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In this paper, we study the existence of densities for strongly degenerate stochastic differential equations
(SDEs) whose coefficients depend on time and are not globally Lipschitz. In these models, neither local
ellipticity nor the strong Hörmander condition is satisfied. In this general setting, we show that continu-
ous transition densities indeed exist in all neighborhoods of points where the weak Hörmander condition
is satisfied. We also exhibit regions where these densities remain positive. We then apply these results to
stochastic Hodgkin–Huxley models with periodic input as a first step towards the study of ergodicity prop-
erties of such systems in the sense of Meyn and Tweedie (Adv. in Appl. Probab. 25 (1993) 487–517; Adv. in
Appl. Probab. 25 (1993) 518–548).
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1. Introduction

This paper belongs to a series of three articles (see also [19,20]) in which we carry a probabilis-
tic study of multidimensional strongly degenerate and time inhomogeneous random systems and
their ergodic properties, with a view towards statistical inference in neuroscience. An important
step on the road to ergodicity is to show that such systems possess Lebesgue densities and to
address properties of the support of their law. This is the topic of the present paper. We establish
that densities exist, are smooth and strictly positive, at least on suitable parts of the state space.
The coefficients of our stochastic differential equations (SDEs) depend on time and are not glob-
ally Lipschitz. The noise is degenerate. In the main application, we have in mind the noise is
actually one dimensional and present in only few components of the system.

In order to prove existence of densities, is has become classical to use Malliavin Calculus and
the Hörmander condition (cf. [27]). Hörmander sufficient condition ensures that the diffusion
in the random system is actually strong enough even if the noise is visible only on a restricted
number of components. It is satisfied when the Lie algebra generated by the coefficients of the

1350-7265 © 2017 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/16-BEJ820
mailto:hoepfner@mathematik.uni-mainz.de
mailto:eva.loecherbach@u-cergy.fr
mailto:michele.thieullen@upmc.fr


2588 R. Höpfner, E. Löcherbach and M. Thieullen

SDE has full dimension and can be found under two forms: the strong form involving the dif-
fusion coefficients only, and the weak form possibly including the drift coefficient. In our case,
we can only hope for the weak Hörmander condition to be satisfied. Moreover in general this
condition will hold only locally. SDEs satisfying local Hörmander condition with locally smooth
coefficients have been considered recently in a time homogeneous setting (cf. [2,3,11,14]). In
these works, the local Hörmander condition is ensured by a local ellipticity assumption (hence
these papers deal with the strong form of this condition). However, in our framework time ho-
mogeneity fails and we must work with the weak form of Hörmander condition, which holds
only locally. In this general setting, we show that smooth transition densities indeed exist in all
neighborhoods of points where the weak Hörmander condition is satisfied. We also prove that
these densities are lower semi continuous (l.s.c.) w.r.t. the starting point even if our system does
not enjoy the Feller property. In order to do so, we extend a localization argument and estimates
of the Fourier transform introduced in [2,3,11] and [14].

Our motivation is to describe with probabilistic tools the long time behavior of a neuron em-
bedded in a network in order to be able to estimate either the parameters of the model or the
underlying network activity or the characteristics of the spike trains generated by the neuron.
The network activity is present via the synaptic stimulation the neuron receives through its den-
dritic tree. We describe the neuron by the Hodgkin–Huxley model which is very well known in
physiology. This system is notoriously mathematically difficult and may exhibit a collection of
different behaviors when submitted to a deterministic periodic input. The synaptic stimulation
we consider is a random input carrying a deterministic and periodic signal. We are interested
in ergodicity for the process composed of the neuron on the one hand and the input it receives
on the other hand. This results in a five dimensional (5D) time inhomogeneous random system
driven by a one dimensional Brownian motion present in the first and last component only. This
system belongs to the general class of SDEs mentioned above.

Because of this original motivation we find it natural to introduce an intermediate family of
models that we call SDEs with internal variables and random input which lies in between the
general class of SDEs and our specific 5D-stochastic Hodgkin–Huxley. This family includes
all conductance based models with synaptic input relevant for modeling in neuroscience (the
Hodgkin–Huxley system is a conductance-based model). It is also relevant in biology and physics
since it describes on a macroscopic scale the limit of a population of individuals of different
types represented by the internal variables, coupled by a global variable. In the microscopic
model, each individual can occupy two states, active or inactive. In neuro-physiology, individuals
can be ion channels of different types, see, for example, [22]: here the active state corresponds
to open channels, and the inactive state to closed channels. The transition rates between these
two states depend on the global variable only. The deterministic system on which the SDEs are
built is obtained as the limit of a sequence of Piecewise Deterministic Markov Processes when
the number of individuals goes to infinity (cf. [9,13,28,30]) in the sense of the Law of Large
Numbers. When we consider SDEs with internal variables and random input we consider that
the population is infinite, we neglect the intrinsic noise related to finite size effects and we focus
on the external noise received from the environment. For instance, when we model a neuron,
the individuals in the population are the ion channels and the global variable is the membrane
potential (see [28]).

For systems in this family, we provide an explicit discussion of the Hörmander condition that
we later illustrate numerically in the last section devoted to the 5D-stochastic Hodgkin–Huxley
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model. Then we exhibit regions where densities, if they exist, remain positive. These regions are
related to neighborhoods of equilibrium points of the underlying deterministic system. The par-
ticular structure of SDEs with internal variables and random input, namely some linearity in the
internal equations, plays a key role for the control argument that we use. We also show that with
positive probability, the solution of these systems can imitate any deterministic evolution result-
ing from an arbitrary input, on an arbitrary interval of time. This “chamaeleon property”, stated in
Theorem 5, is one of the main results of our paper. It is used in [19] to prove that the 5D-stochastic
Hodgkin–Huxley system emits an infinite number of spikes in the long run almost surely.

We finally apply the general results obtained for SDEs with internal variables and random in-
put to the 5D-stochastic Hodgkin–Huxley model. In particular, the present paper shows that the
5D-stochastic Hodgkin–Huxley model possesses smooth Lebesgue densities. The Hörmander
condition is satisfied at certain equilibrium points. Therefore, depending on the starting point,
the 5D-stochastic Hodgkin–Huxley model possesses strictly positive densities in small neigh-
borhoods of such equilibrium points. We use this result in two companion papers [20] and [19],
where we address periodic ergodicity and prove limit theorems. To the best of our knowledge, no
other probabilistic study has been presented in the literature before. There are some simulation
studies (see e.g. [29] and [35]), but not much seems to be known mathematically.

The present paper is organized as follows. In Section 2 we first present our general SDEs and
assumptions. Section 3 is devoted to proving our first main result, stated in Theorem 1, which
shows the local existence of smooth densities for time inhomogeneous systems with locally Lip-
schitz coefficients. In Section 4 we introduce SDEs with internal variables and random input. We
explicit the weak Hörmander condition and address the positivity of densities for such systems.
Theorem 5 in Section 4 states the “chamaeleon property”, our second main result. Section 5 of
the paper is devoted to the 5D-stochastic Hodgkin–Huxley model (with some reminders on the
deterministic system). In the Appendix, we provide complementary proofs.

2. The setting

In this section, we describe the systems of SDEs to be considered in our paper. Given integers
m > 1 and l < m, we write x = (x1, . . . , xm) for generic elements of Rm. Let

σ(x) =
⎛⎝ σ1,1(x) . . . σ1,l(x)

...
...

σm,1(x) . . . σm,l(x)

⎞⎠ and b(t, x) =
⎛⎝ b1(t, x)

...

bm(t, x)

⎞⎠ .

We suppose that σ is measurable from R
m to R

m⊗l and that b(t, x) is a smooth function from
[0,∞[×R

m to R
m. For all x ∈R

m, we consider the SDE

Xi,t = xi +
∫ t

0
bi(s,Xs) ds +

l∑
k=1

∫ t

0
σi,k(Xs) dWk

s , t ≥ 0, i = 1, . . . ,m, (1)

and assume throughout this paper that a unique strong solution exists (at least up to some life-
time). Here, W 1, . . . ,W l are independent one-dimensional Brownian motions. Thus the sys-
tem (1), an m-dimensional SDE driven by l-dimensional Brownian motion for l < m, is strongly
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degenerate. We write Px for the probability measure under which the solution X = (Xt )t≥0 of (1)
starts at x. Note that the time dependence is in the drift only. We assume that (1) satisfies the fol-
lowing assumptions.

(H1) There exists an increasing sequence of compacts Kn ⊂ Kn+1 of the form Kn =
[an, bn] = ∏m

i=1[an,i , bn,i] where an = (an,1, . . . , an,m), such that for any x ∈ ⋃
n Kn, the unique

strong solution to (1) starting from x at time 0 satisfies that Tn := inf{t : Xt /∈ Kn} → ∞ almost
surely as n → ∞.

(H2) The coefficients of (1) are locally smooth. Namely we assume that for all n, σi,k ∈
C∞

b (Kn,R) for all 1 ≤ i ≤ m,1 ≤ k ≤ l. Moreover, we suppose that for every multi-index
β ∈ {0, . . . ,m}l , l ≥ 1, b(t, x) + ∂βb(t, x) is bounded on [0, T ] × Kn for all T > 0. Here

∂β = ∂l

∂xβ1 ···∂xβl
and we identify x0 with t .

Notice that as a consequence of assumption (H1) we could choose as state space of the process
(Xt , t ≥ 0) the set E := ⋃

n Kn. We will do this in some parts of the paper, for example, in
Sections 4 and 5.

Example 1. Consider the two dimensional damping Hamiltonian system

X =
(

X1
X2

)
,

{
dX1,t = g(Xt ) dt

dX2,t = σ̃ (Xt ) dWt + V ′(t,X1,t ) dt

}

evolving in a time dependent potential V (t, ·). Here, W is a one dimensional Brownian motion.
We suppose that g, σ̃ and V ′ are such that our conditions (H1) and (H2) are satisfied. Systems
of the above form are widely studied in the literature. They serve as models of physical systems
subjected to random perturbations, see, for example, [10] where a chain of rotators is considered
whose ends are coupled to stochastic heat baths. In the last years, the necessity of performing
inference about unknown parameters within such models gave rise to several papers within the
statistical literature. We refer the reader to [32] and to [7] and the references therein. A first step
towards statistical inference is the existence, at least locally, of a transition density. This is the
topic of the next section.

3. Existence and smoothness of densities for (1)

Classically, one proves that the solution of an SDE admits a smooth density via Malliavin Calcu-
lus, imposing the Hörmander condition. In most of the cases, it is assumed that the coefficients
of the SDE are C∞, bounded, with bounded derivatives of any order and that the Hörmander
condition is satisfied all over the state space. However, in our case, the coefficients of (1) are not
globally Lipschitz. Regarding the Hörmander condition there are actually two possibilities: either
to work under the strong Hörmander condition or under the weak one which is a less stringent
assumption. The strong degeneracy of (1) imposes to work under the weak form of Hörmander
condition, which moreover may hold only locally. In addition, the drift coefficient depends on
time. Hence, we have to apply local arguments in a time inhomogeneous setting.
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3.1. Local Hörmander condition in a time dependent setting

In this section, we state our local weak Hörmander condition. The first step is to rewrite (1) in
Stratonovich form (see e.g. [21] or [23]). This amounts to replace the drift b(t, x) by

b̃i (t, x) := bi(t, x) − 1

2

l∑
k=1

m∑
j=1

σj,k(x)
∂σi,k

∂xj

(x), 1 ≤ i ≤ m,x ∈ R
m, (2)

which is still time inhomogeneous. Now we have to take care of time dependence in the drift
of (1). Let us consider the vector fields (or linear differential operators of order one) A0 and
A1, . . . ,Al on [0,+∞[×R

m whose coefficients are given by b̃ and σ1, . . . , σl , where σk denotes
the kth column of the matrix σ , for any 1 ≤ k ≤ l:

A0 = ∂

∂t
+

m∑
i=1

b̃i (t, x)
∂

∂xi

= ∂

∂t
+ b̃, Ak =

m∑
i=1

σi,k(x)
∂

∂xi

, 1 ≤ k ≤ l.

A0 and Ak can be identified respectively, with the (m + 1)-dimensional function A0(t, x) =
(b̃0, . . . , b̃m) where b̃0 = 1 and Ak(t, x) = (σ0,k, σ1,k, . . . , σm,k) where σ0,k = 0. Actually there

is a one-to-one correspondence between vector fields T (t, x) = T0(t, x) ∂
∂t

+ ∑m
i=1 Ti (t, x) ∂

∂xi

and (m + 1)-dimensional functions (T0,T1, . . . ,Tm).
The Lie bracket of two vector fields T (t, x) = T0(t, x) ∂

∂t
+ ∑m

i=1 Ti (t, x) ∂
∂xi

and V(t, x) =
V0(t, x) ∂

∂t
+ ∑m

i=1 Vi (t, x) ∂
∂xi

is defined as

[T ,V]i :=
m∑

j=0

(
Tj

∂Vi

∂xj

− Vj

∂Ti

∂xj

)
=

(
T0

∂Vi

∂t
− V0

∂Ti

∂t

)
+

m∑
j=1

(
Tj

∂Vi

∂xj

− Vj

∂Ti

∂xj

)
.

In particular since σ in (1) does not depend on time, for all 1 ≤ k ≤ l,

[Ak,V]i =
m∑

j=1

(
σj,k

∂Vi

∂xj

− Vj

∂σi,k

∂xj

)
,

where no time derivative appears. On the contrary, a time derivative is present in [A0,V] since

[A0,V]i =
(

∂Vi

∂t
− V0

∂b̃i

∂t

)
+

m∑
j=1

(
b̃j

∂Vi

∂xj

− Vj

∂b̃i

∂xj

)
.

Notice that whenever V0 vanishes identically, [Ak,V]0 ≡ 0 since σ0,k is zero and [A0,V]0 ≡ 0
as well since b̃0 is constant equal to 1. In this case the vector fields [Ak,V] and [A0,V] belong to
the m-dimensional space generated by the ∂

∂xi
,1 ≤ i ≤ m. In particular, [Ak,A0] belong to this

latter space as well as all Ak,1 ≤ k ≤ l, by definition.
Given A1, . . . ,Al and A0 we can build two Lie algebras. On one hand the Lie algebra �

generated by the set {A0,A1, . . . ,Al} including the drift vector. On the other hand, we may
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define a set LN of vector fields by “initial condition” A1, . . . ,Al ∈ LN and at most N iteration
steps

L ∈ LN �⇒ [L,A0], [L,A1], . . . , [L,Al] ∈ LN, (3)

for any fixed N ∈ N. Notice that LN does not contain the drift vector A0, but the construction
allows to take brackets with A0 in further steps. Write L∗

N for the closure of LN under Lie
brackets and LA(LN) for the linear hull of L∗

N , that is, the Lie algebra spanned by LN . Finally,
we write L = LA(

⋃
N LN). As just noticed the dimension of L(t, x) cannot exceed m whatever

(t, x) ∈ [0,+∞[×R
m. However, the dimension of �(t, x) can be equal to m + 1. Actually, the

following result holds.

Proposition 1. For all (t, x) ∈ [0,+∞[×R
m,dim�(t, x) = dimL(t, x) + 1.

Before giving the proof of this proposition, we state the local weak Hörmander condition we
are going to work with. Recall E = ⋃

n Kn ⊂R
m from condition (H1).

(LWH) We say that the Hörmander condition is satisfied at (t, y0) if there exist r ∈]0, t[ and
R > 0 such that B5R(y0) ⊂ E and dim�(s, y) = m + 1,∀(s, y) ∈ [t − r, t] × B3R(y0) (local
weak Hörmander condition).

Proof of Proposition 1. For a fixed integer N , consider the Lie algebra LA(LN) spanned by
LN . Construct also iteratively the set �N such that it contains A1, . . . ,Al and A0 (initialization)
and is stable by Lie brackets with A0 and Ak,1 ≤ k ≤ l (iteration) of order up to N . Then define
LA(�N) as the Lie algebra spanned by �N . The difference in the initialization between LN and
�N plays a key role. �N \LN consists of A0 and the descendance of A0 in the sense of iterated
Lie brackets (3). This implies that �N ⊂ {A0} ∪ LN ∪ −LN where we denote by −LN the set
{−L;L ∈ LN }. Notice that LN ∪ −LN belongs to the m-dimensional space generated by the
∂

∂xi
,1 ≤ i ≤ m, and A0 is the only vector field with non trivial coordinate in the direction of ∂

∂t
.

As a consequence, for all N ,

dim Vect(�N) = 1 + dim Vect(LN),

whence

dim Vect

(⋃
N

�N

)
= 1 + dim Vect

(⋃
N

LN

)
.

Since Vect(
⋃

N �N) = � is the Lie algebra generated by {A0,A1, . . . ,Al} and Vect(
⋃

N LN) =
L, this implies the result. �

In the sequel, we will check (LWH) at (t, y0) by successive computations of Lie brackets
looking for r ∈]0, t[ and N ∈N such that dim LA(LN)(s, y0) = m,∀s ∈ [t − r, t].

Remark 1. We had to state our local weak Hörmander condition in a time inhomogeneous frame.
Such a time inhomogeneous situation has already been considered in [8]—however supposing
that the weak Hörmander condition holds globally. [8] recalls also an example from [34] which
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points out the necessity to incorporate the operator ∂
∂t

to the original framework via extension of

the coefficient b̃ into A0 described above.

3.2. Local densities for (1)

Let us recall that an R
m-valued random vector Z admits a density with respect to Lebesgue

measure or is absolutely continuous on an open set O ⊂R
m, if for some function p ∈ L1(O),

E
(
f (X)

) =
∫

f (y)p(y)dy,

for any continuous and bounded function f ∈ Cb(R
m) satisfying supp(f ) ⊂ O .

Theorem 1. Assume that (1) satisfies (H1) and (H2). Assume moreover that (LWH) is satisfied
at (t, y0). Fix x ∈ R

m and denote by (Xt , t ≥ 0) the strong solution of (1) starting from x. Then
the random variable Xt admits an infinitely differentiable density on BR(y0), where R is given
in (LWH).

Note that this density might be ≡ 0 near y0; so far it is not granted that the process at time
t visits such neighborhoods for y0 ∈ int(E) for arbitrary choice of a starting point x ∈ R

m with
positive probability.

Theorem 2. Let us keep the assumptions and notations of Theorem 1 and for x in R
mdenote by

p0,t (x, ·) the density of Xt on BR(y0). For any fixed y ∈ BR(y0), the map R
m � x �→ p0,t (x, y)

is lower semi-continuous.

Given the assumptions (H1)–(H2) on (1), we have to use localization arguments in order to
prove these theorems. Localization arguments have been used in [24] and [11], however in a time
homogeneous framework. Moreover, [11] works under the condition of local ellipticity which
fails to hold for (1). We prove below that [24] and [11] can be extended to a time inhomogeneous
SDE satisfying only the local weak Hörmander condition (LWH).

Proof of Theorem 1. In this proof, we rely on the following criterion based on Fourier transform
which ensures existence and regularity of Lebesgue densities. Let μ be a probability measure on
R

m and μ̂ its Fourier transform defined by μ̂(ξ) := 1
(2π)m

∫
Rm ei〈y,ξ〉μ(y)dy. If μ̂ is integrable,

then μ is absolutely continuous and a continuous version of its density is given by

p(y) = 1

(2π)m

∫
Rm

e−i〈ξ,y〉μ̂(ξ) dξ. (4)

If moreover ∫
Rm

|ξ |k∣∣μ̂(ξ)
∣∣dξ < ∞ (5)

holds for all k ∈N, then p is of class C∞.
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We use this criterion in our situation in the following way. First, consider R > 0 provided by
(LWH) and let N be such that dimLA(LN)(s, y) = m,∀s ∈ [t − r, t] and y ∈ B3R(y0). Denote
by � a localizing function in C∞

b (Rm) satisfying 1BR(0) ≤ � ≤ 1B2R(0). Fix x, t and T with
t ≤ T . We put m0 := Ex(�(Xt − y0)). If m0 = 0, then it is trivially true that Xt has a density
on BR(y0). Indeed, in this case the density is simply ≡ 0 on BR(y0). If m0 > 0, then we prove
below that the probability measure ν defined by∫

f (y)ν(dy) := 1

m0
Ex

(
f (Xt )�(Xt − y0)

)
, (6)

for all f ∈ Cb(R
m), is such that for ν̂(ξ ) = 1

m0
Ex(e

i〈ξ,Xt 〉�(Xt − y0)), |ξ |k|ν̂(ξ)| is integrable
for any fixed k ∈ N.

In the following, we will work for fixed k ∈ N. The main step is to prove (12)–(13) below.
Although the form of (12)–(13) is classical, we have to make sure that they hold in our time
inhomogeneous framework. Let ψ ∈ C∞

b (Rm) such that

ψ(y) =
{

y, if |y| ≤ 4R,

5R
y

|y| , if |y| ≥ 5R

and |ψ(y)| ≤ 5R for all y. Let b̄(t, y) = b(t, y0 + ψ(y − y0)) and σ̄ (y) = σ(y0 + ψ(y − y0))

be the localized coefficients of (1). Assumption (H2) ensures that b̄ and σ̄ are C∞
b -extensions

(w.r.t. x) of b|B4R(y0) and σ|B4R(y0) with b̄ and its derivatives bounded on [0, T ]. Let X̄ satisfy
the SDE

dX̄i,s = b̄i (s, X̄s) ds + σ̄i (X̄s) dWs, s ≤ T ,1 ≤ i ≤ m, (7)

and X̄i,0 = X0 = x. If x ∈ B4R(y0), the processes X̄ and X coincide up to the first exit time of
B4R(y0). For a fixed δ in ]0, t/2 ∧ r ∧ 1[, where r is provided by (LWH), define τ1 := inf{s ≥
t − δ;Xs ∈ B3R(y0)} and τ2 := inf{s ≥ τ1;Xs /∈ B4R(y0)}. The set {�(Xt − y0) > 0} is equal to
the union{
�(Xt − y0) > 0; t − δ = τ1 < t < τ2

} ∪
{
�(Xt − y0) > 0; sup

0≤s≤δ

∣∣X̄τ1,τ1+s(Xτ1) − Xτ1

∣∣ ≥ R
}
,

where X̄u,v(z) denotes the value at time v of the solution of (7) satisfying X̄u = z at time u when
u ≤ v (classical notation for flows). Note that �(Xt − y0) > 0 implies Xt ∈ B2R(y0). Using the
Markov property in τ1, we obtain the following expression of ν̂,

m0ν̂(ξ ) = Ex

(
ei〈ξ,Xt 〉�(Xt − y0)1{�(Xt−y0)>0}1{sup0≤s≤δ |X̄τ1,τ1+s (Xτ1 )−Xτ1 |≥R}

)
+ Ex

(
ei〈ξ,Xt 〉�(Xt − y0)1{�(Xt−y0)>0}1{t−δ=τ1<t<τ2}

)
.

We are looking for upper bounds of |ν̂(ξ )| to check whether |ξ |k|ν̂(ξ)| is integrable. The latter
identity reads m0ν̂(ξ ) = A + B . We will see shortly that the important contribution comes from
|B|. To control |A| we use the classical estimate

Px

(
�(Xt − y0) > 0; sup

0≤s≤δ

∣∣X̄τ1,τ1+s(Xτ1) − Xτ1

∣∣ ≥ R
)

≤ C(T ,q,m,b,σ )R−qδq/2. (8)
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It is valid for all q > 0 and holds uniformly in x. The constant C(T ,q,m,b,σ ) depends on the
supremum norms of b̄ and σ̄ , hence by construction, on the supremum norms of σ (resp. b) on
B5R(y0) (resp. B5R(y0) × [0, T ]). Notice that the right-hand side of (8) follows from

Ex

(
sup

u:s≤u≤t
|X̄i,u − X̄i,s |q

)
≤ C(T ,q,m,b,σ )(t − s)q/2, for all 0 ≤ s ≤ t ≤ T . (9)

Let us now estimate |B|. Thanks to the Markov property at time t − δ,

|B| ≤ sup
y∈B3R(y0)

∣∣Ex

(
ei〈ξ,X̄t−δ,t (y)〉�

(
X̄t−δ,t (y) − y0

))∣∣, (10)

which again holds uniformly in x. As in [11], we take advantage of the relationship between
the exponential ei〈ξ,z〉 and its partial derivatives with respect to each component of z. Namely
∂

(2+k)
zj

ei〈ξ,z〉 = −ikξ2+k
j ei〈ξ,z〉. We denote by ∂β = ∂

(2+k)
z1 · · ·∂(2+k)

zm
the composition of these par-

tial derivatives and set ‖ξ‖ := ∏m

=1 |ξ
|. Then∣∣Ex

(
ei〈ξ,X̄t−δ,t (y)〉�

(
X̄t−δ,t (y) − y0

))∣∣
(11)

≤ ‖ξ‖−2−k
∣∣Ex

(
∂βei〈ξ,X̄t−δ,t (y)〉�

(
X̄t−δ,t (y) − y0

))∣∣.
From the integration by parts formula of Malliavin calculus, we conclude that for some func-
tional Hk , ∣∣Ex

(
ei〈ξ,X̄t−δ,t (y)〉�

(
X̄t−δ,t (y) − y0

))∣∣
(12)

≤ ‖ξ‖−2−kEx

(∣∣Hk

(
X̄t−δ,t (y),�

(
X̄t−δ,t (y) − y0

))∣∣).
We show in the Appendix that∥∥Hk

(
X̄t−δ,t (y),�

(
X̄t−δ,t (y) − y0

))∥∥
p

≤ C(r, k,p,R,m, l)δ−m(k+2)kN . (13)

The constant kN depends on the order N of successive Lie brackets needed to span R
m at any

point of B3R(y0) according to (LWH). We deduce from (8) and (13) that, for any q ≥ 1 and any
0 < δ < t

2 ∧ r ,

m0‖ξ‖k
∣∣ν̂(ξ)

∣∣ ≤ C(T , r, k,R,q,m, l)
[‖ξ‖kR−qδq/2 + ‖ξ‖−2δ−m(k+2)kN

]
.

In order to bound ‖ξ‖k|ν̂(ξ )| above by an integrable function we now exploit (as in [11]) the
freedom that still remains in the choice of the pair (δ, q). Indeed, for a given ξ , we can choose
(δ, q) such that ‖ξ‖kR−qδq/2 +‖ξ‖−2δ−m(k+2)kN tends to zero faster than ‖ξ‖−3/2 as ‖ξ‖ → ∞
as follows:

δ = t/2 ∧ r ∧ 1 ∧ ‖ξ‖−1/2m(k+2)kN , q = 2m(k + 2)kN(2k + 3).

Then m0‖ξ‖k|ν̂(ξ )| ≤ C(T , r, k,R,q,m, l)‖ξ‖−3/2.
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The above estimates hold for any fixed k ∈ N. Therefore the solution of (1) starting from x

admits the density

p0,t (x, y) = 1

(2π)m

∫
Rm

e−i〈ξ,y〉Ex

(
ei〈ξ,Xt 〉�(Xt − y0)

)
dξ, (14)

on BR(y0). It remains to show that (5) holds for ν̂(ξ) and for any k ∈ N. We split the inte-
grals in (5) in two parts, over the bounded set I := {‖ξ‖ ≤ M} and its complement I c for
some M > 0. The modulus of the integrand is bounded on I . On I c , we use the fact that
Ex(e

i〈ξ,Xt 〉�(Xt − y0)) coincides with ν̂(ξ) and the inequality just established: m0‖ξ‖k|ν̂(ξ)| ≤
C(T , r, k,R,q,m, l)‖ξ‖−3/2, which is integrable over I c .

Let us finally notice that applying the above arguments with k = 0, we see that the continuity
of p0,t (x, y) in y is uniform in x since the upper bounds in (8) and (10), obtained for k = 0, do
not depend on x. This finishes our proof. �

Proof of Theorem 2. We keep the notations introduced in the proof of Theorem 1, in particular
� and ν. In order to prove the lower semi-continuity w.r.t. x, it is enough to show that for fixed
y ∈ BR(y0), the function p0,t (·, y) is the limit of an increasing sequence of continuous functions
x �→ p

(n)
0,t (x, y). We also use localization arguments here but now the approximating sequence

is obtained by considering X before it exits each compact Kn (cf. (H1)). Note that continuous
dependence on the starting point holds for each approximating process which enjoys the flow
property whereas this property may fail to hold for X itself. So, given an integer n, let b(n)(t, x)

and σ (n)(x) denote C∞-extensions (in x) of b(t, ·|Kn) and σ|Kn . Let X(n) be the solution of the
localized version of (1) with coefficients b(n) and σ (n). The first exit time of Kn by X is denoted
by Tn (cf. (H1)). Using that Tn → ∞, we can write for any x ∈ Kn and any positive measurable
function f ,

m0

∫
f (y)ν(dy) = lim

n
↑ Ex

(
f (Xt )�(Xt − y0)1{Tn>t}

)
.

Then for all n, since X
(n)
t = Xt on {Tn > t} almost surely and � is nonnegative,

m0

∫
f (y)ν(dy) ≥ Ex

(
f (Xt )�(Xt − y0)1{Tn>t}

) = Ex

(
f

(
X

(n)
t

)
�

(
X

(n)
t − y0

)
1{Tn>t}

)
.

We approximate 1{Tn>t} by some continuous functional on � := C(R+,Rm). The set � is en-

dowed with the topology of uniform convergence on compacts. P(n)
0,x denotes the law of X(n) on

(�,B(�)), starting from x at time 0. The family {P(n)
0,x, x ∈ R

m} has the Feller property, that is,

if xk → x, then P
(n)
0,xk

→ P
(n)
0,x weakly as k → ∞. Thanks to this property, Ex(f (X

(n)
t )�(X

(n)
t −

y0)) is continuous w.r.t. x. Define Mn
t = maxs≤t X

(n)
s and mn

t = mins≤t X
(n)
s coordinate-wise.

Due to the structure of the compacts Kn (see assumption (H1)), we can construct C∞-functions
ϕn,�n such that 1[an−1,∞[ ≤ ϕn ≤ 1[an,∞[ and 1]−∞,bn−1] ≤ �n ≤ 1]−∞,bn] (these inequalities

have to be understood coordinate-wise). Then, since Xt equals X
(n)
t up to time Tn,

{Tn−1 > t} = {
an−1 ≤ mn

t ≤ Mn
t ≤ bn−1

} ⊂ {
ϕn

(
mn

t

)
> 0,�n

(
Mn

t

)
> 0

} ⊂ {Tn > t},
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and for any f ≥ 0,

Ex

(
f

(
X

(n)
t

)
�

(
X

(n)
t − y0

)
1{Tn>t}

) ≥ Ex

(
f

(
X

(n)
t

)
�

(
X

(n)
t − y0

)
�n

(
Mn

t

)
ϕn

(
mn

t

))
.

Define now a sub-probability measure νn by

m0

∫
f (y)νn(dy) := Ex

(
f

(
X

(n)
t

)
�

(
X

(n)
t − y0

)
�n

(
Mn

t

)
ϕn

(
mn

t

))
. (15)

The new functional �(X
(n)
t − y0)�

n(Mn
t )ϕn(mn

t ) satisfies the same hypotheses as the former

�(X
(n)
t − y0). For any f ≥ 0,∫

f (y)νn(dy) ≤
∫

f (y)νn+1(dy) ↑
∫

f (y)ν(dy) as n → ∞.

If we can show that νn possesses a density, that we shall denote by m−1
0 p

(n)
0,t (x, y), the following

inequalities will hold true

p
(n)
0,t (x, y) ≤ p

(n+1)
0,t (x, y) ≤ p0,t (x, y) for all n ≥ 1, (16)

for any fixed x, λ(dy)-almost surely. So in a next step we show that indeed νn possesses a density.
In order to indicate explicitly the dependence on the starting point x, we introduce the notation
γn(x, ξ) for ν̂n(ξ) as follows,

γn(x, ξ) := 1

m0
Ex

(
ei〈ξ,X

(n)
t 〉�

(
X

(n)
t − y0

)
�n

(
Mn

t

)
ϕn

(
mn

t

))
,

and we apply the argument in the proof of Theorem 1. Inequalities (8) and (12)–(13) for k =
0 hold for m0γn(x, ξ) which also satisfies m0|γn(x, ξ)| ≤ C(T , r,R,q,m)‖ξ‖−3/2. Therefore,
ξ → γn(x, ξ) is integrable. Hence, m0νn admits a density that we denote p

(n)
0,t (x, y) given by

p
(n)
0,t (x, y) = m0

(2π)m

∫
Rm

e−i〈ξ,y〉γn(x, ξ) dξ. (17)

From the fact that γn(x, ξ) → ν̂(ξ) as n → ∞ and that the upper bounds for |γn| do not de-
pend on n, we deduce that p

(n)
0,t (x, y) → p0,t (x, y). Taking into account (16), we conclude that

p0,t (x, y) = limn ↑ p
(n)
0,t (x, y).

It remains to show (by dominated convergence) that for any y ∈ BR(y0), the map x �→
p

(n)
0,t (x, y) is continuous. This is a consequence of the continuity of γn(x, ξ) in x (which fol-

lows from the Feller property of P(n)
0,x and the fact that all operations appearing in γn(x, ξ) are

continuous on �) and the fact that (8) and (12)–(13) (which we use here for k = 0) hold uni-
formly in x. �

Example 1 (Continued). Consider again the two dimensional diffusion Xt of Example 1, under
the conditions (H1) and (H2). Then Xt admits a smooth density locally around each point (x1, x2)

satisfying σ̃ (x1, x2) �= 0 and ∂g
∂x2

(x1, x2) �= 0.



2598 R. Höpfner, E. Löcherbach and M. Thieullen

4. Densities for SDEs with internal variables and random input

4.1. SDEs with internal variables and random input

As a particular subclass of systems (1), we introduce in (18) below a structure of SDEs that
we call “SDEs with internal variables and random input”. This structure contains the stochastic
Hodgkin–Huxley systems which we shall study in Section 5. Finally, in (19) and (20), we fix
notations for certain deterministic (m − 1)-dimensional systems which in view of the control
theorem do have some relation to systems (18).

In order to model a neuron embedded in a network from which it receives an input through its
dendritic tree, and able to activate ion channels modeled by the internal variables 2, . . . ,m − 1,
we consider systems of the type

dX1,t = F(X1,t , . . . ,Xm−1,t ) dt + dXm,t ,

dXi,t = [−ai(X1,t )Xi,t + bi(X1,t )
]
dt, i = 2, . . . ,m − 1, (18)

dXm,t = bm(t,Xm,t ) dt + σ(Xm,t ) dWt .

Note that the last component Xm follows an autonomous equation and represents random exter-
nal input to the system.

We shall also consider, for smooth functions t �→ I (t), deterministic (m − 1)-dimensional
systems (19) where I (t) dt replaces dXm,t of (18) and thus acts as deterministic input to the
system:

dz1,t = F(z1,t , . . . , zm−1,t ) dt + I (t) dt,
(19)

dzi,t = [−ai(z1,t )zi,t + bi(z1,t )
]
dt, i = 2, . . . ,m − 1,

and in particular, corresponding to zero input I (·) ≡ 0, the system

dz1,t = F(z1,t , . . . , zm−1,t ) dt,
(20)

dzi,t = [−ai(z1,t )zi,t + bi(z1,t )
]
dt, i = 2, . . . ,m − 1.

Example 2 (FitzHugh–Nagumo with random external input). The well known FitzHugh–
Nagumo system is an important model in neuroscience, see, for example, [22] and [6]. We follow
[22] and consider a FitzHugh–Nagumo system driven by random external input of Ornstein–
Uhlenbeck type. It is given by

dX1,t = [−X2,t + f (X1,t )
]
dt + dX3,t ,

dX2,t = [bX1,t − cX2,t ]dt, (21)

dX3,t = (
S(t) − X3,t

)
dt + γ dWt,

where b, c, γ > 0 and where the function f is a cubic polynomial f (x) = x(a − x)(x − 1). If
a > 0, then the deterministic system dz1,t = [−z2,t + f (z1,t )]dt;dz2,t = [bz1,t − cz2,t ]dt has
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a stable equilibrium. In (21), the first variable X1,t models the action potential of the membrane
of a single neuron at time t . X2,t is a summary variable representing the states of the ion chan-
nels in the membrane. X3,t is a random external input of Ornstein–Uhlenbeck type, carrying a
deterministic signal S(t). (21) is an example for (18) with m = 3 and a2(x1) = c, b2(x1) = bx1.

If for all 2 ≤ i ≤ m − 1, bi and ai − bi are positive, then the system (20) can be interpreted as
the limit of a sequence of stochastic systems, known under the terminology of “stochastic hybrid
systems”, in the sense of the Law of Large Numbers or Fluid Limit (cf. [28]). Stochastic hybrid
systems describe a deterministic dynamics which is coupled with jump Markov processes. More
precisely, consider a population of individuals of m − 1 different types, with N individuals of
each type. Each individual is in two states (active or inactive, corresponding to open or closed
channels). The individuals are coupled by a global variable z1: the transition rates between the
two states depend on z1 only and are given by bi(z1) for a transition from “inactive” to “active”
and by ai(z1) − bi(z1) for a transition from “active” to “inactive” for individuals of type i. The
variable zi,t denotes the proportion of active individuals at time t , and in the N → ∞-limit, zi,t

gives the probability that an individual of type i is active at time t .
Systems (20) arise in various modeling issues. We refer the reader for example, to Sec-

tion 2.2.2. of [15] where the time evolution of the concentration of a molecule X in presence
or absence of a rare molecular species is described by a model of type (20).

The detailed form of the functions F and ai, bi in the Hodgkin–Huxley system (cf. [16] and
[22]) will be provided in Section 5. In this system, well known in neurophysiology, three types
of “agents” are considered which are responsible for opening or closing of K+ and Na+ ion
channels. In this particular model, we have three equations for internal variables corresponding
to m = 5. z1 describes the membrane potential of the neuron, which can be observed. The zi ,
i = 2,3,4 are the gating variables associated to specific ion channels located in the membrane,
that are not observed. One may consider models which include still more types of ion channels
admitting their specific number of different types of “agents”, hence the interest to consider
models (18) with general m.

By the general assumptions associated with (1), the coefficients F :Rm−1 → R, ai, bi : R→ R

for 2 ≤ i ≤ m − 1 and bm : [0,∞] × R → R are smooth. In what follows, we suppose that
the coefficients of (18) are such that (H1) and (H2) are satisfied. If we assume moreover that
0 ≤ bi(z1) ≤ ai(z1) and ai(z1) > 0 for all i = 2, . . . ,m − 1, for all z1 ∈ R, then

yi,∞(z1) := bi(z1)

ai(z1)
, z1 ∈ R, (22)

are equilibrium points of the internal equations when we keep the first variable fixed at constant
value z1. In particular, introducing

F∞(z1) := F
(
z1, y2,∞(z1), . . . , ym−1,∞(z1)

)
, z1 ∈ R, (23)

any point (z1, y2,∞(z1), . . . , ym−1,∞(z1)) such that F∞(z1) = 0 is an equilibrium point of the
system (20).

The aim of the next two sections is to make the conditions of Theorem 1 explicit for sys-
tems (18). First, we define some determinant D(x) on the points x of the state space and prove
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the following: if D(y0) �= 0, then (LWH) holds at (t, y0) for every t . Since this determinant
can be evaluated numerically we can check condition (LWH) at (t, y0). Second, we prove a
“chamaeleon property” for the system (18): on given finite time intervals, the solution of (18)
imitates deterministic evolutions (19) for (almost) any smooth deterministic input t → I (t) with
positive probability, provided both systems (18) and (19) have the same starting point. For sys-
tems (18), we thus do have tools to verify condition (LWH) of Theorem 1 and to prove positivity
of the density.

4.2. Weak Hörmander condition for (18)

We assume that assumptions (H1)–(H2) are satisfied as well as the following additional assump-
tion on the autonomous equation for Xm.

(H3) There exists an open interval U ⊂R such that the mth equation in system (18)

dXm,t = bm(t,Xm,t ) dt + σ(Xm,t ) dWt

possesses a unique strong solution taking values in U , whenever Xm,0 ∈ U . Moreover σ(·) is
strictly positive on U and its restriction to every compact interval in U is of class C∞.

The linearity of the equation for dXi , i ∈ {2, . . . ,m − 1}, with respect to Xi has an important
consequence that we recall in the following proposition (the proof of this proposition is provided
in the Appendix).

Proposition 2. Fix i ∈ {2, . . . ,m − 1}. Suppose that Xi,0 ∈ [0,1] a.s., and also 0 ≤ bi(x) ≤
ai(x), for all x ∈R, x denoting the first component of (18). Then ∀t > 0,Xi,t ∈ [0,1] a.s.

In view of Proposition 2, we assume for the rest of this section that Xi,0 ∈ [0,1] a.s., and
0 ≤ bi(x) ≤ ai(x), for all x ∈ R, for all i ∈ {2, . . . ,m − 1}. We define Em := R× [0,1]m−2 × U

where U is given by (H3) and take Em as state space for systems (18).

Definition 1. For any integer k ≥ 1 denote by ∂
(k)
x1 the partial derivative of order k w.r.t. x1. For

any x ∈ R
m−1 × U consider J1(x) := F(x1, x2, ·, ·, ·, xm−1) and Ji(x) := −ai(x1)xi + bi(x1),

2 ≤ i ≤ m − 1. We define D(x) as the determinant of the matrix (∂
(k)
x1 Ji(x); (i, k) ∈ {1, . . . ,m −

1}2).

Notice that the above determinant makes only use of the drift vector of the zero input sys-
tem (20).

Theorem 3. Suppose that (18) satisfies (H1)–(H3). For x = (x1, . . . , xm) ∈ int(Em), the condi-
tion D(x) �= 0 implies that (LWH) holds at (t, x) for all t .

We stress that the condition D(x) �= 0 is a sufficient condition implying (LWH). D(x) can be
evaluated numerically for given sets of functions F(x1, . . . , xm−1), ai and bi,2 ≤ i ≤ m − 1,
defining (18), see, for example, Section 5.4 below.
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The proof of Theorem 3 will be given below (through Proposition 3). First, we state some
important consequences and make some remarks. It is important to note that D(x) actually de-
pends only on the m− 1 first components of x. In particular, if the m− 1 first components of two
points x and x′ coincide, then D(x) = D(x′). This remark will be important in the sequel (see
e.g. Proposition 2 below). Moreover, the condition in Theorem 3 implies a version of (LWH)
uniform w.r.t. time on every compact interval [0, T ]. Let us now define the set

D := {
(x1, . . . , xm) ∈ int(Em);D(x) �= 0

}
.

The set D is an open subset of Em by continuity of D on R
m−1 × U . The following statement is

a direct consequence of Theorems 1 and 2 of Section 3.2.

Theorem 4. Suppose that (18) satisfies (H1)–(H3). Assume that y0 ∈ D and take R > 0 such
that B3R(y0) ⊂ D. Then for any x ∈ Em and t > 0, the random variable Xt admits an infinitely
differentiable density p0,t (x, ·) on BR(y0). The map y ∈ BR(y0) �→ p0,t (x, y) is continuous, and
for any fixed y ∈ BR(y0), the map x ∈ Em �→ p0,t (x, y) is lower semi-continuous.

Corollary 1. Grant the assumptions of Theorem 4. For all x ∈ Em, the following holds true. If
there exists y ∈ D and t > 0 such that P0,t (x,U) > 0 for all sufficiently small neighborhoods
U of y, then there exists δ > 0 such that, if K1 (resp. K2) denotes the closure of Bδ(x) (resp.
Bδ(y)),

inf
x′∈K1

inf
y′∈K2

p0,t

(
x′, y′) > 0.

The difficulty in practice is to obtain more information on D, in particular to know whether
it coincides with int(Em). At least one would like to be able to specify open regions included
in D. In general, one can hope to achieve this goal only numerically unless the coefficients of
the system are very simple. In Section 5, we provide details for a stochastic Hodgkin–Huxley
model. The definition of D comes from a particular choice of successive Lie brackets where we
look for the directions in space which propagate the noise at maximal possible speed according
to the following intuition: the noise in (18) is most rapidly transported through X1 and Xm, since
they are the only components carrying Brownian noise explicitly. Accordingly, except for the
first Lie bracket [A0,A1] which involves the drift A0, we always use the diffusion coefficient A1

in order to compute the brackets of higher order. The corresponding development of the solution
of (18) into iterated Itô integrals for small time steps δ, shows that the speed of the diffusion
is of order δ1/2 in the direction of A1, of order δ1+1/2 in the direction of [A0,A1] and for the
subsequent Lie brackets we add a factor 1

2 to the exponent each time we use A1, so that the speed
of the diffusion is of order δ2 in the direction of [[A0,A1],A1], of order δ1+3/2 in the direction
of [[[A0,A1],A1],A1] and so on. We refer the reader to [26], in particular identity (12). Hence,
it is important to remember that belonging to D is only a sufficient condition for (LWH) to hold.

We now prove Theorem 3 starting with the following key proposition about the computation
of Lie brackets in this specific case. The proof is a direct consequence of the definition of Lie
bracket recalled in Section 3.1 and is left to the reader.
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Proposition 3. Consider on one hand ϕ,ψ and ρ smooth functions of xm defined on U and on
the other hand a family of smooth functions yi,1 ≤ i ≤ m − 1, defined on R

m−1, which do not
depend on xm. Let � and Y denote vector fiels on [0,+∞] ×R

mof the following form,

�(t, x) := ϕ(xm)

(
∂

∂x1
+ ∂

∂xm

)
,

Y (t, x) := ρ(xm)

m−1∑
i=1

yi

∂

∂xi

+ ψ(xm)

(
∂

∂x1
+ ∂

∂xm

)
.

The Lie bracket [�,Y ] takes the form

[�,Y ](t, x) = ϕ(xm)ρ(xm)

m−1∑
i=1

∂x1yi

∂

∂xi

+ ϕ(xm)ρ′(xm)

m−1∑
i=1

yi

∂

∂xi

+ (
ϕψ ′ − ϕ′ψ

)
(xm)

(
∂

∂x1
+ ∂

∂xm

)
.

Proof of Theorem 3. According to the notations of Section 3.1 with one dimensional driving
Brownian motion, hence l = 1, we write A1 = σ(xm)( ∂

∂x1
+ ∂

∂xm
) and A0 = ∂

∂t
+ ∑m

i=1 b̃i
∂

∂xi

where b̃ is given in (2). Let us consider the Lie brackets defined recursively by L1 := [A1,A0]
and Lk+1 = [A1,Lk]. In order to illustrate the relationship between the Lk and the determinant
D(x) introduced in Definition 1, we compute explicitly L1 and L2. We find first that

L1 =
m∑

i=1

σ(xm)

(
∂b̃i

∂x1
+ ∂b̃i

∂xm

)
∂

∂xi

− σ ′(xm)b̃m

(
∂

∂x1
+ ∂

∂xm

)
.

The drift b̃ in (18) satisfies ∂b̃m

∂x1
≡ 0, ∂b̃i

∂xm
≡ 0 for all i ∈ {2, . . . ,m − 1}. Moreover ∂b̃i

∂x1
≡ ∂x1Ji

for all i ∈ {1, . . . ,m − 1}. Hence

L1 =
m−1∑
i=1

σ(xm)∂x1Ji

∂

∂xi

+ σ(xm)

(
∂b̃1

∂xm

∂

∂x1
+ ∂b̃m

∂xm

∂

∂xm

)
− σ ′(xm)b̃m

(
∂

∂x1
+ ∂

∂xm

)
.

We can further reduce the expression of L1 using that the drift b̃ in (18) satisfies also ∂b̃1
∂xm

≡ ∂b̃m

∂xm
.

We obtain

L1 =
m−1∑
i=1

σ(xm)∂x1Ji

∂

∂xi

+
(

σ(xm)
∂b̃m

∂xm

− σ ′(xm)b̃m

)(
∂

∂x1
+ ∂

∂xm

)
. (24)
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Proposition 3 applies to � = A1 and Y = L1 with ϕ(xm) ≡ ρ(xm) ≡ σ(xm), yi ≡ ∂x1Ji , for

i ∈ {1, . . . ,m − 1}, ψ(xm) ≡ σ(xm)∂b̃m

∂xm
− σ ′(xm)b̃m. Therefore, with this specific choice,

L2 =
m−1∑
i=1

σ(xm)2∂(2)
x1

Ji

∂

∂xi

(25)

+
m−1∑
i=1

σ(xm)σ ′(xm)∂x1Ji

∂

∂xi

+ (
ϕψ ′ − ϕ′ψ

)
(xm)

(
∂

∂x1
+ ∂

∂xm

)
.

Once again, identity (25) coupled with Proposition 3 enables us to work by iteration. We thus
obtain the following expression for Lk , for any k ≥ 1:

Lk =
m−1∑
i=1

σ(xm)k∂(k)
x1

Ji

∂

∂xi

+
k−1∑

=1

m−1∑
i=1

�
(xm)∂(
)
x1

Ji

∂

∂xi

+ �(xm)

(
∂

∂x1
+ ∂

∂xm

)
. (26)

The explicit expression of �
, � are not necessary to conclude. Indeed let us identify these Lie
brackets with the column vectors in R

m obtained with their coordinates on the basis ( ∂
∂xi

, i ∈
{1, . . . ,m}). A sufficient condition for (LWH) to be satisfied is that the vector space generated by
(A1,Lk, k ∈ {1, . . . ,m − 1}) coincides with R

m. It is sufficient that the determinant formed with
these vectors does not vanish. The definition of A1 and formula (26) imply that this determinant
coincides with the determinant obtained with the vectors A1 and L̃k, k ∈ {1, . . . ,m − 1} where
L̃k := ∑m−1

i=1 σ(xm)k∂
(k)
x1 Ji

∂
∂xi

. Since σ does not vanish on U (cf. (H3)), we conclude that a
sufficient condition is that D(x) does not vanish. �

Example 2 (Continued). In the situation of Example 2, we have J1(x1, x2) = −x2 + f (x1)

and J2(x1, x2) = bx1 − cx2. It is easy to see that in this case D(x) = −bf ′′(x1) �= 0 for all
x1 �= a+1

3 by definition of f . Taking one more derivative, that is, calculating the Lie bracket
[A1, [A1, [A1,A0]]] leads actually to the condition f ′′′(x) �= 0 which is always true. This high-
lights that D(x) �= 0 is only a sufficient condition implying (LWH), and the Fitzhugh–Nagumo
system with random external input of Example 2 actually satisfies the weak Hörmander condition
on the whole state space.

4.3. Positivity of densities for models (18)

Once we have proved that densities exist for (18), even if only locally, we look for regions where
they are positive. For this purpose, we combine control arguments and the support theorem. We
keep the notation Em =R× [0,1]m−2 × U introduced in the previous section. We start by prov-
ing an accessibility result for (18) in Proposition 4 below, which holds without any assumption
on the existence of densities and relies on some stability properties of the underlying determin-
istic system (20). We refer the reader to [4] for similar ideas in the framework of Piecewise
Deterministic Markov Processes.

Let (Xu)u≥0 be a solution of (18). We denote by P0,t (x, ·) the law of Xt when X0 = x a.s.
Recall the structure of system (20).
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Proposition 4. Grant (H1)–(H3) and assume that U =R. We keep moreover the assumptions of
Proposition 2 and suppose that 0 < bi < ai for all i ∈ {2, . . . ,m − 1}. Given an arbitrary real
number z1, consider z := (z1, yi,∞(z1), i ∈ {2, . . . ,m − 1}) in R

m−1, where yi,∞(z1) := bi (z1)
ai (z1)

is
an equilibrium point for the ith equation of (20) when we keep the first variable fixed at constant
value z1. For all x ∈ Em and any neighborhood N of z in R× (0,1)m−2 there exists t0 such that

∀t ≥ t0, P0,t (x,N ×R) > 0. (27)
Proposition 5. Let us keep the notations and assumptions of Proposition 4. Consider an arbi-
trary real number z1 and the associated point z := (z1, yi,∞(z1), i ∈ {2, . . . ,m − 1}) in R

m−1.
Assume that D(z,u) �= 0 for some u ∈ R, where the determinant D has been introduced in Def-
inition 1. Then for all x ∈ Em, there is t0 > 0 such that for all t ≥ t0 the following holds true.
There exist u = u(t) ∈ R and δ = δ(t) > 0 such that, if K1 (resp. K2) denotes the closure of
Bδ(x) (resp. Bδ(z,u)),

inf
x′∈K1

inf
y′∈K2

p0,t

(
x′, y′) > 0.

Remark 2. Notice that for each i ∈ {2, . . . ,m−1}, the solution of dyt = (−ai(z1)yt +bi(z1)) dt

with z1 as a fixed parameter, converges to yi,∞(z1) when t → +∞ and that yi,∞(z1) is globally
asymptotically stable. Proposition 4 holds in particular when F(z) = 0. In this case, z is an
equilibrium point of (20) and—from (32) in the proof below—we can choose u(t) ≡ u as a
constant not depending on time.

Proof of Proposition 4. Let z1 ∈ R and the associated point z := (z1, yi,∞(z1), i ∈ {2, . . . ,m −
1}) in R

m−1. As in the proof of Theorem 2, we write � for C([0,∞[,Rm) and endow it with its
canonical filtration (Ft )t≥0. Recall that P0,x is the law of (Xu)u≥0 starting from x at time 0. We
first localize the system by a sequence of compacts (Kn) according to (H1) and let Tn = inf{t :
Xt ∈ Kc

n} be the exit time of Kn. For a fixed n, let b(n)(t, x) and σ (n)(x) be C∞
b -extensions in x

of b(t, ·|Kn) and σ|Kn , respectively and X(n) be the associated diffusion process (here we denote
the coefficients of (18) by b and σ for short). For any integer n ≥ 1 and starting point x, we
write P

(n)
0,x for the law of (X

(n)
u )u≥0 on � satisfying X

(n)
0 = x. We wish to find lower bounds for

quantities of the form P0,x(B) where B = {f ∈ � : f (t) ∈ N ×R} ∈ Ft , for any t > 0 given. We
start with the following inequality which holds for any t > 0 and n:

P0,x(B) ≥ P0,x

({f ∈ B;Tn > t}) = P
(n)
0,x

({f ∈ B;Tn > t}). (28)

In the sequel, we show that for some integer n0 and any fixed x ∈ Kn0 , the quantity P
(n)
0,x({f ∈

B;Tn > t}) is indeed positive provided that n is sufficiently large. We are therefore interested in
the support of P(n)

0,x . Fix t and let C := {h : [0, t] →R : h(s) = ∫ s

0 ḣ(u) du,∀s ≤ t,
∫ t

0 ḣ
2(u) du <

∞} be the Cameron–Martin space. Given h ∈ C, consider X(h) ∈ R
m the solution of the differ-

ential equation

X(h)s = x +
∫ s

0
σ (n)

(
X(h)u

)
ḣ(u) du +

∫ s

0
b̃(n)

(
u,X(h)u

)
du, s ≤ t. (29)
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If (29) were time homogeneous, the support theorem would imply that the support of P(n)
0,x in

restriction to Ft is the closure of the set {X(h) : h ∈ C} with respect to the uniform norm on [0, t]
(see, e.g., [33], Theorem 3.1, [25] Theorem 3.5 or [5] Theorem 4). To conclude in our situation as
well, it is enough to replace the m-dimensional process X(n) by the (m+ 1)-dimensional process
(t,X

(n)
t ) which is time-homogenous. In order to proceed further, we construct a control h so that

X(h) remains in Kn during [0, t] provided n is sufficiently large. We start by exploiting stability
properties of the underlying deterministic system (20). The main idea of our proof is to choose
a smooth function γ : R �→ R satisfying γ (τ) := z1 for all τ ≥ 1. Once γ is fixed, consider
ys ∈ R

m−2 solving dyi,s = [−ai(γ (s))yi,s + bi(γ (s))]ds, i = 2, . . . ,m − 1. Then for all t > 1,

yi,t = yi,0e
− ∫ t

0 ai (γ (s)) ds +
∫ t

0
bi

(
γ (u)

)
e− ∫ t

u ai (γ (r)) dr du

= yi,1e
−ai (z1)(t−1) + yi,∞(z1)

(
1 − e−ai (z1)(t−1)

)
.

This formula expresses the fact that on [1,+∞[, the coefficients ai(γ (s)) (resp. bi(γ (s))) are
constant equal to ai(z1) (resp. bi(z1)). It shows that yi,t —whenever z1 acts as a fixed parameter—
converges to yi,∞(z1) when t → +∞ and that yi,∞(z1) is globally asymptotically stable. Hence
for any ε > 0 there exists t0 > 1 such that |yi,t −yi,∞(z1)| < ε for all t ≥ t0 and all 2 ≤ i ≤ m−1.
Now take ε so small that Bε(z) ⊂ N . Then for all t ≥ t0 > 1, the vector (γ (t), y2,t , . . . , ym−1,t )

belongs to Bε(z) (remember that for t > 1, γ (t) is fixed at z1).
Fix an integer n0 and x in Kn0 . We are now able to construct a control h ∈ C such that the

solution of (29) remains in Kn during finite time intervals for all n large enough. Choose a
function γ as above satisfying moreover γ (0) = x1. Define (Zs)s≥0 ∈R

m, the deterministic path
starting from x such that

Z1,s = γ (s),

dZi,s = [−ai(Z1,s)Zi,s + bi(Z1,s)
]
ds, i = 2, . . . ,m − 1, (30)

Zm,s = xm − x1 + γ (s) −
∫ s

0
F(Zu)du.

Conditionally on Z1,s , . . . ,Zm−1,s , the last component Zm,s plays the role of an integrated de-
terministic input s → ∫ s

0 I (u) du in (19).
Note that (Zs, s ∈ [0, t]) is bounded and therefore remains in Kn for all n large enough. Now

fix t ≥ t0 and consider a function h defined by

ḣ(s) := γ̇ (s) − F(Zs) − bm(s,Zm,s) + (1/2)σ (Zm,s)σ
′(Zm,s)

σ (Zm,s)
. (31)

Since by assumption σ(·) > 0 on R (we have assumed that U = R), the expression (31) is well-
defined. This assumption also provides that ḣ ∈ L2([0, t]), hence h ∈ C. Hence, with such a
choice of h, the solution X(h) of equation (29) coincides with the solution Z of system (30). As
explained previously, we can choose n such that (Zs, s ∈ [0, t]) remains in Kn.

Consider now, for δ > 0, the tubular neighborhood Tδ of (Zs, s ∈ [0, t]) in � of size δ, namely
the set {f ∈ � : sups≤t |f (s) − Zs | < δ}. By the support theorem, P(n)

0,x(Tδ) > 0. Remember
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that we have chosen ε and t0 in order to satisfy Tδ ⊂ {f ∈ � : f (t) ∈ Bε(z) × R} as well as
Bε(z) ⊂ N . Choosing δ ≤ ε/2 such that Tδ ⊂ {f ∈ � : Tn(f ) > t}, we conclude as announced
that

P0,t (x,N ×R) ≥ Px

(
Xt ∈ Bε(z) ×R

) ≥ P
(n)
0,x(Tδ) > 0. �

Proof of Proposition 5. The fact that D(z,u) �= 0 for some u ∈ R implies that D(z, ũ) �= 0 for
all ũ ∈ R, by Theorem 3. The attainability at time t is proven as in the proof of Proposition 4.
For x ∈ Em, γ1 and t0 as there, t0 > 1, we define for t ≥ t0

u(t) = xm − x1 + z1 −
∫ t

0
F(Zs) ds ∈ U =R. (32)

Then there is some δ(t) > 0 such that P0,t (x,Bδ(t)(z, u(t))) > 0. Applying Corollary 1 to y =
(z, u(t)) ∈D finishes the proof. �

We are now able to prove the main result of this section which shows that, during any arbitrary
long period, with positive probability, the stochastic system (18) is able to reproduce the behavior
of (dzt , I (t)) ∈ R

m where z(t) is a solution of (19) with I (t) an arbitrary smooth input applied
to (20). Note that by comparing (18) and (19) we see that the m-the component Xm of the
stochastic system (18) has to be compared to a deterministic control path (19) to which we add
an mth coordinate given by t → Xm,0 + ∫ t

0 I (s) ds.
Remember Bδ(x) denotes the open ball of radius δ centered at x. In the following, U ⊂ R is

again the open interval of assumption (H3).

Theorem 5. Suppose that (18) satisfies (H1)–(H3). Fix x ∈ Em and t > 0. Let I be a smooth
deterministic input such that xm + ∫ s

0 I (r) dr ∈ U for all s ≤ t . Define X
x
s := (Yx̃

s , xm +∫ s

0 I (r) dr, s ≤ t) where Y
x̃ is the deterministic path solution of (19) starting from x̃ :=

(x1, . . . , xm−1). We denote by P0,x the law of the solution of (18) starting at x. Then for any
ε > 0 there exists δ > 0 such that for all x′′ ∈ Bδ(x)

P0,x′′
({

f ∈ � : sup
s≤t

∣∣f (s) −X
x
s

∣∣ ≤ ε
})

> 0.

Proof of Theorem 5. We keep the notations introduced in the proof of Proposition 4. In the
course of this proof, we have shown that the support theorem applies to inhomogeneous diffu-
sions like the one obtained after localizing (18). We will prove the positivity we are looking for
through inequalities (28) and paths solving (29) for h ∈ C, that remain in Kn during [0, t] for n

sufficiently large. So the system we work with is the localized one. Consider I a deterministic
input such that xm + ∫ s

0 I (r) dr ∈ U for all s ≤ t . Define χm,s := xm + ∫ s

0 I (r) dr for all s ≤ t

and

ḣ(s) := I (s) − bm(s,χm,s) + (1/2)σ (χm,s)σ
′(χm,s)

σ (χm,s)
. (33)

By definition (χm,s, s ≤ t) lies in a compact interval included in U . Then, the expression (33)
is well-defined by assumption (H3). This assumption also provides that ḣ ∈ L2([0, t]) hence
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h ∈ C. Moreover, with such a choice of h, the controlled path X(h), solution of (29), coincides
with (Yx̃

s , χm,s, s ≤ t) where Y
x̃ is the deterministic path solution of (19) starting from x̃ =

(x1, . . . , xm−1). We can choose n large enough such that (Yx̃
s , χm,s, s ∈ [0, t]) remains in Kn. We

write X
x
s for (Yx̃

s , χm,s). Remember that � = C([0,∞[;Rm) and for δ > 0, consider the tubular
neighborhood Tδ of Xx on [0, t] namely the set {f ∈ � : sups≤t |f (s)−X

x
s | < δ}. By the support

theorem, P(n)
0,x(Tδ) > 0. Choose now δ such that Tδ ⊂ {f ∈ � : Tn(f ) > t}. Taking Tδ as the set B

in (28) yields the first statement of Theorem 5. The second one follows from the Feller property
of P(n)

0,x which enables us to extend the first statement to a small ball around x. �

We close this section with the following consequence of Theorem 5 from which we borrow
the notations. We focus on equilibria for deterministic systems (19) under a particular choice of
time-constant input:

Associated to z∗ ∈R×(0,1)m−1,we have I (·) ≡ c∗ := −F
(
z∗),

where we write z∗ := (z∗
1, y1,∞(z∗

1), . . . , ym−1,∞(z∗
1)) for z∗

1 ∈R, and F∞(z∗
1) = F(z∗) as in (22)

and (23). The following improves on Proposition 5.

Corollary 2. Assume that (18) satisfies (H1)–(H3), and consider z∗ and c∗ as above. Assume
that D(z∗, u) �= 0 for some u ∈ U . Consider xm ∈ U and t > 0 such that xm + c∗s ∈ U for all
0 ≤ s ≤ t . Then for x := (z∗, xm) and y := (z∗, xm + c∗t), there exists δ > 0 such that

inf
x′∈Bδ(x)

inf
y′∈Bδ(y)

p0,t

(
x′, y′) > 0.

Proof of Corollary 2. For z∗ and I (t) ≡ c∗ = −F(z∗) as above, the deterministic path solution
to (19) with starting point z∗ is constant in time. Attainability of y at time t follows from The-
orem 5. D(y) �= 0 follows from D(z∗, u) �= 0 for some u ∈ U , thus (LWH) holds at (t, y) for all
t > 0 by Theorem 3. �

The following specializes to equilibria under zero input I (·) ≡ 0:

Corollary 3. Assume that (18) satisfies (H1)–(H3). If equation (20) admits equilibria, that is,
points z∗ ∈ R×(0,1)m−1 such that F∞(z∗

1) = F(z∗) = 0, and if D(z∗, u) �= 0 for some u ∈ U ,
then the assertion of Corollary 2 holds with y = x := (z∗, xm) for arbitrary xm ∈ U and arbitrary
t > 0.

5. Application to physiology

In this section, we apply the above results to a random system based on the Hodgkin–Huxley
model well known in physiology. This random system belongs to the family of SDEs with in-
ternal variables and random input presented in Section 4. We start by some reminders on the
deterministic Hodgkin–Huxley model that we call (HH) for short.
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5.1. The deterministic (HH) system

The deterministic Hodgkin–Huxley model for the membrane potential of a neuron (cf. [16] and
[22]) has been extensively studied over the last decades. There seems to be a large agreement
that it models adequately many observations made on the response to an external input, in many
types of neurons. This model belongs to the family of conductance-based models. It features two
types of voltage-gated ion channels responsible for the import of Na+ and export of K+ ions
through the membrane. The time dependent conductance of a sodium (resp. potassium) channel
depends on the state of four gates which can be open or closed; it is maximal when all gates are
open. There are two types of gates m and h for sodium, one type n for potassium. The variables
nt , mt , ht describe the probability that a gate of corresponding type be open at time t . Then, the
Hodgkin–Huxley equations with deterministic input I which may be time dependent, is the 4D

system

dVt = I (t) dt − [
gKn4

t (Vt − EK) + gNam
3
t ht (Vt − ENa) + gL(Vt − EL)

]
dt,

dnt = [
αn(Vt )(1 − nt ) − βn(Vt )nt

]
dt,

(34)
dmt = [

αm(Vt )(1 − mt) − βm(Vt )mt

]
dt,

dht = [
αh(Vt )(1 − ht ) − βh(Vt )ht

]
dt,

where we adopt the notations and constants of [22]. The functions αn,βn,αm,βm,αh,βh take
values in (0,∞) and are analytic, i.e. they admit a power series representation on R. They are
given as follows:

αn(v) = 0.1 − 0.01v

exp(1 − 0.1v) − 1
, βn(v) = 0.125 exp(−v/80),

αm(v) = 2.5 − 0.1v

exp(2.5 − 0.1v) − 1
, βm(v) = 4 exp(−v/18),

αh(v) = 0.07 exp(−v/20), βh(v) = 1

exp(3 − 0.1v) + 1
.

(35)

Moreover if we set an := αn + βn, bn := αn and analogously for m and h, we see that (HH) can
be written as a particular case of (20) with F given by

F(v,n,m,h) = −[
gKn4(v − EK) + gNam

3h(v − ENa) + gL(v − EL)
]

(36)
= −[

36n4(v + 12) + 120m3h(v − 120) + 0.3(v − 10.6)
]
.

The parameter gNa (resp. gK) is the maximal conductance of a sodium (resp. potassium) channel
while gL is the leak conductance. The parameters EK, ENa, EL are called reversal potentials.
Their values gK = 36, gNa = 120, gL = 0.3, EK = −12, ENa = 120, EL = 10.6 are those of [22].

If the variable V is kept constant at v ∈ R, the variables nt , mt , ht converge when t → +∞
respectively towards

n∞(v) := αn

αn + βn

(v), m∞(v) := αm

αm + βm

(v), h∞(v) := αh

αh + βh

(v). (37)
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The Hodgkin–Huxley system exhibits a broad range of possible and qualitatively quite differ-
ent behaviors, depending on the specific input I . In response to a periodic input, the solution of
(34) displays a periodic behavior (regular spiking of the neuron on a long time window) only in
special situations. Let us first mention that there exists some interval U such that time-constant
input in U results in periodic behavior for the solution of (34) (see [31]). For an oscillating input,
there exists some interval J such that oscillating inputs with frequencies in J yield periodic be-
havior (see [1]). Periodic behavior includes that the period of the output can be a multiple of the
period of the input. However, the input frequency has to be compatible with a range of preferred
frequencies of (34), a fact which is similarly encountered in biological observations (see [22]).
Indeed there are also intervals Ĩ and J̃ for which time-constant input in Ĩ or oscillating input
at frequency f ∈ J̃ leads to chaotic behavior. Using numerical methods [12] gives a complete
tableau.

5.2. (34) with random input

It has been shown in [28] that conductance-based models like (34) are fluid limits of a sequence
of Piecewise Deterministic Markov Processes. Such limit theorems enable to study the impact
of channel noise (also called intrinsic noise) on latency coding. Our setting is different. The
noise here is external coming from the network in which the neuron is embedded, through its
dendritic system. This system has a complicated topological structure and carries a large number
of synapses which register spike trains emitted from a large number of other neurons within the
same active network. We model the cumulated dendritic input as a diffusion of mean-reverting
type carrying a deterministic signal S. The resulting system that we consider is the following
particular case of (18):

dVt = dξt − [
gKn4

t (Vt − EK) + gNam
3
t ht (Vt − ENa) + gL(Vt − EL)

]
dt,

dnt = [
αn(Vt )(1 − nt ) − βn(Vt )nt

]
dt,

dmt = [
αm(Vt )(1 − mt) − βm(Vt )mt

]
dt, (38)

dht = [
αh(Vt )(1 − ht ) − βh(Vt )ht

]
dt,

dξt = (
S(t) − ξt

)
τ dt + γ q(ξt )

√
τ dWt ,

parametrized in terms of τ (governing speed) and γ (governing spread). For instance, ξ can be
of Ornstein–Uhlenbeck (OU) type (then U = R, q(·) ≡ 1) or of Cox–Ingersoll–Ross (CIR) type

(then U = (−K,∞), q(x) = √
(x + K) ∨ 0 for x ∈ U , and K is chosen in ] γ 2

2 + sup |S|,+∞[).
Such a choice builds on the statistical study [17]. When the deterministic signal S is periodic,
it is shown in [18] that ξ of OU type admits a periodically invariant regime under which the
signal S(·) is related to expectations of ξ via the formula s → Eπ,0(ξs) = ∫ ∞

0 S(s − r
τ
)e−r dr . In

the companion papers [20] and [19], we address the periodic ergodicity of the solution to (38).
Ergodicity properties when ξ is of OU type are the topic of [20]. The case of CIR is covered in
[19] where also limit theorems are proved. Below we will conduct a numerical study of (LWH)
for (38), based on Theorem 3. In this theorem, the specific nature of ξ plays no role in the
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definition of the determinant D provided that the SDE satisfied by ξ satisfies assumption (H3),
cf. Proposition 6 below. Therefore, the results of this numerical study apply to general random
(HH) where we replace the last line in (38) by dξt = b5(t, ξt ) dt + σ(ξt ) dWt .

5.3. Weak Hörmander condition for (38)

5.3.1. The determinant �

Applying Theorem 3 and Definition 1, we have to consider points where the 4D determinant,
whose columns are the partial derivatives of the coefficients of (34) with respect to the first
variable v from order one to order four, does not vanish. Since in this case the function F given
in (36) is linear in v, we obtain that ∂

(k)
v F = 0 for k ∈ {2,3,4}. Moreover ∂vF (v,n,m,h) =

−(gKn4 + gNam
3h + gL) never vanishes on [0,1]3. So actually in this case, it is sufficient to

consider a 3D determinant extracted from D.

Proposition 6. Assume that σ remains strictly positive on U . Let us introduce the notation
dn(v,n) := −an(v)n + bn(v) and analogous ones for m and h. Then (LWH) for (38) is satisfied
at any point (t, v, n,m,h, ζ ) ∈ [0,∞[×R× (0,1)3 × U where �(v,n,m,h) �= 0 with

�(v,n,m,h) := det

⎛⎝ ∂
(2)
v dn ∂

(3)
v dn ∂

(4)
v dn

∂
(2)
v dm ∂

(3)
v dm ∂

(4)
v dm

∂
(2)
v dh ∂

(3)
v dh ∂

(4)
v dh

⎞⎠ . (39)

Proposition 7. The set of points in (v,n,m,h, ζ ) ∈ R × (0,1)3 × U where � does not vanish
has full Lebesgue measure.

Proof. We say that a set has full Lebesgue measure if its complement has Lebesgue measure
zero. First, it can be shown numerically that indeed there exists points (v,n,m,h, ζ ) such
that �(v,n,m,h) �= 0 (see Section 5.4 below). Moreover, for any fixed v ∈ R, the function
(n,m,h) �→ �(v,n,m,h) is a polynomial of degree three in the variables n,m,h. In particu-
lar, for any fixed v, either �(v, ., ., .) vanishes identically on (0,1)3, or its zeros form a two-
dimensional sub-manifold of (0,1)3. Finally, since � is a sum of terms

(some power series in v) · nεnmεmhεh

with epsilons taking values 0 or 1, it is impossible to have small open v-intervals where it van-
ishes identically on (0,1)3. We conclude the proof by integrating over v and using Fubini’s
theorem. �

Although the condition � �= 0 is only a sufficient condition ensuring that (LWH) is satisfied
locally, it is convenient since it is possible to evaluate �(v,n,m,h) numerically. This is done in
Section 5.4 below.



Strongly degenerate time inhomogeneous SDEs 2611

5.4. Numerical study of the determinant �

We compute numerically the value of � at points of the form (v, n∞(v),m∞(v), h∞(v)) as in
(37). The function F∞(v) := F(v,n∞(v),m∞(v), h∞(v)) is strictly increasing at least on an
interval I containing I0 = (−15,+30) hence it defines a bijection between the constant input
I (t) = c in (34) and the solution of the equation F∞(v) = c that we denote by vc. Therefore,
for any v ∈ I , the point (v, n∞(v),m∞(v), h∞(v)) is the equilibrium point of (34) submitted
to the constant input c = F∞(v). We use this fact below since it may be more convenient to
work with v than with c even if classically one considers c as the parameter of interest. For in-
stance, the point (0, n∞(0),m∞(0), h∞(0)) corresponds to c = F(0, n∞(0),m∞(0), h∞(0)) ≈
−0.0534. We found that �(0, n∞(0),m∞(0), h∞(0)) < 0 and moreover the function v �→
�(v, n∞(v),m∞(v), h∞(v)) has exactly two zeros on the interval I0 = (−15,+30) located
at v ≈ −11.4796 and v ≈ +10.3444. As a consequence, for all values of c belonging to
]F∞(−10),F∞(+10)[=]−6.15,26.61[, the determinant �(vc, n∞(vc),m∞(vc), h∞(vc)) re-
mains strictly negative.

5.5. Positivity regions for (38)

In this section, we apply the results of Section 4.3 to (38). Remember that by comparing (18) and
(38) we see that ξt − ξ0 corresponds to

∫ t

0 I (s) ds.
Consider first suitable constant I (t) ≡ c, fix ζ ∈ U and t > 0, and consider

xc := (
vc, n∞(vc),m∞(vc), h∞(vc), ζ

)
,

(40)
x′
c := (

vc, n∞(vc),m∞(vc), h∞(vc), ζ + ct
)
,

where vc is the unique solution of F(vc, n∞(vc),m∞(vc), h∞(vc)) = c (see Section 5.4). Let us
denote by Ps,t (·, ·)s<t the semigroup of the process (Xt )t≥0 which satisfies (38). Then Theorem 5
and Corollary 2 read as follows.

Proposition 8. Assume that ζ + cs ∈ U for all 0 ≤ s ≤ t . Consider xc and x′
c defined in (40).

1. Then for all ε > 0, there exists δ > 0 such that for all x′′ ∈ Bδ(xc), P0,t (x
′′,Bε(x

′
c)) > 0.

2. If moreover �(vc, n∞(vc),m∞(vc), h∞(vc)) �= 0, then there exists δ > 0 such that for
Kc = Bδ(xc) and K ′

c = Bδ(x
′
c),

inf
x∈Kc

inf
x′∈K ′

c

p0,t

(
x, x′) > 0.

Remember that the assumption �(vc, n∞(vc),m∞(vc), h∞(vc)) �= 0 ensures that (LWH)
holds both at xc and x′

c. We have checked numerically in Section 5.4 that this assumption is
satisfied for c ∈]−6.15,26.61[. Hence, for this range of c the above proposition applies.
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Appendix

A.1. Simple properties of (18)

Proof of Proposition 2. Given the trajectory of X1, the variation of constants method yields

Xi,t = Xi,0e− ∫ t
0 ai (X1,s ) ds +

∫ t

0
bi(X1,u)e

− ∫ t
u ai (X1,r ) dr du. (41)

However, note that (41) does not provide an explicit formula for Xi,t since X1 depends on

Xi (the system is fully coupled). Writing
∫ t

0 bi(X1,u)e− ∫ t
u ai (X1,r ) dr du = ∫ t

0
bi (X1,u)

ai (X1,u)
ai(X1,u) ×

e− ∫ t
u ai (X1,u) dr du, the assumptions on ai(·) and bi(·) imply that

0 ≤ Xi,t ≤ Xi,0e− ∫ t
0 ai (X1,s ) ds +

∫ t

0
ai(X1,u)e

− ∫ t
u ai (X1,r ) dr du. (42)

By straightforward integration, it follows that

0 ≤ Xi,t ≤ (
Xi,0 + e

∫ t
0 ai (X1,r ) dr − 1

)
e− ∫ t

0 ai (X1,s ) ds = 1 + (Xi,0 − 1)e− ∫ t
0 ai (X1,s ) ds .

The statement follows. �

A.2. Proof of (13)

We keep the notations introduced in the proof of Theorem 1 as well as in Section 3.1. In order to
establish (13), we extend the argument of [11], Theorem 2.3. To sum up this argument, we can say
that by an iterative procedure on the Sobolev norms of H(X̄t−δ,t (y),�(X̄t−δ,t (y) − y0)) (in the
sense of Malliavin calculus) of different indices, it is proved that estimating these Sobolev norms
amounts to estimate the Sobolev norms of X̄ and of the inverse of the Malliavin covariance matrix
(�X̄t

)i,j := 〈DX̄i,t ,DX̄j,t 〉L2[0,t],1 ≤ i, j ≤ m, where D denotes Malliavin derivative. Since by
a classical identity, this inverse can be written using the inverse of det�X̄t

and the coefficients

of � itself, the key ingredient is to estimate the Sobolev norms of X̄ and expressions of the form
Ez(|det�X̄t

|−p)1/p . We show below that no difficulty comes from the Sobolev norms of X̄ and
we prove that for any p ≥ 1 and t ≤ 1, for any N ∈ N and z such that dim LA(LN)(s, z) = m,
∀s ∈ [0, t],

Ez

(|det�X̄t
|−p

)1/p ≤ C(p,m,N, z)t−m(1+N). (43)

Formula (43) is the main step to obtain (13). Indeed it suffices to apply it to the process X̄t−δ,t on
an interval of length δ instead of t in (43). A particular version of (43) obtained by taking N = 0
is proved in [11] where the restriction to N = 0 is possible due to the fact that local ellipticity is
assumed to hold. However local ellipticity fails to hold in our framework. This is why we prove
the general version of (43).
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We proceed in three steps. In the first step, we check that the usual upper bound for the Sobolev
norms of X̄ is still valid and at the end of this step we obtain an expression of a key term of �X̄t

that involves the successive Lie brackets introduced in Section 3.1. The scheme of this argument
is classical (cf. [24]) but we have to take care of the time dependence in the drift. We describe
its main points for the sake of completeness. In the second step, we prove (43) where N is the
order of the successive Lie brackets that we need to generate R

m according to (LWH). When
local ellipticity holds, the diffusion coefficients themselves generate R

m and it is not necessary
to compute Lie brackets (N = 0). Finally, in the third step, we show how the arguments of the
proof of Theorem 2.3 of [11] allow to obtain (13) from (43), with t = δ. Since δ ≤ 1, when stating
the following estimates, we will always concentrate on the case t ≤ 1.

Step 1. Let ˜̄bi(t, x) := b̄i (t, x) − 1
2

∑l
k=1

∑m
j=1 σ̄j,k(x)

∂σ̄i,k

∂xj
(x),1 ≤ i ≤ m, be the Stratono-

vich drift for (7) and Ā0 := ∂
∂t

+ ˜̄b, Āk := σ̄k,1 ≤ k ≤ l, the corresponding vector fields, where

σ̄k denotes the kth column of the matrix σ̄ . Define (Yt )i,j := ∂X̄i,t

∂xj
,1 ≤ i, j ≤ m. Then Y satisfies

the following linear SDE with bounded coefficients w.r.t. time and space,

Yt = Im +
∫ t

0
∂b̄(s, X̄s)Ys ds +

l∑
k=1

∫ t

0
∂σ̄k(X̄s)Ys ◦ dWk

s ,

where Im is the m × m-unity matrix and ∂b̄ and ∂σ̄k are the m × m-matrices having components

(∂b̄)i,j (t, x) = ∂b̄i

∂xj
(t, x) and (∂σ̄k)i,j (x) = ∂σ̄i,k

∂xj
(x). In the above formula, ◦dWs denotes the

Stratonovich integral. By means of Itô’s formula, one shows that Yt is invertible. Its inverse Zt

satisfies the linear SDE (again with bounded coefficients w.r.t. time and space) given by

Zt = Im −
∫ t

0
∂ ˜̄b(s, X̄s)Zs ds −

l∑
k=1

∫ t

0
∂σ̄k(X̄s)Zs ◦ dWk

s . (44)

In this framework, the following estimates are classical (see, e.g., [24]) and will be sufficient for
our purpose. For all 0 ≤ s ≤ t ≤ T , for all p ≥ 1,

sup
s≤t

E
(∣∣(Zs)i,j

∣∣p) ≤ C(T ,p,m, b̄, σ̄ ), 1 ≤ i, j ≤ m, (45)

sup
r1,...,rk≤t

E
(|Dr1,...,rk X̄i,t |p

) ≤ C(T ,p,m,k, b̄, σ̄ )tk/2(t1/2 + 1
)(k+1)2p

, (46)

where the constants C(T ,p,m,k, b̄, σ̄ ) depend only on the bounds of the space derivatives of
b̄ and σ̄ . Up to this point, the fact that the drift coefficient depends on time did not play an
important role since all coefficients are bounded, uniformly in time.

Step 2. It is well known (see, for example, [27], page 110, formula (2.40)) that

�X̄t
= Yt

(∫ t

0
Zsσ̄ (X̄s)σ̄

∗(X̄s)Z
∗
s ds

)
Y ∗

t .
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In order to prove (43), one has to evaluate the latter integral and therefore to control expressions
of the form ZsV (s, X̄s), where V (t, x) is a smooth function. This is done by iterating the formula,

ZtV (t, X̄t ) = V (0, x) +
l∑

k=1

∫ t

0
Zs[σ̄k,V ](s, X̄s) ◦ dWk

s

+
∫ t

0
Zs

[
∂

∂t
+ ˜̄b,V

]
(s, X̄s) ds

(47)

= V (0, x) +
l∑

k=1

∫ t

0
Zs[Āk,V ](s, X̄s) ◦ dWk

s

+
∫ t

0
Zs[Ā0,V ](s, X̄s) ds,

starting with V ≡ σ̄k , for 1 ≤ k ≤ l, where we identify functions with vector fields (cf. [27],
formula (2.42)). Here, the fact that the drift coefficient is time dependent is important and gives
rise to the extra term ∂

∂t
within the second integral of the first line. In particular with V ≡ σ̄
 for

a fixed 1 ≤ 
 ≤ k, we obtain (cf. (1.9) of [8])

Zt σ̄
(t, X̄t ) = σ̄
(x) +
l∑

k=1,k �=


∫ t

0
Zs[Āk, Ā
](s, X̄s) ◦ dWk

s +
∫ t

0
Zs[Ā0, Ā
](s, X̄s) ds.

Iterating (47), we see that Zsσ̄ (X̄s) can be written as the sum of two terms. The first term is a
finite sum of iterated Itô integrals where the integrands are Āk,1 ≤ k ≤ l, and the successive Lie
brackets of order at most N obtained with Āk,1 ≤ k ≤ l and Ā0. The second term is a remainder
RN (this is analogous to Theorem 2.12 of [24]). The most important feature is that the behavior
of RN depends only on the supremum norms of derivatives with respect to time and space of b̄

and with respect to space of σ̄ . Based on (47), (43) follows by Theorem (2.17), estimate (2.18)
of [24].

Step 3. Once (43) is established, (13) follows by a straightforward adaptation of the proof
of Theorem 2.3 of [11], replacing the number of derivatives k there by m(k + 2) which is the
number of derivatives to be considered in our context to handle ∂β . For completeness, let us note
that (46) is the same bound as (2.17) in [11] whereas (43) plays the role of (2.20) in [11]. For
t close to zero, the right-hand side of (2.20) in [11] is of order t−m due to the local ellipticity
condition, while our bound is of order t−m(1+N) due to our condition (LWH). Plugging (43)
and (46) in (2.25) of [11] (cf. the proof of (2.23)) replaces the r.h.s. obtained there for (2.23) by

O(t−( 1
2 +N)) for small t . With such changes, the argument developed there goes through. In our

framework, we end up with O(t−m(k+2)kN ) as a control for (2.21) of [11], for small t as r.h.s.,
with some positive constant kN depending on (LWH). Here k + 2 is the number of derivatives to
be considered in our case.
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