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This paper considers the problem of estimating probabilities of the form P(Y ≤ w), for a given value of w,
in the situation that a sample of i.i.d. observations X1, . . . ,Xn of X is available, and where we explicitly
know a functional relation between the Laplace transforms of the non-negative random variables X and Y .
A plug-in estimator is constructed by calculating the Laplace transform of the empirical distribution of
the sample X1, . . . ,Xn, applying the functional relation to it, and then (if possible) inverting the resulting
Laplace transform and evaluating it in w. We show, under mild regularity conditions, that the resulting
estimator is weakly consistent and has expected absolute estimation error O(n−1/2 log(n+1)). We illustrate
our results by two examples: in the first we estimate the distribution of the workload in an M/G/1 queue
from observations of the input in fixed time intervals, and in the second we identify the distribution of the
increments when observing a compound Poisson process at equidistant points in time (usually referred to
as “decompounding”).
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1. Introduction

The estimation problem considered in this paper is the following. Suppose we have independent
observations of the (nonnegative) random variable X, but we are interested in estimating the
distribution of the (nonnegative) random variable Y . The crucial element in our set up is that we
explicitly know the relation between the Laplace transforms of the random variables X and Y ,
that is, we have a mapping � which maps Laplace transforms of random variables to complex-
valued functions defined on the right-half complex plane, and which maps the Laplace transform
of X to the Laplace transform of Y .

A straightforward estimation procedure could be the following. (i) Estimate the Laplace trans-
form of X by its evident empirical estimator; denote this estimate by X̃n; (ii) estimate the Laplace
transform of Y by �X̃n; (iii) apply Laplace inversion on �X̃n, so as to obtain an estimate of the
distribution of Y . To justify this procedure, there are several issues that need to be addressed.
First, X̃n may not lie in the domain of the mapping � , and second, �X̃n may not be a Laplace
transform, and thus not amenable for Laplace inversion.

The main contribution of this paper is that we specify a procedure in which the above caveats
are addressed, leading to the result that the plug-in estimator described above converges, in prob-
ability, to the true value as n grows large. In addition we have bounds on its performance: the
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expected absolute estimation error is O(n−1/2 log(n + 1)). Perhaps surprisingly, the techniques
used primarily rely on an appropriate combination of standard proof techniques. Our result is
valid under three mild regularity conditions: two of them are essentially of a technical nature,
whereas the third can be seen as a specific continuity property that needs to be imposed on the
mapping � .

In this paper, two specific examples are treated in greater detail. In the first, an M/G/1 queueing
system is considered: jobs of random size arrive according to a Poisson process with rate λ > 0,
the job sizes are i.i.d. samples from a nonnegative random variable B , and the system is drained
at unit rate. Suppose that we observe the amount of work arriving in intervals of fixed length, say
δ > 0; these observations are compound Poisson random variables, distributed as

X
d=

N∑
i=1

Bi,

with N Poisson distributed with mean λδ, independent of the job sizes, and with B1,B2, . . .

mutually independent and distributed as B . We show how our procedure can be used to estimate
the distribution of the workload Y from the compound Poisson observations; the function �

follows from the Pollaczek–Khinchine formula. As we demonstrate, the regularity conditions
mentioned above are met. In the second example, often referred to as “decompounding,” the goal
is to determine the job size distribution from compound Poisson observations.

Literature

Related work can be found in various branches of the literature. Without aiming at giving an
exhaustive overview, we discuss some of the relevant papers here. The first branch consists of
papers on estimating the probability distribution of a non-observed random variable by exploiting
a given functional relation between the Laplace transforms of X and Y . The main difficulty that
these papers circumvent is the issue of “ill-posedness”: a sequence of functions (fn)n∈N may not
converge to a function f , as n grows large, even if the corresponding Laplace transforms of fn

do converge to the Laplace transform of f . Remedies, based on “regularized Laplace inversion”
have been proposed, in a compound Poisson context, by Shimizu [23] (including Gaussian terms
as well) and Mnatsakanov et al. [20]; the rate of convergence is typically just 1/ logn in an
appropriately chosen L2-norm. Hansen and Pitts [17] use the Pollaczek–Khinthcine formula to
construct estimators for the service-time distribution and its stationary excess distribution in
an M/G/1 queue, and show that the estimated stationary excess distribution is asymptotically
Normal.

Some related papers that use Fourier instead of Laplace inversion are [8,9,24] and [16]. Van Es
et al. [24] estimate the density of Bi by inverting the empirical Fourier transform associated with
a sample of X, and prove that this estimator is weakly consistent and asymptotically normal.
Comte et al. [8] also estimate the density of Bi using the empirical Fourier transform of X,
by exploiting an explicit relation derived by Duval [14] between the density of X and Bi . They
show that this estimator achieves the optimal convergence rate in the minimax sense over Sobolev
balls. Comte et al. [9] extend this to the case of mixed compound Poisson distributions (where
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the intenstiy λ of the Poisson process is itself a random variable), and provide bounds on the L2-
norm of the density estimator. Finally, Hall and Park [16] estimate service-time characteristics
from busy period data in an infinite-server queueing setting, and prove convergence rates in
probability.

A second branch of research concerns methods that do not involve working with transforms
and inversion. Buchmann and Grübel [4] develop a method for decompounding: in the case the
underlying random variables have a discrete distribution by relying on the so-called Panjer re-
cursion, and in the case of continuous random variables by expressing the distribution function
of the summands Bi in terms of a series of alternating terms involving convolutions of the distri-
bution of X. The main result of this paper concerns the asymptotic Normality of specific plug-in
estimators. This method having the inherent difficulty that probabilities are not necessarily esti-
mated by positive numbers, an advanced version (for the discrete case only) has been proposed
by the same authors in [5]. This method has been further extended by Bøgsted and Pitts [3] to
that of a general (but known) distribution for the number of terms N . Duval [14] estimates the
probability density of Bi by exploiting an explicit relation between the densities of X and Bi ,
which however is only valid if λδ < log 2. She shows that minimax optimal convergence rates are
achieved in an asymptotic regime where the sampling rate δ converges to zero. The introduction
of [3] gives a compact description of the state-of-the-art of this branch of the literature.

A third body of work concentrates on the specific domain of queueing models, and develops
techniques to efficiently estimate large deviation probabilities. Bearing in mind that estimating
small tail probabilities directly from the observations may be inherently slow and inefficient
[15], techniques have been developed that exploit some structural understanding of the system.
Assuming exponential decay in the exceedance level, the pioneering work of Courcoubetis et al.
[10] provide (experimental) backing for an extrapolation technique. The approach proposed by
Zeevi and Glynn [25] has provable convergence properties; importantly, their results are valid in
great generality, in that they cover for example, exponentially decaying as well as Pareto-type tail
probabilities. Mandjes and van de Meent [19] consider queues with Gaussian input; it is shown
how to accurately estimate the characteristics of the input stream by just measuring the buffer
occupancy; interestingly, and perhaps counter-intuitively, relatively crude periodic measurements
are sufficient to estimate fine time-scale traffic characteristics.

As it is increasingly recognized that probing techniques may play a pivotal role when design-
ing distributed control algorithms, there is a substantial number of research papers focusing on
applications in communication networks. A few examples are the procedure of Baccelli et al.
[2] that infers input characteristics from delay measurements, and the technique of Antunes and
Pipiras [1] that estimates the interrenewal distribution based on probing information. This paper
contributes to this line of research by showing how a Laplace-transform based estimator, using
samples of the workload obtained by probing, can be used to estimate the workload in an M/G/1
queue; cf. Section 4.1 and 6.

Organization

The rest of this paper is organized as follows. In Section 2, we formally define our Laplace-
transform based estimator, and Section 3 shows that the expected absolute estimation error is
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O(n−1/2 log(n + 1)). In Section 4.1, we apply this result to an estimation problem in queueing
theory, and in Section 4.2 to a decompounding problem. Section 5 contains a number of auxiliary
lemmas used to prove the main theorems in this paper. A numerical illustration is provided in
Section 6.

Notation

We finish this introduction by introducing notation that is used throughout this paper. The real
and imaginary part of a complex number z ∈C are denoted by �(z) and �(z); we use the symbol
i for the imaginary unit. We write C+ := {z ∈ C|�(z) ≥ 0} and C++ := {z ∈ C|�(z) > 0}. For
a function f : [0,∞) → R, let f̄ (s) = ∫ ∞

0 f (x)e−sx dx denote the Laplace transform of f ,
defined for all s ∈C where the integral is well-defined. For any nonnegative random variable X,
let X̃(s) := E[exp(−sX)] denote the Laplace transform of X, defined for all s ∈ C+. (Although
X̃(s) may be well-defined for s with �(s) < 0, we restrict ourselves without loss of generality
to C+, which is contained in the domain of X̃(s) for each nonnegative random variable X.) For
t ∈ (0,∞), as usual, �(t) := ∫ ∞

0 xt−1e−x dx denotes the Gamma function. The complement of
an event A is written as Ac; the indicator function corresponding to A is given by 1A.

2. Laplace-transform based estimator

In this section, we formally define our plug-in estimator. The setting is as sketched in the in-
troduction: we have n i.i.d. observations X1, . . . ,Xn of the random variable X at our disposal,
and we wish to estimate the distribution of Y , where we know a functional relation between the
transforms of X and Y .

Let X be a collection of (single-dimensional) nonnegative random variables, and let the col-
lection X̃ = {X̃(·)|X ∈X } represent their Laplace transforms. Let

� : X̃ → {g : C+ →C}
map each Laplace transform in X̃ to a complex-valued function on C+. Finally, let Y be a non-
negative random variable such that Ỹ (s) = (�X̃)(s) for some unknown X ∈ X and all s ∈ C+,
that is, � maps the Laplace transform of X onto the Laplace transform of Y . We are interested
in estimating the cumulative distribution function FY (w) of Y at a given value w > 0, based on
the sample X1, . . . ,Xn. The distributions of both X and Y are assumed to be unknown, but the
mapping � is known (and will be exploited in our estimation procedure).

A natural approach to this estimation problem is to (i) estimate the Laplace transform of Y by
�X̃n, where X̃n is the “naïve” estimator

X̃n(s) = 1

n

n∑
i=1

exp(−sXi), (s ∈ C+);

observe that X̃n can be interpreted as the Laplace transform of the empirical distribution of the
sample X1, . . . ,Xn; then (ii) estimate the Laplace transform corresponding to the distribution
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function FY by s 	→ s−1(�X̃n)(s); and finally (iii) apply an inversion formula for Laplace trans-
forms and evaluate the resulting expression in w. Note that in step (ii) we relied on the standard
identity ∫ ∞

0
e−swFY (w)dw = E[e−sY ]

s
.

There are two caveats, however, with this approach: first, the transform X̃n is not necessarily
an element of X̃ , in which case �X̃n is undefined, and second, the function s−1(�X̃n)(s) is not
necessarily a Laplace transform and thus not amenable for inversion.

To overcome the first issue, we let En be the event that X̃n ∈ X̃ . We assume that En lies in
the natural filtration generated by X1, . . . ,Xn, is not defined in terms of characteristics of the
(unknown) X, and also that P(Ec

n) → 0 as n → ∞. For the main result of this paper, Theorem 1
in Section 3, it turns out to be irrelevant how FY (w) is estimated on Ec

n (as long as the estimate
lies in [0,1]); we could, for example, estimate it by zero on this event. In concrete situations, it
is typically easy to determine a suitable choice for the sets En; for both applications considered
in Section 4, we explicitly identify the En.

On the event En, we estimate the Laplace transform of FY by the plug-in estimator

F̄ Y
n (s) := 1

s
(�X̃n)(s), (s ∈C++). (1)

To overcome the second issue, of F̄ Y
n (s) not necessarily being a Laplace transform, we estimate

FY (w) by applying a truncated version of Bromwich’ Inversion formula [13]:

FY
n (w) =

∫ √
n

−√
n

1

2π
e(c+iy)wF̄ Y

n (c + iy)dy, (2)

where c is an arbitrary positive real number. In the “untruncated” version of Bromwich’ Inversion
formula the integration in (2) is over the whole real line. Since that integral may not be well-
defined if F̄ Y

n is not a Laplace transform, we integrate over a finite interval (which grows in the
sample size n).

The thus constructed estimator has remedied the two complications that we identified above.
The main result of this paper, which describes the performance of this estimator as a function of
the sample size n, is given in the next section.

3. Main result: Convergence rate

In this section, we show that the expected absolute estimation error of our estimator FY
n (w), as

defined in the previous section, is bounded from above by a constant times n−1/2 log(n + 1).
Our result is proven under the following assumptions.

(A1) For each n ∈ N there is an event An ⊂ En, such that P(Ac
n) ≤ κ1n

−1/2 for some κ1 > 0
independent of n;

(A2) FY (y) is continuously differentiable on [0,∞), and twice differentiable at y = w;



2538 A.V. den Boer and M. Mandjes

(A3) There are constants κ2 ≥ 0, κ3 ≥ 0 and (nonnegative and random) Zn, n ∈ N, such that
supp∈(1,2) E[|Zn|p] ≤ κ3n

−1/2 for all n ∈ N, and such that, on the event An,

∣∣(�X̃n)(s) − (�X̃)(s)
∣∣ ≤ κ2

∣∣X̃n(s) − X̃(s)
∣∣ + Zn a.s.,

for all s = c + iy, n ∈N, and −√
n ≤ y ≤ √

n.

These assumptions are typically “mild;” we proceed with a short discussion of each of them.
Assumption (A1) ensures that the contribution of the complement of An (and also that of the

complement of En) to the expected absolute estimation error is sufficiently small. The difference
between An and En is that the definition of En does not involve the unknown X ∈ X (which
enables us to define the estimator FY

n (w) without knowing the unknown X), whereas An may
actually depend on X. It is noted that in specific applications, this helps when checking whether
the assumptions (A1)–(A3) are satisfied; cf. the proofs of Theorems 2 and 3. If P(Ac

n) ∼ n−a for
some a ∈ (−1/2,0), then (A1) does not hold and Theorem 1 is not valid.

Assumption (A2) is a smoothness condition on FY that we use to control the error caused by
integrating in (2) over a finite interval, instead of integrating over R. The twice-differentiability
assumption is only used to apply Lemma 3 with f = FY in the proof of Theorem 1. It can be
replaced by any other condition that guarantees that, for all n ∈ N and some κ4 > 0 independent
of n, ∣∣∣∣

∫
|y|>√

n

1

2π
e(c+iy)wF̄ Y (c + iy)dy

∣∣∣∣ ≤ κ4√
n
.

Continuous differentiability of FY makes sure that Bromwich’ Inversion formula applied to F̄ Y

yields FY again, i.e., FY (w) = ∫ ∞
−∞(2π)−1e(c+iy)wF̄ Y (c + iy)dy, cf. [22], Chapter 4. This

equality is still true if the derivative of FY (y) with respect to y is piecewise continuous with
finitely many discontinuity points, and in addition continuous at y = w.

Assumption (A3) can be seen as a kind of Lipschitz-continuity condition on � that guarantees
that �X̃n is “close to” �X̃ if X̃n is “close to” X̃. This condition is necessary to prove the weak
consistency of our estimator. The formulation with the random variables Zn allows for a more
general setting than with Zn = 0, and is used in both applications in Section 4.

A straightforward example that satisfies assumptions (A1)–(A3) is the case where X
d= Y +

W , where W is a known nonnegative random variable. If the cdf of Y satisfies the smoothness
condition (A2), then, with Ỹ (s) = (�X̃)(s) := X̃(s)/W̃ (s), Ac

n = Ec
n = ∅, Zn = 0 a.s., c > 0

arbitrary, and κ2 := sups=c+iy,−√
n≤y≤√

n 1/|Z̃(s)|, it is easily seen that assumptions (A1)–(A3)
are satisfied. More involved examples that satisfy the assumptions are presented in Section 4.

Theorem 1. Let w > 0, c > 0, and assume (A1)–(A3). Then FY
n (w) converges to FY (w) in

probability, as n → ∞, and there is a constant C > 0 such that, for all n ∈ N,

E
[∣∣FY

n (w) − FY (w)
∣∣] ≤ Cn−1/2 log(n + 1). (3)

Proof. It suffices to prove (3), since this implies weak consistency of FY
n (w). Fix n ∈N.
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The proof consists of three steps. In Step 1, we bound the estimation error on the event An, in
Step 2 we consider the complement Ac

n, and in Step 3 we combine Step 1 and 2 to arrive at the
statement of the theorem. Some of the intermediate steps in the proof rely on auxiliary results
that are presented in Section 5.

Step 1. We show that there are positive constants κ4 and κ5, independent of n, such that, for
all n ∈N and p ∈ (1,2),

E
[∣∣FY

n (w) − FY (w)
∣∣ · 1An

] ≤ κ4n
−1/2 + κ5(p − 1)−1/pn1/2−1/p. (4)

To prove the inequality (4), consider the following elementary upper bound:

E
[∣∣FY

n (w) − FY (w)
∣∣ · 1An

]
= E

[∣∣∣∣
∫ √

n

−√
n

1

2π
e(c+iy)wF̄ Y

n (c + iy)dy −
∫ ∞

−∞
1

2π
e(c+iy)wF̄ Y (c + iy)dy

∣∣∣∣ · 1An

]

= 1

2π
E

[∣∣∣∣
∫ √

n

−√
n

e(c+iy)w
(
F̄ Y

n (c + iy) − F̄ Y (c + iy)
)

dy

−
∫

|y|>√
n

e(c+iy)wF̄ Y (c + iy)dy

∣∣∣∣ · 1An

]

≤ E

[∣∣∣∣
∫ √

n

−√
n

1

2π
e(c+iy)w

(
F̄ Y

n (c + iy) − F̄ Y (c + iy)
)

dy

∣∣∣∣ · 1An

]
(5)

+
∣∣∣∣
∫

|y|>√
n

1

2π
e(c+iy)wF̄ Y (c + iy)dy

∣∣∣∣. (6)

We now treat the terms (5) and (6) separately, starting with the latter. By assumption (A2) and
the observation∫ ∞

w

(
d

dy
FY (y + w)

)
e−cy

y

w

e−cw
dy ≤

∫ ∞

w

(
d

dy
FY (y + w)

)
dy = FY (∞) − FY (2w) < 1,

we conclude that ∫ ∞

w

∣∣∣∣ d

dy
FY (y + w)

∣∣∣∣e−cy

y
dy <

e−cw

w
< ∞,

and therefore FY satisfies the conditions of Lemma 3. As a result, (6) satisfies∣∣∣∣
∫

|y|>√
n

1

2π
e(c+iy)wF̄ Y (c + iy)dy

∣∣∣∣ ≤ κ4√
n
, (7)

for some constant κ4 > 0 independent of n.
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We now bound the term (5). It is obviously majorized by

E

[∫ √
n

−√
n

1

2π
ecw

∣∣F̄ Y
n (c + iy) − F̄ Y (c + iy)

∣∣dy · 1An

]
.

Let p ∈ (1,2) and q > 1, with p−1 + q−1 = 1. By subsequent application of Hölder’s inequality,
this expression is further bounded by

E

[(∫ √
n

−√
n

(
1

2π
ecw

)q

dy

)1/q(∫ √
n

−√
n

∣∣F̄ Y
n (c + iy) − F̄ Y (c + iy)

∣∣p dy

)1/p

· 1An

]
.

By computing the first integral, and an application of Jensen’s inequality, this is not larger than

ecw (2
√

n)1/q

2π

(
E

[∫ √
n

−√
n

∣∣F̄ Y
n (c + iy) − F̄ Y (c + iy)

∣∣p dy · 1An

])1/p

.

Finally applying Fubini’s theorem, we arrive at the upper bound

ecw (2
√

n)1/q

2π

(∫ √
n

−√
n

E
[∣∣F̄ Y

n (c + iy) − F̄ Y (c + iy)
∣∣p · 1An

]
dy

)1/p

. (8)

We now study the behavior of (8), being an upper bound to (5), as a function of n. To this end,
we first derive a bound on the integrand. Assumption (A3) implies that there exists a sequence of
nonnegative random variables Zn, n ∈N, such that∣∣F̄ Y

n (s) − F̄ Y (s)
∣∣ · 1An = ∣∣s−1(�X̃n)(s) − s−1(�X̃)(s)

∣∣ · 1An

(9)
≤ (

κ2
∣∣X̃(s) − X̃n(s)

∣∣ + Zn

) · ∣∣s−1
∣∣ · 1An a.s.,

for all s = c + iy with −√
n ≤ y ≤ √

n.
Now recall the so-called cr -inequality

E
[|X + Y |p] ≤ 2p−1(

E
[|X|p] +E

[|Y |p])
,

and the obvious inequality 1An ≤ 1 a.s. As a consequence of Lemma 1, we thus obtain

E
[∣∣F̄ Y

n (c + iy) − F̄ Y (c + iy)
∣∣p · 1An

]
≤ 2p−1(κp

2 E
[∣∣X̃(c + iy) − X̃n(c + iy)

∣∣p] +E
[|Zn|p

])|c + iy|−p

≤ 2p−1(2pκ
p

2 + κ3
)
n−1/2|c + iy|−p.

From (8) and the straightforward inequality∫ ∞

−∞
|c + iy|−p dy ≤

∫ ∞

−∞
1

(c2 + y2)p/2
dy = c1−p

∫ ∞

0

z−1/2

(1 + z)p/2
dz

(10)

= C0(p) := c1−pπ1/2 �((p − 1)/2)

�(p/2)
,
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it follows that

E

[∣∣∣∣
∫ √

n

−√
n

1

2π
e(c+iy)w

(
F̄ Y

n (c + iy) − F̄ Y (c + iy)
)

dy

∣∣∣∣ · 1An

]

≤ ecw (2
√

n)1/q

2π

(
2p−1(2pκ

p

2 + κ3
)
n−1/2

∫ √
n

−√
n

|c + iy|−p dy

)1/p

(11)

≤ C1(p)n1/2−1/p,

where

C1(p) := ecw 22−2/p

2π

(
2pκ

p

2 + κ3
)1/p(

C0(p)
)1/p

.

It follows from �((p − 1)/2) = 2�((p + 1)/2)/(p − 1) that

lim
p↓1

(p − 1)1/pC1(p) < ∞.

This implies that there is a κ5 > 0 such that

C1(p) ≤ κ5(p − 1)−1/p for all p ∈ (1,2). (12)

Upon combining the results presented in displays (5), (6), (7), (11), and (12), we obtain inequal-
ity (4), as desired.

Step 2. On the complement of the event An we have, by assumption (A1),

E
[∣∣FY

n (w) − FY (w)
∣∣ · 1Ac

n

] ≤ P
(
Ac

n

) ≤ κ1n
−1/2. (13)

Step 3. When combining inequalities (4) and (13), we obtain that

E
[∣∣FY

n (w) − FY (w)
∣∣] = E

[∣∣FY
n (w) − FY (w)

∣∣ · 1An

] +E
[∣∣FY

n (w) − FY (w)
∣∣ · 1Ac

n

]
≤ κ4n

−1/2 + κ5(p − 1)−1/pn1/2−1/p + κ1n
−1/2.

Now realize that we have the freedom to pick in the above inequality any p ∈ (1,2). In particular,
the choice p = pn := 1 + 1/(2 log(n + 1)) ∈ (1,2) yields the bound

E
[∣∣FY

n (w) − FY (w)
∣∣] ≤ κ4n

−1/2 + κ5
(
2 log(n + 1)

)1/pnn1/2−1/pn + κ1n
−1/2

≤ (
κ4 + 2κ5e

1/2 + κ1
)
n−1/2 log(n + 1),

using
1

2
− 1

pn

= −1

2
+ 1

1 + 2 log(n + 1)

and

n1/(1+2 log(n+1)) = exp

(
logn

1 + 2 log(n + 1)

)
≤ e1/2.

This finishes the proof of Theorem 1. �
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Remark 1. Contrary to some of the literature mentioned in Section 1 (e.g. [20] and [23]), we are
not estimating a density but a cumulative distribution function. This difference translates into an
additional |s−1| term in equation (9), which enables us to bound the integral in equation (10). This
appears to be an crucial step in the proof of Theorem 1, because it means that the ill-posedness
of the inversion problem (the fact that the inverse Laplace transform operator is not continuous)
does not play a rôle: convergence of F̄ Y

n (·) to F̄ Y (·) implies convergence of FY
n (w) to FY (w).

As a result, we do not need regularization techniques as in [20] and [23].

4. Applications

In this section, we discuss two examples that have attracted a substantial amount of attention in
the literature. In both examples, the verification of the assumptions (A1)–(A3) can be done, as
we will demonstrate now.

4.1. Workload estimation in an M/G/1 queue

In our first example, we consider the so-called M/G/1 queue: jobs arrive at a service station
according to a Poisson process with rate λ > 0, where these jobs are i.i.d. samples with a service
time distribution B; see, for example, [7] for an in-depth account of the M/G/1 queue, and [21]
for an annotated bibliography on inference in queueing models. Under the stability condition
ρ := λE[B] ∈ (0,1) the queue’s stationary workload is well defined. Our objective, motivated
by the setup described in [11], is to estimate P(Y > w), where Y is the stationary workload, and
w > 0 is a given threshold. The idea is that this estimate is based on samples of the queue’s input
process.

In more detail, the procedure works as follows. By the Pollaczek–Khintchine formula [18],
the Laplace transform of the stationary workload distribution Y satisfies the relation

Ỹ (s) = s(1 − ρ)

s − λ + λB̃(s)
, s ∈ C+. (14)

For subsequent time intervals of (deterministic) length δ > 0, the amount of work arriving to

the queue is measured. These observations are i.i.d. samples from a compound distribution X
d=∑N

i=1 Bi , with N Poisson distributed with parameter λδ, and the random variables B1,B2, . . .

independent and distributed as B (independent of N ). By Wald’s equation, we have E[X] = δρ,
and a direct computation yields X̃(s) = exp(−λδ+λδB̃(s)). Combining this with (14), we obtain
the following relation between the Laplace transforms of X and Y :

Ỹ (s) = s(1 − δ−1E[X])
s + δ−1 Log(X̃(s))

. (15)

Here Log is the distinguished logarithm of X̃(s) [6], which is convenient to work with in this
context [24]. Our goal is to estimate P(Y ≤ w) = FY (w), for a given w > 0, based on an inde-
pendent sample X1, . . . ,Xn. We use the estimator FY

n (w) defined in Section 2, for an arbitrary
c > 0, and with
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(i) X the collection of all random variables X′ of the form
∑N ′

i=1 B ′
i with N ′ Poisson dis-

tributed with strictly positive mean, {B ′
i}i∈N i.i.d., independent of N ′, nonnegative, and with

0 < E[X′] < δ;
(ii) the sets

En :=
{

0 ≤ 1

n

n∑
i=1

Xi < δ

}
,

so as to ensure that the “empirical occupation rate” of the queue, δ−1n−1 ∑n
i=1 Xi , is strictly

smaller than one, and that therefore the Pollaczek–Khintchine formula holds;
(iii) � defined through

(�X̃)(s) = s(1 + δ−1X̃′(0))

s + δ−1 Log(X̃(s))
, s ∈C+,

where X̃′(t) denotes the derivative of X̃(t) in t ∈ (0,∞) and X̃′(0) = limt↓0 X̃′(t) = −E[X].

Theorem 2. Consider the estimation procedure outlined above. Suppose FY is continuously
differentiable, twice differentiable in w, and E[B2] < ∞. Then there is a constant C > 0 such
that

E
[∣∣FY

n (w) − FY (w)
∣∣] ≤ Cn−1/2 log(n + 1)

for all n ∈ N.

Proof. Let n ∈N be arbitrary, and define the events

An,1 :=
{

sup
−√

n≤y≤√
n

∣∣∣∣ X̃n(c + iy)

X̃(c + iy)
− 1

∣∣∣∣ ≤ min

{
1

2
,
cδ(1 − δ−1

E[X])
2 log 4

}}
,

An,2 :=
{

δ−1
∣∣∣∣E[X] − 1

n

n∑
i=1

Xi

∣∣∣∣ ≤ δ−1
E[X](1 − δ−1

E[X])
}

,

and An := An,1 ∩An,2. We have An,2 ⊂ En (because, using ρ = δ−1
E[X], the event An,2 implies

δ−1n−1 ∑n
i=1 Xi ∈ [ρ2, ρ(2 − ρ)] ⊂ (0,1)) and thus An ⊂ En. We show that assumptions (A1)–

(A3), as defined in Section 3, are satisfied. To this end, we only need to show (A1) and (A3),
since (A2) is assumed in the statement of the theorem.

Assumption (A1). Let

β := exp(−2λδ)min

{
1

2
,
cδ(1 − δ−1

E[X])
2 log 4

}
.

Then, for s ∈C+,∣∣X̃(s)
∣∣ = ∣∣exp

(−λδ + λδB̃(s)
)∣∣ ≥ exp

(−λδ + λδ�(
B̃(s)

)) ≥ exp(−2λδ), (16)
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which implies that

P
(
Ac

n,1

) ≤ P

(
sup

−√
n≤y≤√

n

∣∣X̃n(c + iy) − X̃(c + iy)
∣∣ > β

)
,

so that Lemma 2 then yields

P
(
Ac

n,1

)
< 4

(
1 + 8

√
nE[|X|]
β

)
e−nβ2/18 + P

(∣∣∣∣∣1

n

n∑
i=1

Xi

∣∣∣∣∣ ≥ 4

3
E

[|X|]
)

.

Since
√

n exp(−nβ2/18) = O(n−1/2) and

P

(∣∣∣∣∣1

n

n∑
i=1

Xi

∣∣∣∣∣ ≥ 4

3
E

[|X|]
)

≤ P

(∣∣∣∣∣E[X] − 1

n

n∑
i=1

Xi

∣∣∣∣∣ ≥ 1

3
E[X]

)
≤ n−1 9E[(X −E[X])2]

E[X]2
,

using the nonnegativity of X and Chebyshev’s inequality, it follows that P(Ac
n,1) = O(n−1/2).

It also follows easily from Chebyshev’s inequality that P(Ac
n,2) = O(n−1/2). It follows imme-

diately that P(Ac
n) ≤ P(Ac

n,1) + P(Ac
n,2) = O(n−1/2), which implies that assumption (A1) is

satisfied.
Assumption (A3). Fix y ∈ [−√

n,
√

n] and s = c + iy. Then

∣∣(�X̃n)(s) − (�X̃)(s)
∣∣

≤
∣∣∣∣ s(1 + δ−1X̃′

n(0))

s + δ−1 Log(X̃n(s))
− s(1 + δ−1X̃′

n(0))

s + δ−1 Log(X̃(s))

∣∣∣∣
+

∣∣∣∣ s(1 + δ−1X̃′
n(0))

s + δ−1 Log(X̃(s))
− s(1 + δ−1X̃′(0))

s + δ−1 Log(X̃(s))

∣∣∣∣
≤

∣∣∣∣δ−1 Log(X̃(s)) − δ−1 Log(X̃n(s))

s(1 + δ−1X̃′(0))
· s(1 + δ−1X̃′

n(0))

s + δ−1 Log(X̃n(s))
· s(1 + δ−1X̃′(0))

s + δ−1 Log(X̃(s))

∣∣∣∣ (17)

+
∣∣∣∣δ−1(X̃′

n(0) − X̃′(0))

(1 + δ−1X̃′(0))
· s(1 + δ−1X̃′(0))

s + δ−1 Log(X̃(s))

∣∣∣∣
≤ δ−1

1 + δ−1E[X]
∣∣Log

(
X̃(s)

) − Log
(
X̃n(s)

)∣∣ · ∣∣s−1(�X̃n)(s)
∣∣·∣∣(�X̃)(s)

∣∣
+ δ−1

1 + δ−1E[X]

∣∣∣∣∣E[X] − 1

n

n∑
i=1

Xi

∣∣∣∣∣ · ∣∣(�X̃)(s)
∣∣.



Convergence rates of Laplace-transform based estimators 2545

If f : R → R is a continuous function with f (0) = 1 and f (t) �= 0 for all t ∈ R, then for all t

such that |f (t) − 1| ≤ 1
2 we have Log(f (t)) = L(f (t)), where, for z ∈ C, |z − 1| < 1,

L(z) =
∑
j≥1

(−1)j−1

j
(z − 1)j ; (18)

this follows from the construction of the distinguished logarithm [6]. In addition, if |z − 1| ≤ 1
2 ,

then

∣∣L(z)
∣∣ ≤

∑
j≥1

1

j
|z − 1|j = log

(
1

1 − |z − 1|
)

≤ |z − 1| log 4. (19)

This implies that, on An, we have∣∣Log
(
X̃n(c + iy)

) − Log
(
X̃(c + iy)

)∣∣
=

∣∣∣∣Log

(
X̃n(c + iy)

X̃(c + iy)

)∣∣∣∣ =
∣∣∣∣L

(
X̃n(c + iy)

X̃(c + iy)

)∣∣∣∣ (20)

≤
∣∣∣∣ X̃n(c + iy)

X̃(c + iy)
− 1

∣∣∣∣ log 4 ≤ ∣∣X̃n(c + iy) − X̃(c + iy)
∣∣(log 4) exp(2λδ),

where the last inequality follows from (16).
Furthermore, we have on An that∣∣s−1(�X̃n)(s)

∣∣
=

∣∣∣∣1 − δ−11/n
∑n

i=1 Xi

s + δ−1 Log(X̃n(s))

∣∣∣∣
≤

∣∣∣∣1 − δ−11/n
∑n

i=1 Xi

1 − δ−1E[X]
∣∣∣∣ ·

∣∣∣∣ s + δ−1 Log(X̃n(s))

s + δ−1 Log(X̃(s))

∣∣∣∣
−1

·
∣∣∣∣ 1 − δ−1

E[X]
s + δ−1 Log(X̃(s))

∣∣∣∣
≤

∣∣∣∣1 + δ−1E[X] − 1/n
∑n

i=1 Xi

1 − δ−1E[X]
∣∣∣∣ ·

∣∣∣∣1 + δ−1 Log(X̃n(s)/X̃(s))

s + δ−1 Log(X̃(s))

∣∣∣∣
−1

· ∣∣s−1Ỹ (s)
∣∣ (21)

≤
(

1 + δ−1
E[X](1 − δ−1

E[X])
1 − δ−1E[X]

)
·
∣∣∣∣1 + (�X̃)(s)

δ−1L(X̃n(s)/X̃(s))

s(1 − δ−1E[X])
∣∣∣∣
−1

· c−1

≤
(

1 + δ−1
E[X](1 − δ−1

E[X])
1 − δ−1E[X]

)
· 2 · c−1,

since |1 + z|−1 ≤ (1 − |z|)−1 ≤ (1 − 1/2)−1 for all z ∈ C with |z| ≤ 1
2 ; bear in mind that, in

particular,∣∣∣∣(�X̃)(s)
δ−1L(X̃n(s)/X̃(s))

s(1 − δ−1E[X])
∣∣∣∣ ≤ δ−1c−1|L(X̃n(s)/X̃(s))|

1 − δ−1E[X] ≤ δ−1c−1 log 4

1 − δ−1E[X]
∣∣∣∣ X̃n(s)

X̃(s)
− 1

∣∣∣∣ ≤ 1

2
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on An,1. Finally, writing

Zn = δ−1

1 + δ−1E[X]
∣∣∣∣E[X] − 1

n

n∑
i=1

Xi

∣∣∣∣ · ∣∣(�X̃)(s)
∣∣,

and noting that E[X2] < ∞, it follows from Lemma 1 and |(�X̃)(s)| ≤ 1 that E[|Zn|p] ≤
κ3n

−1/2 for all p ∈ (1,2) and some κ3 > 0 independent of n and p. Combining this with equa-
tions (17), (20), and (21), implies that assumption (A3) holds. �

Remark 2. An important problem in [11] is to develop heuristics for choosing δ, in order to
minimize the expected estimation error. In the proof of Theorem 1 we show the following upper
bound

E
[∣∣FY

n (w) − FY (w)
∣∣] ≤ κ4n

−1/2 + C1(p)n1/2−1/p + P
(
Ac

n

)
, (22)

where p = pn = 1 + 1/(2 log(n + 1)). A close look at the proof reveals that limp↓1(p −
1)1/pC1(p) = exp(cw)π−1(2κ2 + κ3), and for the M/G/1 example it is not difficult to show
that κ2 = κ2(δ) ≤ 2c−1δ−1, κ3 = κ3(δ) ≤ (1 + Var[X])δ−1(1 + ρ)−1, Var[X] = δλE[B2], and
P(Ac

n) = O(n−1). This means that, for large n, the right-hand side of (22) can be approximated
by

(
α + βδ−1)e1/2n−1/2 log(n + 1), (23)

where

α := κ4 + ecwπ−1λE
[
B2](1 + ρ)−1, β := ecwπ−1(4c−1 + (1 + ρ)−1).

If we neglect the log(n + 1) term, then, on a fixed time horizon of length T = δn, the upper
bound (23) equals

(
αδ1/2 + βδ−1/2)e1/2T −1/2,

which suggests that δ should be chosen that minimizes αδ1/2 + βδ−1/2. In the application [11]
α and β are unknown (because they depend on e.g., λ and E[B2]), but if they can be replaced by
known upper bounds αu and βu, then a heuristic choice for δ is to pick a minimizer of αuδ

1/2 +
βuδ

−1/2 (yielding δ = βu/αu).

Remark 3. Interestingly, the technique described above enables a fast and accurate estimation of
rare-event probabilities (i.e., 1−FY (w) for w large), even in situations in which the estimation is
based on input X1, . . . ,Xn for which the corresponding queue would not have exceeded level w.
This idea, which resonates the concepts developed in [19], has been worked out in detail in
[11]. A numerical illustration of our estimator in this setting, and a comparison to the empirical
estimator, is provided in Section 6.
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4.2. Decompounding

Our second application involves decompounding a compound Poisson distribution, a concept
that has been studied in the literature already (see the remarks on this in the introduction).

We start by providing a formal definition of the problem. Let X denote the collection of ran-
dom variables of the form

∑N ′
i=1 Y ′

i , with N ′ Poisson distributed with E[N ′] > 0, and (Y ′
i )i∈N

i.i.d. nonnegative random variables, independent of N ′, and with P(Y ′
1 = 0) = 0 (which can be

assumed without loss of generality). For each X̃ ∈ X̃ , let, for s ∈C+,

(�X̃)(s) = 1 + 1

− log(X̃(∞))
Log

(
X̃(s)

)
,

where Log denotes the distinguished logarithm of X̃, and

X̃(∞) := lim
s→∞,s∈R X̃(s) = lim

s→∞,s∈R eE[N](−1+Ỹ1(s)) = e−E[N]

if X = ∑N
i=1 Yi ; here the last equality follows from P(Y1 = 0) = 0.

Let X = ∑N
i=1 Yi be an element of X , for some particular Y

d= Y1 and a Poisson distributed
random variable N with mean λ > 0. Since − log(X̃(∞)) = λ and X̃(s) = exp(−λ+λE[−sY ]),
we have Ỹ = �X̃. The idea is to estimate FY (w), for w > 0, based on a sample X1, . . . ,Xn of
n ∈N independent copies of X, using the estimator FY

n (w) of Section 2, with, for n ∈N,

En :=
{

1

n

n∑
i=1

1{Xi=0} ∈ (0,1)

}

and arbitrary c > 0.

Theorem 3. Consider the estimation procedure outlined above. Suppose FY is continuously
differentiable, twice differentiable in w, and suppose E[|X|2] < ∞. Then there is a constant
C > 0 such that

E
[∣∣FY

n (w) − FY (w)
∣∣] ≤ Cn−1/2 log(n + 1)

for all n ∈ N.

Proof. Write

λn = − log
(
X̃n(∞)

) = − log

(
1

n

n∑
i=1

1{Xi=0}

)

(being well-defined on En), and define

An,1 :=
{

sup
−√

n≤y≤√
n

∣∣X̃n(c + iy) − X̃(c + iy)
∣∣ ≤ exp(−2λ)/2

}
,
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An,2 :=
{

λ

2
≤ λn ≤ 2λ

}
,

and An = An,1 ∩An,2. Note that An,2 ⊂ En and thus An ⊂ En. We show that assumptions (A1)–
(A3) are valid. Because we explicitly assumed (A2), we are left with verifying (A1) and (A3).
These verification resemble those of the M/G/1 example.

Assumption (A1). P(Ac
n,1) = O(

√
n exp(−nβ2/18)) = O(n−1/2) follows from Lemma 2,

with β = exp(−2λ)/2, together with Chebyshev’s inequality and the assumption E[|X|2] < ∞.
P(Ac

n,2) = O(n−1/2) follows from Hoeffding’s inequality, and thus

P
(
Ac

n

) ≤ P
(
Ac

n,1

) + P
(
Ac

n,2

) = O
(
n−1/2).

Assumption (A3). On An, for s = c + iy, −√
n ≤ y ≤ √

n, we have

∣∣∣∣ X̃n(s)

X̃(s)
− 1

∣∣∣∣ ≤ ∣∣X̃n(s) − X̃(s)
∣∣e2λ ≤ 1

2
,

where |X̃(s)|−1 ≤ exp(2λ) follows as in (16), and thus

∣∣Log
(
X̃n(s)

) − Log
(
X̃(s)

)∣∣ = ∣∣Log
(
X̃n(s)/X̃(s)

)∣∣ = ∣∣L(
X̃n(s)/X̃(s)

)∣∣
≤ ∣∣X̃n(s) − X̃(s)

∣∣(log 4)e2λ,

using (18) and (19). This implies

∣∣(�X̃n)(s) − (�X̃)(s)
∣∣ · 1An

≤ ∣∣λ−1
n Log

(
X̃n(s)

) − λ−1
n Log

(
X̃(s)

)∣∣ · 1An + ∣∣λ−1
n Log

(
X̃(s)

) − λ−1 Log
(
X̃(s)

)∣∣ · 1An

≤ ∣∣λ−1
n

∣∣ · ∣∣Log
(
X̃n(s)

) − Log
(
X̃(s)

)∣∣ · 1An + ∣∣λ−1
n − λ−1

∣∣ · ∣∣Log
(
X̃(s)

)∣∣ · 1An

≤ 2 log 4

λ
e2λ · ∣∣X̃n(s) − X̃(s)

∣∣ · 1An + Zn a.s.,

with Zn = 2λ−2|λn − λ| · 1An . By definition of An,2, Zn is bounded, and it follows from
Hoeffding’s inequality that there is a κ3 > 0 independent of n such that, for all 1 < p < 2,
E[|Zn|p] ≤ κ3n

−1/2. This shows that (A3) is valid. �

Remark 4. The decompounding example above can also be carried out with distributions other
than Poisson. For example, if N is Bin(M,p) distributed, for known M ∈ N and unknown p ∈
(0,1), then X̃(s) = (pỸ (s) + 1 − p)M , X̃(∞) = (1 − p)M , and thus

Ỹ (s) = (�X̃)(s) := X̃(s)1/M − X̃(∞)1/M

1 − X̃(∞)1/M
.
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Or, if N is negative binomially distributed, that is,

P(N = n) =
(

n + M − 1

n

)
(1 − p)Mpn, (n = 0,1,2, . . .),

for some known M ∈ N and unknown p ∈ (0,1), then X̃(s) = (1−p)M(1−pỸ (s))−M , X̃(∞) =
(1 − p)M , and thus

Ỹ (s) = (�X̃)(s) := 1 − X̃(∞)1/MX̃(s)−1/M

1 − X̃(∞)1/M
.

For both examples it is not difficult to construct An and Zn, in the same spirit as in the proof of
Theorem 3, such that the convergence rates E[|FY

n (w) − FY (w)|] = O(n−1/2 log(n + 1)) hold.
The key requirement on N to obtain these rates is that the relation X̃(s) = E[Ỹ (s)N ] can be
inverted, such that we can write Ỹ (s) = (�X̃)(s) for some mapping � .

5. Auxiliary lemmas

This section contains a number of auxiliary lemmas that are used in the proofs of Theorems 1, 2,
and 3.

Lemma 1. Let c > 0, n ∈ N and let X1, . . . ,Xn be i.i.d. nonnegative random variables dis-
tributed as X. For all p ∈ (1,2) and s ∈ c + iR,

E

[∣∣∣∣∣X̃(s) − 1

n

n∑
i=1

exp(−sXi)

∣∣∣∣∣
p]

≤ 2pn−1/2,

and

E

[∣∣∣∣∣E[X] − 1

n

n∑
i=1

Xi

∣∣∣∣∣
p]

≤ (
1 + Var[X])n−1/2,

where the last inequality is only informative if Var[X] < ∞.

Proof. Let s ∈ c + iR. Since Xi ≥ 0 a.s. for all i = 1, . . . , n, we have∣∣∣∣∣X̃(s) − 1

n

n∑
i=1

exp(−sXi)

∣∣∣∣∣
p−1

≤
(∣∣X̃(s)

∣∣ + 1

n

n∑
i=1

∣∣exp(−sXi)
∣∣)p−1

≤ 2p−1 a.s.

Jensen’s inequality then implies

E

[∣∣∣∣∣X̃(s) − 1

n

n∑
i=1

exp(−sXi)

∣∣∣∣∣
p]

≤ 2p−1

√√√√
E

[∣∣∣∣∣1

n

n∑
i=1

(
exp(−sXi) −E

[
exp(−sX)

])∣∣∣∣∣
2]

= 2p−1

√
1

n
E

[∣∣exp(−sX) −E
[
exp(−sX)

]∣∣2] ≤ 2pn−1/2.
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Furthermore, we have, again by Jensen’s inequality,

E

[∣∣∣∣∣E[X] − 1

n

n∑
i=1

Xi

∣∣∣∣∣
p]

≤ n−p
E

[∣∣∣∣∣
n∑

i=1

(
Xi −E[X])

∣∣∣∣∣
2]p/2

≤ n−pnp/2
E

[(
X −E[X])2]p/2 ≤ n−1/2 Var[X]p/2

≤ n−1/2(1 + Var[X]).
This proves the claims. �

Lemma 2. Let n ∈ N, and let X1, . . . ,Xn be i.i.d. nonnegative random variables distributed
as X. Let α > 0, β > 0, c > 0, and

X̃n(s) := 1

n

n∑
i=1

exp(−sXi),

for s ∈C+. Then

P

(
sup
|t |≤α

∣∣X̃(c + it) − X̃n(c + it)
∣∣ > β

)
< 4

(
1 + 8αE[|X|]

β

)
exp

(−nβ2/18
)

+ P

(∣∣∣∣∣1

n

n∑
i=1

Xi

∣∣∣∣∣ ≥ 4

3
E

[|X|]
)

.

Proof. One can show that, for all t, s ∈ [−α,α],
∣∣X̃(c + it) − X̃(c + is)

∣∣ ≤ E
[∣∣1 − exp

(
i(t − s)X

)∣∣],
and

∣∣X̃n(c + it) − X̃n(c + is)
∣∣ ≤ |t − s|

∣∣∣∣∣1

n

n∑
i=1

Xi

∣∣∣∣∣,
whereas, for each ti ∈ [−α,α],

P
(∣∣X̃(c + iti ) − X̃(c + iti )

∣∣ > 1
3β

)
≤ P

(∣∣�(
X̃(c + iti ) − X̃(c + iti )

)∣∣ > 1
6β

) + P
(∣∣�(

X̃(c + iti ) − X̃(c + iti )
)∣∣ > 1

6β
)

≤ 4 exp
(−2nβ2/36

)
,

using Hoeffding’s inequality. The claim then follows along precisely the same lines as the proof
of [12], Theorem 1. �
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Lemma 3. Let w > 0, c > 0, and let f : [0,∞) → [0,1] be a continuously differentiable func-
tion, twice differentiable in the point w, and such that

∫ ∞
w

|f ′(y + w)|e−cyy−1 dy < ∞. There
exists a κ4 > 0 such that, for all m > 0,

∣∣∣∣∣
∫

|y|>m

1

2π
e(c+iy)wf̄ (c + iy)dy

∣∣∣∣∣ ≤ κ4

m
.

Proof. Fix m > 0. Observe that∫
|y|≤m

1

2π
e(c+iy)wf̄ (c + iy)dy

=
∫

|y|≤m

1

2π
e(c+iy)w

∫ ∞

0
e−(c+iy)xf (x)dx dy

=
∫ ∞

0

1

2π
f (x)

∫
|y|≤m

e(c+iy)(w−x) dy dx (24)

=
∫ ∞

0

1

π
f (x)ec(w−x) sin(m(w − x))

w − x
dx

=
∫ ∞

−w

1

π
f (y + w)e−cy sin(my)

y
dy,

using Fubini’s theorem and the variable substitution y := x − w, together with the obvious iden-
tity sin(−my)/(−y) = sin(my)/y.

We consider the integral (24) separately over the domain [w,∞) and [−w,w]. For the interval
[w,∞), we have

∣∣∣∣
∫ ∞

w

1

π

f (y + w)e−cy

y
sin(my)dy

∣∣∣∣
≤

∣∣∣∣
[

1

π

f (y + w)e−cy

y

cos(my)

−m

]∞

y=w

∣∣∣∣ +
∣∣∣∣
∫ ∞

w

1

π

∂

∂y

[
f (y + w)e−cy

y

]
cos(my)

m
dy

∣∣∣∣
≤

∣∣∣∣ 1

π

f (w + w)e−cw

w

cos(mw)

m

∣∣∣∣ (25)

+
∫ ∞

w

1

π

∣∣f ′(y + w)
∣∣e−cyy−1 1

m
dy +

∫ ∞

w

1

π
f (y + w)

(
ce−cyy−1 + e−cyy−2) 1

m
dy

≤ 1

m
·
(

e−cw

wπ
+ 1

π

∫ ∞

w

∣∣f ′(y + w)
∣∣e−cyy−1 dy + e−cw

πw
+ e−cw

πcw2

)
.

We now consider the integral (24) on the interval [−w,w]. Write φ(y) := f (y + w)e−cy and
g(y) := (φ(y) − φ(0) − φ′(0)y)/y, and observe that g is continuously differentiable on the
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interval [−w,w] (which follows from the fact that f ′′(w) exists). We have∣∣∣∣φ(0) −
∫ w

−w

1

π
f (y + w)e−cy sin(my)

y
dy

∣∣∣∣
=

∣∣∣∣φ(0) −
∫ w

−w

1

π

(
φ(0) + φ′(0)y + g(y)y

) sin(my)

y
dy

∣∣∣∣ (26)

≤ φ(0)

∣∣∣∣1 −
∫ w

−w

1

π

sin(my)

y
dy

∣∣∣∣ +
∣∣∣∣
∫ w

−w

1

π
g(y) sin(my)dy

∣∣∣∣;
realize that

∫ w

−w
π−1φ′(0) sin(my)dy = 0.

We first bound the first term of (26)∣∣∣∣1 −
∫ w

−w

sin(my)

πy
dy

∣∣∣∣ ≤
∣∣∣∣1 −

∫ ∞

−∞
sin(my)

πy
dy

∣∣∣∣ +
∣∣∣∣
∫ ∞

w

2 sin(my)

πy
dy

∣∣∣∣ =
∣∣∣∣
∫ ∞

w

2 sin(my)

πy
dy

∣∣∣∣.
Write h(a) := ∫ ∞

w
e−ayy−1sin(my)dy, a ≥ 0. Then lima→∞ h(a) = 0,

h′(a) =
∫ ∞

w

−e−ay sin(my)dy

= −e−aw

∫ ∞

0
e−ax sin

(
m(x + w)

)
dx = −e−aw m cos(wm) + a sin(wm)

a2 + m2
,

and thus ∣∣∣∣
∫ ∞

w

sin(my)

y
dy

∣∣∣∣ = ∣∣h(0)
∣∣ =

∣∣∣∣ lim
a→∞h(a) −

∫ ∞

0
h′(a)da

∣∣∣∣
=

∣∣∣∣
∫ ∞

0
e−aw m cos(wm) + a sin(wm)

a2 + m2
da

∣∣∣∣
≤

∫ ∞

0
e−aw m + a

a2 + m2
da ≤ 2

m

∫ ∞

0
e−aw da = 2

mw
,

which implies ∣∣∣∣1 −
∫ w

−w

sin(my)

πy
dy

∣∣∣∣ ≤ 4

wπm
. (27)

The second term of (26) is bounded by∣∣∣∣
∫ w

−w

1

π
g(y) sin(my)dy

∣∣∣∣
=

∣∣∣∣ 1

π
g(w)

cos(−mw)

m
− 1

π
g(−w)

cos(mw)

m
−

∫ w

−w

1

π
g′(y)

cos(−my)

m
dy

∣∣∣∣ (28)

≤ |g(w) − g(−w)|
πm

+ 1

πm

∫ w

−w

∣∣g′(y)
∣∣dy.
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Combining (24), (25), (26), (27) and (28), using f (w) = φ(0), it follows that

∣∣∣∣
∫

|y|>m

1

2π
e(c+iy)wf (c + iy)dy

∣∣∣∣
=

∣∣∣∣f (w) −
∫

|y|≤m

1

2π
e(c+iy)wf (c + iy)dy

∣∣∣∣
=

∣∣∣∣f (w) −
∫ w

−w

1

π
f (y + w)e−cy sin(my)

y
dy −

∫ ∞

w

1

π
f (y + w)e−cy sin(my)

y
dy

∣∣∣∣
≤ f (w)

4

πmw
+ |g(w) − g(−w)|

πm
+ 1

πm

∫ w

−w

∣∣g′(y)
∣∣dy

+ 1

m
·
(

e−cw

wπ
+ 1

π

∫ ∞

w

∣∣f ′(y + w)
∣∣e−cyy dy + e−cw

πw
+ e−cw

πcw2

)
.

Defining

κ4 := f (w)
4

πw
+ |g(w) − g(−w)|

π
+ 1

π

∫ w

−w

∣∣g′(y)
∣∣dy

+ e−cw

wπ
+ 1

π

∫ ∞

w

∣∣f ′(y + w)
∣∣e−cyy dy + e−cw

πw
+ e−cw

πcw2
,

this implies the stated of the lemma. �

6. Numerical illustration

We provide a numerical illustration of the performance of our estimator, inspired by an applica-
tion of estimating high-load probabilities in communication links [11]. In particular, we consider
an M/G/1 queue in stationarity that serves jobs at unit speed, and whose (unknown) service
time distribution is exponential with mean 1/20. We choose the (unknown) arrival rate λ from
{10,18,19}; this corresponds to load factors ρ of 0.50, 0.90, and 0.95. For n = 10 000 consecu-
tive time intervals of length δ = 0.10, the amount of work arriving to the queue in each interval
is recorded. Based on these samples, we estimate the tail probabilities P(Y > w) of the workload
distribution Y for different values of w, using the Laplace-transform based estimator outlined in
Section 4.1. We test values of w corresponding to the 90th, 99th, and 99.9th percentile of Y ; the
particular values, denoted by w0.9, w0.99, and w0.999, are given in Table 1.

For each ρ ∈ {0.50,0.90,0.95} and each of the three corresponding values of w, we run 1000
simulations and record the relative estimation error

∣∣∣∣ (1 − FY
n (w)) − P(Y > w)

P(Y > w)

∣∣∣∣, (29)
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Table 1. 90th, 99th, and 99.9th percentiles of W , for
different values of ρ

ρ w0.9 w0.99 w0.999

0.50 0.1609 0.3912 0.6215
0.90 1.0986 2.2499 3.4012
0.95 2.2513 4.5539 6.8565

where FY
n (w) denotes the outcome of the Laplace-transform based estimator. The simulation

average of (29), for different values of ρ and w, is reported in Table 2, at the lines starting with
“Laplace.”

We compare the performance of the Laplace-transform based estimator to that of the empirical
estimator that samples the workload W(iδ) at time points iδ, i = 1, . . . , n, and estimates the tail
probability P(Y > w) by the fraction n−1 ∑n

i=1 1Y(iδ)>w . The corresponding simulation average
of the relative estimation error is reported in Table 2, at the lines starting with “Empirical.”

Table 2 shows that the Laplace-transform based estimator has a lower relative error than the
empirical estimator, for all-but-one tested instances of ρ and w. This is perhaps not surprising,
since the “Laplace” estimator is based on i.i.d. samples (of the amount of work arriving to the
queue in δ time units), whereas the “Empirical” estimator is based on correlated samples (of the
workload in the queue).

A third estimator, that is based on the same samples as the “Empirical” estimator, can be
constructed as follows: consider the samples of the workload process Y(iδ), i = 1, . . . , n, and
let Q = {Y(iδ) − (Y ((i − 1)δ) − δ)|Y((i − 1)δ) ≥ δ,2 ≤ i ≤ n}. If, for some i, Y((i − 1)δ) ≥ δ,
then the amount of work arrived in the δ time units prior to time point iδ is precisely equal to
Y(iδ) − (Y ((i − 1)δ) − δ). (If Y((i − 1)δ) < δ, then the exact amount of work arrived between

Table 2. Average relative estimation error

Estimator w = w0.9 w = w0.99 w = w0.999

ρ = 0.50
Laplace 0.05 0.13 0.25
Empirical 0.50 0.50 0.67
Laplace, censored 0.15 0.39 0.67

ρ = 0.90
Laplace 0.19 0.40 0.65
Empirical 0.29 0.96 1.82
Laplace, censored 0.23 0.49 0.81

ρ = 0.95
Laplace 0.39 0.96 2.09
Empirical 0.52 1.36 1.83
Laplace, censored 0.43 1.07 2.34
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time points (i − 1)δ and iδ can not be inferred from the workload samples). If we apply the
Laplace-transform based estimator on the samples in the set Q (which are independent samples
from the amount of work arriving to the queue in δ time units), then we obtain an estimate of
P(Y > w) that is based on the same samples as the “Empirical” estimator. The relative estimation
error of this third estimator is reported in Table 2, at the lines starting with “Laplace, censored.”

Table 2 shows that the “Laplace, censored” estimator still outperforms the “Empirical” es-
timator, in all-but-one instances. Both these estimators are based on the same samples of the
workload process. A notable disadvantage of “Empirical” estimator is that it requires the system
to reach high load in order to obtain informative estimates. In practice, particularly in the con-
text of operated communication links, this is not desirable: network operators would certainly
intervene if the network load reaches exceedingly high levels. These interventions hamper the
estimation of the probability that this high load occurs. In contrast, both the Laplace-transform
based estimators produce informative estimates of P(Y > w), even if all sampled values of the
workload process are below w.

7. Discussion, concluding remarks

In this paper, we have discussed a technique to estimate the distribution of a random variable Y ,
focusing on the specific context in which we have i.i.d. observations X1, . . . ,Xn, distributed as a
random variable X, where the relation between the Laplace transforms of X and Y is known. Our
problem was motivated from a practical question of an internet service provider, who wished to
develop statistically sound techniques to estimate the packet delay distribution based on various
types of probe measurements; specific quantiles of the delay distribution are mutually agreed
upon by the service provider and its customers, and posted in the service level agreement. To
infer whether these service level agreements are met, the internet provider estimates several tail
probabilities of the delay distribution. This explains why we have focused on the setup presented
in our paper, concentrating on estimating the distribution function FY (w) and bounding the
error E[|FY

n (w) − FY (w)|] for this w. It is noted that various other papers focus on estimating
the density, and often use different convergence metrics; some establish asymptotic Normality.

A salient feature of our analysis is that the ill-posedness of Laplace inversion, that is, the fact
that the inverse Laplace transform operator is not continuous, does not play a rôle. Our estimate
FY

n (w) is “close” to FY (w) if the Laplace transform F̄ Y
n is “close” to the Laplace transform F̄ Y ,

measuring “closeness” of these Laplace transforms by the integral (8). Our assumptions (A1)–
(A3) ensure that this integral converges to zero (as n grows large), and Section 4 shows that
these conditions are met in practical applications. We therefore do not need regularized inversion
techniques as in [20] and [23], with convergence rates of just 1/ log(n). (See further Remark 1).
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