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We investigate the Gibbs properties of the fuzzy Potts model on the d-dimensional torus with Kac interac-
tion. We use a variational approach for profiles inspired by that of Fernández, den Hollander and Martínez
[J. Stat. Phys. 156 (2014) 203–220] for their study of the Gibbs–non-Gibbs transitions of a dynamical Kac–
Ising model on the torus. As our main result, we show that the mean-field thresholds dividing Gibbsian
from non-Gibbsian behavior are sharp in the fuzzy Kac–Potts model with class size unequal two. On the
way to this result, we prove a large deviation principle for color profiles with diluted total mass densities
and use monotocity arguments.

Keywords: diluted large deviation principles; fuzzy Kac–Potts model; Gibbs versus non-Gibbs; Kac
model; large deviation principles; Potts model

1. Introduction

In previous years, we have seen a number of measures describing systems with interacting com-
ponents appearing in mathematical statistical mechanics which have lost the Gibbs property as a
result of a transformation [10,22,24,26,27]. Such a loss is indicated by the failure of continuity
of conditional probabilities at a given site, when the conditioning is varied away from this site.
Interesting sources of non-Gibbsian behavior include time evolutions or deterministic transfor-
mations which reduce the complexity of the local state space. A prototypical example of a system
of the second type is the fuzzy Potts model (fuzzy PM) [1,15–17,21,23]. It is obtained from the
ordinary PM by partitioning the local state space {1,2, . . . , q} into subclasses and observing the
Potts distribution after identification of the spin-values inside the subclasses.

It has been noted in some cases for mean-field models [8,17,19] when the appropriate notion
of mean-field Gibbsianness is employed, the question of continuity can be reduced to variational
problems. For systems for which lattice results and mean-field results are available, it turns out
that these results are often in a striking parallel [20,27]. It is an open challenge to understand this
relation better.
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One way to approach the relation between the lattice and mean-field is via Kac models (KM)
[3–6,9,11] in which there is a parameter which makes the interaction long-range but a spatial
structure remains.

The first rigorous result relating Gibbs properties of a KM to that of a mean-field model was
obtained in [14] in the case of independent time evolutions from an initial Kac–Ising model. The
relation between a spatial model and a mean-field model was set up as follows. The authors put
the model on a torus in d dimensions, with spins sitting on a grid of spacing 1/n, and looked
at a single-site conditional probability in the large n-limit. The limiting object they studied then
was a specification kernel giving the dependence of a single-site probability as a function of a
magnetization profile. The existence of the limiting kernel and properties of its approach along
volume sequences were established using a combination of a large deviation principle (LDP) in
equilibrium for the Ising model [5], a path LDP, and techniques from hydrodynamic limits. It
was not possible to give sharp parameter values for the Gibbs–non-Gibbs (GnG) transition but
sufficient conditions on time and initial temperature values to be non-Gibbsian could be provided.

In our present study of the fuzzy Kac–Potts model (fuzzy KPM) we ask related questions. Our
main result is Theorem 2.7 where we provide precise threshold values dividing Gibbsian and
non-Gibbsian behavior. To our knowledge, this is the first sharp result for GnG in a KM.

1.1. Strategy of proof and further results

The Hamiltonian of the KPM can be written in terms of an empirical color distribution field and
we start by noting a LDP for the empirical color distribution field as the grid on the torus shrinks.
The minimizers of the rate function for this LDP provide us with the equilibrium phases, and it
is easy to see that the absolute minimizers must be flat (spatially homogeneous). Therefore the
critical value for phase transitions in the KPM is given by the corresponding mean-field result
(the Ellis–Wang Theorem [12]).

Next, to investigate the Gibbsian properties of the fuzzy model we analyse limiting expressions
for the single-site conditional probabilities (the specification kernel). The idea to prove equality
of critical parameters dividing GnG in mean-field with the corresponding critical parameters
in the KPM is then to make rigorous the statement that there are no worse conditionings than
spatially homogeneous conditionings for fuzzy classes of size unequal two. As an intermediate
step, we prove a LDP for color profiles for a spatially diluted KPM in Proposition 2.5. This and
the corresponding non-homogeneous variational problems are interesting in their own right. We
relate the specification kernel to solutions of such variational problems where the dilutions are
prescribed by the conditioning profile. Finally, this is supplemented by monotonicity arguments
in the dilution to show sharpness of the mean-field values for the KM.

2. Model and main results

2.1. The Kac–Potts model

Let Td := R
d/Zd be the d-dimensional unit torus. For n ∈ N, let Td

n be the (1/n)-discretization
of T

d defined by T
d
n := �d

n/n, with �d
n := Z

d/nZd the discrete torus of size n. For n ∈ N,
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let �n := {1, . . . , q}�d
n be the set of Potts-spin configurations on �d

n . We will call elements of
{1, . . . , q} colors. The energy of the configuration σ := (σ (x))x∈�d

n
∈ �n is given by the Kac-

type Hamiltonian

Hn(σ) := − 1

nd

∑
x,y∈�d

n

J

(
x − y

n

)
1σ(x)=σ(y), σ ∈ �n, (1)

where 0 ≤ J ∈ C(Td) is a continuous interaction-functions on T
d which is symmetric and∫

dvJ (v) = 1. The Gibbs measure associated with Hn is given by

μn(σ ) := 1

Zn

exp
(−βHn(σ )

)
, σ ∈ �n (2)

with β ∈ [0,∞) the inverse temperature and Zn the normalizing partition sum.
We are interested in the large n-limit for μn and prepare the analysis by rewriting the

Hamiltonian in terms of density profiles. More precisely, for � ⊂ �d
n let π� : �n �→ P(Td

n ×
{1, . . . , q}) ⊂ P(Td × {1, . . . , q}) be the empirical color measure vector or color profiles of σ

inside the volume � defined by

πσ
� := 1

|�|
(∑

x∈�

1σ(x)=1δx/n, . . . ,
∑
x∈�

1σ(x)=qδx/n

)T

,

where δu is the point measure at u ∈ T
d . In the sequel, we use notation Pn := P(Td

n ×{1, . . . , q})
and P := P(Td ×{1, . . . , q}). For any ν ∈P , we will write ν[a] to indicate the evaluation of ν at
a color a ∈ {1, . . . , q}, in other words, ν[a] is the spatial profile of sites with color a. In particular,
for x ∈ �, πσ

�[a](x/n) = |�|−11σ(x)=a .

Let u ∈ T
d , then for the color profile perforated at u ∈ T

d we write π
(u)
n := π�d

n\�nu	 where
�nu	 denotes the lower-integer part of nu. Further, we abbreviate Mn := πn(�n) ⊂ Pn and
Mu

n := π
(u)
n (�n) ⊂ P for the sets of possible profiles of mesh-size n and possible profiles of

mesh-size n perforated at site u.
We equip P and the indicated subspaces with the weak topology, that is, the topology corre-

sponding to convergence of continuous functions f ∈ C(Td × {1, . . . , q},R) =: C. This conver-
gence can be metrized in the usual way (see, for example, [2], page 235) by choosing a dense set
of functions (fj )j∈N ⊂ C and setting

d(μ, ν) :=
∞∑

j=1

2−j |μ(fj ) − ν(fj )|
1 + |μ(fj ) − ν(fj )| . (3)

Moreover, since Td ×{1, . . . , q} is compact and Polish also (P, d) is compact and Polish. Notice
that σ ∈ �n determines πσ

n ∈ Pn and vice versa.
Using color profiles, we can rewrite the Hamiltonian as

Hn(σ) = −nd

q∑
a=1

F
(
πσ

n [a]) (4)
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with F(ν[a]) := 〈J ∗ν[a], ν[a]〉 = ∫ ∫
ν[a](du)ν[a](dv)J (u−v). We will be interested in weak

limits of color profiles in P , especially those having q-dimensional Lebesgue densities of the
form ν = αλ = (α[1]λ, . . . , α[q]λ)T with α ∈ B where

B :=
{

α = (
α[1], . . . , α[q])T : 0 ≤ α[a] ∈ L∞(

T
d , λ

)
(5)

with
q∑

a=1

α[a](x) = 1 for λ-a.a. x ∈ T
d

}
.

In what follows, we will often write α instead of αλ. Let eq denote the equidistribution on
{1, . . . , q}. Next, we provide the LDP for the KPM.

Proposition 2.1. The measures μ̂n = μn ◦ (πn)
−1 satisfy a LDP with rate nd and ratefunction

I − infν∈P I (ν) where

I (ν) =

⎧⎪⎨
⎪⎩−β

q∑
a=1

〈
J ∗ α[a], α[a]〉+ 〈

S(α|eq), λ
〉
, if ν = αλ with α ∈ B,

∞, otherwise.

(6)

and the relative entropy is given by S(α|eq) = ∑q

a=1 α[a] log(qα[a]).

Note that we can rewrite the interaction part of the rate function as a punishing term for spatial
inhomogeneities and a local term, that is,

I (ν) = β

2

q∑
a=1

∫
du

∫
dv

[
α[a](u) − α[a](v)

]2
J (u − v)

(7)

+
∫

du

[
−β

q∑
a=1

α[a](u)2 + S
(
α(u)|eq

)]
.

From this, we see that global minimizers of I must be flat profiles where α[a](u) is independent
of u ∈ T

d . Indeed, for every u ∈ T
d

−β

q∑
a=1

α[a](u)2 + S
(
α(u)|eq

)
(8)

is the rate function of the mean-field PM given by the Hamiltonian

Hn(σ) := − 1

nd

∑
x,y∈�d

n

1σ(x)=σ(y), σ ∈ �n

and the complete analysis of minimizers is presented in the Ellis–Wang Theorem [12]. In
particular for q ≥ 3, the model shows a first order phase transition with critical temperature
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βc(q) = 2(q − 1)/(q − 2) log(q − 1). The form of its minimizers depends on β and q but not
on u and hence in view of the first summand of (7), which punishes spatial inhomogeneities, a
global minimizer must be a minimizer of (8) equal for every u ∈ T

d .
Before we state the main result about GnG of the fuzzy KPM in the next subsection, let us

make the following definitions. These are the natural extensions to the Potts situation from the
Ising situation in [14].

Definition 2.2. Given any sequence (μn)n∈N with μn a probability measure on �n for every
n ∈ N, define the single-spin conditional probabilities at site u ∈ T

d as

γ u
n

(·|α(u)
n

) := μn

(
σ
(�nu	) = ·|π(u),σ

n = α(u)
n

)
, α(u)

n ∈ Mu
n. (9)

(a) We call a color profile α ∈ B good for a sequence of probability measures (μn)n∈N if there
exists a neighborhood Nα ⊂ B of α such that for all α̃ ∈Nα and for all u ∈ T

d

γ u(·|α̃) := lim
n↑∞γ u

n

(·|α(u)
n

)
(10)

exists for all sequences (α
(u)
n )n∈N with α

(u)
n ∈Mu

n for every n ∈ N such that limn↑∞ α
(u)
n =

α̃ in the weak sense. Moreover, the limit must be independent of the choice of (α
(u)
n )n∈N.

(b) A color profile α ∈ B is called bad for (μn)n∈N if it is not good for (μn)n∈N.
(c) (μn)n∈N is called Gibbs if it has no bad profiles in B .

Remarks. (1) Definition 2.2(a) implies continuity of α �→ γ u(·|α) in the metric d(·, ·) defined in
(3) for all u ∈ T

d at good profiles.
(2) For the KPM, (μn)n∈N all color profiles α ∈ B are good since

γ u(k|α) = exp(2β(J ∗ α[k])(u))∑q

l=1 exp(2β(J ∗ α[l])(u))
(11)

and hence (μn)n∈N is Gibbs in the sense of Definition 2.2(c).
(3) Definition 2.2 assigns the notion of Gibbsianness to a sequence of probability measures

that live on different spaces. This is different from the notion of Gibbsianness used for example
in lattice systems [13,26–28], but in that respect similar to the definition of Gibbsianness used
in the mean-field setting [16,17]. Since there is spatial dependence in our case it makes sense to
call the quantity in (11) a specification kernel and α a boundary condition.

(4) Definition 2.2 does not consider sequences (α
(u)
n )n∈N whose weak limit is singular with

respect to λ. But in Proposition 2.1, we saw that in the thermodynamic limit we can ignore
profiles that are singular w.r.t. the Lebesgue measure or do not lie in the set B .

2.2. The fuzzy Kac Potts model

Consider the KPM under the local discretisation map T : {1, . . . , q} �→ {1, . . . , s} where
1 < s < q . More precisely, let R1, . . . ,Rs be a partition of {1, . . . , q} with ri = |Ri | and
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∑s
i=1 ri = q , then T (a) = i if a ∈ Ri . Apply T to all sites simultaneously and consider the

fuzzy Kac Potts measure μT
n := μn ◦ T −1.

Definition 2.3. We call the generalized fuzzy KPM Gibbs if all profiles α ∈ B are good for the
sequence μT

n .

In order to determine Gibbsianness of the fuzzy KPM, similar to (9), we write for the single-
site kernels

γ u
n,β,q,(r1,...,rs )

(k|ν) := μT
n

(
σ
(�nu	) = k|π(u),σ

n = ν
)
, (12)

where β is the inverse temperature of the KPM and ν ∈Mu
n with s colors.

Proposition 2.4. For each finite n and u ∈ T
d we have the representation

γ u
n,β,q,(r1,...,rs )

(k|ν) = rkA
u(βk(ν), rk,�k(ν))∑s

l=1 rlAu(βl(ν), rl,�l(ν))
, (13)

where �l(ν) = {x ∈ �d
n : ν[l](x/n) = 1/nd}, βl(ν) = β|�l(ν)|/nd and Au(β, r,�) :=

μ�,β,r (exp(2β(J ∗ π�[1])( �nu	
n

))). Here μ�,β,r denotes the KPM in the subvolume � ⊂ �d
n

with Hamiltonian

H�(σ) := − 1

|�|
∑

x,y∈�

J

(
x − y

n

)
1σ(x)=σ(y),

inverse temperature β and r local states.

In view of Proposition 2.4 in order to determine GnG of the fuzzy model, we must analyse
limiting behavior of the constrained KPM μ�,β,r and its continuity properties. The constrained
model again satisfies a LDP similar to the one in Proposition 2.1 but now also the spatial structure
of the level sets of the conditioning comes into play. We will say that a sequence of diluted sets
�n ⊂ �d

n converges weakly to the Lebesgue density ρ if for all f ∈ C(Td) we have

1

nd

∑
x∈�n

δx/n(f ) = 1

nd

∑
x∈�n

f

(
x

n

)
→

∫
duρ(u)f (u)

as n ↑ ∞ and write �n ⇒ ρ.

Proposition 2.5 (Diluted version of LDP for empirical color profiles). Consider a sequence
of diluted sets �n ⊂ �d

n with �n ⇒ ρ for some Lebesgue density ρ with Nρ := ρλ(Td) > 0.
Denote ρ̃(u) := N−1

ρ ρ(u), then the measures μ̂�n := μ�n,β,q ◦ (π�n)
−1 satisfy a LDP with rate

|�n| and rate function Iρ̃ − infν∈P Iρ̃(ν) where

Iρ̃(ν) =

⎧⎪⎨
⎪⎩−β

q∑
a=1

〈
J ∗ ρ̃α[a], ρ̃α[a]〉+ 〈

S(α|eq), ρ̃λ
〉
, if ν[a] = ρ̃α[a]λ,α ∈ B,

∞, otherwise.

(14)
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Note that we can replace the rate |�n| by the desired rate nd since it is arbitrarily close to
|�n|N−1

ρ for large n. Similar to (7) we can rewrite Iρ̃ as a sum of two terms, that is,

Iρ̃(ν) = β

2

q∑
a=1

∫
duρ̃(u)

∫
dvρ̃(v)

[
α[a](u) − α[a](v)

]2
J (u − v)

(15)

+
∫

duρ̃(u)

[
−bβ,ρ̃,J (u)

q∑
a=1

α[a]2(u) + S
(
α[·](u)|eq

)]
,

where we defined the site-dependent local temperature as

bβ,ρ̃,J (u) := β

∫
dvρ̃(v)J (u − v).

In this way, we have achieved a representation of the large deviation cost of profiles of the diluted
KPM as an integral over local mean-field PM at sites u, with u-dependent inverse temperatures,
and a quadratic punishing for spatial inhomogeneity. This representation, used for the effective
temperatures βl(ν) from Proposition 2.4, will allow us to see that there are no worse conditioning
profiles in the fuzzy KPM with class size of at least three than the flat profiles.

Let us for the convenience of the reader recall the theorem from [16] about GnG for the mean-
field fuzzy PM which summarizes the precise information on critical parameter values on GnG.
Denote by βc(r) the inverse critical temperature of the r-state mean-field PM.

Theorem 2.6. Consider the q-state mean-field PM at inverse temperature β , and let s and
r1, . . . , rs be positive integers with 1 < s < q and

∑s
i=1 ri = q . Consider the limiting conditional

probabilities of the corresponding mean-field fuzzy PM with spin partition (r1, . . . , rs).

(i) Suppose that ri ≤ 2 for all i = 1, . . . , s. Then the limiting conditional probabilities are
continuous functions of the empirical mean of the conditioning, for all β ≥ 0.

Assume that ri ≥ 3 for some i and put r∗ := min{r ≥ 3, r = ri for some i = 1, . . . , s}, then the
following holds.

(ii) The limiting conditional probabilities are continuous for all β < βc(r∗).
(iii) The limiting conditional probabilities are discontinuous for all β ≥ βc(r∗).

We now come to the main result, stating that for the fuzzy KPM the critical parameters for
GnG are the same as for the mean-field fuzzy PM if the parameters are such that low temperature
Ising classes are avoided.

Theorem 2.7. Consider the q-state KPM at inverse temperature β and let s and r1, . . . , rs be
positive integers with 1 < s < q and

∑s
i=1 ri = q . Consider the limiting conditional probabilities

of the corresponding fuzzy KPM with spin partition (r1, . . . , rs) where r∗ := min{r ≥ 3, r =
ri for some i = 1, . . . , s}.
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(i) Suppose that either β ≤ βc(2) or that ri �= 2 for all i = 1, . . . , s and β < βc(r∗), then the
fuzzy KPM is Gibbs. The specification kernel is given by

lim
n↑∞γ u

n,β,q,(r1,...,rs )

(
k|α(u)

n

) = rk exp(2βr−1
k

∫
dvρk(v)J (u − v))∑s

l=1 rl exp(2βr−1
l

∫
dvρl(v)J (u − v))

(16)

when (α
(u)
n )n∈N converges to α = (ρ1λ, . . . , ρsλ)T as defined in Definition 2.2(a).

(ii) If ri ≥ 3 for some i = 1, . . . , s and β ≥ βc(r∗), then the fuzzy KPM is non-Gibbs.

Remarks. (1) In case (i) the limiting kernels (16) are continuous functions of the conditioning
α, as it is explicit from the given expression.

(2) In the mean-field setting, by the fact that for the Ising model phase transitions are of second
order, the Ising classes ri = 2 can never be a source of discontinuities. This is reflected in part
(i) of Theorem 2.6. In the fuzzy KPM, the situation is potentially richer since the Ising classes
offer the possibility of a new phenomenon related to minimizing profiles which are not spatially
homogeneous. This phenomenon, if it occurs, would not be reducible to the mean-field setup.
More precisely, for an Ising class, we can reexpress the rate function (15) of the diluted LDP in
terms of a [−1,1]-valued and site-dependent magnetization function m(u) as

Iρ̃(m) = β

4

∫
duρ̃(u)

∫
dvρ̃(v)

[
m(u) − m(v)

]2
J (u − v) +

∫
duρ̃(u)�u

(
m(u)

)
,

where �u denotes the site-dependent Curie–Weiss Ising rate function obtained by substituting
the appropriate site-dependent inverse temperature. For certain choices of ρ̃, some sites u can
then be made to be in the low-temperature regime and others in the high-temperature regime.
So, for a minimizing magnetization function m[ρ̃] there is the competition between the flatness-
imposing term in the double integral and the single-site Curie–Weiss terms which are minimized
by u-dependent magnetizations. This leads us to a non-trivial variational problem and there is a
chance for multiple local and global minima in magnetization profile space. In particular, there
is a possibility for discontinuous behavior of the minimizers under variation of ρ̃ leading to non-
Gibbsianness. This phenomenon would be a first-order type transition in profile-space, caused
genuinely by non-homogeneity. To decide whether or when it occurs, clearly deserves more
investigation in the future, entering the scope of non-homogenous non-convex variational prob-
lems.

(3) Answering a question of a referee, we would like to add the following conceptual explana-
tion and provide a small extension. For lattice models and models on graphs where a proper DLR
formalism is available, the concept of an essential discontinuity of the conditional probabilities
of the transformed infinite-volume measure is important, see [13], Definition 5.13, and [25]. In
contrast, for mean-field models or KM, the concept of an essential discontinuity of a limiting
specification kernel itself w.r.t. the limiting measure μ itself is not meaningful. We must always
adopt a sequential view to the approach to the limit to see non-trivial phenomena, as described
in Definition 2.2. This is well-established in mean-field models and was successfully adopted for
the analysis of a KM in [14].
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Recall that a μ-essential discontinuity of a function is a discontinuity which can not be re-
moved by replacing the function by another representative which coincides with it μ-a.s.

It is not meaningful because the limiting measure (which in our model a priori is a mea-
sure living on the space of Kac-profiles which have densities relative to the Lebesgue measure)
tends to be a finite combination of Dirac-measures, for any inverse temperature. This follows
in our example from the fact that minimizers of the Kac-rate function must be flat and from
the Ellis–Wang theorem for the mean-field empirical color-distribution vectors [12]. More pre-
cisely, in our example μ is supported on a finite set of profiles αj , where j runs from 1 to at
most q + 1. But for a finitely supported measure the a.s. continuity requirement becomes empty.
Indeed, for any specified values of the limiting kernels γ (·|αj ), we could always easily find a
continuous interpolating function α �→ γ I (·|α) from the space of profiles to probability vectors,
which takes the prescribed values. To give such an explicit interpolation, take e.g. the convex
combination

γ I (·|α) :=
∑
j

(
1 +

∑
k:k �=j

d(α,αj )

d(α,αk)

)−1

γ (·|αj )

away from the αj ’s, and γ I (·|αj ) := γ (·|αj ).
It is however very meaningful here to see whether the finite support of the limiting measure

contains a bad configuration in the sense of our Definition 2.2. When this is not the case, one
would naturally say the model is almost surely Gibbs in the Kac-sense.

It is not difficult in our case to conclude that this is indeed true throughout all tempera-
tures, and the fuzzy KPM is almost surely Gibbs in this Kac-sense. This is a direct corol-
lary of the present results combined with previous work: First one realizes the flatness of
profiles in the limiting measure of the KM, from which the corresponding profiles of the
fuzzy KPM are obtained. But now we are reduced to the mean-field model, for which the
corresponding result of atypicality of bad configurations was obtained earlier, see [16], by
computations involving the explicit functions appearing as bad configurations, and the typi-
cal values of the mean-field empirical magnetizations, following from the Ellis–Wang theo-
rem.

3. Proofs

Let us start with the proofs of the large deviation results. Note that, considering �n ≡ �d
n , Propo-

sition 2.1 is a special case of Proposition 2.5.

3.1. Proof of Proposition 2.5

For convenience, we write μ�n for μ�n,β,q . Let us proceed in two steps.
Step 1: First, we derive the LDP for J ≡ 0. In this case our Gibbs measure μ�n is just a

spatial product measure on �n ⊂ �d
n of the equidistribution on {1, . . . , q}. We consider the ex-

ponential moment generating function of the color profile at finite discretization n for some
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F ∈ C,

μ�n

[
exp

(|�n|π�n(F )
)] = μ�n

[
exp

(
q∑

a=1

∑
x∈�n

1σ(x)=aF

(
a,

x

n

))]

= μ�n

[ ∏
x∈�n

exp

(
q∑

a=1

1σ(x)=aF

(
a,

x

n

))]

=
∏

x∈�n

1

q

q∑
a=1

exp

(
F

(
a,

x

n

))
.

Due to spatial independence, we recover the important single-site logarithmic moment generat-
ing function

�
(
F(u)

) := log
1

q

q∑
a=1

exp
(
Fa(u)

)
.

The limit of discretization going to zero for the logarithmic moment generating function of the
color profile is given by

1

|�n| logμ�n

[
exp

(|�n|π�n(F )
)] = 1

|�n|
∑
x∈�n

�

(
F

(
x

n

))
→

∫
duρ̃(u)�

(
F(u)

)
.

Notice that the diluted rate function

Iρ̃(ν) :=
{ 〈

S(α|eq), ρ̃λ
〉
, if ν = αρ̃λ with α ∈ B,

∞, otherwise

is equivalent to

�∗
ρ̃ (ν) :=

⎧⎨
⎩ sup

F∈C

[
ν(F ) −

∫
duρ̃(u)�

(
F(u)

)]
, if ν = αρ̃λ with α ∈ B,

∞, otherwise.

Indeed, by duality (see also [7], Lemma 6.2.13) it suffices to show that for all F ∈ C∫
duρ̃(u)�

(
F(u)

) = sup
ν∈P

(
ν(F ) − Iρ̃(ν)

)
. (17)

From this, we see that it suffices to take ν ∈ P with Lebesgue density αρ̃ since the r.h.s. of (17)
is equal to minus infinity otherwise. In that case, we can write

ν(F ) − Iρ̃(ν) =
∫

duρ̃(u)
(〈

F(u),α[·](u)
〉− S

(
α[·](u)|eq

))
and the supremum can be considered sitewise. Using Jensen’s inequality, it is easy to see that
the supremum is attained in α[a](u) = expFa(u)/

∑q

b=1 expFb(u) and equation (17) is indeed
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satisfied. That the supremum is achieved follows by convexity (detailed arguments see for ex-
ample [7], Lemma 2.6.13). We further note that for continuous F this optimizing profile is even
continuous w.r.t. the spatial variable as well.

Upper Bound: Since P is compact, all closed sets in P are compact and it suffices to consider
K ⊂ P compact. We can assume without loss that 0 < infν∈K Iρ̃(ν) and hence we can pick 0 <

a < infν∈K Iρ̃(ν). For every ν ∈ K there exists a Fν ∈ C such that ν(Fν)− ∫
duρ̃(u)�(Fν(u)) >

a and the sets

Uν :=
{
ν̂ ∈P : ν̂(Fν) −

∫
duρ̃(u)�

(
Fν(u)

)
> a

}
form an open covering of K . Using the Markov inequality, we can estimate

1

|�n| log μ̂�n(Uν)

= 1

|�n| logμ�n

[
exp

(|�n|π�n(Fν)
)
> exp

(
|�n|

(
a +

∫
duρ̃(u)�

(
Fν(u)

)))]

≤ −a −
∫

duρ̃(u)�
(
Fν(u)

)+ 1

|�n| logμ�n

[
exp

(|�n|π�n(Fν)
)]

and hence lim supn↑∞ 1
|�n| log μ̂�n(Uν) ≤ −a for all ν ∈ K . Since K is compact it can be covered

by a finite number of Uν and thus lim supn↑∞ 1
|�n| log μ̂�n(K) ≤ − infν∈K Iρ̃(ν).

Lower Bound: Let G ⊂P be open and Gρ̃λ denote the set of probability measures in G of the
form αρ̃λ. If Gρ̃λ =∅, there is nothing to show. Otherwise, let ν ∈ Gρ̃λ, then there exists ε1 > 0
such that Nε1(ν) ⊂ G and thus using the definition (3) we have

μ̂�n(G) ≥ μ�n

(
π�n ∈ Nε1(ν)

) = μ�n

(
d(π�n, ν) < ε1

)
= μ�n

( ∞∑
j=1

2−j |(π�n − ν)(fj )|
1 + |(π�n − ν)(fj )| < ε1

)

≥ μ�n

(
K(ε1)∑
j=1

2−j |(π�n − ν)(fj )|
1 + |(π�n − ν)(fj )| <

ε1

2

)
,

where K(ε1) is large enough such that
∑∞

j=K(ε1)+1 2−j < ε1/2. Further, we can estimate

μ�n

(
K(ε1)∑
j=1

2−j |(π�n − ν)(fj )|
1 + |(π�n − ν)(fj )| <

ε1

2

)
≥ μ�n

(
K(ε1)⋂
j=1

{ |(π�n − ν)(fj )|
1 + |(π�n − ν)(fj )| <

ε1

2

})

= μ�n

(
K(ε1)⋂
j=1

{∣∣(π�n − ν)(fj )
∣∣ < ε2

})
,

where we set ε2 := ε1/(2 − ε1).



Gibbs–non-Gibbs transitions in the fuzzy Kac–Potts model 2819

In the next step, we approximate ν by probability measures which are flat on a partition of Td ,
more precisely, we find νflat(ν) close to ν such that νflat(ν) ∈ M where

M :=
{

ν̂ ∈ P : dν̂

dλ
(u) =

N ′∑
k=1

α̂kρ̃(u)1Ck
(u) for some finite partition Ck of Td

and some flat colour profile α̂k on Ck

}
.

Indeed, given any finite partition (Ck)k∈{1,...,N ′} of T
d where ρ̃λ(Ck) > 0 for k ≤ N and

ρ̃λ(Ck) = 0 for N < k ≤ N ′, the measure νflat(ν) with dνflat(ν)/dλ(u) = ∑N ′
k=1 αk,ν ρ̃(u)1Ck

(u)

where

αk,ν[a] :=
{

ρ̃λ(Ck)
−1

∫
Ck

duρ̃(u)α[a](u), if ρ̃λ(Ck) > 0,

0, otherwise

is in M . Using this, we can approximate for every j ∈ {1, . . . ,K(ε1)}∣∣(πσ
�n

− ν
)
(fj )

∣∣ ≤ ∣∣(πσ
�n

− νflat(ν)
)
(fj )

∣∣+ ∣∣(νflat(ν) − ν
)
(fj )

∣∣, (18)

where for the second summand∣∣(νflat(ν) − ν
)
(fj )

∣∣
=

∣∣∣∣∣
q∑

a=1

N∑
k=1

[
αk,ν[a]

∫
Ck

duρ̃(u)fj (a,u) −
∫

Ck

duρ̃(u)α[a](u)fj (a,u)

]∣∣∣∣∣
=

∣∣∣∣∣
q∑

a=1

N∑
k=1

∫
Ck

duρ̃(u)α[a](u)

[
fj (a,u) − ρ̃λ(Ck)

−1
∫

Ck

dvρ̃(v)fj (a, v)

]∣∣∣∣∣
≤ sup

a∈{1,...,q}
sup
u∈Ck

∣∣∣∣fj (a,u) − ρ̃λ(Ck)
−1

∫
Ck

dvρ̃(v)fj (a, v)

∣∣∣∣.
The fj are uniformly continuous and hence it is possible to partition the torus in such a way that
for all a ∈ {1, . . . , q} and j ∈ {1, . . . ,K(ε)} we have

sup
a∈{1,...,q}

sup
u∈Ck

∣∣∣∣fj (a,u) − ρ̃λ(Ck)
−1

∫
Ck

dvρ̃(v)fj (a, v)

∣∣∣∣ <
ε2

3
(19)

unless ρ̃λ(Ck) = 0. Fixing this partitioning, for the first summand in (18) we have∣∣(πσ
�n

− νflat(ν)
)
(fj )

∣∣
≤

N ′∑
k=1

∣∣∣∣∣
q∑

a=1

[
1

|�n|
∑

x∈�n∩nCk

fj

(
a,

x

n

)
1σ(x)=a − αk,ν[a]

∫
Ck

duρ̃(u)fj (a,u)

]∣∣∣∣∣
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≤
N ′∑
k=1

∣∣∣∣∣
q∑

a=1

[
1

|�n|
∑

x∈�n∩nCk

ρ̃λ(Ck)
−1

∫
Ck

dvρ̃(v)fj (a, v)1σ(x)=a

− αk,ν[a]
∫

Ck

duρ̃(u)fj (a,u)

]∣∣∣∣∣
+

N ′∑
k=1

∣∣∣∣∣
q∑

a=1

1

|�n|
∑

x∈�n∩nCk

{
fj

(
a,

x

n

)
− ρ̃λ(Ck)

−1
∫

Ck

dvρ̃(v)fj (a, v)

}
1σ(x)=a

∣∣∣∣∣
≤ ε2

3
+ ‖fj‖

N ′∑
k=1

∣∣∣∣∣
q∑

a=1

[
1

|�n|
∑

x∈�n∩nCk

1σ(x)=a − αk,ν[a]ρ̃λ(Ck)

]∣∣∣∣∣
and thus, we can further estimate

μ�n

(
K(ε1)⋂
j=1

{∣∣(π�n − ν)(fj )
∣∣ < ε2

})

≥ μ�n

(
N ′⋂
k=1

{∣∣∣∣∣
q∑

a=1

[
1

|�n|
∑

x∈�n∩nCk

1σ(x)=a − αk,ν[a]ρ̃λ(Ck)

]∣∣∣∣∣ < ε3

})

=
N ′∏
k=1

μ�n

({∣∣∣∣∣
q∑

a=1

[
1

|�n|
∑

x∈�n∩nCk

1σ(x)=a − αk,ν[a]ρ̃λ(Ck)

]∣∣∣∣∣ < ε3

})
,

where ε3 := ε2(3N ′ maxj∈{1,...,K(ε1)} ‖fj‖)−1 and we used that μ is a product measure in the last
line. Note that for k ∈ {N +1, . . . ,N ′} the events inside the μ�n -measure occur deterministically
for n sufficiently large by the assumption of convergence of the density of the set �n to zero on
those Ck and hence, for large enough n, the product restricts to the terms for k ≤ N . For those k

introducing the empirical measures Lσ
�n,k(a) := |�n ∩ nCk|−1 ∑

x∈�n∩nCk
1σ(x)=a , then we can

further estimate

μ�n

({∣∣∣∣∣
q∑

a=1

[
1

|�n|
∑

x∈�n∩nCk

1σ(x)=a − αk,ν[a]ρ̃λ(Ck)

]∣∣∣∣∣ < ε3

})

= μ�n

({
q∑

a=1

∣∣∣∣ |�n ∩ nCk|
|�n| Lσ

�n,k(a) − αk[a]ρ̃λ(Ck)

∣∣∣∣ < ε3

})

≥ μ�n

({∣∣∣∣ |�n ∩ nCk|
|�n|ρ̃λ(Ck)

Lσ
�n,k(a) − αk[a]

∣∣∣∣ <
ε3

qρ̃λ(Ck)
, for all a ∈ {1, . . . , q}

})
.

We set ε4 := mink∈{1,...,K(ε1)} ε3/(qρ̃λ(Ck)) and note that |�n ∩nCk|/(|�n|ρ̃λ(Ck)) → 1 as n ↑
∞. Thus, we can assume n large enough such that maxk∈{1,...,K(ε1)} ||�n ∩nCk|/(|�n|ρ̃λ(Ck))−
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1| < ε̃ < ε4/2. Let ‖ · ‖TV denote the total variational distance of probability measures on
{1, . . . , q}. Then we have

μ�n

({∣∣∣∣ |�n ∩ nCk|
|�n|ρ̃λ(Ck)

Lσ
�n,k(a) − αk[a]

∣∣∣∣ < ε3

qρ̃λ(Ck)
, for all a ∈ {1, . . . , q}

})

≥ μ�n

({∣∣∣∣ |�n ∩ nCk|
|�n|ρ̃λ(Ck)

Lσ
�n,k(a) − αk[a]

∣∣∣∣ < ε4, for all a ∈ {1, . . . , q}
})

≥ μ�n

({∣∣Lσ
�n,k(a) − αk[a]∣∣ < ε4/2, for all a ∈ {1, . . . , q}})

≥ μ�n

({∥∥Lσ
�n,k − αk

∥∥
TV < ε4/4

})
.

Now we are in the position to apply the lower bound estimate in Sanov’s theorem and write

lim inf
n↑∞

1

|�n| log μ̂�n(G) ≥
N∑

k=1

ρ̃λ(Ck) lim inf
n↑∞

1

|�n|ρ̃λ(Ck)
logμ�n

({∥∥Lσ
�n,k − αk

∥∥
TV <

ε4

4

})

≥ − inf
ν̂∈Mε4 (ν)

∫
duρ̃(u)S

(
ν̂(u)|eq

)
,

where

Mε4(ν) :=
{

ν̂ ∈ P : dν̂

dλ
(u) =

N ′∑
k=1

α̂kρ̃(u)1Ck
(u) for the same partition as νflat(ν)

and max
k∈{1,...,N ′}

‖α̂k − αk‖TV <
ε4

4

}
.

To finish the proof, we show that

inf
ν∈Gρ̃λ

inf
ν̂∈Mε4 (ν)

∫
duρ̃(u)S

(
ν̂(u)|eq

) ≤ inf
ν∈Gρ̃λ

∫
duρ̃(u)S

(
ν(u)|eq

)
.

Indeed, since u �→ S(ν(u)|eq) is a convex function, using Jensen’s inequality, we have for any
ν ∈ Gρ̃λ

∫
duρ̃(u)S

(
ν(u)|eq

) ≥
N∑

k=1

ρ̃λ(Ck)S

(
ρ̃λ(Ck)

−1
∫

Ck

duρ̃(u)ν(u)|eq

)

=
N∑

k=1

ρ̃λ(Ck)S(αk,ν |eq) =
∫

duρ̃(u)S
(
νflat(ν)(u)|eq

)

and thus, since νflat(ν) ∈ Mε4(ν), the desired inequality holds.
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Step 2: Let us now consider the case with interaction, that is, J �≡ 0. We want to employ Varad-
han’s lemma ([7], Theorem 4.3.1) to prove the LDP as in [18], Theorem 23.19. The conditions
in Varadhan’s lemma are indeed satisfied since J is bounded.

3.2. Proof of Proposition 2.4

To compute the l.h.s. of (13), write for a fuzzy configuration η ∈ {1, . . . , s}�d
n\�nu	 where u ∈ T

d

μT
n

(
σ
(�nu	) = k|σ�d

n\�nu	 = η
) = 1

Z1(η)

∑
ξ :T (ξ)=(k,η)

μn(ξ)

(20)

= 1

Z2(η)

∑
ξ :T (ξ)=(k,η)

exp

(
βnd

q∑
a=1

F
(
πξ

n [a])
)

,

where Z1(η) and Z2(η) are the appropriate normalization constants. For notational convenience,
we introduce the notation

πσ
n,� := 1

nd

(∑
x∈�

1σ(x)=1δx/n, . . . ,
∑
x∈�

1σ(x)=qδx/n

)T

for the color profile on � ⊂ �d
n normalized by �d

n . In the next step, we separate the components
in πn corresponding to the site �nu	. We have

q∑
a=1

F
(
πξ

n [a]) =
q∑

a=1

〈
J ∗ πξ

n [a],πξ
n [a]〉

=
q∑

a=1

(〈
J ∗ π

ξ

n,�d
n\�nu	[a],πξ

n,�d
n\�nu	[a]〉

+ 2

nd

(
J ∗ π

ξ

n,�d
n\�nu	[a])(�nu	

n

)
1ξ(�nu	)=a

)
+ n−2dJ (0)

=
∑

a:T (a)=k

(〈
J ∗ π

ξ

n,�d
n\�nu	[a],πξ

n,�d
n\�nu	[a]〉

+ 2

nd

(
J ∗ π

ξ

n,�d
n\�nu	[a])(�nu	

n

)
1ξ(�nu	)=a

)

+
∑
l �=k

∑
a:T (a)=l

〈
J ∗ π

ξ

n,�d
n\�nu	[a],πξ

n,�d
n\�nu	[a]〉+ n−2dJ (0),

where in the last line we used that T (ξ(�nu	)) = k assumed in (20). The first, third and fourth
summand in the last line do not depend on the site �nu	, in other words, they only depend on the
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boundary condition η. Hence, in the conditional Gibbs measure (20) corresponding to the above
expression the third and fourth summand can be shifted into the normalization constant in the
denominator and the remaining two summands can be normalized using the first summand. Let
us introduce the levelsets of the boundary condition �l(η) := {x ∈ �d

n : η(x) = l} then we can
write[ ∑

ξ(�nu	):T (ξ(�nu	))=k

∑
ξ�k(η)

exp

(
βnd

∑
a:T (a)=k

(〈
J ∗ π

ξ

n,�k(η)[a],πξ

n,�k(η)[a]〉

+ 2

nd

(
J ∗ π

ξ

n,�k(η)[a])(�nu	
n

)
1ξ(�nu	)=a

))]

×
[ ∑

ξ�k(η)

exp

(
βnd

∑
a:T (a)=k

〈
J ∗ π

ξ

n,�k(η)[a],πξ

n,�k(η)[a]〉)]−1

=
[ ∑

ξ(�nu	):T (ξ(�nu	))=k

∑
ξ�k(η)

exp

( ∑
a:T (a)=k

((
β|�k(η)|2

nd

〈
J ∗ π

ξ

�k(η)[a],πξ

�k(η)[a]〉

+ 2β|�k(η)|
nd

(
J ∗ π

ξ

�k(η)[a])(�nu	
n

)
1ξ(�nu	)=a

)))]

×
[ ∑

ξ�k(η)

exp

(
β|�k(η)|2

nd

∑
a:T (a)=k

〈
J ∗ π

ξ

�k(η)[a],πξ

�k(η)[a]〉)]−1

=
∑

ξ(�nu	):T (ξ(�nu	))=k

μ
�k(η),β

|�k(η)|
nd ,rk

[
exp

(
2β|�k(η)|

nd

(
J ∗ π�k(η)

[
ξ
(�nu	)])(�nu	

n

))]

= rkμ�k(η),β
|�k(η)|

nd ,rk

[
exp

(
2β|�k(η)|

nd

(
J ∗ π�k(η)[1])(�nu	

n

))]

as required.

3.3. Proof of Theorem 2.7

Part (i): First note that a given weakly convergent sequence of boundary conditions (νn)n∈N in
the single-site specification kernel (13) is represented in the sequence of level sets (�k(νn))n∈N
and in the temperature parameters (βk(νn))n∈N corresponding to the fuzzy classes k ∈ {1, . . . , s}.
For each such fuzzy class k, we have a limiting dilution ρk and limiting inverse temperature
βNρk

where either β ≤ βc(2) or β < βc(r∗) if ri �= 2 for all i ∈ {1, . . . , s}. In the degenerate case
where ρk ≡ 0, also βNρk

= 0 and

Au
(
βk(νn), rk,�k(νn)

) = μ
�k(νn),β

|�k(νn)|
nd ,rk

[
exp

(
2β|�k(νn)|

nd

(
J ∗ π�k(νn)[1])(�nu	

n

))]
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converges to 1 as n tends to infinity as the exponent tends to zero uniformly. If Nρk
> 0 we can

use the LDP given in Proposition 2.5. We claim that for any such ρk the rate function (14) is
minimized by the flat equidistribution, more precisely the minimizer is given by α[·](u) ≡ 1/rk
away from {u ∈ T

d : ρk(u) = 0}. In order to see this, consider the representation of the rate
function given in (15). Note that, in the second summand, for every u ∈ T

d

bβNρk
,ρ̃k,J (u) = βNρk

∫
dvρ̃k(v)J (u − v) = β

∫
dvρk(v)J (u − v) ≤ β

which implies, using the Ellis–Wang theorem [12] for the mean-field PM and monotonicity
of the critical temperatures w.r.t. the class size, that the equidistribution α[·](u) ≡ 1/rk is the
unique minimizer for every u. Consequently, since the flat equidistribution also minimizes
the first summand in (15), (1/rk)ρ̃kλ must be the global minimizer of Iρ̃k

. This implies, that
Au(βk(νn), rk,�k(νn)) converges to exp(2βr−1

k

∫
dvρk(v)J (u−v)) as n tends to infinity. More-

over, for any limit profile, the limiting specification kernel of (13) is given by (16) and the limit
is independent of the approximating sequence. Hence, any boundary profile is good according to
Definition 2.2 and thus the fuzzy KPM is Gibbs.

Part (ii): First, note that at any finite n, the single-site conditional probabilities at one given
site, depending on empirical color profiles away from the single site, are uniquely defined combi-
natorial objects which are given in terms of the elementary formula for conditional probabilities.
Hence, there is no need and also no freedom to talk about different versions of the kernels at
finite n.

We show that each bad configuration for the mean-field fuzzy PM provides a bad configuration
for the fuzzy KPM when it is interpreted as the spatially homogeneous (flat) color profile. In order
to prove that a profile ν is a bad point, according to the Definition 2.2, it suffices to show that
there exist two sequences ν+

m and ν−
m of conditionings in the fuzzy KPM which can be realized

at some scale nm → ∞, which

1. are both converging to the same limit ν as m → ∞ weakly, but
2. which have the property that the limits of the kernels γ u

nm,β,q,(r1,...,rs )
(k|ν±

m) from formula

(12) with the corresponding conditionings ν+
m and ν−

m exist and are different.

We will construct those sequences now by a two-step procedure as spatial approximants of
bad configurations in mean-field.

Bad configurations α ∈ P({1, . . . , s}) for the mean-field fuzzy PM are characterized by the fact
that for some fuzzy class rk , βα[k] = βc(rk). Here βc(rk) is the critical temperature parameter
where the mean-field non-normalized rate function

IMF
α[k](α̂) := −βα[k]

rk∑
a=1

α̂[a]2 + S(α̂|eq), α̂ ∈ P
({1, . . . , rk}

)
(21)

of the rk-states PM shows a discontinuous (first-order) jump from uniqueness to non-uniqueness
of the global minimizers (for details see [16]).

Now, consider α such that the set T ⊂ {1, . . . , s} of indices for which βα[k] = βc(rk) is non-
empty. Let i denote the lowest index in T and pick sequences of length-s probability vectors
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α−
m and α+

m which are given by α±
m[i] = α[i] ± 1/m and α±

m[l] = α[l] ∓ 1/((s − 1)m) for l �= i

where m tends to infinity. This construction moves away all conditionings from the critical point.
More precisely, for all fuzzy classes along the sequences indexed by m the corresponding mean-
field model is either in the uniqueness regime, α±

m[k] < βc(rk), or in the low-temperature regime,
α±

m[k] > βc(rk), for all k ∈ {1, . . . , s} and for all finite sufficiently large m.
The vectors α±

m have to be interpreted as limiting flat profiles α±
mλ in the fuzzy KPM or more

precisely as limits of levelsets �n(α
±
m[k]) ⊂ �d

n \ �nu	. For finite n, in general, this can only be
done approximately. For example, we can color �d

n \ �nu	 periodically such that every color k

appears with frequency α±
m[k] if α±

m[k] is rational. If α±
m[k] is irrational, another approximation

by rational numbers can be employed. Having done this, we have as n tends to infinity,

1

nd

∑
x∈�n(α±

m [k])
f

(
x

n

)
→ α±

m[k]λ(f ).

Now for all m, α−
m[i] is in the uniqueness region of the constrained model and hence, using the

diluted LDP as in part (i) of this proof,

μ
�n(α−

m [i]),β |�n(α
−
m [i])|

nd ,ri

[
exp

(
2β|�n(α

−
m[i])|

nd

(
J ∗ π�n(α−

m [i])[1])(�nu	
n

))]
(22)

converges to exp(2βr−1
i α−

m[i]) as n tends to infinity. This further converges to
exp(2βc(ri)r

−1
i ) =: ϕ−(ri) as m tends to infinity. On the other hand, for all m, α+

m[i] is in
the non-uniqueness region of the constrained model. Since the rate function (15) of the diluted
LDP is again given by the mean-field rate function (21), the minimizer in the phase-transition
regime is given by the Ellis–Wang theorem, see, for example, [16], Theorem 5.3. Consequently,
(22) where α−

m[i] replaced by α+
m[i] converges to

1

ri

(
exp

(
2β̃m

ri

(
(ri − 1)u(β̃m, ri) + 1

))+ (ri − 1) exp

(
2β̃m

ri

(
1 − u(β̃m, ri)

)))
, (23)

where we abbreviated β̃m := βα−
m[i] and u(β, r) is given as the largest solution of the mean-field

equation

u = (
1 − exp(−βu)

)
/
(
1 + (q − 1) exp(−βu)

)
,

for more details see also [12]. For m tending to infinity, using u(ri, βc(ri)) = (ri − 2)(ri − 1)−1,
(23) converges to

1

ri

(
exp

(
2βc(ri)r

−1
i (ri − 1)

)+ (ri − 1) exp
(
2βc(ri)r

−1
i (ri − 1)−1)) =: ϕ+(ri).

Let us write (α±
m,n)n∈N for a finite-volume sequence of boundary conditions converging to α±

m .
Further let ϕ(k) denote the limit of (22) where i is replaced by k ∈ {1, . . . , s} \ T and note that
this limit is independent of the choice of ±. From the previous, it follows that there exists a
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subsequence of volume labels nm such that for the sequence of profiles ν±
m := α±

m,nm
which can

be realized at scale nm we have

lim
m↑∞γ u

nm,β,q,(r1,...,rs )

(
i|ν−

m

) = riϕ
−(ri)∑

k∈T \{i} rkϕ+(rk) +∑
k∈{1,...,s}\T rkϕ(k)

and

lim
m↑∞γ u

nm,β,q,(r1,...,rs )

(
i|ν+

m

) = riϕ
+(ri)∑

k∈T \{i} rkϕ−(rk) +∑
k∈{1,...,s}\T rkϕ(k)

.

Since ri ≥ 3 by assumption, it is easy to check that ϕ+(ri) > ϕ−(ri) and hence

lim
m↑∞γ u

nm,β,q,(r1,...,rs )

(
i|ν−

m

)
> lim

m↑∞γ u
nm,β,q,(r1,...,rs )

(
i|ν+

m

)
.

This concludes the proof.
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[10] De Roeck, W., Maes, C., Netočný, K. and Schütz, M. (2015). Locality and nonlocality of classical
restrictions of quantum spin systems with applications to quantum large deviations and entanglement.
J. Math. Phys. 56 023301, 30. MR3390894

[11] Eisele, T. and Ellis, R.S. (1983). Symmetry breaking and random waves for magnetic systems on a
circle. Z. Wahrsch. Verw. Gebiete 63 297–348. MR0705628

[12] Ellis, R.S. and Wang, K. (1990). Limit theorems for the empirical vector of the Curie–Weiss–Potts
model. Stochastic Process. Appl. 35 59–79. MR1062583

[13] Fernández, R. (2006). Gibbsianness and non-Gibbsianness in lattice random fields. In Mathematical
Statistical Physics 731–799. Amsterdam: Elsevier B. V. MR2581896

[14] Fernández, R., den Hollander, F. and Martínez, J. (2014). Variational description of Gibbs–non-Gibbs
dynamical transitions for spin-flip systems with a Kac-type interaction. J. Stat. Phys. 156 203–220.
MR3215620

[15] Häggström, O. (2003). Is the fuzzy Potts model Gibbsian? Ann. Inst. Henri Poincaré Probab. Stat. 39
891–917. MR1997217

[16] Häggström, O. and Külske, C. (2004). Gibbs properties of the fuzzy Potts model on trees and in mean
field. Markov Process. Related Fields 10 477–506. MR2097868

[17] Jahnel, B., Külske, C., Rudelli, E. and Wegener, J. (2014). Gibbsian and non-Gibbsian properties of the
generalized mean-field fuzzy Potts-model. Markov Process. Related Fields 20 601–632. MR3289257

[18] Klenke, A. (2008). Wahrscheinlichkeitstheorie. Berlin/Heidelberg: Springer.
[19] Külske, C. (2003). Analogues of non-Gibbsianness in joint measures of disordered mean field models.

J. Stat. Phys. 112 1079–1108. MR2000230
[20] Külske, C. and Le Ny, A. (2007). Spin-flip dynamics of the Curie–Weiss model: Loss of Gibbsianness

with possibly broken symmetry. Comm. Math. Phys. 271 431–454. MR2287911
[21] Külske, C. and Rozikov, U.A. (2016). Fuzzy transformations of Gibbs measures for the Potts model

on a Cayley tree. Random Structures Algorithms. To appear.
[22] Le Ny, A. (2008). Gibbsian description of mean-field models. In In and Out of Equilibrium. 2

(V.Sidoravicius and M.E. Vares, eds.). Progress in Probability 60 463–480. Basel: Birkhäuser.
MR2477394

[23] Potts, R.B. (1952). Some generalized order–disorder transformations. Proc. Cambridge Philos. Soc.
48 106–109. MR0047571

[24] van Enter, A.C.D. (2012). On the prevalence of non-Gibbsian states in mathematical physics. IAMP
News Bulletin 15 15–24.

[25] van Enter, A.C.D., Ermolaev, V.N., Iacobelli, G. and Külske, C. (2012). Gibbs–non-Gibbs properties
for evolving Ising models on trees. Ann. Inst. Henri Poincaré Probab. Stat. 48 774–791. MR2976563

[26] van Enter, A.C.D., Fernández, R., den Hollander, F. and Redig, F. (2002). Possible loss and recovery
of Gibbsianness during the stochastic evolution of Gibbs measures. Comm. Math. Phys. 226 101–130.
MR1889994

[27] van Enter, A.C.D., Fernández, R., den Hollander, F. and Redig, F. (2010). A large-deviation view on
dynamical Gibbs–non-Gibbs transitions. Mosc. Math. J. 10 687–711, 838. MR2791053

[28] van Enter, A.C.D., Fernández, R. and Sokal, A.D. (1993). Regularity properties and pathologies of
position-space renormalization-group transformations: Scope and limitations of Gibbsian theory. J.
Stat. Phys. 72 879–1167. MR1241537

Received February 2015 and revised November 2015

http://www.ams.org/mathscinet-getitem?mr=3390894
http://www.ams.org/mathscinet-getitem?mr=0705628
http://www.ams.org/mathscinet-getitem?mr=1062583
http://www.ams.org/mathscinet-getitem?mr=2581896
http://www.ams.org/mathscinet-getitem?mr=3215620
http://www.ams.org/mathscinet-getitem?mr=1997217
http://www.ams.org/mathscinet-getitem?mr=2097868
http://www.ams.org/mathscinet-getitem?mr=3289257
http://www.ams.org/mathscinet-getitem?mr=2000230
http://www.ams.org/mathscinet-getitem?mr=2287911
http://www.ams.org/mathscinet-getitem?mr=2477394
http://www.ams.org/mathscinet-getitem?mr=0047571
http://www.ams.org/mathscinet-getitem?mr=2976563
http://www.ams.org/mathscinet-getitem?mr=1889994
http://www.ams.org/mathscinet-getitem?mr=2791053
http://www.ams.org/mathscinet-getitem?mr=1241537

	Introduction
	Strategy of proof and further results

	Model and main results
	The Kac-Potts model
	The fuzzy Kac Potts model

	Proofs
	Proof of Proposition 2.5
	Proof of Proposition 2.4
	Proof of Theorem 2.7

	Acknowledgments
	References

