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A λ-invariant measure of a sub-Markov chain is a left eigenvector of its transition matrix of eigenvalue λ. In
this article, we give an explicit integral representation of the λ-invariant measures of subcritical Bienaymé–
Galton–Watson processes killed upon extinction, that is, upon hitting the origin. In particular, this character-
izes all quasi-stationary distributions of these processes. Our formula extends the Kesten–Spitzer formula
for the (1-)invariant measures of such a process and can be interpreted as the identification of its minimal
λ-Martin entrance boundary for all λ. In the particular case of quasi-stationary distributions, we also present
an equivalent characterization in terms of semi-stable subordinators.

Unlike Kesten and Spitzer’s arguments, our proofs are elementary and do not rely on Martin boundary
theory.

Keywords: Bienaymé–Galton–Watson process; invariant measure; Martin boundary; quasi-stationary
distribution; Schröder equation; semi-stable process

1. Results

Let Z = (Zn)n≥0 be a subcritical Bienaymé–Galton–Watson (BGW) process with offspring
distribution of mean m ∈ (0,1). Denote by P the restriction of its transition matrix to N

∗ =
{1,2, . . .}. Then P is a sub-stochastic matrix, the transition matrix of the sub-Markov process {Z

killed upon hitting 0}. A measure1 ν on N
∗ is called a λ-invariant measure for Z if it is a left

eigenvector2 of P of eigenvalue λ, that is, if

νP = λν. (1)

In terms of generating functions, if F(z) denotes the generating function of the offspring distri-
bution and G(z) = ∑∞

k=1 ν(k)zk the generating function of the measure ν, then, supposing that
G(z) is finite for all |z| < 1 (a fact which follows from Lemma 14 below), (1) is equivalent to

G
(
F(z)

) − G
(
F(0)

) = λG(z), |z| < 1. (2)

For x ∈ N
∗ denote by Px the law of the process Z starting from Z0 = x and by Ex expectation

with respect to Px . Furthermore, for a measure ν on N
∗, write ‖ν‖ = ν(N∗). The following limit,

1Throughout the article, all measures are assumed to be locally finite unless explicitly stated.
2As usual, we consider measures as row vectors and functions as column vectors.
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called the Yaglom limit, is known to exist [8,13] (see also [2], page 16):

νmin = lim
n→∞ P1(Zn ∈ · | Zn > 0) = lim

n→∞
δ1P

n

‖δ1P n‖ , (3)

where the limit holds in the weak topology of measures on N
∗. Furthermore, the probability

measure νmin satisfies (1) with λ = m, that is, it is an m-invariant probability measure of the
process. In particular, (see also [18], Proposition 5),

P1(Zn+1 > 0)

P1(Zn > 0)
= ‖δ1P

n+1‖
‖δ1P n‖ → m, as n → ∞. (4)

We denote the generating function of the probability measure νmin by

H(z) =
∞∑

n=1

νmin(n)zn, |z| ≤ 1.

Our main theorem is the following, which identifies all λ-invariant measures of the BGW process
(Zn)n≥0.

Theorem 1.

1. There exist no non-trivial (i.e., 	≡ 0) λ-invariant measures for Z with λ < m.
2. The only m-invariant measures of Z are multiples of the Yaglom limit νmin.
3. Let α ∈ (−∞,1). A measure ν on N

∗ is an mα-invariant measure for Z if and only if its
generating function G(z) = ∑

ν(n)zn satisfies

G(z) =
∫ ∞

0

(
e(H(z)−1)x − e−x

) 1

xα
�(dx), |z| < 1, (5)

where � is a locally finite measure on (0,∞) satisfying �(A) = �(mA) for every Borel
set A ⊂ (0,∞). The measure � is uniquely determined from ν. Moreover, for every such
measure �, (5) defines the generating function of an mα-invariant measure for Z with
radius of convergence at least 1.

Remark 2. In the proof of Theorem 1, the measure x−α�(dx) will be constructed as the vague
limit (n → ∞) of the measures μn on (0,∞) defined by μn(A) = m−αnν(p−1

n A), where pn =
P1(Zn > 0) and A ⊂ (0,∞) Borel.

Remark 3. We will give an overview over the existing literature in Section 3.3 but mention
already here that formula (5) was obtained, in a slightly different form, for α = 0 and F(z) =
1 − m(1 − z) (the “pure death case”) by Kesten and Spitzer [23] (giving credit to H. Dinges for
deriving it independently). It was later shown by Hoppe [11] that the case of general and even
multitype offspring distributions (but still α = 0) can be reduced to the pure death case. One
could adapt Hoppe’s arguments for α 	= 0, but we do not show this here.
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Quasi-stationary distributions. A λ-invariant probability measure ν (i.e., ‖ν‖ = 1) is also
called a quasi-stationary distribution (QSD) of the process Z with eigenvalue λ. The follow-
ing result easily follows from Theorem 1.

Theorem 4. A λ-invariant measure ν of the process Z is finite if and only if λ < 1. In particular,
ν is a QSD with eigenvalue λ of the process Z if and only if either:

1. λ = m and ν = νmin, or
2. λ = mα for some α ∈ (0,1) and the generating function G(z) = ∑

ν(n)zn satisfies (5),
where � is a locally finite measure on (0,∞) satisfying:

(a) �(A) = �(mA) for every Borel set A ⊂ (0,∞) and
(b)

∫ ∞
0 (1 − e−x)x−α�(dx) = 1.

Furthermore, the measure � in (5) is uniquely determined from ν.

Remark 5. If �(dx) = 1
x

dx in the above theorem, then G(z) = 1− (1−H(z))α , see Remark 10
below. These QSD were found by Seneta and Vere-Jones in their seminal paper on QSD of
Markov chains on countably infinite state spaces [22]. Rubin and Vere-Jones [20] showed later
that these QSD are the only ones with regularly varying tails and furthermore, every distribution
ν on N

∗ with a tail of the form ν([x,∞)) = x−αL(x) for a slowly varying function L(x) is in
the domain of attraction of the above QSD (see also [21] for an analogous result for 1-invariant
measures).

Remark 6. The fact that the Yaglom limit νmin as defined in (3) is the QSD of smallest eigenvalue
is a general fact [6], page 515. Furthermore, the fact that it is the unique QSD with eigenvalue m

is classic in our case [8,13].

Remark 7. QSD of BGW processes (and formula (5)) appear in a recent article by Hénard and
the author on random trees invariant under Bernoulli edge contraction [9].

Continuous-time BGW processes. λ-invariant measures can be defined analogously for a sub-
critical continuous-time BGW process (Zt )t≥0. Let L and (Pt )t≥0 be its associated infinitesimal
generator and semigroup, respectively, restricted to N

∗. We say that a measure ν on N
∗ is a

λ-invariant measure of the process (Zt )t≥0 if νL = −λν, or equivalently, if νPt = e−λt ν for ev-
ery t ≥ 0. In this case, ν is also a e−λr -invariant measure of the embedded chain (Zrn)n≥0, for
every r > 0. The measure � from Theorem 1 then satisfies �(A) = �(rA) for every Borel set A

and every r > 0, hence �(dx) = 1
x

dx. We therefore have the following corollary to Theorem 1,
which also follows (in the pure death case) from results for general birth-and-death chains [4].

Corollary 8. Let (Zt )t≥0 be a subcritical continuous-time BGW process and let m > 0 such that
for all t ≥ 0, E1[Zt ] = e−mt .

1. There exist no non-trivial (i.e., 	≡ 0) λ-invariant measures for (Zt )t≥0 with λ > m.
2. The only m-invariant measures of (Zt )t≥0 are multiples of the Yaglom limit νmin.
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3. For every λ < m, the λ-invariant measures of (Zt )t≥0 are exactly the multiples of the mea-
sure whose generating function is given by (5) with α = λ/m and �(dx) = 1

x
dx if λ < m.

More explicitly, G is the generating function of a λ-invariant measure if and only if there
exists c ≥ 0, such that

G(z) = c ×

⎧⎪⎨⎪⎩
1 − (

1 − H(z)
)α

, α > 0,

− log
(
1 − H(z)

)
, α = 0,(

1 − H(z)
)α − 1, α < 0.

In particular, the only QSD of the process (Zt )t≥0 with eigenvalue αm, α ∈ (0,1] is the proba-
bility measure with generating function 1 − (1 − H(z))α .

Remark 9. A similar phenomenon happens for continuous-state branching processes, see [17].

Remark 10. The explicit formulae in Corollary 8 are obtained from the following well-known
equality which we recall for convenience:

∀a ∈ (0,1) ∀α < 1 :
∫ ∞

0

(
e−ax − e−x

) dx

xα+1
=

{
�(−α)

(
aα − 1

)
, α 	= 0,

− loga, α = 0.
(6)

An easy proof goes by noting that for each a ∈ (0,1), both sides of the equation define analytic
functions on the half-plane {Reα < 1} and agree on {Reα < 0} as can easily be checked by
calculating the two Euler integrals. The case α = 0 is also a special case of Frullani’s integral.

λ-Invariant measures of the process which is not killed at the origin. Say that a measure ν on
N = {0,1, . . .} is a true λ-invariant measure for Z if it is a λ-invariant measure for the non-
killed process. In other words, if P0 denotes the transition matrix of the BGW process Z on N,
a measure ν on N is a true λ-invariant measure for Z if and only if νP0 = λν, or equivalently, if
its generating function G satisfies G(F(z)) = λG(z) for every |z| < 1. Of course, since 0 is an
absorbing state for the process, there are no true λ-invariant measures for λ < 1, and for λ = 1
the only true (1-)invariant measures are the multiples of δ0 (see, e.g., [2], page 67). However, for
λ > 1 the λ-invariant measures from Theorem 1 all extend to true λ-invariant measures. In fact,
we have the following analogue of Theorem 1:

Theorem 11.

1. There exist no non-trivial (i.e. 	≡ 0) true λ-invariant measures for Z with λ < 1.
2. The only true (1-)invariant measures for Z are multiples of δ0.
3. Let α < 0. A measure ν on N is a true mα-invariant measure for Z if and only if its gener-

ating function G(z) = ∑
ν(n)zn satisfies

G(z) =
∫ ∞

0
e(H(z)−1)x 1

xα
�(dx), |z| < 1, (7)

where � is a locally finite measure on (0,∞) satisfying �(A) = �(mA) for every Borel
set A ⊂ (0,∞). The measure � is uniquely determined from ν. Moreover, for every such
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measure �, (5) defines the generating function of a true mα-invariant measure for Z with
radius of convergence at least 1.

For a subcritical continuous-time BGW process, we can define true λ-invariant measures ana-
loguously as above. The analogue of Corollary 8 is then the following corollary.

Corollary 12. Let (Zt )t≥0 be a subcritical continuous-time BGW process and let m > 0 such
that for all t ≥ 0, E1[Zt ] = e−mt .

1. There exist no non-trivial (i.e., 	≡ 0) λ-invariant measures for (Zt )t≥0 with λ > 0.
2. The only true (0-)invariant measures for (Zt )t≥0 are the multiples of δ0.
3. For λ < 0, the true λ-invariant measures for (Zt )t≥0 are exactly the multiples of the one

given by (7) with α = λ/m and �(dx) = 1
x

dx, that is, the measures with generating func-
tions G(z) = c(1 − H(z))α , c ≥ 0.

Overview of the article. The remainder of the article is organized as follows: Theorems 1, 4
and 11 are proven in Section 2. Section 3 is an extended discussion consisting of the following
three parts. In Section 3.1, we interpret Theorem 1 in the light of Martin boundary theory. Sec-
tion 3.2 gives a probabilistic interpretation of the QSD from Theorem 4 in terms of semi-stable
subordinators. In Section 3.3, we review the existing literature on λ-invariant measures of BGW
processes.

Notation. Throughout the article, a statement involving an undefined variable z is meant to
hold (at least) for every z ∈ (0,1).

2. Proofs

We start with three simple lemmas.

Lemma 13. Let z,w ∈ (0,1), z 	= w. Then for p > 0 small enough and for all x ≥ 0,

(
1 − p(1 − z)

)x/p − (1 − p)x/p ≥
≤ e(w−1)x − e−x if w < z,

if w > z.

Proof. Let z,w ∈ (0,1), z 	= w. If w < z, then 1 − p(1 − z) = 1 + p(z − 1) ≥ e(w−1)p for all
small enough p > 0. Furthermore, 1 − p ≤ e−p for all p > 0. This implies the first inequality.

If w > z, then 1 − p ≥ e(z−w−1)p for all small enough p > 0. Furthermore, 1 − p(1 − z) ≤
e(z−1)p for all p > 0. Hence, for p > 0 small enough and x ≥ 0.(
1−p(1−z)

)x/p −(1−p)x/p ≤ e(z−1)x −e(z−w−1)x = e(z−w)x
(
e(w−1)x −e−x

) ≤ e(w−1)x −e−x.

This shows the second inequality and thus finishes the proof of the lemma. �
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Lemma 14. Let ν be an mα-invariant measure of Z, with α ∈ R. Set M = m−1. Then for every
β < α, there exists C < ∞, such that

ν
([

Mn,Mn+1)) ≤ Cmβn, ∀n ∈N.

As a consequence, we have for every β < α, for some C < ∞, for every x ≥ 1,{
ν
([x,∞)

) ≤ Cx−β, β > 0,

ν
([1, x]) ≤ Cx−β, β ≤ 0.

In particular,
∑

n∈N∗ ν(n)|z|n < ∞ for every |z| < 1. Moreover, ν is finite if α > 0.

Proof. Fix a < M < A and ε > 0. Let ν be as in the statement and recall the definition of the
transition matrix P . From the branching property and the law of large numbers we get for large n,

δnP
([n/A,n/a)

) = Pn

(
Z1 ∈ [n/A,n/a)

) ≥ 1 − ε.

This implies that for every x large enough and y ≥ x,

νP
([x/A,y/a)

) ≥ (1 − ε)ν
([x, y)

)
.

Now let ε → 0. The previous inequality together with (1) (with λ = mα) gives for every β < α,
for every x large enough and y ≥ x,

ν
([x, y)

) ≤ mβν
([x/A,y/a)

)
. (8)

Now set bn = ν([Mn,Mn+1)). Iterating (8) and choosing A and a close to M one readily
shows that for every β < α and δ > 0, there exists K ∈N such that for n ≥ K ,

bK+n ≤ mβn(bK + · · · + bK+
δn�+1).

Elementary arguments yield the first statement of the lemma. The remaining statements follow. �

Lemma 15. Let f : (0,∞) → (0,∞) be measurable and satisfying for some constant C ≥ 1:

∀n ∈ Z : either f ≡ 0 on
[
mn,mn−1) or ∀x, y ∈ [

mn,mn−1) : f (x)/f (y) ∈ [
C−1,C

]
.

Furthermore, let � be a measure on (0,∞) satisfying �(A) = �(mA) for all Borel A ⊂ (0,∞)

and �([m,1)) 	= 0. Then

1

�([m,1))

∫ ∞

0
f (x)�(dx) �C

1

logm−1

∫ ∞

0
f (x)

dx

x
,

where we set a �C b ⇐⇒ C−1b ≤ a ≤ Cb.
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Proof. First note that the restriction of the measure �([m,1))−1� to [m,1) can be written as
the image of the measure (logm−1)−1 dx

x
on [m,1) under a suitable map ϕ̃: first map the latter

via its distribution function to Lebesgue measure on [0,1], then map this back to [m,1) via the
inverse of the distribution function of the measure �([m,1))−1�. Then extend the map ϕ̃ to a
map ϕ on (0,∞) by

ϕ(x) = mnϕ̃
(
m−nx

)
, x ∈ [

mn+1,mn
)
, n ∈ Z.

By the self-similarity of the measures � and dx
x

, the measure �([m,1))−1� is indeed the image
of the measure (logm−1)−1 dx

x
on (0,∞) by the map ϕ. Furthermore, by construction the map

ϕ maps every interval [mn,mn−1), n ∈ Z, to itself. In particular, for all x > 0, either f (ϕ(x)) =
f (x) = 0 or f (ϕ(x))/f (x) ∈ [C−1,C] by assumption. The lemma easily follows by the change
of variables formula. �

Corollary 16. Let μ be a non-zero measure on (0,∞) satisfying for some α ∈ R, μ(A) =
m−αμ(mA) for all Borel A ⊂ (0,∞). Then for every z ∈ (0,1),∫ ∞

0

(
e(H(z)−1)x − e−x

)
μ(dx) < ∞ ⇐⇒ α < 1.

Proof. Note that μ([m,1)) 	= 0, otherwise we would have μ = 0 by self-similarity. Define
�(dx) = xαμ(dx). Then � satisfies the hypothesis of Lemma 15. Now let β,γ ∈ R ∪ {+∞}
and set

fβ,γ (x) = xβ1(x<1) + x−γ 1(x>1), x > 0.

By Lemma 15 applied to the function x �→ x−αfβ,γ (x), we have for some C > 1 (depending on
�, m, α, β and γ ),∫ ∞

0
fβ,γ (x)μ(dx) =

∫ ∞

0
x−αfβ,γ (x)�(dx) �C

∫ ∞

0
x−α−1fβ,γ (x) dx.

In particular, this shows that∫ ∞

0
fβ,γ (x)μ(dx) < ∞ ⇐⇒ β > α and γ > α, (9)

with the obvious meaning if β = +∞ or γ = +∞.
Let z ∈ (0,1), so that H(z) ∈ (0,1). We finally consider the integral∫ ∞

0

(
e(H(z)−1)x − e−x

)
μ(dx). (10)

For large x, the integrand is smaller than any fixed polynomial, so that the integral always con-
verges at ∞ by (9) applied with β = +∞ and some γ > α. On the other hand, as x → 0, the
integrand is asymptotically equivalent to H(z)x. Equation (9) applied with β = 1 and γ = +∞
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then implies that the integral in (10) converges at the origin if and only if α < 1. These two facts
prove the corollary. �

Proof of Theorem 1. Although we could restrict ourselves to the pure death case, i.e. F(z) =
1 − m(1 − z) (see Section 3.3), we prove the theorem immediately in its generality.

We first introduce some notation. Let Yn denote a random variable with the law of Zn under
P1(· | Zn > 0). By (3), Yn converges in law to the Yaglom distribution νmin, in particular, Hn(z) =
E[zYn ] → H(z) as n → ∞. Note that the inverse H−1 exists on [0,1] and is continuous. We
further define pn = P1(Zn > 0) for n ∈N and note that pn+1/pn → m as n → ∞ by (4).

Now let ν be an mα-invariant measure, α ∈ R. Denote by G(z) = ∑∞
n=1 ν(n)zn its gen-

erating function, which is finite and well-defined for |z| < 1 by Lemma 14. We will extend
the notation Px and Ex to the (possibly infinite) measure ν by Pν(·) = ∑

n ν(n)Pn(·) and
Eν[·] = ∑

n ν(n)En[·].
Define the random variable Nn to be the number of individuals at time 0 which have a descen-

dant at time n. Then Nn > 0 iff Zn > 0. Furthermore, by the branching property, Zn is equal in
law (under Pk for every k ∈ N

∗) to Y
(1)
n + · · · + Y

(Nn)
n , where the variables Y

(i)
n are i.i.d. copies

of Yn and independent of Nn. Hence, as n → ∞, by the mα-stationarity of ν,

m−αnEν

[
zNn1Nn>0

] = m−αnEν

[
H−1

n (z)Zn1Zn>0
] = Eν

[
H−1

n (z)Z0
]

(11)
= G

(
H−1

n (z)
) → G

(
H−1(z)

)
, as n → ∞.

Now note that under Pk , Nn is binomially distributed with parameters k and pn for every
k ∈N

∗. In particular,

Eν

[
zNn1Nn>0

] = Eν

[
zNn − 0Nn

] = Eν

[(
1 − pn(1 − z)

)Z0 − (1 − pn)
Z0

]
. (12)

Defining for every n ∈ N the measure μn by μn(A) = m−αnν(p−1
n A) for Borel A ⊂ (0,∞), we

thus get by (11) and (12),

G
(
H−1(z)

) = lim
n→∞

∫ ∞

0

((
1 − pn(1 − z)

)x/pn − (1 − pn)
x/pn

)
μn(dx). (13)

With the first inequality in Lemma 13 and the fact that pn → 0 as n → ∞, this gives

∀w ∈ (0,1) : sup
n

∫ ∞

0

(
e(w−1)x − e−x

)
μn(dx) < ∞. (14)

Using (14) with w = 1/2, say, gives that the sequence of measures μ̃n(dx) = xe−xμn(dx) is
tight and therefore, by Prokhorov’s theorem, precompact in the space of finite measures on
[0,∞) endowed with weak convergence. Let μ̃ be a subsequential limit and define the measure
μ(dx) = x−1exμ̃(0,∞)(dx), where μ̃(0,∞) is the restriction of μ̃ to (0,∞). We claim that

G(z) =
∫ ∞

0

(
e(H(z)−1)x − e−x

)
μ(dx) + μ̃(0)H(z). (15)
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Indeed, fix z ∈ (0,1) and denote by gz,n(x) the integrand on the right-hand side of (13). Then the
function x �→ gz,n(x)/(xe−x), continuously extended to [0,∞), converges uniformly on every
compact subset of [0,∞) to the function g̃z defined by g̃z(x) = (ezx − 1)/x for x > 0 and
g̃z(0) = z. Using (14) with some w ∈ (z,1) together with the second inequality in Lemma 13,
a truncation argument then shows that we can pass to the (subsequential) limit inside the integral
in (13), which yields

G
(
H−1(z)

) =
∫ ∞

0
g̃z(x)μ̃(dx).

This yields (15). Furthermore, the theory of Laplace transforms gives that μ and μ̃(0), hence μ̃,
are uniquely determined by (15), so that μ̃n converges in fact weakly to μ̃. As a consequence,
μn converges vaguely on (0,∞) to μ.

The scaling properties of the measure μ follow from this convergence: we have for every
compact interval A ⊂ (0,∞) whose endpoints are not atoms of μ,

μ(A) = lim
n→∞m−α(n+1)ν

(
p−1

n+1A
) = m−α lim

n→∞m−αnν
(
p−1

n (pn/pn+1)A
) = m−αμ

(
m−1A

)
,

since pn+1/pn → m by (4). This implies that the measure � defined by �(dx) = xαμ(dx)

satisfies �(A) = �(mA) for every Borel set A.
It remains to investigate which terms in (15) vanish for particular values of α. A first constraint

comes from the fact that G(z) is finite for every z ∈ (0,1) by Lemma 14, and so the integral in
(15) needs to be finite as well. By Corollary 16, this is true if and only if α < 1 or μ = 0.

A second constraint comes from the fact that G satisfies (2) with λ = mα . To verify this, we
first recall the following equations for the function H :

H
(
F(z)

) − H
(
F(0)

) = mH(z), |z| ≤ 1, (16)

H
(
F(0)

) = 1 − m, (17)

H
(
F(z)

) − 1 = m
(
H(z) − 1

)
, |z| ≤ 1. (18)

Indeed, (16) is an immediate consequence of (2) (with λ = m) and the finiteness of H for |z| = 1,
(17) follows from (16) by setting z = 1, and (18) follows from (16) and (17) by reordering terms.
We now have by (15), for every z ∈ (0,1),

G
(
F(z)

) − G
(
F(0)

)
=

∫ ∞

0

[
e(H(F(z))−1)x − e−x − e(H(F(0))−1)x + e−x

]
μ(dx) + μ̃(0)

(
H

(
F(z)

) − H
(
F(0)

))
=

∫ ∞

0

[
em(H(z)−1)x − emx

]
μ(dx) + mμ̃(0)H(z)

(
by (18), (17), (16) (in this order)

)
= mα

∫ ∞

0

[
e(H(z)−1)x − ex

]
μ(dx) + mμ̃(0)H(z) (by self-similarity of μ).

Comparing with (2), this implies that μ̃(0) = 0 unless α = 1. Summing up, we have the fol-
lowing constraints for the quantities in (15):
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• α > 1: μ = 0 and μ̃(0) = 0,
• α = 1: μ = 0,
• α < 1: μ̃(0) = 0.

This proves the necessity part of the theorem.
For the sufficiency, we only need to consider the case α < 1. Let G be a function given by

(5) with � a measure on (0,∞) satisfying �(A) = �(mA) for every Borel set A. By the above
calculations, one readily shows that G satisfies (2) with λ = mα . It remains to show that G

is the generating function of a (locally finite) measure on N
∗. Now, for every x ∈ (0,∞), the

function z �→ e(H(z)−1)x − e−x is the generating function of the sum of N i.i.d. random variables
distributed according to νmin, where N ∼ Poi(x), restricted on the event that this sum is positive
(see also Section 3.2). Hence, G is an integral over a family of generating functions and thus
the generating function of a (not necessarily locally finite) measure. But by Corollary 16, G(z)

is finite for z ∈ (0,1), so that this measure is indeed locally finite. This finishes the proof of the
sufficiency part of the theorem. �

Proof of Theorem 4. Let ν be a non-trivial mα-invariant measure of the BGW process Z, α ≤ 1.
By Theorem 1, it remains to show that ν is finite if and only if α ∈ (0,1]. For α = 1 this is
immediate, suppose therefore that α < 1. Denote by G the generating function of the measure
ν and let � be the measure from Theorem 1. Then Lemma 15 easily implies that the integral∫ ∞

0 (1 − e−x)x−α�(dx) converges at the origin for all α < 1 but converges at ∞ if and only if
α ∈ (0,1]. Hence, ‖ν‖ = G(1) < ∞ if and only if α ∈ (0,1]. This proves the theorem. �

Proof of Theorem 11. The first two parts are known, see the discussion before the statement of
the theorem. The third part can be proven by adapting the proof of Theorem 1. Alternatively, it
can be derived from Theorem 1 as follows: Let λ = mα > 1 (hence, α < 0). Let ν be a measure
on N and denote by ν∗ its restriction to N

∗. Denote by G and G∗ the generating functions of ν

and ν∗, respectively, note that G∗ = G − G(0). Since 0 is an absorbing state for the process Z,
the measure ν is a true λ-invariant measure for Z if and only if the following two statements
hold:

1. ν∗ is a λ-invariant measure for Z.
2. νP (0) = λν(0), equivalently, G(F(0)) = λG(0).

By Theorem 1, the first statement is equivalent to

G(z) =
∫ ∞

0
e(H(z)−1)x 1

xα
�(dx) + C,

for some constant C and � as in the statement of Theorem 1 (it can easily be seen that the
integral converges using Lemma 15, as in the proof of Corollary 16). Together with (17) and the
self-similarity of �, this gives

G
(
F(0)

) =
∫ ∞

0
e−mx 1

xα
�(dx) + C = λ

∫ ∞

0
e−x 1

xα
�(dx) + C = λG(0) + C.

Hence, given the first statement, the second statement is equivalent to C = 0, which proves the
theorem. �
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3. Discussion

3.1. The Kesten–Spitzer formula for invariant measures and the minimal
Martin entrance boundary

To our knowledge, Theorem 1, and more specifically formula (5), was previously known only
for λ = 1 (i.e., α = 0). In this case, one simply says invariant instead of 1-invariant. In the
literature (Kesten–Spitzer [23], Athreya–Ney [2], page 69, Hoppe [11]; see Section 3.3 below
for the history of the result), one generally finds this result under the following form: A function
Q(z) is the generating function of an invariant measure for the BGW process Z if and only if
there exists a constant c ≥ 0 and a probability measure μ on [0,1), such that

Q(z) = c

∫ 1

0

∞∑
n=−∞

[
exp

((
H(z) − 1

)
mn−t

) − exp
(−mn−t

)]
μ(dt). (19)

This is the Choquet decomposition of Q(z) as a convex combination of generating functions
of extremal invariant measures. One easily sees that (5) (with α = 0) and (19) are equivalent:
Given c ≥ 0 and a measure μ such that (19) holds, we can define a measure � on [1,m−1) as
the push-forward of the measure cμ by the map t �→ m−t . The measure � can then be uniquely
extended to (0,∞) in such a way that �(A) = �(mA) for every Borel set A. One easily checks
that (5) holds with this � and α = 0. Conversely, given such a measure �, one can define a finite
measure μ̃ on [0,1) as the push-forward of the measure �(· ∩ [1,m−1)) by the inverse map
x �→ logm−1 x. Setting c = μ̃([0,1)) and μ = μ̃/c gives (19).

We now relate formula (19) to Martin boundary theory, see [15], Chapter 10, for an in-
troduction to this theory.3 We briefly recall the basic constructions of interest to us. Let P

be the transition matrix of a transient sub-Markov chain on N
∗. Define the Green kernel

G(x,y) = ∑∞
k=0(P

k)xy and assume there is a state o ∈ N
∗ such that G(x,o) > 0 for all x ∈ N

∗
(in the case of subcritical BGW processes killed at 0, we choose o to be the span of the repro-
duction law). This allows to define the Martin kernel by K(x,y) = G(x,y)/G(x, o). The Martin
entrance compactification of N∗ is then defined as the smallest compactification M of the dis-
crete set N∗ such that all measures K(x, ·) extend continuously (w.r.t. pointwise convergence of
measures seen as functions on N

∗). Every point ξ on the Martin entrance boundary B =M \N∗
thus defines an invariant measure K(ξ, ·) with mass 1 at o. Moreover, every extremal invari-
ant measure, meaning that it cannot be written as a non-trivial convex combination of invariant
measures, arises this way. The set of those points ξ ∈ B for which K(ξ, ·) is extremal is called
the minimal Martin entrance boundary, denoted by B∗. The Poisson–Martin integral formula
now assigns to every invariant measure ν a unique integral representation in terms of extremal
invariant measures, namely,

ν =
∫

B∗
K(ξ, ·)μν(dξ),

3Another very good and more modern introduction is [24], Chapter IV. He only considers Martin exit boundaries but one

can reduce to this case in our setting by considering the transition matrix P̂ij = νmin(j)Pji/νmin(i) instead of P .
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for a finite measure μν on B∗.
The construction outlined in the previous paragraph is the approach used by Kesten and Spitzer

[23] to derive formula (19) (for pure death processes). In particular, their proof implies that the
extremal invariant measures of a subcritical BGW process are (up to multiplicative constants) the
measures νt , t ∈ S1 = [0,1]0∼1, with generating functions

∞∑
k=1

νt (k)zk =
∞∑

n=−∞

[
exp

((
H(z) − 1

)
mn−t

) − exp
(−mn−t

)]
.

Defining ξt ∈ B∗ by νt = K(ξt , ·), the map t �→ ξt is thus (by extremality) a bijection between
the compact space S1 and B∗, moreover, one easily sees that it is continuous. It follows that the
minimal Martin entrance boundary B∗ is homeomorphic to the circle S1.

Now let λ > 0. The above construction can be performed with the operator P/λ in-
stead of P , giving rise to a λ-boundary theory for all λ such that the λ-Green function
Gλ = ∑∞

k=0 λ−k(P k)xy is finite. The infimum of these values of λ is the spectral radius
ρ = limk→∞((P k)oo)

1/k [24], Chapter II, which equals m for subcritical BGW processes by
(3) and (4). For λ > ρ = m, Theorem 1 then implies a formula similar to (19). A reasoning as in
the last paragraph yields the following corollary.

Corollary 17. For every λ > m, the minimal λ-Martin entrance boundary of the BGW process
(Zn)n≥0 is homeomorphic to the circle S1.

In particular, Corollary 17 shows that all minimal λ-Martin entrance boundaries, λ > m, are
homeomorphic. This remarkable fact is part of a property called stability by some authors [24],
page 301, and holds true for example for the (exit) boundary of random walks on trees and hyper-
bolic graphs. We know of no general theory that yields this result without explicitly calculating
the λ-Martin entrance boundaries for every λ.

We finish this section with a discussion of the case λ = m, for which Theorem 1 gives that the
minimal m-Martin entrance boundary is trivial, that is, there exists up to multiplicative constants
only one m-invariant measure. This fact is quite common and holds in general for example, if
the process is m-recurrent, that is, if Gm(x, y) = ∞ for all (some) x, y [24], Chapter IV. Note
that m-recurrence is equivalent to recurrence of the so-called Q-process, which is in our case the
Markov process with transition matrix Q given by Qij = m−1Pij j/i (recall that the function
h(i) = i is m-harmonic for our process, that is, Ph = mh). It is remarkable that in our setting
the Q-process may be positive recurrent, null recurrent or transient. This fact does not seem to
appear in the usually cited monographs on branching processes,4 only a criterion for positive
recurrence is easy to find (see, e.g., [2], page 59): the Q-process is positive recurrent if and
only if E1[Z1 logZ1] < ∞. However, Joffe proved in 1967 already the following recurrence
criterion [13]: Let F(z) denote the generating function of the offspring distribution and define η

by 1 − F(z) = m(1 − z)(1 − η(z)). Set qn = P1(Zn = 0). Then the Q-process is recurrent if and

4It was even claimed in the literature that recurrence always holds [19], page 972.
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only if the following sum diverges:

∞∑
n=1

n∏
k=1

(
1 − η(qk)

)
.

Since 1−qn = mn+o(n) by (4), one can easily construct examples where the above sum converges
(so that the Q-process is transient), for example when η(z) ≥ 1/| log(1 − z)|β for some β < 1
and z close to 1.

3.2. Probabilistic interpretation of (5) and relation with semi-stable
subordinators

Let ν be a QSD of eigenvalue mα of the BGW process, α ∈ (0,1). By Theorem 4, it admits
the representation (5) with a measure � as in the statement of the theorem. Let N be a random
variable whose generating function is equal to the right-hand side of (5), but with H(z) ≡ z.
Then ν is the law of the sum of N i.i.d. random variables distributed according to the Yaglom
distribution νmin. As for the law of N , expanding the exponential in (5) gives

∀k ≥ 1 : P(N = k) =
∫ ∞

0
e−x xk

k!
1

xα
�(dx), P(N = 0) = 0. (20)

Heuristically, N is therefore a Poisson-distributed random variable with a random parameter
drawn according to the measure x−α�(dx) and conditioned to be non-zero. A way to make this
rigorous (note that the measure x−α�(dx) has infinite mass!) is using subordinators, of which
we first recall the basic facts.

A subordinator S = (St )t≥0 is a real-valued, non-decreasing process with stationary and inde-
pendent increments. We always assume S0 = 0. Then the law of S is determined by its cumulant
κS(θ) = − log E[e−θS1 ], which satisfies the Lévy–Khintchine formula (see, e.g., [14], Chapter 13,
or [3]),

κS(θ) = aθ +
∫ ∞

0

(
1 − e−θx

)
M(dx), (21)

where a ≥ 0 is called the drift and M is a measure on (0,∞) called the Lévy measure of the
subordinator and satisfying

∫ ∞
0 (1 − e−x)M(dx) < ∞.

If T = (Tt )t≥0 is another subordinator (or, in general, a Lévy process) independent of (St )t≥0,
then the subordinated process T ◦ S := (TSt )t≥0 is again a subordinator (Lévy process) with
cumulant

κT ◦S = κS ◦ κT . (22)

If N = (Nt )t≥0 is a driftless subordinator whose Lévy measure is a probability measure on N
∗,

then the subordinators N and N ◦ S both take values in N
∗ and N ◦ S is therefore again a

driftless subordinator with Lévy measure concentrated on N
∗. Let H and G denote the generating

functions of the Lévy measures of N and N ◦S, respectively. Note that H(1) = 1 and G(1) < ∞,
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because a Lévy measure on N
∗ is necessarily finite. It follows from (21) (applied first to N ◦ S

and then to N ) and (22) that

G(1) − G(z) = κN◦S(− log z) = κS

(
1 − H(z)

)
. (23)

Setting z = 0 yields G(1) = κS(1). Rearranging (23), we get with (21),

G(z) = κS(1) − κS

(
1 − H(z)

) = aH(z) +
∫ ∞

0

(
e(H(z)−1)x − e−x

)
M(dx). (24)

We apply the previous equations to the QSD ν, by setting a = 0 and M(dx) = 1
xα �(dx),

note that κS(1) = ∫ ∞
0 (1 − e−x)M(dx) = 1. In particular, M is a Lévy measure, so that the

subordinator S is well defined. We also let the Lévy measure of the subordinator N be νmin;
we recall that its generating function is indeed denoted by H(z). Equation (24) then gives a
probabilistic interpretation to the QSD ν: it says that ν is the Lévy measure of the subordinator
N ◦ S (or, equivalently, the law of its first jump).

Note that the case α = 1 may also be covered by setting a = 1 and M ≡ 0 in (21), i.e. taking
the subordinator S = Id.

This fact allows for an alternative statement of Theorem 4. For this, we introduce the notion
of a semi-stable subordinator: we say that the subordinator S = (St )t≥0 is (α,m)-semi-stable,5 if

(Smαt )t≥0
law= (mSt )t≥0, (25)

or, in terms of the cumulant,

κS(mθ) = mακS(θ), θ ≥ 0. (26)

One easily obtains from (21) and (26) the following characterization of semi-stable subordina-
tors: A subordinator S = (St )t≥0 with drift a, Lévy measure M , satisfying S0 = 0 and S 	≡ 0, is
(α,m)-semi-stable, α ∈ R, m ∈ (0,1), if and only if:

• α ∈ (0,1), a = 0 and M(dx) = 1
xα �(dx) for a measure � on (0,∞) satisfying �(A) =

�(mA) for all Borel A ⊂ (0,∞), or
• α = 1, a > 0 and M ≡ 0.

The previous arguments then give the following equivalent statement of Theorem 4:

Theorem 18. The quasi-stationary distributions of eigenvalue mα of the BGW process, α ∈ R,
are exactly the Lévy measures of the subordinators N ◦ S, where N is the driftless subordinator
with Lévy measure νmin and S is an (α,m)-semi-stable subordinator with κS(1) = 1.

Remark 19. One can drop the requirement κS(1) = 1 in the above theorem if one replaces “are
exactly the Lévy measures” by “are exactly the laws of the first jumps”.

5This terminology is taken from [5], Section 9.2.
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Composition of generating functions. Let Gα be the generating function of a QSD of Z with
eigenvalue mα , α ∈ (0,1]. Furthermore, let Gβ be the generation function of an mαβ -invariant
measure, β ≤ 1, of the pure death process with mean offspring mα , that is, with F(z) = 1 −
mα(1 − z). It is easy to see from (2) that the composition Gβ ◦ Gα is the generating function
of an mαβ -invariant measure of Z (note that the Yaglom distribution of a pure death process
is always δ1, hence its generating function is the identity z �→ z). If �α , �β and �αβ are the
measures from Theorem 1 corresponding to Gα , Gβ and Gβ ◦ Gα , respectively, then one may
ask the following question:

Question 20. Is there a simple formula expressing �αβ in terms of �α and �β?

We were not able to answer this question and are in fact doubtful that the answer is positive in
general. In order to rephrase this problem into a more familiar setting, consider the case where Gβ

is the generating function of a probability measure, so that in particular β ∈ (0,1]. Let Sα and Sβ

be the (α,m)- and (β,mα)-semi-stable subordinators associated to Gα and Gβ by Theorem 18.
In particular, κSα (1) = κSβ (1) = 1. By (23) and (22), we then have

1 − Gβ ◦ Gα(z) = κSβ

(
1 − Gα(z)

) = κSβ

(
κSα

(
1 − H(z)

)) = κSα◦Sβ

(
1 − H(z)

)
.

Hence, Question 20 is equivalent to the question of whether there is a simple formula expressing
the Lévy measure of Sα ◦ Sβ in terms of the Lévy measures of Sα and Sβ . To the best of our
knowledge, no such formula is known, and, given the fact that the Laplace transform of a measure
has no simple inversion formula, there does not seem to be much hope.

3.3. History of the problem

The study of λ-invariant measures of subcritical BGW processes has a rich history which we
aim to elucidate here. The starting point seems to be Yaglom’s 1947 article [25], who showed
the existence of the now-called Yaglom limit of a subcritical BGW process under the assumption
of finite variance.6 The BGW process appeared again as an important example in the seminal
paper by Seneta and Vere-Jones [22] on QSD of Markov processes on (countably) infinite state
spaces. In this work, the authors show that subcritical BGW processes admit a one-parameter
family of QSD whose generating functions are 1 − (1 − H(z))α , α ∈ (0,1], with H(z) denoting,
as above, the generating function of the Yaglom limit. Rubin and Vere-Jones [20] raised the
question whether there existed other QSD. They failed to answer the question in general but
showed that these QSD where the only ones with regularly varying tails.

These works on QSD of subcritical BGW process seem to have been independent of other
works on (1-)invariant measures: In 1965, Kingman [16] showed that invariant measures for a
subcritical BGW process are not unique, which, as claimed by Kingman, disproved a conjecture
by Harris. A full characterization of invariant measures, formula (19), was then given by Kesten
and Spitzer in 1967 [23] (they also gave credit to H. Dinges for deriving the formula indepen-
dently), motivated by the need of finding examples of explicitly calculable Martin boundaries for

6The assumption of finite variance was later removed in [8,13].
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Markov processes. Spitzer’s note only contained a brief sketch of a proof and covered only the
pure death case, but he claimed that the method would work as well for arbitrary offspring distri-
butions if E[Z1 logZ1] < ∞. A full proof of this fact appeared in Athreya and Ney’s well-known
monograph [2], page 69, which also covers the Yaglom limit but does not treat QSD in general.

In the 1970s, Hoppe considered again the question of the uniqueness of the QSD with generat-
ing functions 1−(1−H(z))α , α ∈ (0,1]. As many of the previous works on branching processes,
he extensively used generating functions. Starting point was the following equation, which, for
the generating function G of a probability measure ν, is easily seen to be equivalent to (2):

1 − G
(
F(z)

) = λ
(
1 − G(z)

)
. (27)

Hence, finding all QSD of eigenvalue λ amounts to finding all probability generating functions
G solving (27). Hoppe [10] showed in 1976 that one can reduce the problem7 to the pure death
case F(z) = 1 − m(1 − z): He proves that a generating function G satisfies (27) with λ = mα if
and only if there exists a generating function A(z), such that G(z) = A(H(z)) and

1 − A
(
1 − m(1 − z)

) = mα
(
1 − A(z)

)
. (28)

He also remarks that the general solution A(z) to this equation is of the form

A(z) = 1 − (1 − z)α exp
(
ψ

(− log(1 − z)
))

, (29)

for a | logm|-periodic function ψ with ψ(0) = 0. The drawback of this representation, apart
from its uncertain probabilistic meaning, is that it is not immediate from (29) whether the Taylor
series of A(z) only has non-negative coefficients, that is, whether A(z) is the generating function
of a probability distribution. Hoppe [10] was not even sure whether such a function exists for a
non-constant ψ . However, one can show (using for example, theorems by Flajolet and Odlyzko
[7], Proposition 1) that for every c1, . . . , cn there exists c0 > 0, such that for |c| < c0, the Taylor
expansion at 0 of the function

A(z) = 1 − (1 − z)α exp

(
c

n∑
k=1

ck sin

(
2πk

logm
log(1 − z)

))
,

only has non-negative coefficients (a similar reasoning has been used by Kingman in his article
cited above [16]). The function is therefore a generating function of a probability distribution
which is a QSD of the pure death process. This gives an alternative proof of non-uniqueness of
the QSD but no satisfying characterization.

In 1980, Hoppe [12] therefore published another representation of solutions of (28): He
showed that there exists a one-to-one correspondence between QSD and invariant measures of
the BGW process. Again, he used functional equations: by (2), a (non-trivial) measure ν on N is

7He also showed in another article [11] that this is true for invariant measures as well, which allowed him to prove
formula (19) without additional conditions on the offspring distribution. Note that formula (19) was again reproven in
the general case in [1], the authors of which were apparently unaware of Hoppe’s work.
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an invariant measure of the BGW process if and only if there exists a normalizing constant c > 0,
such that the generating function Q(z) = ∑∞

n=1 cν(n)zn satisfies the functional equation

Q
(
F(z)

) = 1 + Q(z), Q(0) = 0. (30)

Hoppe [12] then showed that for every α ∈ (0,1], the function8

Gα(z) =
∫ z

0 H ′(w)m(α−1)Q(w) dw∫ 1
0 H ′(w)m(α−1)Q(w) dw

(31)

is the generating function of a QSD of eigenvalue mα of the BGW process and conversely, for
every such function, setting

Q(z) = log(1 − Gα(z))

logmα
(32)

defines a generating function which solves (30) (note that this is a special case of the composi-
tions of generating functions studied at the end of Section 3.2). This yields for every α ∈ (0,1)

a bijection between all QSD of eigenvalue mα and all invariant measures and thus apparently
solves the problem of characterizing all QSD. However, the non-linear transformations from
Equations (31) and (32) do not seem to be easy to tame, for example, we are not aware of any
direct way of obtaining a formula like (5) from (19) using the above formulae. More specifically,
we are unable to relate the measures � in the respective representations of Gα and Q in (5),
when Gα and Q are related through (31) or (32). We do not believe that there exists a simple
relation between them, similarly to our reservations concerning Question 20. Therefore, to the
best of our knowledge, the current article provides a new approach to λ-invariant measures (and,
in particular, quasi-stationary distributions) of subcritical BGW processes, yielding for the first
time a complete characterization of these measures involving an explicit formula.
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