − i

n(�)
· [P ′

λ

(∥∥ξ̂ (�)∥∥) · ĵ(�) −P ′
λ

(∥∥ξ̂ (�−1)∥∥) · ĵ(�−1)
]
,

where

m(�)
i =

t (�−1)+i−1∑
j=t (�−1)

E∇θ logf (Xj ; θ̄ , φ̄) − i

n(�)

t(�)−1∑
j=t (�−1)

E∇θ logf (Xj ; θ̄, φ̄)

and

y(�)
i = −m(�)

i +
t (�−1)+i−1∑
j=t (�−1)

∇θ logf (Xj ; θ̄ , φ̄) − i

n(�)

t(�)−1∑
j=t (�−1)

∇θ logf (Xj ; θ̄, φ̄)

for � = 1,2, . . . , k′ + 1, i = 1, . . . , n(�) − 1.

Proof. From Proposition A.2,

S(�)
i = −P ′

λ

(∥∥ξ̂ (�−1)∥∥) · ĵ(�−1) −
t (�−1)+i−1∑
j=t (�−1)

∇θ logf
(
Xj ; θ̂ (�)

, φ̂
)
.

Moreover, Lemma B.1 and conditions UB1–UB2 (BR1–BR2, MUB1–MUB2, MBR1–MBR2)

guarantee that n(�) → ∞ and ‖θ̂ (�) − θ̄
(�)‖ → 0. Then, the standard arguments based on Taylor

approximation can be applied and the desired results follow immediately from Lemma B.2. �

Lemma B.4. (i) For the modified unbounded (modified bridge) penalty, under conditions
MUB1–MUB3 (MBR1–MBR3), with probability going to one, all regimes in any restricted lo-
cal solution in ℵ belong to one of the four types N, M, R, and L (see Convention B.3). (ii) For the
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first regime, only type N and type L are allowed. (iii) For the last regime, only type N and type R
are allowed. (iv) For Type L, R, and M regimes, the length(s) of the dominated portion(s) is (are)
bounded above by Op(λ∗) quantities.

Proof. First, we see that three or more change points are not allowed. By contradiction assume
that such solution exists and satisfies the first-order conditions in Proposition A.2. Consider the
expression of S(�)

i in Lemma B.3. Note that the maximum maxi=t (�−1),...,t (�)−1 ‖m(�)
i ‖ is Op(n),

dominating ‖y(�)
i ‖ ≤ Op(

√
n(�)), see [7]. Next bounds of Pstart = P ′

λ(‖ξ̂
(�−1)‖) · ĵ(�−1) and

Pend = P ′
λ(‖ξ̂

(�)‖) · ĵ(�) are given. From Proposition A.2, ‖S(�)
1 ‖ < λ∗ and ‖S(�)

n(�)−1
‖ < λ∗. That

means, ‖Pstart + (Pend −Pstart)/n(�) +Op(1)‖ < λ∗ and ‖Pend − (Pend −Pstart)/n(�) +Op(1)‖ <

λ∗. Note that under MUB1 and MUB3 (MBR1 and MBR3), n−δ � n−κ/2. Together with from
Lemma B.1 and Lemma B.2, we have ‖(Pend − Pstart)/n(�)‖ ≤ Op(n−δ) = op(λ∗). Therefore,
both Pstart and Pend are at most Op(λ∗). Consequently,

max
i=1,...,n(�)−1

∥∥S(�)
i

∥∥= Op(n).

Then, the conditions in Proposition A.2, namely ‖S(�)
i ‖ < λ∗ = Op(nβ) cannot be satisfied for

all i = 1, . . . , n(�) − 1.
Next, consider regime �∗ that consists of one true change point. In what follows, we show

that regime �∗ must be either type L or type R. Since ‖S(�∗)
i ‖ < λ∗ (Proposition A.2) for all

i = 1, . . . , n(�∗) − 1, from Lemma B.3,

max
i=1,...,n(�∗)−1

∥∥m(�∗)
i

∥∥≤ λ∗ + max
{‖Pstart‖,‖Pend‖

}+ max
i=1,...,n(�∗)−1

∥∥y(�∗)
i

∥∥.
Here, ‖y(�∗)

i ‖ ≤ Op(
√

n(�∗)) = op(λ∗) and is ignorable. Note that the quantity

max
i=1,...,n(�∗)−1

∥∥m(�∗)
i

∥∥
has the same order as min{n�∗

1 , n�∗
2 }. Then, min{n�∗

1 , n�∗
2 } = op(λ∗). On the other hand, from con-

dition MUB1–MUB2 (MBR1–MBR2), we have κ > β . Then, n(�∗) � Op(λ∗). Consequently,
regime �∗ must be either Type R or Type L.

Last, similar arguments as above show that for a regime with two change points, both the left
portion and the right portion must not exceed some Op(λ∗) quantity while the middle portion is
Op(n). Therefore, it is type M. �

Lemma B.5. For k = 0, we have

(i) For the LASSO penalty, if λ = O(n1/2), P0 → C for some C ∈ (0,1).
(ii) For LASSO and SCAD penalties, if n−1/2λ → ∞, P0 → 1.

(iii) For the unbounded (bridge) penalty, if λ > 0, P0 → 1.
(iv) For the modified unbounded (modified bridge) penalty, if n−1/2λ∗ → ∞, P0 → 1.
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Proof. The notations in Proposition A.1 are used. The proof is based on the following results
(see, for example, [7]),

1√
n

S(1)
[sn] −→ −(Ys − sY1), 0 < s < 1,

where Ys is a p-dimensional Brownian motion with covariance matrix

H(1)
θθ = −E∇2

θθ logf
(
X1; θ (1)

0 ,φ0
)
.

For the LASSO penalty with λ = Op(
√

n), according to Proposition A.1,

P0 = P
(

max
i

∥∥S(1)
i

∥∥<P ′
λ(0+)

)
−→ P

(
max

s
‖Ys − sY1‖ < n−1/2P ′

λ(0+)
)
.

If λ = Op(
√

n) is chosen, P0 lies in (0,1). For the LASSO and SCAD penalties with n−1/2λ →
∞, and the modified unbounded and modified bridge penalties with n−1/2λ∗ → ∞, the penalty
term becomes n−1/2P ′

λ(0+) → ∞, and therefore, P0 → 1. For the bridge and the unbounded
penalty with λ > 0, we have n−1/2P ′

λ(0+) = ∞, and thus, P0 → 1. �

Lemma B.6. For k > 0, we have

(i) For the LASSO penalty, if λ = O(nα) and 1/2 ≤ α < 1, Pk → 0.
(ii) For the SCAD penalty, if n−1/2λ → ∞ and n−1λ → 0, Pk → 1.

(iii) For the unbounded (Bridge) penalty, if λ > 0 and λ/n → 0, Pk → 1.
(iv) For the modified unbounded (Bridge) penalty, if λ > 0, n−1/2λ∗ → ∞, n−1λ∗ → 0, and

λ � λ∗, then Pk → 1.

Proof. Let � be the event that condition (i) in Proposition A.2 holds. From Proposition A.2, it
suffices to establish the asymptotic properties of the followings t (�) = [nq(�)], � = 1,2, . . . , k:
(a) P(�), (b) P(maxi ‖S(�)

i ‖ < P ′
λ(0+)), for � = 1,2, . . . , k + 1. Here, � is defined in Proposi-

tion A.2.
Result (a): Let ϑ0 = (θ

(1)
0 , . . . , θ

(k+1)
0 ,φ0) and ϑ̂ = (θ̂

(1)
, . . . , θ̂

(k+1)
, φ̂). Let ∇ and H = −∇2

be the gradient and Hessian with respect to ϑ . Suppose that M > 0 and � < 0 are two constants
such that n� � max{λ/n,n−1/2}. Define B as the close ball centered at ϑ0 with radius Mn� .
Below, we show that with probability going to one there must be at least a local solution to Q∗

λ(ϑ)

within B. Then, P(�) → 1 follows immediately. The arguments are similar to that in [8]. Since
the function Q∗

λ is continuous in the compact set B, a minimum exists. What remains is to show
that such minimum cannot be attained on the boundary of the ball ∂B. Suppose by contradiction
that the minimum fulfills ‖ϑ̂ − ϑ‖ = Mn� . Then,

Q∗
λ(ϑ̂) − Q∗

λ(ϑ0) ≈ −(ϑ̂ − ϑ0)
T

k+1∑
�=1

[nq(�)]−1∑
i=nq(�−1)

∇ logf
(
Xi; θ (�)

0 ,φ0
)+ (ϑ̂ − ϑ0)

T H(ϑ̂ − ϑ0)

+
k∑

�=1

(
ξ̂

(�) − ξ
(�)
0

)T P ′
λ

(∥∥ξ (�)
0

∥∥)= Q1 + Q2 + Q3.
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Here, Q2 = Op(n1+2� ) is always positive. Note that Q1 � Op(n1/2+� ). Since n� is cho-
sen such that n� ≥ n−1/2, Q1 � Q2 holds. For SCAD, Q3 = 0 while for LASSO, bridge,
unbounded, modified unbounded, and modified bridge, Q3 ≤ Op(λn� ). It can be seen that
Q3 � Q2 as n� � λ/n. That ϑ̂ cannot be a minimum follows immediately from Q1 � Q2
and Q3 � Q2.

Results (b) is obvious for the bridge and unbounded penalties as P ′
λ(0+) = ∞. The proofs for

the LASSO, SCAD, modified unbounded, and modified bridge penalties are given below. The
consistency result of (a) allows Taylor series approximation of Q∗

λ. Then,

H(1)
θθ

[
θ̂

(1) − θ
(1)
0

]+ H(1)
φθ [φ̂ − φ0]

≈ 1

n(1)

{
−P ′

λ

(∥∥ξ (1)
0

∥∥) · j(1)
0 +

[nq(1)]−1∑
i=1

∇θ logf
(
Xi; θ (1)

0 ,φ0
)}

,

H(�)
θθ

[
θ̂

(�) − θ
(�)
0

]+ H(�)
φθ [φ̂ − φ0]

≈ 1

n(�)

{
−[P ′

λ

(∥∥ξ (�)
0

∥∥) · j(�)0 −P ′
λ

(∥∥ξ (�−1)
0

∥∥) · j(�−1)
0

]
(B.4)

+
[nq(�)]−1∑

i=[nq(�−1)]
∇θ logf

(
Xi; θ (1)

0 ,φ0
)}

, � = 2,3, . . . , k,

H(k+1)
θθ

[
θ̂

(k+1) − θ
(k+1)
0

]+ H(k+1)
φθ [φ̂ − φ0]

≈ 1

n(k+1)

{
+P ′

λ

(∥∥ξ (k)
0

∥∥) · j(k)
0 +

n∑
i=[nq(k)]

∇θ logf
(
Xi; θ (k+1)

0 ,φ0
)}

.

Using Taylor expansion and equation (B.4),

1√
n

S(1)
i = − 1√

n

i∑
j=1

∇θ logf
(
Xj ; θ̂ (1)

, φ̂
)

≈ − 1√
n

i∑
j=1

∇θ logf
(
Xj ; θ (1)

0 ,φ0
)− 1√

n

(
i∑

j=1

∇2
θθ logf

(
Xj ; θ (1)

0 ,φ0
))(

θ̂
(1) − θ

(1)
0

)

− 1√
n

(
i∑

j=1

∇2
θφ logf

(
Xj ; θ (1)

0 ,φ0
))

(φ̂ − φ0)

≈ − 1√
n

i∑
j=1

∇θ logf
(
Xj ; θ (1)

0 ,φ0
)+ i√

n
H(1)

θθ

(
θ̂

(1) − θ
(1)
0

)+ i√
n

H(1)
θφ (φ̂ − φ0)
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≈ − 1√
n

i∑
j=1

∇θ logf
(
Xj ; θ (1)

0 ,φ0
)+ i

n(1)
√

n

t(1)∑
j=1

∇θ logf
(
Xj ; θ (1)

0 ,φ0
)

− i

n(1)
√

n
P ′

λ

(∥∥ξ (1)
0

∥∥)j(1)
0 .

Let s = i/n. For 0 < s < q(1), this stochastic process converges weakly to a drifted Brownian
bridge

Ws = −Ys + s

q(1)
Yq(1) − s

q(1)

[
lim

n→∞n−1/2P ′
λ

(∥∥ξ (1)
0

∥∥)j(1)
0

]
.

Here, Ys is the Brownian motion with volatility Hθθ . Stochastic processes S(2)
i , . . . ,S(k+1)

i can

be handled in the same manner. Then, for s = (t(k) + i)/n, such that q(k′) < s < 1, n−1/2S(k+1)
i

converges to

Ws = −Ys + 1 − s

1 − q(k)
Yq(k) + s − q(k)

1 − q(k)
Y1 −

[
lim

n→∞n−1/2P ′
λ

(∥∥ξ (k)
0

∥∥)]j(1)
0

+ s − q(k)

1 − q(k)

[
n−1/2P ′

λ

(∥∥ξ (k)
0

∥∥)j(k)
0

]
.

For � = 2,3, . . . , k, s = (t(�) + i)/n, such that q(�−1) < s < q(�), n−1/2S(�)
i converges to

Ws = −Ys + q� − s

q(�) − q(�−1)
Yq(�−1) + s − q�−1

q(�) − q(�−1)
Yq(�) −

[
lim

n→∞n−1/2P ′
λ

(∥∥ξ (�−1)
0

∥∥)]j(�−1)
0

− s − q(�−1)

q(�) − q(�−1)

[
lim

n→∞n−1/2P ′
λ

(∥∥ξ (�)
0

∥∥)j(�)0 − lim
n→∞n−1/2P ′

λ

(∥∥ξ (�−1)
0

∥∥)j(�−1)
0

]
.

It can be seen that at both s = 0 and s = 1, Ws = 0 and at s = q(�), � = 1,2, . . . , k, ‖Ws‖ =
limn→∞ n−1/2P ′

λ(‖ξ (�)
0 ‖).

It is interesting to note that for the LASSO penalty, P ′
λ(0+) = P ′

λ(‖ξ (�)
0 ‖). On the contrary,

this does not hold for all other penalties. Due to the roughness and unbounded variation of the
Brownian motion, for the LASSO penalty, P(maxi ‖S(1)

i ‖ < P ′
λ(0+)) → 0. Therefore, Pk → 0.

For the modified unbounded and the modified bridge penalties with n−1/2λ∗ → ∞
and λ � λ∗, ‖Wq(�)‖ = Op(n−1/2λ) � Op(n−1/2λ∗). Then, P(maxi ‖S(�)

i ‖ < P ′
λ(0+)) ≈

P(maxs ‖Ws‖ < n−1/2λ∗) → 1.
For the SCAD penalty, P ′

λ(‖ξ (�)
0 ‖) = 0 for all � = 1,2, . . . , k with probability going to one.

Then, ‖Wq(�)‖ = 0 and in each regime, Ws is Brownian bridge. Therefore, P(maxi ‖S(1)
i ‖ <

P ′
λ(0+)) ≈ P(maxs ‖Ws‖ < n−1/2λ) → 1 if n−1/2λ → ∞. �

Lemma B.7. Suppose that the modified unbounded penalty satisfies conditions MUB1–MUB3.
Consider a restricted local solution θ̂ in ℵ. Let �1, �1 + 1, �1 + 2, . . . , �2 be subsequent regimes
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in θ̂ . Suppose that �2 �= �1, regime �1 is either Type N or R, and regime �2 is either Type N
or L. Let �∗ be the regime with the shortest length among �1, �1 + 1, �1 + 2, . . . , �2. Then, the
followings cannot be satisfied simultaneously: (i) all regimes other than �1 and �2 are Type N

(see Convention B.3), (ii) θ̄
(�1) − θ̄

(�1+1) = o[(λ/n(�∗))1/2] and θ̄
(�2−1) − θ̄

(�2) = o[(λ/n(�∗))1/2],
(iii) �1 = 1 or θ̄

(�1−1) − θ̄
(�1) = Op(1), and (iv) �2 = k′ + 1 or θ̄

(�2) − θ̄
(�2+1) = Op(1).

Lemma B.8. Suppose that the modified bridge penalty satisfies condition MBR1–MBR4. Con-
sider a restricted local solution θ̂ in ℵ. Let �1, �1 + 1, �1 + 2, . . . , �2 be subsequent regimes in θ̂ .
Suppose that �2 �= �1, regime �1 is either Type N or R, and regime �2 is either Type N or L. Let
�∗ be the regime with the shortest length among �1, �1 + 1, �1 + 2, . . . , �2. Then, the followings
cannot be satisfied simultaneously: (i) all regimes other than �1 and �2 are Type N (see Con-

vention B.3), (ii) θ̄
(�1) − θ̄

(�1+1) = o[(λ/n(�∗))1/(2−γ )] and θ̄
(�2−1) − θ̄

(�2) = o[(λ/n(�∗))1/(2−γ )],
(iii) �1 = 1 or θ̄

(�1−1) − θ̄
(�1) = Op(1), and (iv) �2 = k′ + 1 or θ̄

(�2) − θ̄
(�2+1) = Op(1).

Proofs of Lemmas B.7 and B.8. Here, the proof is given for the cases where regime �1 is Type
R and regime �2 is Type L. Other cases can be handled in a similar manner. Suppose that (i)-(iv)

are all satisfied. Then, both H̄(�) and θ̄
(�)

, � = �1, . . . , �2 are all asymptotically the same. Let θ∗
0

be the true parameter value for regimes � = �1 + 1, . . . , �2 − 1 and the dominating portions of
regime �1 and regime �2. Define H∗

θθ = −E∇2
θθ logf (X; θ∗

0,φ0). Then, from Lemma B.2, we
have

⎛⎜⎜⎜⎜⎜⎜⎝
H∗

θθ ξ̂
(�1)

H∗
θθ ξ̂

(�1+1)

...

H∗
θθ ξ̂

(�2−1)

⎞⎟⎟⎟⎟⎟⎟⎠

≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

n(�1)
L

(�1)
θ − 1

n(�1+1)
L

(�1+1)
θ

1

n(�1+1)
L

(�1+1)
θ − 1

n(�1+2)
L

(�1+2)
θ

...
1

n(�2−1)
L

(�2−1)
θ − 1

n(�2)
L

(�2)
θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎝
[
n(�1)

]−1P ′
λ

(∥∥ξ̂ (�1−1)∥∥)ĵ(�1−1) + H∗
θθ

(
θ̄

(�1) − θ̄
(�1+1))

0
...[

n(�2)
]−1P ′

λ

(∥∥ξ̂ (�2)∥∥)ĵ(�2) + H∗
θθ

(
θ̄

(�2−1) − θ̄
(�2))

⎞⎟⎟⎟⎟⎠ (B.5)
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−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ip×p

n(�1)
+ Ip×p

n(�1+1)
− Ip×p

n(�1+1)

− Ip×p

n(�1+1)

Ip×p

n(�1+1)
+ Ip×p

n(�1+2)
− Ip×p

n(�1+2)

. . .
. . .

. . .

− Ip×p

n(�2−1)

Ip×p

n(�2−1)
+ Ip×p

n(�2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎝
P ′

λ

(∥∥ξ̂ (�1)∥∥)ĵ(�1)

P ′
λ

(∥∥ξ̂ (�1+1)∥∥)ĵ(�1+1)

...

P ′
λ

(∥∥ξ̂ (�2−1)∥∥)ĵ(�2−1)

⎞⎟⎟⎟⎟⎟⎠ .

Let b(�) = (ĵ(�))T Hθθ ĵ(�), � = �1, . . . , �2 − 1, and

A(�1) =
[(

1

n(�1)
+ 1

n(�1+1)

)
− 1

n(�1+1)
ĵ(�1+1) · ĵ(�1)

]
,

A(�1+1) =
[
− 1

n(�1+1)
ĵ(�1) · ĵ(�1+1) +

(
1

n(�1+1)
+ 1

n(�1+2)

)
− 1

n(�1+2)
ĵ(�1+2) · ĵ(�1+1)

]
,

... = ...

A(�2−2) =
[
− 1

n(�2−2)
ĵ(�2−3) · ĵ(�2−2) +

(
1

n(�2−2)
+ 1

n(�2−1)

)
− 1

n(�2−1)
ĵ(�2−1) · ĵ(�2−2)

]
,

A(�2−1) =
[
− 1

n(�2−1)
ĵ(�2−2) · ĵ(�2−1) +

(
1

n(�2−1)
+ 1

n(�2)

)]
.

Multiplying both sides of equation (B.5) by ((ĵ(�1))T , (ĵ(�1+1))T , . . . , (ĵ�2−1)T ), we have

(
b(�1)

∥∥ξ̂ (�1)∥∥+ A(�1)P ′
λ

(∥∥ξ̂ (�1)∥∥))+ · · · + (b(�2−1)
∥∥ξ̂ (�2−1)∥∥+ A(�2−1)P ′

λ

(∥∥ξ̂ (�2−1)∥∥))
≈ − 1

n(�1)

(
ĵ(�1)

)T
L

(�1)
θ − 1

n(�1+1)

(
ĵ(�1+1) − ĵ(�1)

)T
L

(�1+1)
θ − · · ·

− 1

n(�2−1)

(
ĵ(�2−1) − ĵ(�2−2)

)T
L

(�2−1)
θ + 1

n(�2)

(
ĵ(�2)

)T
L

(�2)
θ

(B.6)

+ 1

n(�1)
P ′

λ

(∥∥ξ̂ (�1−1)∥∥)ĵ(�1−1) · ĵ(�1) + 1

n(�2)
P ′

λ

(∥∥ξ̂ (�2)∥∥)ĵ(�2) · ĵ(�2−1)

+ (ĵ(�1)
)T H∗

θθ

(
θ̄

(�1) − θ̄
(�1+1))+ (ĵ(�2−1)

)T H∗
θθ

(
θ̄

(�2−1) − θ̄
(�2))

= I (�1) + · · · + I (�2) + T1 + T2 + U1 + U2.
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In what follows, we show that the left-hand side must dominate the right-hand side. Then, this is
a contradiction as the equality sign is impossible. A lower bound for the left-hand side is given,
then the terms I (�1), . . . , I (�2), T1, T2,U1,U2 are compared to such lower bound.

Modified unbounded penalty: Consider the approximation in Convention B.4. To give a lower
bound for the left-hand side of equation (B.6), the following two results are used. (a) Let A and
b be two positive constants and x be a positive variable. The minimum value of bx + Ax−1 is
2A1/2b1/2. (b) For A1,A2 > 0, the following inequality holds:

(A1 + A2)
1/2 >

[
A

1/2
1 + A

1/2
2

]
/2.

After using the above two results, we see that the left-hand side of equation (B.6) is bounded
below by

(
nατ−1(τ − 2)

)1/2{(
b(�1)/n(�1)

)1/2 + 2
(
b(�1+1)

(
1 − ĵ(�1+1) · ĵ(�1)

)
/n(�1+1)

)1/2

(B.7)
+ · · · + 2

(
b(�2−2)

(
1 − ĵ(�2−2) · ĵ(�2−1)

)
/n(�2−2)

)1/2 + (b(�2−1)/n(�2−1)
)1/2}

.

Terms T1 and T2: From conditions (i) and (iii), we have

∥∥ξ̂ (�1−1)∥∥≥ ∥∥θ̄ (�1−1) − θ̄
(�1)
∥∥− ∥∥θ̂ (�1−1) − θ̄

(�1−1)∥∥− ∥∥θ̂ (�1) − θ̄
(�1)
∥∥= Op(1).

Here, Lemma B.1 is used. T1 is dominated by the first term in (B.7), that is an n(�1) relating term
in (B.7) (nα/n(�1))1/2 if ignoring the O(1) multiple. Therefore, T1 can be ignored. Similarly, T2

is also ignorable.
Terms U1 and U2: Condition (ii) guarantees that U1 is dominated by the n(�1) relating term in

(B.7), which is (nα/n(�1))1/2. We can similarly show for U2.
I (�1), . . . , I (�2): Let ε > 0 be arbitrarily small. Note that the n(�1) relating term in (B.7) has

the same order as (nα/n(�1))1/2. It is positive and dominates the term I (�1) because according
to condition R2, I (�1) = op(nε/

√
n(�1)) and such bound does not depend on the locations of the

change points of θ̂ . For the n(�1+1) relating terms, it has the same order as

(
nα

n(�1+1)

)1/2[
1 − ĵ(�1) · ĵ(�1+1)

]1/2
.

This term can be compared to I (�1+1). Note that 1 − ĵ(�1) · ĵ(�1+1) = ‖ĵ(�1) − ĵ(�1+1)‖2/2. Then,
I (�1+1) is dominated by bound (B.7).

We see that all terms I (�1), . . . , I (�2), T1, T2,U1, and U2 are dominated by some corresponding
terms in bound (B.7). Therefore, the equality sign of equation (B.6) is impossible with probability
going to one.
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Modified bridge penalty: Using similar arguments as in the unbounded penalty cases, a lower
bound for the left-hand side of equation (B.6) is(

nαγ
)1/(2−γ )[

(1 − γ )1/(2−γ ) + (1 − γ )−(1−γ )/(2−γ )
]

× {[b(�1)
](1−γ )/(2−γ )(1/n(�1)

)1/(2−γ )

+ 2
[
b(�1+1)

](1−γ )/(2−γ )[(1 − ĵ(�1+1) · ĵ(�1)
)
/n(�1+1)

]1/(2−γ ) + · · ·
(B.8)

+ 2
[
b(�2−2)

](1−γ )/(2−γ )[(1 − ĵ(�2−2) · ĵ(�2−1)
)
/n(�2−2)

]1/(2−γ )

+ [b(�2−1)
](1−γ )/(2−γ )(1/n(�2−1)

)1/(2−γ )}
= V (�1) + · · · + V (�2−1).

Terms T1, T2, U1, and U2 can be handled in a similar manner as in the proof of Lemma B.7.
Terms I (�1), . . . , I (�2): The n(�1) relating term in (B.8), that is, V (�1), has the same order as

(nα/n(�1))1/(2−γ ) and is positive. Let ε > 0 be arbitrarily small. Under condition MBR1 and R2,
it dominates term I (�1) because I (�1) = op(nε/

√
n(�1)) and such bound does not depend on the

locations of the change points of θ̂ . For the n(�1+1) relating terms, it has the same order as(
nα

n(�1+1)

)1/(2−γ )∥∥ĵ(�1) − ĵ(�1+1)
∥∥2/(2−γ )

.

In what follows, we show that the above mentioned quantity V dominates I (�1+1).
For univariate cases, ĵ only takes two possible values: +1 or −1. If ĵ(�1) = ĵ(�1+1), both V and

I (�+1) are zero. If ĵ(�1) �= ĵ(�1+1), quantity V , being positive, dominates I (�+1) under condition
MBR1.

For dim(�) > 1, condition MBR4 is required. Consider two types of regimes (excluding
regime �1 and regime �2). Type I: ‖ĵ(�−1) − ĵ(�)‖2 > n(�)n−2α/γ . Type II: ‖ĵ(�−1) − ĵ(�)‖2 ≤
n(�)n−2α/γ . For type I regimes, V , being positive, dominates I (�+1) under condition MBR1. For
type II regimes, ‖I (�+1)‖ is bounded by n−α/γ ‖L(�)

θ /
√

n(�)‖ = Op(n−α/γ ). From MBR2, the
maximum number of regimes is n1−κ . As a result, the standard deviation of the sum of I (�) for
� belonging to Type II regimes is only n−α/γ+(1−κ)/2. Term V (�1), where ĵ does not appear, is
O[(λ/n(�1))1/(2−γ )] is bounded below by Op(n−(1−α)/(2−γ )). Condition MBR4 guarantees that
n−(1−α)/(2−γ ) is always dominated by V (�1). �
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