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The maximum likelihood threshold of a graph is the smallest number of data points that guarantees that
maximum likelihood estimates exist almost surely in the Gaussian graphical model associated to the graph.
We show that this graph parameter is connected to the theory of combinatorial rigidity. In particular, if the
edge set of a graph G is an independent set in the (n − 1)-dimensional generic rigidity matroid, then the
maximum likelihood threshold of G is less than or equal to n. This connection allows us to prove many
results about the maximum likelihood threshold. We conclude by showing that these methods give exact
bounds on the number of observations needed for the score matching estimator to exist with probability
one.
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1. Introduction

Let X = (X1, . . . ,Xm) be a m-dimensional random vector distributed according to a multivariate
normal distribution, that is, X ∼ N (μ,�). In a Gaussian graphical model, an undirected graph
G = ({1, . . . ,m},E) encodes the conditional independence structure of the distribution: the edge
(i, j) /∈ E if and only if Xi and Xj are conditionally independent given the remaining variables.
Originally introduced by Dempster [6] under the name of covariance selection models, Gaus-
sian graphical models have found a variety of applications, especially in systems biology and
bioinformatics. For example, these models are used to model gene regulatory networks [7,23,30]
and to infer pathways in metabolic networks [19]. Lauritzen [21] and Whittaker [29] both give
general introductions to Gaussian graphical models.

In this paper, we are concerned with the existence of the maximum likelihood estimator (MLE)
of the covariance matrix when the mean vector μ = 0. For Gaussian graphical models, when the
number of observations n is larger than the number of random variables m, the MLE exists with
probability one. But it is often the case, especially in biological applications, that m � n. In this
setting, it is still possible that the MLE exists with probability one, which invites the question:
For a given graph G, what is the smallest n such that the maximum likelihood estimator of �

exists with probability one? We denote the resulting graph invariant by mlt(G) and call it the
maximum likelihood threshold.
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One motivation for studying the maximum likelihood threshold considers the use of Gaussian
graphical models to big data problems with a large number of variates but a small sample size. In
this setting, a regularization method (e.g., graphical lasso [9]) might be used to estimate a graph
structure. Then with the graph structure fixed, maximum likelihood would be used to compute
the estimates of the sparse inverse covariance matrix associated to the graph. However, if the
graph has the property that the sample size is smaller than the maximum likelihood threshold,
this suggests that one should go back with a larger regularization parameter to re-estimate to try
for a sparser graph.

As originally proven in [6] and discussed further in [25], the existence of the MLE for given
data set and for a particular Gaussian graphical model is equivalent to the existence of a full
rank positive definite matrix completion of the incomplete matrix obtained by keeping only the
diagonal entries and entries corresponding to E of the sample covariance matrix �0. Let Sm

denote the set of m × m symmetric matrices, Sm
>0 the set of m × m positive definite symmetric

matrices, and Sm
≥0 the set of m × m positive semidefinite symmetric matrices. Let Sym(m,n)

denote the set of m × m symmetric matrices of rank ≤ n. Let

φG : Sm → RV +E, φG(�) = (σii)i∈V ⊕ (σij )ij∈E (1)

be the coordinate projection that extracts the diagonal and entries corresponding to edges of G of
the symmetric matrix � = (σij )i,j∈V . In the setting of matrix completion problems, the question
of determining the maximum likelihood threshold of a graph G is:

Problem 1.1 (Maximum likelihood threshold). Given a graph G, what is the smallest n such
that for almost all �0 ∈ Sym(m,n) ∩ Sm

≥0 there exists a � ∈ Sm
>0 such that φG(�0) = φG(�)?

Since every positive semi-definite matrix of rank n arises as P T P for some n × m real matrix
P with real columns pi ∈ Rn, Problem 1.1 is equivalent to asking: Given a graph G, what is
the smallest n such that for almost all P = (p1, . . . ,pm) ∈ Rn×m there exists a set of linearly
independent vectors Q = (q1, . . . ,qm) ∈ Rm×m such that

‖pi‖2 = ‖qi‖2 for all i, and pi · pj = qi · qj for all ij ∈ E?

This formulation results in a natural connection between the symmetric minor matroid and the
generic rigidity matroid, which we will use to bound the maximum likelihood threshold:

Theorem 1.2. If the edge set of a graph G is an independent set in the (n − 1)-dimensional
generic rigidity matroid, then the maximum likelihood threshold of G is less than or equal to n.

In spite of the seeming importance of the maximum likelihood threshold in applications where
n � m, very little is known about the value of mlt(G) except in certain special instances. Some
of these instances are straightforward:

• mlt(G) = 1 if and only if G has no edges,
• mlt(G) = 2 if and only if G has no cycles, and
• mlt(G) = m = #V if and only if G = Km.
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For more complicated graphs, Buhl showed in [3] that the mlt(G) is bounded in terms of the
clique number ω(G) and treewidth τ(G) of the graph. Recall that the clique number of a graph
is the number of vertices of the largest complete subgraph of G. The treewidth of a graph is one
less than the clique number of the smallest chordal cover of G.

Proposition 1.3 ([3], Corollary 3.3). Let G be a graph. Then

ω(G) ≤ mlt(G) ≤ τ(G) + 1.

Proposition 1.3 implies that if G is chordal then mlt(G) = ω(G). However, in general, these
bounds are far from optimal and far from one another. For instance, there are graphs with
ω(G) = 2 and arbitrarily large treewidth.

In this paper, we develop the connection between the maximum likelihood threshold and com-
binatorial rigidity theory through the rank of a graph.

Definition 1.4. The rank of a graph G, denoted rank(G), is the smallest n such that
dimφG(Sym(m,n)) = #V + #E.

Uhler [25] showed the following bound relating the maximum likelihood threshold and the
rank of G.

Theorem 1.5 ([25], Theorem 3.3). Let G be a graph. Then

mlt(G) ≤ rank(G).

The proof of Theorem 1.2 amounts to connecting Theorem 1.5 to the rigidity matroid.

Remark. It should be noted that the rank of a graph is different from the Gaussian rank of a
graph as introduced in [2]. The Gaussian rank is also an upper bound on the maximum likelihood
threshold of a graph, and it is discussed in more detail in Section 7.

It is still unknown whether there exists a graph such that mlt(G) < rank(G), but this might
be because the maximum likelihood threshold is so poorly understood. The main goal of this
paper is to develop a better understanding of the notion of the rank of a graph, so that we can de-
velop better bounds on the maximum likelihood threshold. One always has rank(G) ≤ τ(G)+ 1,
but usually rank(G) is significantly smaller than τ(G) + 1, which yields substantially im-
proved bounds. For example, for an arbitrary k1 × k2 grid with k1, k2 ≥ 2, denoted Grk1,k2 ,
rank(Grk1,k2) = mlt(Grk1,k2) = 3, whereas τ(Grk1,k2) + 1 = min(k1, k2) + 1 is substantially
larger (Corollary 3.8).

While the question of whether or not there is a gap between mlt(G) and rank(G) remains
open, we conclude the paper by turning our attention to another estimator, the score matching
estimator (SME). The score matching threshold is the smallest amount of data such that the SME
exists with probability one. Theorem 6.3 states that the score matching threshold of a graph G

is equal to its rank. The SME was introduced in [13] and furthered studied in [8]. The score
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matching equations are linear, so when the SME exists, computing the estimator is efficient even
for large dense graphs. Hence, the SME has promising applications to model selection for high
dimensional graphical models.

As Lauritzen and Forbes point out in [8], a simple sufficient condition for the existence of the
SME would be advantageous, since it could be used to limit model searches. By the same reason-
ing, simple sufficient conditions on the existence of the MLE are desirable as well. Corollary 3.3
of Section 3 and Corollary 6.4 of Section 6, give such sufficient conditions for the mlt(G) and
smt(G) when n = 3; the conditions can be checked in O(#V (G) · #E(G)) time [15].

The remainder of the paper is organized as follows. In Section 2, we discuss algebraic ma-
troids, in particular, the symmetric minor matroid and the combinatorial rigidity matroid. Within
this matroidal setting, we show that the rank(G) is the smallest n for which the set of edges
of E(G) are independent in the generic rigidity matroid A(n − 1). In Section 3, we provide
a summary of the consequences of this connection for the maximum likelihood threshold. In
Section 4, we prove a splitting theorem which allows for the computation of improved bounds
on rank(G) by reducing to smaller graphs, at the expense of calculating the birank of bipartite
graphs. In Section 5, we introduce the notion of weak maximum likelihood threshold, and we
provide a splitting lemma and bounds for the weak maximum likelihood threshold based on the
chromatic number. Finally, in Section 6, we show that the rank(G) is equal to smt(G) and discuss
consequences.

2. Combinatorial rigidity theory

In this section, we relate the rank of a graph to combinatorial rigidity theory. This connection is
explained via certain algebraic matroids, which we review here. See [22,26] for more background
on matroids and [11,28] for background on rigidity theory. Both the rigidity matroid and the
symmetric minor matroid are discussed in detail in Section 3.3 and Section 3.2, respectively,
of [17] in the context of matroids with graph symmetries with a view towards low rank matrix
completion problems.

Definition 2.1. Let S be a set and I a collection of subsets of S satisfying:

(1) ∅ ∈ I ,
(2) if X ∈ I and Y ⊆ X then Y ∈ I , and
(3) if X,Y ∈ I with |X| < |Y | then there is a y ∈ Y such that X ∪ {y} ∈ I .

The pair (S,I) is called a matroid and the elements of I are called independent sets.

The protypical example of a matroid comes from linear algebra: if S is a set of vectors and I
consists of all linearly independent subsets then the pair (S,I) is a matroid. Other terminology
from matroid theory comes from linear algebra. An independent set of maximal size in I is
called a basis. A subset X ⊆ S that contains a basis is said to span the matroid. The main type of
matroid that we will need in this work comes from algebra.
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Definition 2.2. Let K be a field, and let S = {α1, . . . , αd} be elements of a field extension L/K.
The algebraic matroid on S is the matroid whose independent sets are the collections of X ⊂ S

that are algebraically independent over K.

Two typical ways that algebraic matroids arise are via prime ideals and via parametrizations.
In particular, let I ⊆ K[x] := K[x1, . . . , xn] be a prime ideal, and consider the field extension
K(K[x]/I)/K where K(K[x]/I) denotes the field of fractions. The natural algebraic matroid to
consider in this context is the matroid on the elements x1, . . . , xn.

The algebraic matroid associated to a rational parametrization is described as follows. Let
K(t) := K(t1, . . . , te) be the field of fractions of K[t] := K[t1, . . . , te]. Consider d rational func-
tions f1, . . . , fd ∈ K(t). These determine an algebraic matroid in the obvious way. This is a
special case of the prime ideal description because we can take the presentation ideal I ⊆ K[x]
of the K-algebra homomorphism f : K[x] → K(t), f (xi) = fi(t). The algebraic matroid on
x1, . . . , xd ∈ K(K[x]/I) is the same as the algebraic matroid on f1, . . . , fd , precisely because I

is the ideal of relations among f1, . . . , fd .
The generic rigidity matroid A(n) of dimension n is constructed as follows. Let P =

(pij )i,j∈n,m be an n × m matrix of algebraically independent indeterminates. Let pj be the j th
column of P . Consider the algebraic matroid on the set of

(
m
2

)
polynomials

fij = ‖pi − pj‖2
2 ∈R[p].

One should think of this matroid as giving dependence/independence relationships between
the set of distances between m generic points in Rn. A graph G = (V ,E) with V = [m] :=
{1, . . . ,m} is called rigid if, for generic choices of the points p1, . . . ,pm ∈ Rn, the set of dis-
tances fij such that ij ∈ E, determine all the other distances fij with ij ∈ ([m]

2

)
. In the approach

based on rigidity matroids, one weakens the condition to allow only finitely many possibilities
for the other missing distances. In the language of algebraic matroids, this means that the set
of polynomials {fij : ij ∈ E(G)} is a spanning set for the algebraic matroid A(n). On the other
hand, a graph G is stress-free precisely when {fij : ij ∈ E(G)} is an independent set in the al-
gebraic matroid A(n). When this is the case, we will say E(G) is an independent set in A(n).
A graph G that is simultaneously stress-free and rigid in dimension n, is called isostatic. In the
matroid language, this says that E(G) is a basis in the matroid A(n).

Remark. Note that rigidity and being stress-free are properties that hold generically. There are
situations where a graph is rigid but there exist non-generic choices of the points pj that make
the resulting framework flexible. Since we are only interested in generic properties of the graph,
we can ignore such issues.

The second algebraic matroid we will study is the symmetric minor matroid S(m,n), which
is described at length in [17]. In particular, let C[�] := C[σij : 1 ≤ i ≤ j ≤ m] and let In+1 be
the prime ideal of (n + 1)-minors of the generic symmetric matrix �. The symmetric minor
matroid S(m,n) is the algebraic matroid of the elements σij : 1 ≤ i ≤ j ≤ m in the extension
K(C[�]/In+1)/C. In the language of algebraic matroids, the rank of the graph G can be ex-
pressed as follows.
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Proposition 2.3. Let G be a graph on vertex set [m]. The rank of G is the smallest n such that
{σii : i ∈ [m]} ∪ {σij : ij ∈ E(G)} is an independent set of the symmetric minor matroid S(m,n).

The ideal In+1 is the vanishing ideal of a parametrization, a fact that we will use in connecting
the matroid S(m,n) to the matroid A(n − 1). Indeed, every symmetric matrix of rank ≤ n can
be realized as P T P for some n × m matrix P (over C). Hence, if we let gij = pi · pj for 1 ≤ i ≤
j ≤ m then the algebraic matroid on these elements is the same as the algebraic matroid S(m,n).

For the rank problem of interest, that is the rank problem for studying the maximum likelihood
threshold, we are always looking at sets that contain all of the diagonal elements σii . Hence, we
can look at independent sets in the matroid contraction by that collection of elements. From the
standpoint of algebraic matroids, that amounts to studying the algebraic matroid S(m,n)/diag,
of the field extension K(C[�]/In+1)/C(σii : i ∈ [m]) with ground set consisting of the elements
σij : i < j .

Theorem 2.4. The algebraic matroids S(m,n)/diag and A(n − 1) are isomorphic.

Theorem 2.4 is a Corollary to [4], Theorem 8, which explores the question in terms of the
coning of a graph and spherical rigidity. Spherical rigidity was first discussed in [27]. Here, we
provide a proof of Theorem 2.4, not only for completeness, but also to set up the terminology
and techniques needed for results in later sections.

To prove Theorem 2.4 we use the fact that the algebraic matroid over a field of characteristic
zero is isomorphic to the representable matroid obtained from evaluating the Jacobian at a generic
point of the parameter space. We will make these evaluations for both of the matroids S(m,n)

and A(n − 1) and compare the results. These particular Jacobian matrices will appear at other
points in the paper so we introduce them outside of the proof.

First, consider the map f : Rn×m → Rm(m−1)/2 with

f (P ) = (‖pi − pj‖2
2

)
1≤i<j≤m

,

where we let P = (
p1 · · · pm

)
.

The Jacobian J (f,P ) of this map is an mn × (
m
2

)
matrix. The rows of J (f,P ) should be

grouped into m blocks of size n corresponding to the m points p1, . . . ,pm. The ij column of
the Jacobian matrix is the vector with zeros in all blocks except the ith and j th blocks which
have pi − pj and pj − pi , respectively (we have ignored the extra factor of 2 that appears in all
entries). For example, for m = 4 the matrix J (f,P ) is

⎛
⎜⎜⎝

p1 − p2 p1 − p3 p1 − p4 0 0 0
p2 − p1 0 0 p2 − p3 p2 − p4 0

0 p3 − p1 0 p3 − p2 0 p3 − p4
0 0 p4 − p1 0 p4 − p2 p4 − p3

⎞
⎟⎟⎠ .

On the other hand, consider the parameterization map g : Rn×m → Rm(m+1)/2

g(P ) = (pi · pj )1≤i≤j≤m.
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The Jacobian J (g,P ) of this map is an mn × (
m+1

2

)
matrix. The rows of J (g,P ) should be

grouped into m blocks of size n corresponding to the m points p1, . . . ,pm. When i �= j , the ij

column in J (g,P ) has zero vectors in all blocks except for the ith and j th blocks, which have
pj and pi , respectively. When i = j , there is only one nonzero block, which is 2pi . For example,
for m = 4 the matrix J (g,P ) is

⎛
⎜⎜⎝

2p1 p2 p3 p4 0 0 0 0 0 0
0 p1 0 0 2p2 p3 p4 0 0 0
0 0 p1 0 0 p2 0 2p3 p4 0
0 0 0 p1 0 0 p2 0 p3 p4

⎞
⎟⎟⎠ .

To make a connection to recent investigations regarding the uniqueness of low rank matrices
[14,24], note that the Jacobian J (g,P ) is the transpose of the completability matrix of the com-
plete graph on m vertices (including self-loops) introduced in [24] and discussed further in [14].
Thus, the symmetric minor matroid and the completeability matroid from [14] are isomorphic.

Proof of Theorem 2.4. Note that since all polynomials involved are defined over the integers,
the underlying ground field can be changed to be C,R, or Q without changing the matroid in any
of the matroids in question.

We also note that the rank of the Jacobian J (g,P ) does not change if we scale each point pi

by a nonzero constant λi . Indeed, performing such a scaling is equivalent to multiplying the rows
corresponding the row block indexed by i by λ−1

i and multiplying the column indexed by ij by
λiλj , and row and column operations do not change the rank of a matrix.

Since the matrix P is generic, we can assume that all of the coordinates of each pi are nonzero.
By choosing an appropriate scaling, we may assume that the nth coordinate of each pi is equal

to 1. We write this formally as pi = (p′
i

1

)
, with p′

i ∈Rn−1 which we can assume to be generic. Let
P ′ = (

p′
1 · · · p′

m

)
.

Divide the columns corresponding to pairs ii by 2. Then subtract the column corresponding
to pair ii from each column corresponding to ij . Let M be the resulting matrix. The columns of
M corresponding to the tuples ii are clearly linearly independent of all other columns, because
they are the only columns that contain nonzero entries in the last position in each block. Hence,
when we contract by these diagonal elements we can delete the last row from each block (since
we get all zeros). The resulting matrix, the matrix that represents the matroid S(m,n)/diag, is
J (f,P ′). Hence, S(m,n)/diag is isomorphic to A(n − 1) as claimed. �

Theorem 2.4 means that the rank of a graph can be precisely characterized in terms of the
independence condition in the matroid A(n − 1).

Theorem 2.5. Let G = (V ,E) be a graph. Then rank(G) = n if and only if E is an independent
set in A(n − 1) and is not an independent set in A(n − 2).

Combined with Theorem 1.5, which bounds the mlt(G) by rank(G), Theorem 2.5 implies
Theorem 1.2, the main theorem stated in the Introduction.



Maximum likelihood threshold 393

3. Basic results on rank(G)

In this section, we catalogue some basic results about the rank of a graph G that follow imme-
diately from the connection to combinatorial rigidity, including bounds on the number of edges
that can be involved and graph constructions that preserve rank. While these do not represent
new results for rigidity theory, they provide novel consequences for the maximum likelihood
threshold.

Proposition 3.1 ([11], Lemma 2.5.5). Let G′ = (V ′,E′) and G = (V ,E) such that G′ is a
subgraph of G. Then if E is independent in A(n − 1), the set E′ is independent in A(n − 1).
Consequently, rank(G′) ≤ rank(G).

The condition in the next theorem is called Laman’s condition in the combinatorial rigidity
literature and is a necessary condition for a set to be independent in the rigidity matroid A(n−1).
We state the theorem in terms of the rank of G, using the equivalence established in Theorem 2.5.

Theorem 3.2 ([11], Theorem 2.5.4). Let G = (V ,E) be a graph, and suppose that rank(G) ≤ n.
Then, for all subgraphs G′ = (V ′,E′) of G such that #V ′ ≥ n − 1 we must have

#E′ ≤ #V ′(n − 1) −
(

n

2

)
. (2)

Laman’s theorem [20] states that the condition of Theorem 3.2 is both necessary and sufficient
for a set to be independent in A(2), which combined with Theorem 2.4 and Theorem 1.5 gives
us the following corollary in regards to the maximum likelihood threshold.

Corollary 3.3. Let G = (V ,E) be a graph, if for all subgraphs G′ = (V ′,E′) of G

#E′ ≤ 2
(
#V ′) − 3,

then mlt(G) ≤ 3.

Naively checking the conditions of Corollary 3.3 is inefficient. However, there is a polynomial
times algorithm that can check if an edge set is independent in A(2) [15].

Example 3.4. Let G be the complete bipartite graph K3,3. The treewidth of G is 3, thus, by
Buhl’s bound in Proposition 1.3, we have mlt(G) ≤ 4. Using Corollary 3.3, we can obtain the
improved bound mlt(K3,3) ≤ 3. Since K3,3 is not a forest, we deduce that mlt(K3,3) = 3.

In rigidity theory, there are many operations that take an independent set and produce a new
independent set on a larger number of vertices. We review two of these here, vertex addition
and edge splitting. We begin with vertex addition, also called 0-extensions, and elaborate on
some of the implications with respect to the maximum likelihood threshold. Again, we state the
theorem in terms of the rank of G, using the equivalence established in Theorem 2.5. A variation
of Proposition 3.5 with rank replaced by Ben-David’s Gaussian rank is proved independently
in [2].
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Proposition 3.5 (Vertex addition, [28], Lemma 11.1.1). Let G = (V ,E) be a graph such that
rank(G) ≤ n and #V = m. Let G′ be a new graph obtained from G by adding the vertex v′ and
at most n − 1 edges connecting v′ to other vertices in G. Then rank(G′) ≤ n, and, in particular,
mlt(G′) ≤ n.

Definition 3.6. Let G be a graph and fix an integer r . The r-core of G denoted r- core(G) is the
graph obtained from G by successively deleting vertices of degree < r . A graph is said to have
empty r-core, if r- core(G) has no vertices.

Using Proposition 3.5 inductively, we immediately deduce the following corollary.

Corollary 3.7. Let G be a graph with empty n-core. Then mlt(G) ≤ n.

Corollary 3.7 was also proven independently in [2] using bounds on the Gaussian rank of a
graph. While not as powerful as the splitting result from the next section, Corollary 3.7 already
implies a number of nice consequences in some simple cases.

Corollary 3.8. Let Grk1,k2 denote the k1 ×k2 grid graph with k1, k2 ≥ 2. Then mlt(Grk1,k2) = 3.

Proof. First of all, mlt(Grk1,k2) ≥ 3, since Grk1,k2 contains a cycle. On the other hand,
rank(Grk1,k2) ≤ 3, since Grk1,k2 has empty 3-core. This can be seen by removing the corner
vertices, which successively leaves a new vertex of degree 2. Hence,

3 ≤ mlt(Grk1,k2) ≤ rank(Grk1,k2) ≤ 3

completes the proof. �

Another well-known graph operation preserving rank is edge-splitting.

Theorem 3.9 (Edge splitting, [28], Theorem 11.1.7). Let G = (V ,E) be a graph such that
rank(G) ≤ n, and let e = {v1, v2} ∈ E. Let G′ be a graph obtained from G by removing e and
then adding a new vertex v′ such that v′ is attached to the vertices v1 and v2 and at most n − 2
other vertices in V . Then rank(G′) ≤ n, and, in particular mlt(G′) ≤ n.

Example 3.10. Consider the lattice graph L(2,4) pictured in Figure 1. The graph L(2,4) has tree-
width 4 and contains the complete graph on 4 vertices, therefore 4 ≤ mlt(L(2,4)) ≤ 5. Denote the
graph pictured in Figure 2 by G. The graph G has an empty 4 − core, thus mlt(G) ≤ 4. We can
obtain L(2,4) by removing the edge {2,5} and adding the vertex 8 and the edges {1,8}, {2,8},
{5,8}, and {7,8}, thus L(2,4) can be obtained from G through an edge splitting and we have
mlt(L(2,4)) = 4.

Via a more advanced application of results of combinatorial rigidity theory, we can deduce the
following bound on the rank of any planar graph.

Corollary 3.11. Let G be a planar graph. Then mlt(G) ≤ 4.
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Figure 1. The lattice graph L(2,4).

This proof is essentially due to Gluck [10] and depends on Dehn’s [5] strengthening of
Cauchy’s theorem.

Proof of Corollary 3.11. Every planar graph is a subgraph of a maximal planar graph, that
is, a planar graph where it is not possible to add any further edges and maintain planarity. By
Proposition 3.1, it suffices to prove the bound for such maximal subgraphs. The theorem is clearly
true if #V ≤ 3, so assume that #V ≥ 4.

Now, every maximal planar graph with #V ≥ 4 is 3-connected. Indeed, if a graph were not
3-connected, 2 vertices could be removed from G leaving a disconnected graph, then an edge
could be added from one of the components to another without disrupting the planarity property.
Thus, if a planar graph is not 3-connected, it is not maximal.

Every 3-connected planar graph is the edge graph of a simplicial convex polytope via
Steinitz theorem (see [31], Chapter 3). Dehn’s theorem [5] implies that the framework of any
3-dimensional simplicial convex polytope is infinitesimally rigid in three dimensions, and hence
the associated graph is generically rigid in three dimensions. Since a maximal planar graph with
m vertices has exactly 3m − 6 edges, Dehn’s theorem combined with Laman’s criterion implies
that any maximal planar graph is isostatic in 3 dimensions. Hence, the set of edges of a maximal
planar graph is an independent set in A(3), which implies that rank(G) ≤ 4. �

Graphical models associated to planar graphs are especially important in spatial statistics
where they are used for applications including in weather forecasting and image analysis. Corol-
lary 3.11 shows that only four data points are needed to estimate parameters in such models.

Figure 2. Graph with mlt(G) ≤ 4.
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4. Splitting theorem

In this section, we prove a theorem that allows us to relate the rank of a graph to the rank of
smaller subgraphs, at the expense of needing to calculate the birank of some associated bipartite
graphs. The birank is the bipartite analogue of rank of a graph, and is naturally related to the
theory of bipartite rigidity introduced in [16]. This splitting theorem allows us to give a number
of simple computations of rank(G) and hence gives us a simple way to compute bounds on
mlt(G).

For a bipartite graph G = (V1,V2,E) with a fixed bipartition of the vertices V = V1 � V2
where #V1 = m1, #V2 = m2 and two integers r1, r2, define the following linear space for generic
points X ∈Cm1×r1 and Y ∈ Cr2×m2 :

L(X,Y )
r1,r2

:= {
X · A + B · Y : A ∈ Cr1×m2,B ∈Cm1×r2

}
.

Let

φE : Cm1×m2 →CE, φE(�) = (σij )ij∈E

be the coordinate projection that extracts the entries corresponding to edges of G. Notice that
while φG from (1) extracts entries corresponding to the diagonal, φE does not.

Definition 4.1. Let G = (V1,V2,E) be bipartite graph. Define the bipartite rank of G, denoted
birank(G), to be the set of all pairs of integers (r1, r2) such that φE(L

(X,Y )
r1,r2 ) = CE for generic

X ∈Cm1×r1 and Y ∈ Cr2×m2 .

The case where r1 = r2 = r , the linear space L
(X,Y )
r,r is the tangent space of the set of m1 × m2

matrices of rank r at the point XY . Hence, bipartite rank in this case tells us about independent
sets in the algebraic matroid of the ideal of (r + 1)-minors of a generic matrix. This matroid was
studied in the context of matrix completion problems in [17,18,24].

The following proposition describes a method for constructing a new bipartite graph G′ from
G such that if (r1, r2) ∈ birank(G) then (r1, r2) ∈ birank(G′).

Proposition 4.2. Let G = (V1,V2,E) be a bipartite graph with fixed partition V = V1 � V2
such that #V1 = m1 and #V2 = m2. Let (r1, r2) ∈ birank(G) and let G′ be a new bipartite graph
obtained from G by adding the vertex v′ to V1 and at most r2 edges connecting v′ to other vertices
in V2. Then (r1, r2) ∈ birank(G′).

This result is essentially Lemma 3.7 of [16].

Proof of Proposition 4.2. Let X′ ∈C(m1+1)×r1 and Y ∈ Cr2×m2 be generic. Write

X′ =
[
X

x

]
,

where X ∈Cm1×r1 and x ∈ Cr1 . Since X′ is generic, X and x are both generic as well.
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Let E′ be the edge set of G′. Let w′ ∈ CE′
, which we will write as w′ = (

w
u

)
where w ∈

CE and u ∈ CE′−E . Since (r1, r2) ∈ birank(G), by the definition of bipartite rank, the image
φE(L

(X,Y )
r1,r2 ) =CE , and thus there exists A ∈Cr1×m2,B ∈Cm1×r2 such that

φE(X · A + B · Y) = w.

Now, note that if b ∈ (Cr2)∗, then
[
X

x

]
· A +

[
B

b

]
· Y =

[
X · A + B · Y
x · A + b · Y

]
.

Thus, to show surjectivity of φE′ , we need to find a b ∈ Cr2 such that

φE′−E(x · A + b · Y) = u. (3)

However, the equation (3) results a linear system with generic coefficients and r2 unknowns (the
entries of b). Therefore, a solution always exists when #(E′ −E) ≤ r2 if r2 ≤ m2, or #(E′ −E) ≤
m2 if r2 > m2. �

For a bipartite graph G with fixed bipartition of the vertices V1,V2 and two integers r1, r2,
let corer1,r2(G) be the graph obtained from G by repeatedly removing vertices of G whenever
j ∈ V1 has degree less than or equal to r2 or j ∈ V2 has degree less than or equal to r1. Note
that the corer1,r2(G) is uniquely determined, despite the fact that we have choices in the order
we choose to remove vertices. A graph is said to have empty (r1, r2)-core if corer1,r2(G) has no
vertices. Clearly if G has empty (r1, r2)-core, it will have (r1, r2) ∈ birank(G), in analogy to the
relationship between ordinary rank of a graph and core.

Example 4.3. A bipartite graph G has empty (1,1)-core if and only if G has no cycles.

The notion of bipartite rank can help us understand the rank of an arbitrary (not necessarily
bipartite) graph G. For a graph G = (V ,E) and disjoint subsets V1,V2 ⊆ V , let G(V1,V2) be the
bipartite graph consisting of all edges ij ∈ E(G) such that i ∈ V1 and j ∈ V2. Let GV1 denote the
induced subgraph of vertex set V1.

Theorem 4.4 (Splitting theorem). Let G be a graph, r1, . . . , rk integers and V1, . . . , Vk a par-
tition of the vertices of G, such that:

(1) for all i, rank(GVi
) ≤ ri and

(2) for all i �= j , (ri , rj ) ∈ birank(G(Vi,Vj )).

Then rank(G) ≤ r1 + · · · + rk , and, in particular, mlt(G) ≤ r1 + · · · + rk .

Proof. Let mi = #Vi for all 1 ≤ i ≤ k. Let m = ∑k
i=1 mi and n = ∑k

i=1 ri . Recall that
Sym(m,n) can be parameterized over C as

Sym(m,n) = {
P T P : P ∈ Cn×m

}
.
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Using this parameterization, we see that the tangent space of Sym(m,n) at the point X = P T P

is

TX

(
Sym(m,n)

) = {
P T A + AT P : A ∈Cn×m

}
.

To show that dimφG(Sym(m,n)) = #V + #E, we will show that the differential of φG at X

(DφG)X : TX

(
Sym(m,n)

) → CV +E,

(DφG)X(�) = φG(�)

is surjective for a particular X ∈ Sym(m,n). This will imply (DφG)X is surjective for generic
X ∈ Sym(m,n), and consequently φG restricted to Sym(m,n) is dominant.

Let X = P T P where P is a block diagonal matrix of the form

P =

⎛
⎜⎜⎜⎝

P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...

0 0 · · · Pk

⎞
⎟⎟⎟⎠

such that Pi ∈ Cri×mi is generic for 1 ≤ i ≤ k. For every A ∈Cn×m, write A as the block matrix

A =

⎛
⎜⎜⎜⎝

A11 A12 · · · A1k

A21 A22 · · · A2k

...
...

. . .
...

Ak1 Ak2 · · · Akk

⎞
⎟⎟⎟⎠ ,

where Aij ∈ Cri×mj . Then P T A + AT P ∈ TX(Sym(m,n)) is a symmetric block matrix where
the ij th block is P T

i Aij + AT
jiPj , i.e.,

P T A + AT P =
⎛
⎜⎝

P T
1 A11 + AT

11P1 · · · P T
1 A1k + AT

k1Pk

...
. . .

...

P T
k Ak1 + AT

1kP1 · · · P T
k Akk + AT

kkPk

⎞
⎟⎠ .

To prove surjectivity of (DφG)X , let w ∈ CV +E , which can be written in the block form
w = (w11,w12, . . . ,wkk) where wii ∈ CVi+E(Gi) for all 1 ≤ i ≤ k and wij ∈ CE(G(Vi ,Vj )) for all
1 ≤ i < j ≤ k. Since rank(GVi

) ≤ ri and Pi is generic, the image of the linear space {P T
i Aii +

AT
iiPi : Aii ∈Cri×mi } under the map φGVi

is CVi+E(Gi), which means there exists a A′
ii ∈ Cri×mi

such that φGVi
(P T

i A′
ii +A′T

ii Pi) = wii . Furthermore, since (ri , rj ) ∈ birank(G(Vi,Vj )) for i �= j ,

there exists A′
ij ∈ Cri×mj and A′

ji ∈ Crj ×mi such that φE(G(Vi ,Vj ))(P
T
i A′

ij + A′T
ji Pi) = wij . Let

A′ ∈ Cn×m with ij th block A′
ij . Then (DφG)X(P T A′ + A′T P ) = φG(P T A′ + A′T P ) = w, and

we have shown surjectivity of the differential (DφG)X . �

Theorem 4.4 and repeated application of Proposition 4.2 gives us the following corollary.
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Corollary 4.5. Let G be a graph, r1, . . . , rk integers and V1, . . . , Vk a partition of the vertices
of G, such that:

(1) for all i, rank(GVi
) ≤ ri and

(2) for all i �= j , G(Vi,Vj ) has an empty (ri , rj ) core.

Then mlt(G) ≤ r1 + · · · + rk .

The special case where all the ri are equal to one is easy to understand.

Corollary 4.6. Let G be a graph and V1, . . . , Vk be a partition of the vertices of G such that:

(1) for all i, Vi is an independent set of G and
(2) for all i �= j , G(Vi,Vj ) has no cycles.

Then mlt(G) ≤ k.

Of course, a partition of the vertices of the graph into independent sets is a proper coloring
of the graph, so we seek proper graph colorings where the induced subgraph on pairs of colors
has no cycles. Such a coloring is called an acyclic coloring of a graph, and the smallest number
of colors such that a graph has an acyclic coloring with that many colors is the acyclic coloring
number of the graph [12]. We conclude with some examples illustrating the use of the splitting
theorem and its corollaries.

Example 4.7. Consider the lattice graph L(2,4) from Example 3.10. The partition of the vertices
V1 = {1,5}, V2 = {2,6}, V3 = {3,7}, and V4 = {4,8} has each Vi an independent set in L(2,4)

and each bipartite graph L(2,4)(Vi,Vj ) without cycles. This implies that rank(G) ≤ 4.

Example 4.8. Consider the octahedral graph O6, pictured in Figure 3. The partition of vertices
V1 = {1,4,5}, V2 = {2,3,6} yields a splitting that produces the bound rank(O6) ≤ 4. Indeed,
since (O6)V1 and (O6)V2 are both trees, they have rank((O6)V1) = rank((O6)V2) = 2, and the
bipartite graph O6(V1,V2) has empty (2,2)-core so (2,2) ∈ birank(O6(V1,V2)). On the other
hand O6 has 12 edges, which by Theorem 3.2 implies that rank(O6) ≥ 4, so the splitting proves
that rank(O6) = 4.

Figure 3. The octahedron graph O6.
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Example 4.9. Consider the grid graphs Grk1,k2 . Identify the vertices naturally with [k1] × [k2].
Partition the vertices into three parts V0,V1,V2 where

Vi = {
(j1, j2) : j1 + j2 ≡ i mod 3

}
.

Clearly each Vi is an independent set and each graph G(Vi,Vj ) has no cycles, so by Corol-
lary 4.6, rank(Grk1,k2) ≤ 3.

The three preceding examples illustrating the Splitting theorem can already be handled using
the standard techniques from rigidity theory from Section 3. Furthermore, we should discuss the
fact that the acyclic coloring number can grow very quickly. Let d(G) be the maximal degree of
the graph G and A(G) denote the acylic coloring number. In fact, Alon, McDiarmid and Reed
[1] showed that A(G) = O(d(G)4/3) and there exist graphs for which

A(G) = 	

(
d(G)4/3

(logd(G))1/3

)
.

On one hand, based on the results from the previous sections, rank(G) ≤ d(G) + 1, since any
graph G has empty (d(G)+1)-core. On the other hand, there are graphs where A(G) < d(G)+1.

Example 4.10. Consider the graph T Grk1,k2 , the k1 × k2 torus grid graph. This graph has k1k2
vertices, each of degree 4, and hence 2k1k2 edges in total. The core argument implies that
rank(G) ≤ 5 whereas from the edge count we see that rank(G) ≥ 4.

Suppose that k1 is divisible by 4 and k2 is divisible by 3. Consider the 4 × 3 blocks of colors:

B =

⎛
⎜⎜⎝

1 2 3
2 3 4
3 4 1
4 1 2

⎞
⎟⎟⎠

and consider the resulting coloring of T Grk1,k2 obtained by repeating this block. This coloring
shows that A(T Grk1,k2) ≤ 4 since each of the induced colorings on coloring classes (i, i + 1)

mod 4 will consist of paths descending from the northeast to the southwest, that do not cross
left-right boundaries from one B to the next B . Coloring classes (i, i + 2) mod 4 only involve
edges that cross between adjacent left-right blocks, so also do not produce cycles.

5. Weak maximum likelihood threshold

A weaker notion of maximum likelihood threshold was also introduced in [3] and further stud-
ied in [25], which asks not for maximum likelihood estimates to exist for almost all �0 ∈
Sym(m,n) ∩ Sm

≥0 but just for an open set of Sym(m,n) ∩ Sm
≥0. This leads us to the notion of

weak maximum likelihood threshold.

Definition 5.1. For each graph G, the weak maximum likelihood threshold, wmlt(G), is the
smallest n such that there exists a �0 ∈ Sym(m,n) ∩ Sm

≥0 and a � ∈ Sm
>0 such that φG(�0) =

φG(�).
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Note that because the positive definite cone Sm
>0 is open, the existence of a single matrix �0

with this property guarantees an open set of such matrices of positive measure in Sym(m,n) ∩
Sm

≥0. Hence, we could also say that if wmlt(G) ≥ n, then maximum likelihood estimates for
the Gaussian graphical model associated to G exist with positive probability with n data points.
Evaluating this probability would depend on having a specific distribution to draw the data from,
for example, Buhl [3] calculated this for data drawn from an N (0, Im) distribution for the cycle
graph.

Clearly we have wmlt(G) ≤ mlt(G). The two numbers can be equal, but often they are dif-
ferent. Analogous to the splitting theorem for rank(G), there is also a straightforward splitting
lemma for wmlt(G).

Lemma 5.2 (Splitting lemma). Let G be a graph, r1, . . . , rk integers and V1, . . . , Vk a partition
of the vertices of G, such that for all i, wmlt(GVi

) ≤ ri . Then wmlt(G) ≤ r1 + · · · + rk .

Proof. For i = 1, . . . , k, let �i
0 ∈ Sym(m, ri) and �i ∈ S

#Vi
> such that

φGVi

(
�i

0

) = φGVi

(
�i

)
.

Then the block diagonal matrices

�0 = diag
(
�1

0, . . . ,�k
0

)
and � = diag

(
�1, . . . ,�k

)
satisfy φG(�0) = φG(�), � ∈ Sm

>0, and �0 ∈ Sym(m, r1 + · · · + rk) ∩ Sm
≥0. �

The special case where all ri = 1 yields the following corollary where χ(G) denotes the chro-
matic number of G.

Corollary 5.3. Let G be a graph. Then wmlt(G) ≤ χ(G).

So for example, every bipartite graph G that has an edge satisfies wmlt(G) = 2. On the other
hand, for the grid graphs mlt(Grk1,k2) = 3, so wmlt(G) is typically smaller than mlt(G).

At this point we know very little about the weak maximum likelihood threshold, even for the
graphs with wmlt(G) = 2. Buhl showed that if Ck is a cycle of length k ≥ 4, then wmlt(Ck) = 2,
while wmlt(C3) = 3. A corollary to this result is the following necessary condition for a graph
to have wmlt(G) = 2.

Corollary 5.4. Let G = ([m],E) be a graph with wmlt(G) = 2. Then G is triangle free and there
exists a cyclic order w = w1w2 · · ·wm of the vertices of G such that for any subset V ⊂ [m] such
GV is a cycle, the induced cyclic ordering wV is not a cycle ordering induced by the natural
cyclic ordering from GV .

Proof. Let �0 ∈ Sym(m,2)∩Sm
≥0. Then �0 = P T P where P = (p1, . . . ,pm) and each pi ∈ R2.

Scaling the pi by nonzero constants λi does not change whether or not there exists a � (since
we could also scale the resulting �) so we can assume that all the pi are in the upper half-
plane. Buhl showed that for the cycle graph Ck with edges (i, i + 1), there exists a � ∈ Sk

>0 with
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φCk
(�0) = φCk

(�) if and only if the vectors pi are not in cyclic order when considered by their
angles in the upper half plane.

Let �0 ∈ Sym(m,n) ∩ Sm
≥0 and � ∈ Sm

>0 such that φG(�0) = φG(�). Then if V is any subset
of [m] and (�0)V is the submatrix of �0 obtained by deleting all rows and columns not indexed
by vertices in V , then (�0)V ∈ Sym(#V,n)∩S#V

≥0 and �V ∈ S#V
>0, with φGV

((�0)V ) = φGV
(�V ).

Hence, taking n = 2, by Buhl’s result the vectors pi must not appear in cyclic order for any cycle.
A necessary condition for finding such a set of vectors is the existence of a permutation with the
prescribed property. �

If such an ordering w of the vertices of a triangle free graph G exists, then G is said to satisfy
Buhl’s cycle condition. So a graph with wmlt(G) = 2 satisfies Buhl’s cycle condition, but we do
not know if the converse of this statement is true. Also we know of no example of a triangle-free
graph that does not satisfy Buhl’s cycle condition. Note that every triangle free graph G with
χ(G) ≤ 3 satisfies Buhl’s cycle condition, by choosing a 3-coloring and listing the vertices in
blocks according to their color.

Example 5.5. Consider the Grötsch graph G11, pictured in Figure 4, the smallest triangle free
graph with χ(G11) = 4. This graph has a cyclic ordering of its vertices satisfying Buhl’s cycle
condition, namely achjbdef ikg. On the other hand, the best upper bound on wmlt(G11) using
Theorem 5.2 comes from the splitting V1 = {a, b, d, g, j, k}, V2 = {c, e, f,h, i}, which yields
wmlt(G11) ≤ 3. Is wmlt(G11) = 2?

6. Score matching threshold

An alternative estimator to the maximum likelihood estimator for Gaussian graphical models
is the score matching estimator (SME) [13]. Unlike the MLE, the SME does not need to be
computed iteratively, but instead is the solution to a set of linear equations.

Figure 4. The Grötsch graph: the smallest triangle free graph with χ(G) = 4.
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The SME is an estimate of the concentration matrix K = �−1. Let G = (V ,E) be a graph
with |V | = m. Let LG be the following linear subspace of Sm

LG := {
K ∈ Sm : Kij = 0 if ij /∈ E(G) and i �= j

}
,

and let �G be the orthogonal projection from Sm onto LG. The estimating equations for the SME
are

1

2
· �G

(
K�T

0 + �0K
T
) = Im, (4)

where �0 is the sample covariance matrix and Im is the m × m identity matrix.
Let �0 = P T P where P = (p1, . . . ,pm) and each pi ∈ Rn. In [8], the authors give several

equivalent conditions that are necessary and sufficient for the SME to exist, that is, for the equa-
tion (4) to have a unique solution. We will use the following proposition.

Proposition 6.1 ([8]). Given a graph G, the SME exists if and only if K = 0 is the only element
of LG such that KP T = 0.

While we do not know yet how large the difference between mlt(G) and rank(G) can be, we
can show that given a graph G the minimal observations n needed to ensure that the SME exists
almost surely is exactly equal to the rank of G.

Definition 6.2. Let G be a graph. The graph G is n-estimable if the score matching estimator of
� exists with probability one. The score matching threshold of G, denoted smt(G) is the minimal
n such that G is n-estimable.

Theorem 6.3. Let G be a graph. Then

smt(G) = rank(G).

Proof. The system KPT = 0 is a linear system in the entries of K with coefficients in the entries
of P . The coefficient matrix C of the system KP T = 0 is a mn × (#V + #E) matrix where the
columns are indexed by the vertices and edges of G; the system KP T = 0 has a unique solution
if and only if the rank of C is #V + #E.

Let M be the matrix obtained from the Jacobian J (g,P ) from Section 2 by scaling the columns
indexed by ii by 1

2 . The coefficient matrix C is the submatrix of M obtained by selecting the
columns indexed by the vertices and edges of G. Thus, the matrix C has rank #V + #E for
generic p1, . . . ,pm if and only if {σii : i ∈ [m]} ∪ {σij : ij ∈ E(G)} is an independent set of the
symmetric minor matroid S(m,n). The statement then follows by Proposition 2.3. �

We can now apply all the results in the previous sections on the rank of a graph to the score
matching threshold. For example:

Corollary 6.4. Let G = (V ,E) be a graph. The smt(G) ≤ 3 if and only if for all subgraphs
G′ = (V ′,E′) of G

#E′ ≤ 2
(
#V ′) − 3.
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Corollary 6.5. Let G be a graph with empty n-core. Then smt(G) ≤ n.

Corollary 6.6. Let G be a graph and V1, . . . , Vk be a partition of the vertices of G such that:

(1) for all i, Vi is an independent set of G and
(2) for all i �= j , G(Vi,Vj ) has no cycles.

Then smt(G) ≤ k.

Lauritzen stated the following conjecture about the score matching threshold in his lecture at
the 2014 Prague Stochastics meeting.

Conjecture 6.7. The graph G is n-estimable if and only if

#V + #E ≤ nm −
(

n

2

)
.

The translation to rigidity theory immediately provides counterexamples.

Example 6.8 (Counterexample to Conjecture 6.7). Let G = (V ,E) be the graph depicted in
Figure 5. Let n = 3. Then

#V + #E = 12 = nm −
(

n

2

)
.

Thus, G is conjectured to be 3-estimable. However, by Corollary 6.4, this cannot be the case
since the complete graph K4 is a subgraph of G.

Even with the stronger condition that the inequality #V ′ +#E′ ≤ n#V ′ − (
n
2

)
for every induced

subgraph G′ = (V ′,E′) of G, there are known counterexamples of graphs satisfying all of these
inequalities but not being rigid. The simplest such graph is the double banana graph, which
satisfies all these inequalities for n = 4 but is not a rigid graph in A(3). So the Gaussian graphical
model associated to the double banana graph is not 4-estimable.

7. Conclusion

The maximum likelihood threshold of a graph is an important measure of the complexity of the
Gaussian graphical model associated to the graph. It measures how much data is needed to cal-

Figure 5. Graph satisfies conditions of Conjecture 6.7 for n = 3, but is not 3-estimable.
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culate maximum likelihood estimates for the parameters of the model. We showed that a result
of Uhler implies that the maximum likelihood threshold is closely related to combinatorial rigid-
ity theory, and then imported a number of results from combinatorial rigidity theory to get new
bounds on the maximum likelihood threshold. These new bounds significantly improve bounds
that exist in the literature, and in some cases imply effective ways to check whether the MLE
exists almost surely. Note that a probabilistic algorithm to check the rank of a graph can be
employed by checking the rank of the appropriate Jacobian matrix at randomly sampled points.

We conclude here with a few remaining questions. First, as discussed in the Introduction, does
there exists a graph G such that mlt(G) is strictly less than rank(G)? Second, just as we are
interested in the possible discrepancy between mlt(G) and rank(G) of a given graph, we are also
intrigued by the discrepancy between the mlt(G) and the Gaussian rank of a graph as defined
in [2].

In [2], Ben-David defines the Gaussian rank of a graph to be the smallest n such that for
every �0 ∈ Sym(m,n) ∩ Sm

≥0 in general position there exists a � ∈ Sm
>0 such that φG(�0) =

φG(�). General position means that in any representation �0 = P T P where P is an n × m

matrix, all n × n minors of P are nonzero. Such an n is an upper bound on the mlt(G). The
difference between the mlt(G) and the Gaussian rank is that the mlt(G) requires the condition
in Problem 1.1 to hold everywhere except for some set of measure zero, while Gaussian rank
prescribes a specific set of measure zero off of which the condition must hold. The Gaussian rank
has the advantage that the general position condition can be explicitly checked in examples, but
mlt(G) is often smaller. In [2], the author gives an example of a planar graph whose Gaussian
rank is 6, however, from Corollary 3.11, we know that the mlt(G) of any planar graph is at
most 4, using the bound coming from the rank of G. While both rank and Gaussian rank are both
upper bounds for the maximum likelihood threshold, we do not know if it is always the case the
Gaussian rank is greater than or equal to the rank of G.

Third, we are curious whether it possible to directly pin down the precise connection between
rigidity theory and the maximum likelihood threshold. We provide a conjecture relating the maxi-
mum likelihood threshold to a stronger form of rigidity. Let G = (V ,E) be a graph with #V = m.
A framework in Rn with respect to G, denoted (G,P ), is an n × m matrix P such that the ith
column of P , denoted pi , is an embedding of the ith vertex of G into Rn.

Definition 7.1. Two frameworks (G,P ) and (G,Q) are edge-equivalent if

‖pi − pj‖2
2 = ‖qi − qj‖2

2 ∀ij ∈ E(G).

Definition 7.2. Let G = (V ,E) be a graph with #V = m. A framework (G,P ) in Rn is
n-dependently rigid if for every edge equivalent framework (G,Q) in Rm the set of point
{q1, . . . ,qm} is affinely dependent.

We will say that G is generically n-dependently rigid if every generic framework (G,P ) in
Rn is n-dependently rigid.

Conjecture 7.3. The maximum likelihood threshold for a graph G is greater than n if and only
if G is generically n-dependently rigid.
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We hope that once a precise connection between combinatorial rigidity theory and maximum
likelihood estimation is established, new results on the mlt(G), guaranteed to be sharp, could be
obtained.

In addition to studying the maximum likelihood threshold, in this paper, we also looked at
two related graph invariants, the weak maximum likelihood threshold and the score matching
threshold. Little is understood about the weak maximum likelihood threshold, however, here we
were able to show wmlt(G) is bounded above by the chromatic number of G, and we were
able to give a necessary condition on G for wmlt(G) = 2. As for the score matching threshold,
we showed a direct connection between the smt(G) and independent sets in the generic rigidity
matroid. While we saw that for n = 3, conditions for independence in A(2) are efficient to check
and some sufficient conditions for independence in A(n − 1) are known for n > 3, it should be
noted that it is still an open problem to characterize all independent sets in A(3). We hope that
this connection though inspires more work on understanding the rigidity matroid for statistical
applications.
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