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This article is concerned with the spectral behavior of p-dimensional linear processes in the moderately
high-dimensional case when both dimensionality p and sample size n tend to infinity so that p/n — 0. Itis
shown that, under an appropriate set of assumptions, the empirical spectral distributions of the renormalized
and symmetrized sample autocovariance matrices converge almost surely to a nonrandom limit distribution
supported on the real line. The key assumption is that the linear process is driven by a sequence of p-
dimensional real or complex random vectors with i.i.d. entries possessing zero mean, unit variance and finite
fourth moments, and that the p x p linear process coefficient matrices are Hermitian and simultaneously
diagonalizable. Several relaxations of these assumptions are discussed. The results put forth in this paper
can help facilitate inference on model parameters, model diagnostics and prediction of future values of the
linear process.

Keywords: empirical spectral distribution; high-dimensional statistics; limiting spectral distribution;
Stieltjes transform

1. Introduction

In this article, the spectral properties of a class of multivariate linear time series are studied
through the bulk behavior of the eigenvalues of renormalized and symmetrized sample autoco-
variance matrices when both the dimension p and sample size n are large but the dimension
increases at a much slower rate compared to the sample size, so that the dimension-to-sample
size ratio p/n converges to zero. The latter asymptotic regime will be referred to as moderately
high-dimensional scenario. Under this framework, the existence of limiting spectral distributions
(LSD) of the matrices C; = /n/p(S; — ;) is proved, where S; is the symmetrized lag-t sam-
ple autocovariance matrix and X, the symmetrized lag-t population autocovariance matrix, for
T =0, 1,.... The analysis takes into account both temporal and dimensional correlation and the
LSD is described in terms of a kernel that is determined by the transfer function of a univariate
linear time series. The results derived in this paper are natural extensions of the work of [2],
who proved that the empirical spectral distribution of renormalized sample covariance matrices
based on i.i.d. observations with zero mean and unit variance converges to the semi-circle law
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under the same asymptotic regime. It also extends the work of [9] and [15] in two different ways;
first, by allowing nontrivial temporal dependence among the observation vectors and, second, by
describing the LSDs of renormalized sample autocovariance matrices of all lag orders. A certain
structural assumption on the linear process is needed, namely, that its coefficient matrices are
symmetric (Hermitian for complex-valued data) and simultaneously diagonalizable. However,
various ways to relax the latter assumption are discussed.

The results derived in this paper can be seen as natural counterparts of the works of [8], who
proved the existence of LSDs of symmetrized sample autocovariance matrices under the same
structural assumptions on the linear process but in the asymptotic regime p,n — oo such that
p/n — c € (0,00). Jin et al. [6] derived similar results under the assumption of i.i.d. observa-
tions, using them for detecting the presence of factors in a class of dynamic factor models. Under
the same asymptotic framework, the existence of the LSD of sample covariance matrices when
the different coordinates of the observed process are i.i.d. linear processes has been proved by
[12] and [16]. In same setting, Pan, Gao and Yang [10] proved a central limit theorem for lin-
ear spectral statistics of sample covariance matrices. They also prove the existence of the LSD
under finite second moment conditions. In a related development, Li, Pan and Yao [7] studied
the distribution of singular values of sample autocovariance matrices in the same setting as [6].
Further results related to limiting spectral distributions of sample covariance matrices and their
implications in the p/n — ¢ € (0, co) asymptotic domain can be found in [1] and [11].

The main results in this paper originally formed a part of the Ph.D. thesis of the first author
[13]. Very recently, Bhattacharjee and Bose [3] proved the existence of the LSD of symmetrized
and normalized autocovariance matrices for an MA(gq) process with fixed ¢, under weaker as-
sumptions on the coefficient matrices that involves existence of limits of averaged traces of poly-
nomials of these matrices, where the limits satisfy certain regularity requirements associated
with a non-commutative *-probability space. They use free probability theory for their deriva-
tions and therefore their approach is very different from the one presented in this paper, which
relies on the characterization of distributional convergence through the convergence of the cor-
responding Stieltjes transforms. Moreover, the key structural assumption of this paper, namely,
the simultaneous digaonalizability of coefficient matrices, has a natural interpretation in terms of
the structure of the linear process, as discussed later. On the other hand, beyond this setting, the
conditions assumed in [3] do not seem to have a similar finite-sample interpretation.

The main contribution of this paper is the precise description of the bulk behavior of the eigen-
values of the matrices C;. These are natural objects to study if one is interested in understanding
the fluctuations of the sample autocovariance matrices from their population counterparts, since
the latter provide useful information about the various characteristics of the observed process.
Under the asmyptotic regime p,n — oo with p/n — 0, and under fairly weak regularity con-
ditions, the symmetrized sample autocovariance matrices converge to the corresponding popula-
tion autocovariance matrices in operator norm. However, stronger statements about the quality
of the estimates are usually not possible without imposing further restrictions on the process.
The results stated here provide a way to quantify the fluctuations of the estimated autocovariance
matrices from the population versions, and can be seen as analogous to the standard error bounds
in univariate problems. Indeed, if the quality of estimates is assessed through the Frobenius norm
of C;, or some other measure that can be expressed as a linear functional of the spectral distri-
bution of C, the results presented in this paper give a precise description about the asymptotic
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behavior of such a measure in terms of integrals of the LSD of C,. Some specific applications of
the results are discussed in Section 4. A further importance of the results derived here is that they
form the building block of further investigations on the fluctuations of linear spectral statistics
of matrices such as Cr, thus raising the possibility of generalizing results such as those obtained
recently by [5].

The rest of the paper is organized as follows. Section 2 gives the main results and develops
intuition. Section 3 discusses some specific examples to elucidate the main results. Section 4
discusses a number of potential applications. Sections 5-7 are devoted to describing the key
steps in the proofs of the main results. Due to space constraints, further technical details are
relegated to the Online Supplement [14].

2. Main results

2.1. Assumptions

Let Z, Ny and N denote integers, nonnegative integers and positive integers, respectively. In the
following, the linear process (X;:t € Z) is studied, given by the set of equations

o
X =) AZiy. te’, 2.1
=0

where (A;: £ € Np) are coefficient matrices with Ag =1, the p-dimensional identity matrix, and
(Z;:t € Z) are innovations for which more specific assumptions are given below. If Ay =0, the
p-dimensional zero matrix, for all £ > ¢, then one has the gth order moving average, MA(q),
process

q
X, = ZAKZ,_E, te’. (2.2)
=0

In the following results will be stated and motivated first for the MA(g) process and then ex-
tended to linear processes. Throughout the following set of conditions are assumed to hold.

Assumption 2.1. The innovations (Z;:t € Z) consist of real- or complex-valued entries Zj,
which are independent, identically distributed (i.i.d.) across time t and dimension j and satisfy:

(Z1) E[Z;1=0,E[|Z;/|*1 =1 and E[|Z;;*] < oo;

(22) In case of complex-valued innovations, the real and imaginary parts of Z j, are indepen-
dent with E[R(Z ;)] = E[S(Z;;)] =0 and IE[SR(Zj,)z] = E[S(th)z] =1/2.

Assumption 2.2. Suppose that:

(A1) (A¢: £ e N) are Hermitian and simultaneously diagonalizable, that is, there exists a uni-
tary matrix U such that U*A;U = Ay, where Ay is a diagonal matrix with real-valued diagonal
entries;
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(A2) The jth diagonal entry of Ag is given by fi(ej), where aj € R™ for j=1,...,p,
where my is fixed, and ( fo: € € N) are continuous functions from R™ to R;

(A3) As p — o0, the empirical distribution of (aj: j =1, ..., p) converges to a distribution
on R™ denoted by F A;

(A4) Letap =1 and ap = | felloo for £ > 1. Assume that, for some ro > 4, Zj?io £0ay < 0.
In particular, with L j 11 =2 27| folloos it holds that Ljiy <oofor j=0,...,ro.

The assumptions on the innovations (Z;:t € Z) are standard in time series and high-
dimensional statistics contexts. The assumptions on the coefficient matrices (A¢: ¢ € N) are
similar to the ones imposed in [8] and generalize condition sets previously established in the
literature, for example, the ones in [12,16] and [6]. In assumption (A2), the precise value of mg
is dependent on the description of the process. In Section 3, several examples of processes satis-
fying (A1)—(A4) are provided that help clarify the description of (f;: £ € N) and the value of mg
in each case. Regarding assumption (A4), the conditions on L1 for j > 1 are needed for the
extension of the results for MA(g) processes to linear processes (see Section 2.4).

2.2. Result for MA(q) processes

The objective of this section is to study the spectral behavior of the lag-t symmetrized sample
autocovariance matrices associated with the MA(g) process (X;:t € Z) defined in (2.2) in the
moderately high dimensional setting

pon— oo suchthat £ = 0. 2.3)
n

Extensions to the linear process (2.1) are discussed in Section 2.4 below. The symmetrized sam-
ple autocovariance matrices are given by the equations

1 n
T Z (X, X7, + X X)), T € Np, (2.4)

t=1+1

S:

where * signifies complex conjugate transposition of both vectors and matrices. It should be
noted that Sg is simply the sample covariance matrix. Using the defining equations of the MA(g)
process, one can show that

1 (=2
T, =ElS:] = (Z(:)[AH,A; +A4A;‘f+r]>, T e Np.

Since, under (2.3), S; is a consistent estimator for X, one studies appropriately rescaled fluctu-
ations of S; about its mean X ;. This leads to the renormalized matrices

C.= \/z(ST - X)), 7 € Np. (2.5)
p
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To study the spectral behavior of C, introduce its empirical spectral distribution (ESD) Fy given
by

. 1<
Fey=— D T <
j=1

where A; 1, ..., A; p are the eigenvalues of C;. In the RMT literature, proofs of large-sample re-

sults about F; are often based on convergence properties of Stieltjes transforms [1]. The Stieltjes
transform of a distribution function F on the real line is the function

1
spCr > CF e sF(z)=f ——dF0),
—Z

where CT = {x +iy:x € R, y > 0} denotes the upper complex half plane. Note that s is analytic
on C™ and that the distribution function F can be obtained from sy using an inversion formula.
Let fp: R™ — R be defined as fp(a) = 1 for all a € R™0., Define the MA(q) transfer function

q
ga.v)=Y_ fiae", vel0,27],aeR™, (2.6)
=0

and the corresponding power transfer function

Y@ v)=|g@n|,  velo,2r],acR™. 2.7)

The effect of the temporal dependence on the spectral behavior of C; is encoded through the
power transfer function v (a, v). Keeping a fixed, it can be seen that i/ (a, v) is up to normaliza-
tion the spectral density of a univariate MA(g) process with coefficients fi(a), ..., fy(a). This
leads to the following result.

Theorem 2.1. If the MA(q) process (X;:t € Z) satisfies (Z1), (Z2) and (A1)~(A4), then, with
probability one and in the moderately high-dimensional setting (2.3), F; converges in distribu-
tion to a nonrandom distribution F; whose Stieltjes transform s; is given by

dFA(b) .
D)= ————, , 2.
s¢(2) /Z+,31(Z,b) zeC (2.8)
where
__ [ Re@bydFAm) A
Br(z,a) = / Tt b zeCT,aeR™, (2.9
and
2
R.(a, b):%/ cos2(z0)¥ (a, )Y (b,6)d6,  a,beR™, (2.10)
0

Moreover, B;(z,a) is the unique solution to (2.9) subject to the condition that it is a Stieltjes
kernel, that is, for each a € supp(F A, B:(z, Q) is the Stieltjes transform of a measure on the real

line with mass [ R.(a,b) dFA D).
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Since it only differs from the spectral density of an MA(q) process by a constant, it follows that
Y (a, 0) is strictly positive for all arguments. Consequently, R (a, b) and f R:(a,b)dF A(b) are
always strictly positive as well. The intuition for the proof of Theorem 2.1 is given in the next
section and will then be completed in Section 5.

Remark 2.1. 1t is easily checked, that for an MA(g) process, the kernel R, (a, b) is the same
for all T > ¢ + 1. This implies that the Stieltjes transforms s (z), and hence the LSDs (limiting
spectral distributions) of \/n/p(S; — X;) are the same for 7 > g + 1.

2.3. Intuition for Gaussian MA (gq) processes

Assume for now that the innovations (Z;:¢ € Z) are complex Gaussian, the extension to general
innovations will be established in Section 7. Define the p x n data matrix X =[X:---: X, ] and
the p x n innovations matrix Z = [Z; : --- : Z,]. Using the n x n lag operator matrix L=[0 : €1 :

-2 ep—1], where o and e; denote the zero vector and the jth canonical unit vector, respectively,
it follows that

q q
X=) AZL + > AZi gL, 2.11)
=0 =1

where Zj_g1=[Z_441:---:Zp:0:---:0]isa p x n matrix and L9 = (L97%~!. In the next
step, L is approximated by the circulant matrix L = len:e1:---:e,—1]. Asin [8], one defines the
matrix X = Y 7_ OAgZLe that differs from X only in the ﬁrst g columns. Let F,, = [e*]" _ .

with v; = 2m¢t /n, be a Fourier rotation matrix and A, = dlag(e“" ...,é"). Then
L=F,A,F:. (2.12)

Using this and notlcmg that X and X differ by a matrix of rank ¢, it can be seen that as long as g
small compared to p, S; = (n — )~ 'XD,X* can be approximated by S; = (n — 1)~ ' XD, X*,

where D; = [L® + (LT) 1/2 and D, =[L* + ~(L’) 1/2. Notice next that, due to the assumed
Gaussianity of the innovations, the entries of Z = U*ZF,, are i.i.d. copies of the entries of Z,
with U denoting the matrix diagonalizing the coefficient matrices (Ay: ¢ € N). Define then S; =

U*S, U and
~ n ~ ~
Tz‘l_(ST_ZT)s (2.13)
P

where ff = ]E[Sf] is a diagonal matrix. It will be shown in Section 5.1 that the LSD of Cg =
U*C, U is the same as that of C;.

2.4. Extensions to linear processes
In this section, Theorem 2.1 is extended to cover linear processes as defined in (2.1). To do so,

the continuity condition (A2) is strengthened to assumption (A6) below. In order to approximate
the linear process with MA(g) models of increasing order, a rate on g is imposed.
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Assumption 2.3. The following conditions are assumed to hold.

(A5) (fe:€ € N) are Lipschitz functions such that | fy(a) — fy(b)| < C¢'|la —b| for a,b €
R™0 and £ € N, where ri <rg and rq is as in (A4).

Analogously (2.6) and (2.7) are extended to the linear process transfer function and power
transfer function

g(a,v):Zf[(a)eie” and lp(a,u)=|g(a,u)|2, vel0,2r],aeR™, (2.14)
=0

respectively. Then, the following result holds.

Theorem 2.2. If the linear process (X;:t € Z) satisfies (Z1), (Z2) and (A1)—(AS), then, the
result of Theorem 2.1 is retained if (2.14) is used in place of (2.6) and (2.7).

The proof of Theorem 2.2 is based on a truncation argument, that involves approximating the
linear process with MA(gq) processes of increasing order g. More delicate arguments are needed
for this case as the intuitive arguments outlined in the previous section do not carry over to this
case. Indeed conditions on the approximating MA(g) ensure that ¢ does not grow too fast or
too slow in order for the LSD of the linear process and its truncated version to be the same. The
proof details are given in Section 6 below, where it turns out that one can choose ¢ = O (p'/4).
Consequently, as a byproduct of the proof of Theorem 2.2, an extension of Theorem 2.1 to the
setting where the order ¢ of the MA(g) process grows at the rate O (p'/4) is obtained.

A slight generalization of the above result can be given if the innovation terms of the linear
process are not isotropic, but have a certain covariance structure that commutes with the coef-
ficient matrices of the linear process. This is stated as a corollary to Theorem 2.2 through the
following formulation. Let the process (Y;: ¢ € Z) be obtained from the linear process (X;:t € Z)
through

Y, =B!/?Xx,, te’, (2.15)
where it is assumed that:

(A6) B!/2is a square root of the nonnegative definite Hermitian matrix B with || B|| < bg < o0,
and there is a nonnegative measurable function gp, not identically zero on supp(F A), such that
for each p, U"BU = diag(gp (1), ..., gp(ep)) = Ap,withUand a1, ..., &, as defined in (A1)
and (A2).

Then the following result holds.
Corollary 2.1. If the process (Y;:t € Z) defined in (2.15) satisfies (Z1), (Z2) and (A1)-(A6),

then, with probability one and in the setting (2.3), FTY converges in distribution to a nonrandom
distribution FIY whose Stieltjes transform sf is given by

v [ dFt@ N -
5. (2) = /7z+ﬁf(z,a)’ zeCT, (2.16)
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, zeCT,aeR™, 2.17)

v [ gs@gsd)R.(a,b)dFA(b)
Pr 2= / Z2+ Y (z,b)

and R (a,b) is defined in (2.10). Moreover, ﬂf (z, a) is the unique solution to (2.17) subject to
the condition that it is a Stieltjes kernel, that is, for each a € supp(FA), ﬂf (z, @) is the Stieltjes
transform of a measure on the real line with mass gp(a) ng (b)R,(a, b)dFA(b) whenever
gs(a) > 0.

The proof of Corollary 2.1 is similar to that of Theorem 2.4. The key structural modification
is as follows. Observe that the autocovariance matrices of the process (Y;:¢ € Z) are given by
S{ = B!/28.B!/2 and have expectation Zf =Bl/23x_Bl/2, Assumption (A6) implies that the
approximating autocovariance matrix obtained from replacing the lag operator matrix with the
corresponding circulant matrix takes on the form

g (Z TBAeZKﬁ) (M%W) <Z1/ABAKZAfL> (2.18)
=0 =0

n—rt
. NS S T ¢ ~y
with expectation X = dlag(at‘l, e of,p) and

~y 1

67 ;== snle))cos(tv)y (@), v,
=1

on—t4

in which v (e, vy) is defined in (2.14). Following similar arguments as in the finite and infinite
order MA cases, it can be shown that the LSD of CY = \/n/p(SY — £Y) is the same as that of
CY = /n/p(SY — £Y). The rest of the proof is essentially the same as that of Theorem 2.2.

2.5. Relaxation of commutativity condition

The assumption of commutativity or simultaneous diagonalizability of the coefficients (assump-
tion (A 1)) indeed restricts the class of linear processes for which the main result of existence and
uniqueness of the limiting ESD applies. However, this assumption can be relaxed to a milder one
in which the coefficients of the linear processes are only approximately Hermitian and commu-
tative. Two such scenarios are discussed below, which are natural but by no means exhaustive. In
both settings, it is assumed that the linear process

oo
X, = ZBth_g, teZ, (2.19)
=0

is observed with the standard assumptions (Z1) and (Z2) on the sequence (Z;:t € Z), whereas
By =1, and the sequence (B,: £ € N) satisfies the conditions:
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(B1) Let by =1, by = |B¢|| for £ € N, and L’j+1 =37 07 by. There exists an integer ro > 1
such that for j =0,...,rg L/j+1 < 00;

(B2) There is a sequence of Hermitian matrices (Ay: ¢ € N) approximating the sequence
(B¢: £ € N) and satisfying (A1)—(AS).

In addition to (B1) and (B2), it is assumed that the sequence (Ag: £ € N) satisfies one of the
following conditions specifying the approximation property in (B2):

1/
(B3) Forsome 1 <p <4, p~! Z/Ei] ]rank(Bg — Ay) — 0 under (2.3);
1/
(B4) Forsome 1 < B <4, n/p Y i, " B¢ — A¢ll — 0 under (2.3).

The importance of these conditions is discussed. First, restricting the sums involving B, — Ay
to the first p!/# terms is sufficient in view of (B1) ensuring that the process (X;: € Z) can be
approximated by the truncated process given by X{ = >"1_ B, Z,_; with ¢ = O(p'/*) without
changing the LSD of /n/p(S; — E[S;]). This can be verified by following the derivation in
Section 2.4. Condition (B3), on the other hand, says that the coefficient matrices (By: ¢ € N)
can be seen as low-rank perturbations of a sequence of Hermitian and commutative matrices
(A¢: £ € N). Condition (B4), which bounds the norms of differences between the coefficients and
their approximations, is a bit restrictive in the sense that it depends on n. Presence of the factor
A/n/p suggests that this condition is non-trivial essentially if n is moderately large compared
to p.
The result is stated in the form of the following corollary.

Corollary 2.2. Suppose that the linear process (X;:t € 7) satisfies conditions (B1), (B2) and
either (B3) or (B4), and let S; denote the lag-t symmetrized sample autocovariance matrix.
Then the limiting ESD of the matrix /n/p(S; — E[S;]) exists and its Stieltjes transform s (z)
satisfies (2.8)—(2.10).

The proof of Corollary 2.2 is given in Section S.2 of the Online Supplement [14].

The conditions imposed in Corollary 2.2 can be used to prove that results hold for processes
(X;:t € Z) satisfying (2.19) and whose coefficient matrices are certain classes of symmetric
(Hermitian) Toeplitz matrices. Specifically, if the matrix B, is determined by the sequence
(bex:k € Z), satisfying the condition sup,- Zlklzm |k|*|ber| — O as m — oo for some s > 1,
and (B1) holds, then the LSDs of the corresponding normalized sample autocovariance matri-
ces exist under (2.3) provided n = O( p*t1/2), In this case, the symmetric (Hermitian) Toeplitz
matrices By can be approximated by symmetric (Hermitian) circulant matrices whose eigenval-
ues are precisely the symbols associated with the sequence (by: k € Z) evaluated at the discrete
Fourier frequencies 2zj/p, j=1,..., p.

3. Examples

In this section, a number of special cases are presented for which the results stated in Section 2
take on an easier form.
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Example 3.1. Consider the MA(1) process
Xe=Zi+AZ,,

with A = diag(ay,...,ap) for a; € R. Thus, in this example, mg ='1. Suppose further that
f1(a) = a. Then, the transfer function (2.6) is given by g(a,0) =1+ ae? and the power transfer
function (2.7) by ¥ (a,0) =1+ a® + 2acos(9). This yields the explicit expressions

(1 +a?)(1+b?) + 2ab, =0,
Re(a,b) = (14+a*)(14+b%)/243ab/2, =1,
(1+a?)(1+b%)/2+ab, T>2.

Example 3.2. Consider the special case of an MA(g) process with Ay = y¢I,, £ =1,...,q. Set
here mo=¢q, fe=yeand aj =1, forall j =1,..., p. Then F A is the distribution on R? with
probability 1 at 1,. Since

g@,v) =) fi@e" =)y =)

£=0 £=0

and therefore v (a, v) = I/NI(L') does not depend on a, it follows that
1 2 B 2 B
R:(a,1)= — / cos2(tv)(1ﬁ(v)) dv="TR.,
2 0

so that equations (2.9) and (2.8) reduce respectively to B;(z,a) = B:(2) = Res¢(z) and

1
s = _Z +7§"[ST(Z).

For t = 0, the latter equation coincides with that for the Stieltjes transform for the case of in-
dependent observations with separable covariance structure discussed in [15]. Indeed, taking in
their notation A, =1, and B,/* = diag(g(v1), .. ., §(a)), equation (2.1) of Theorem 2.1 in [15]
reduces to s(z) = —[z + bas(2)]~!, where

b, = lim Tr B2 = hm Z|g(vl)| _—/ w(v) dv =TRy.

n—oon

Example 3.3. Consider the AR(1) process
X =AX; 1+ 7y,

with A = diag(a1, ..., ap) for a; € R such that |o;| < 1. The AR(1) process then admits the
linear process representation X; = Z,‘f‘;o A¢Z,_,. Thus, here my = 1 and fe(a) = at for £ =
0,1,..., and a € R. The transfer function (2.6) is given by g(a,0) = (1 — aei@)’1 and the power
transfer function (2.7) by ¥ (a,8) = (1 + a? —2acosf)~!
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Example 3.4. Consider the causal ARMAC(1, 1) process
(L)X, =0O(L)Z,,

where ®(L) =1— @& and ®(L) = I+ ©®; are matrix-valued autoregressive and moving average
polynomials in the lag operator L such that || ®] < 1 and ||®1|| < co. Then (X;:t € Z) can be
represented as the linear process

X =AL)Z;,

in which A(L) = Y02 AL = I — @, L)'+ ©;L). Assume further that ®; and ©,
are simultaneously diagonalizable by U, that is, U*®U = diag(¢1,...,¢,) and U*'O,U =
diag(01,...,0p). Leta; = (¢;, Gj)T € R2. Thus, here mg = 2. Assumption (A3) is satisfied if the
empirical distribution of {et1, ..., &} converges weakly to a non-random distribution function
defined on R2. Note that

U*A,U = diag(fe(a1), ..., fi(ap)),

with fy(ee;) =1and fe(ee;) = (0, +¢j)¢§_l for ¢ € N. Thus, the transfer function (2.6) is given
by

= it = P )
. — . v _ . . - v _  J
ﬂ%ﬂ—gﬁ%k-J+;@+W%e =g

and the power transfer function (2.7) is the squared modulus of the ratio on right-hand side of
the last equation.

Example 3.5. Suppose that for each £ > 1, Ay is a block diagonal matrix with B (a fixed num-
ber) diagonal blocks such that the bth block of Ay is of the form agl,,, for b=1,..., B
where Zl?:l pp = p, and Z?i1£4 maxi<p<p |agp| < 00. Suppose further that for each b,
Db/ P — wp as p — 00, where wp > 0 for all b. In this example, one can take oc; = b/(m + 1)
if ZZ;II py+1<j< ZZ:] Py, set mg = 1, and define f; to be a function on [0, 1] that
smoothly interpolates the values {(b/(m + 1),app):b =1, ..., B}. Then, Theorem 2.2 applies
and the Stieltjes transform s; (z) of the LSD of \/n/p(S; — X;) is given by

B
1

() =— D e Cct, 3.1

57(2) ;wbz+ﬂr,h(1) z€ 3.1

where the functions (Stieltjes transforms) B 5(z) are determined by the system of nonlinear
equations

Re by +
eC ,b=1,...,B, 3.2
Brp(2) = hE’ 1a)b AP z (3.2)
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where

_ 1 (2= ) - -

Repy = o /0 cos™ () Yy (0) Yy (0) dO (3.3)

with &b(e) =1+ Zzozl agye?|?. Note that, using the notations of Theorem 2.2, B; (z) =
B:(z,a) fora=b/(m + 1), and F A is the discrete distribution that associates probability wj, to
the point b/(m + 1), for b =1, ..., B. This example illustrates that often the precise description
of f;’s is not necessary in order for the LSDs to exist. Numerical methods, such as a fixed point
method, for solving (3.2), while ensuring that J(B; ,(z)) > 0 whenever z € C™, are easy to
implement, and can be used to compute s; (z) for any given z.

4. Applications

The main result (Theorem 2.2) gives a description of the bulk behavior of the eigenvalues of the
matrices C; = /n/p(S; — X ;) under the stated assumptions on the process and the asymptotic
regime p/n — 0. Thus, this result provides a building block for further investigation of the
behavior of spectral statistics of the same matrix. It can also be used to investigate potential
departures from a hypothesized model.

An immediate application of Theorem 2.2 is that it provides a way of calculating an error
bound on S; as an estimate of X ;. Indeed, if the quality of estimates is assessed through the
Frobenius norm of C;, or some other measure that can be expressed as a linear functional of the
spectral distribution of C;, our result gives a precise description about the asymptotic behavior
of such a measure in terms of integrals of the LSD of C;. This can be seen as analogous to the
standard error bounds in univariate problems.

One potential application is in the context of model diagnostics. Using the results for the LSD
of the normalized symmetrized autocovariance matrices, one can check whether the residuals
from a time series regression model have i.i.d. realizations. This can be done by graphically
comparing the eigenvalue distributions of /n/pS{, /n/pSS, ..., where S¢ is the lag-t sym-
metrized autocovariance matrix of the residuals obtained from fitting a time series regression
model, with the LSDs of the renormalized autocovariances of the same orders corresponding to
1.i.d. data.

Further, these results can also be used to devise a formal test for the hypothesis Hyp: X1, ..., X,
are i.i.d. with zero mean and a known covariance, versus Hp: X1, ..., X, follow a stationary lin-
ear time series model. If an MA(qq) process (go can be oco) is specified, another type of test
may be proposed, say, Hy: X; is the given MA(qo) process (satisfying the assumptions of Theo-
rem 2.2), versus the alternative that X; is a different process than the one specified under Hy. This
can be done through the construction of a class of test statistics that equal the squared integrals
of the differences between the ESDs of observed renormalized sample covariance and autoco-
variance matrices and the corresponding LSDs under Hy, for certain lag orders. The LSDs under
Hj are computable by using the inversion formula of Stieltjes transforms whenever the Stieltjes
transform of the LSDs can be computed numerically. An example of such a setting is given by
Example 3.5. The actual numerical calculations of the LSD can be done along the lines of [15].
The test of whether a time series follows a given MA(go) model, with a fixed gg, can be further
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facilitated by making use of the observation in Remark 2.1 which shows that if the process is
indeed MA(qo), then the LSDs of the renormalized lag-t symmetrized sample autocovariances
will be the same for all T > ¢go + 1.

Calculation of the theoretical LSD under the null model requires inversion of the correspond-
ing Stieltjes transform, which is somewhat challenging due to the need for selection of the correct
root, as it is necessary to let the imaginary part of the argument of the Stieltjes transform con-
verge to zero. A simpler alternative is to compute the differences [s; ,(z) — s:(z)| between the
Stieltjes transforms of the ESD and the LSDs for a finite, pre-specified set of z € C*, and then
combine them through some norm (like /o, /1 or /) and use the latter as a test statistic. The null
distribution of this statistic can be simulated from a Gaussian ensemble, which can then be used
to determine the critical values of the test.

If the linear process (X;:t € Z) satisfies all the assumptions of Theorem 2.2 and all the coef-
ficient matrices are determined by a finite dimensional parameter, then under suitable regularity
conditions, it may be possible to estimate that parameter with error rate Op(1/4/n) through the
use of method of moments or maximum likelihood (under the working assumption of Gaussian-
ity). Supposing 6 to be the parameter (possibly mugti—dimensional), and assuming that X, (0) is

3
30,90
hood of the true parameter 6y, and denoting any ./n-consistent estimate by 6, it can be shown by
a simple application of Lemma S.8 that the ESD of \/n/p(S; — Zr(é)) converges in probabil-
ity to the same distribution as the LSD of /n/p(S; — X;(6p)). Therefore, the hypothesis testing
framework described in the previous paragraphs is applicable even if the parameter governing the
system is estimated at a suitable precision and plugged into the expressions for the population
autocovariances.

Another interesting application is in analyzing the effects of a linear filter applied to the
observed time series. Linear filters are commonly used to extract signals from a time series
through modulating its spectral characteristics and also for predicting future observations. Sup-
pose that W; = Z?io ceXi—¢ where (X;:t € Z) is the MA(q) process defined in Section 2.1 and
(ce: € € Np) a sequence of filter coefficients satisfying Y ;2 |c¢| < co. Then, the LSDs of the
normalized symmetrized autocovariances of the filtered process (W;:¢ € Z) exist and have the
same structure as that of the process (X;:¢ € Z), except that in the description of their Stieltjes
transforms (equations (2.8) and (2.9)), the spectral density ¥ (a, v) is replaced by the function

V(a,vie) =Y 72, cee® g (a, v) .

twice continuously differentiable, with max; x || Y. (0)| uniformly bounded in a neighbor-

5. Proof of Theorem 2.1

First, make use of a simple observation regarding scaling factors. Since asymptotic spectral prop-
erties are unaffected by this change, in all of the proofs, the scaling factor 1/n is preferred over
1/(n — ) for simplicity of exposition. Throughout this section, it is assumed that the Z;; are
complex-valued and the A, Hermitian matrices. If the Z j; are real-valued and the Ay real, sym-
metric matrices, then the arguments need to be modified very slightly, as indicated in Section 11
of [8]. The key arguments in the proof of the real valued case remain the same, since as in the
complex valued case, for Gaussian entries, after appropriate orthogonal transformations, the data
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matrix can be assumed to have independent Gaussian entries with zero mean and a variance
profile determined by the spectrum of the process. We omit the details due to space constraints.

5.1. LSDs of C; and CT

Recall that C; defined in (2.5) is the renormalized version of the symmetrized autocovariance
matrix S;. In this subsection it is shown that the LSDs of Cy =U*C.U and C; coincide, where

the latter matrix is the renormalized~ version of S, and defined in (2.13). Observe that the expec-
tation of S; is the diagonal matrix X, = diag(6¢,1, ..., 0¢,p) given by

g _155 =1 5.1
o= 2 cos(tv) (e, vp), j=1,...,p. 5.1
Now write CY = /n/pU*S,U — V), where £V = U*X,U = diag(zz;g fe(aj) x
Sere (ocj))le, and define c&” =./n/pU*S;U—X,).
We first show that TV = % ., which implies equality of the ESDs of CY and ¢V For each
j=1...,p,

. _1¢
Gej="~ Zcos(rvt)w(otj, Vr)

t=1

1 & il I
= — ZCOS(TUZ‘) Z ff (aj)ff’ (aj)el(f—e v (52)
n =1 £,0'=0
1 " L, -t
= Z fz(aj)fe/(otj)<2e‘“€ v | Ze.w% r)w) = Z fo(@;) fore(a;),
£,0'=0 t=1 t=1 =0
since Z;’: 1 kv = néo(k) for k =0, 1,...,n — 1 where §9 denotes the Kronecker’s delta func-

tion. This proves the assertion.

Lemma 5.1. If the conditions of Theorem 2.1 are satisfied, then ||FC£/ _ FG | = 0 almost

surely under (2.3), where FC and FC denote the ESDs of Céj and Cy, respectively, and || - ||
denotes the sup-norm.

Proof. Recall that C, =./n/ p(U* (Sr — flt)U). Exploiting the relation between L and i, it can
be shown that S; = U*S; U can be written as at most 4(¢ + 7 + 1) rank-one perturbations of S;.
Hence, an application of the rank inequality given in Lemma S.6 implies that

[P _ e Ha+T+D

1 ~
< —rank(S; — S;) < 0 (5.3)
p

— . M U
under (2.3), which is the assertion since F&~ = FCr . O
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Define the Stieltjes transforms s p2)=p 1Tr(CU —zI)7! and Sep=p 1Tr(Cf -
zI)~!. Repeatedly applying Lemma S.l to each of the rank-one perturbation matrices used in
the proof of Lemma 5.1, it follows that, for any fixed z = w +iv e C*, |s1‘,{r(z) —5p(@)] <

4(g + v + 1)/(vp) almost surely. It is therefore verified that the LSDs of cgf and C, are almost
surely identical.

5.2. Deterministic equation

In this section, a set of deterministic equations is derived that is asymptotically equivalent to the
set of equations determining the Stieltjes transform of the limiting ESD of C:. The following
decomposition will be useful in the proofs. Using assumptions (Al) and (A2) in combination
with (2.12) and some matrix algebra, it can be shown that

S, =U*S,U=VA,V*,

where the p x n matrix V is defined through its entries
1 - .
thzﬁg(aj,vt)zj't, J:l,...,p,t:l,...,n, (54)

and A; = diag(cos(tvy), ..., cos(tv,)). Let Vi denote the matrix obtained by replacing the kth
row of V with zeros,~and let the n x 1 vector v be thc:, kth column of the matrix V* = (v : v
-1 vp). Let further X ; be the matrix obtained from X ; by replacing its kth diagonal entry with

0. Denote by Dy, respectively, D) the matrices resulting from C. from replacing the entries of
its kth row, respectively, its kth row and kth column with zeros, that is,

D, = \/;(VkA V* — rk) and D(k)=\/7(VkA Vk rk)

éf =Dy + Hy =D, + Hg, 5.5

Then,

where H;, = ekh,f and Hy = Hy + wkekT with ey being the kth canonical unit vector of dimension

P, hie = wi + ey,
n n, o, .
Wi = ;VkATvk and np = E(vk Arvp — Ur,k), 5.6)

where 6. ; is defined in (5.1), thereby ensuring that the kth entry of wy is zero and collecting the
kth diagonal element of C. in the term ;. Successively replacing rows of C. with rows of zeros
and noticing that C, = C* as well as Hf = (exhf)* = hkek , the same arguments also yield

P 14
C.=) ahi=> hef. (5.7)
k=1 k=1
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Observe next that, since its kth row and column consist of zero entries, ej is an eigenvector
of D) with eigenvalue 0. If now, for z € C*, Ri(2) = D) — zIp)_1 denotes the resolvent of
D(k), then

1
Ry (2)er = — ek (5.8)

that is, ey is an eigenvector of R)(z) with eigenvalue —7z L Let Ri(z) = (D — zIp)_1 be the
resolvent of Dy. Utilizing (5.5) and Lemma S.1, it follows that

R (2)wie] Ry (2)ex 1 1
Re()ex = Rao (e — —2 —= © =——e + —Ruy(@wy,
1+ ¢, Ry (2)wy b4 z

where the second step follows from invoking (5.8), for the denominator part in the middle ex-
pression additionally noticing that R (z) = R’(“k) (z) and that ekT wi = 0 by construction. Now, all
preliminary statements are collected that allow for a detailed study the resolvent and the Stieltjes
transform of C,.

Lemma 5.2. Under the assumptions of Theorem 2.1, it follows that the Stieltjes transform s ,
of C. satisfies the equality

- 1
Sr,p(z) = _;

1
74+ wiRg (2)wi — nk

B

k=1

for any fixed z € CT.

Proof. Writing I, + 2(C, — zIp)_1 =(C, — zIp)_lér, invoking (5.7) and Lemma S.1 implies
that

p
I, +2(Cr —2l,) ' =) (Cr —z1,) ey

k=1
14 *
Ry (2)ex )
= R 11— —k =222 p 59
; k<z>ek( T R ) (5.9)

P Ry(@)exh}

pt 1+ hZRk (ex '

Recall that the Stieltjes transform of C, is given by p~! Tr((C, — zI p)_l). Therefore, taking
trace on both sides of (5.9) and dividing by p leads to

1 </ KR 1 & 1
§m,(z):_2(#(z)e"_1):__z*7, (5.10)
zp i\ 1+ R (2)ex z2p = 1+ I Re(Dek
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In order to complete the proof of the lemma, it remains to study /}Ry (z)e;. Using Lemma S.1 on
Ry (z) and subsequently first utilizing (5.8) and then inserting the definition of wy given in (5.6),
it follows that

R (2)wre] Ry (2)ex
1+ eZR(k) (2w

hiRi(2)ex = hiRy (2)ex — hy;
P
= —Ehkek + thR(k)(Z)wk (5.11)
11,
= ——n + —w; Ry (D wg,
z z

where the third step also makes use of ekT wy = 0. Plugging (5.11) into (5.10) finishes the proof.
O

In the next auxiliary lemma, the expected value of the Stieltjes transform of C; is determined.
More generally, equations for the kernel

Bep(z,2) = —Tr((C —21,)7'T(a)) (5.12)

are introduced, where I'; (a) = diag(R.(a,ar):k =1, ..., p) with R (a, a;) defined in (2.10).
It is a central object of this study and the (approximate) finite-sample companion of the Stieltjes
kernel S;(z, a) appearing in the statement of Theorem 2.1. Its properties will be further scruti-
nized in Sections 5.3 and 5.4.

Lemma 5.3. Under the assumptions of Theorem 2.1, it follows that the expected value of the
Stieltjes transform 5; , of C; satisfies the equality

P

Z +3, (5.13)

1
P k=1 % +E[ IBT p(Zs o)l

[Sr p(Z)

for any fixed z € Ct, where the remainder term 8, converges to zero under (2.3). Moreover,

P
3 Re@eo (5.14)

1
Brp(z,a)] =—— 3
E[frp(z TP & 4 Bl o)l

for any fixed z € CT, where the remainder term 8,, converges to zero under (2.3).
Proof. The proof of the lemma is given in three parts. In view of the expression for s; , derived

in Lemma 5.2, E[w} + Rk (2)wi] is estimated first and in the second step related to ,3, p(z,a). The
third step is concerned with the estimation of remainder terms §,, and (Sn.
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Step 1: Fork=1,...,p, let X4, = Var(v;) = n-l diag(y (g, vy):t =1, ..., n) and further
Eox=AZp,Ar =n~ ! diag(cos®(tv) ¥ (ag, v):t =1, ..., n). Define

ye,j(@) = % D cos®(Tv)yr (@, v) ¥ (e, vr),

=1

and observe that y; j(a) = R(a,a;) for all j =1,..., p. This follows calculations similar to
those leading to 5.2. Define the matrix I'; x (a) as the one obtained from I'; (a) by replacing its
kth diagonal entry with zero. Observe next that the definition of wy in (5.6) implies that it suffices
to estimate the following expectation, for which it holds that

—E[v} A: ViR () Vi Arvg]

= ZE[Tr(Arvevf A, ViR () V)]

p
= %Tr(A,zkA,E[V,tR(k)(z)Vk]) = %E[Tr(vkar,szR(k) @)] (5.15)
= —ZE Vi Eeivj (R () ZE Ve.j @0 (R () ;] + "

P iz P ik

= ;]E[Tr(R(k)(Z)rr,k(“k))] +d?,
where independence between v; and Vi was used to obtain the second equality and

J#k

An application of the Cauchy—Schwarz inequality to the expectation on the right-hand side
of (5.16), subsequently using the fact that max ; |[(R)(2)) j;| < I(z)~ ! and squaring the resulting
estimate, yields that

CZ
0)| ZE |nv Erkv) — yfj(ock)| 9(Z)ZZVar VB v vj) <

e P3(2)?

p\5(1)2

where the equality follows from recognizing that E[nviE; xv;] = yr,j(ax) and the inequal-

ity from observing that each nv;Er,kvj is a quadratic form in the i.i.d. standard Gaussians

~.

V4 e V4 jn and has bounded variance. Taking the square root gives

0] < ¢

5.17
% P3(2) C-17

for some constant C > 0.
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Step 2: Multiplying I';(a) to both sides of the equation I, + z(C; — zI,,)™ = C;(C
zI,)™", then following the arguments that led to (5.9), and making use of I'; (a)ex = R(a, orx)ex

gives
P P
~ _ ~ _ R (a, ap)exh;Ri(z)
a)+ 2l @) (C; —zI,) ' =Y Re(@, ap)exh(C; —z1,) "' =
+(@) + 2T (@)( ») ]; «(a, ap)erhi(C —21,) ]; 1 AR Grer

Further taking trace on both sides and invoking (5.11) yields

, 1 & Re(a, ap)

Br.p(z,a) = ——

or P;ZerZR(k)(Z)wk—nk
(5.18)
_ 1 i Re(a, o)
It z+ Ef ,Brp(z ak)]_ek

where ¢; = E[Br,p(z, or)] — wiRw) (z)wi + ni. Taking expectation on the left- and right-hand
side of (5.18) leads to equation (5.14) with the remainder term having the explicit form
Re(a, ap)e} )

__i Re(@e)Eled] 1 iE<
“(2+EBp(zoa)? P \(@+EBrp )@+ ElBr p(z, e)] — &)

- (Sn,l +6n,2-

It remains to show that §,, — 0 under (2.3). This will be done in the next step
Step 3: To show that §,, — 0, it suffices to verify that §, | — 0 and 6, » — 0. Note that, since

B: p(z, ag) is a Stieltjes transform of a measure,
|z +E[Br,p(z. @0)]| = 3(z + E[Br.p (2. @0)]) = 3(2) + E[3(Br. p(z. o)) ] = 3(2)
and since n; € R, and wiR)(z)wy is a Stieltjes transform of a measure,
|z +E[Br.p(z, a0)] — ek | = |z + WiR@ @)Wk — 1| = 3(2) + I(W; Rty (2)Wx) = 3(2)
Thus, since moreover |R;(a,b)| < L2 with L as in (A4), it only needs to be shown that

maxy |E[eg]] — 0 and max E[|ex — E[sk]| 1— 0.
Let R(z) = (C, —zD~L. Since E[ni] =0, it follows from (5.15) and (5.12) that

1 ~ 1
|Elex]| = ;E[TY(R(Z)Fr(ak))] - ;E[Tr(R(k)(Z)rnk(“k))] —d”

1

< —[E[Tr(R@T¢ ()] — E[Tr(Ruy ()T ()]
p

1 (5.19)

+ ;UE[Tr(R(k) (@[T o) — Trx(@o})]| +[d)|

_ 1 d,: 2 |d(0) i
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where I'z p(ax) = I (ox) — Re (ock,ak)ekekT. Arguments as the more general ones leading
to (5.21), imply that max; d,"' < 6¢L3(p3(2))~". Since R (D)1l < (3(2)~" and R (ex, ax)
is uniformly bounded, it follows that maxy d;*> < L3(p3(z))~". Together with (5.17) and (5.19),
these guarantee that maxy |E[ex]| — 0 and thus |§,,1] < L%(S(z))_2 maxy |E[gg]] — O.
Observe next that, by (5.15),
]

1
E[|ex — Elex]] ] = EH—wZ‘R(m (@wg + ;]E[Tr(R(k) @F k(@) +d” +me
]

1 1
+ 3EH 5 Tr(R) ()T k(o)) — E[; Tr(Re (Z)rf’k(“k))]

1
< 3E|:‘—UJZR(k)(Z)wk + > Tr(Ruoy ()T k(o)) + mi

2
]+3|al,§°)|2

W e

where

2
d>' < 61@[ } + 6E[|ne]*]

1
—w; Ry () wi + > Tr(Rgo (2)T 7k (o))
= 6d; + 6E[|mil*].

Now, maxy E[|nk|2] < Cp_1 for some C > 0 as proved in Section S.4.1. It is shown in Sections
S.4.2 and S.4.3 that maxy d,f’z — 0 and maxy d,f’3 — 0, respectively. Consequently, maxy E[|ex —
E[sk]|2] — 0 and hence also §,,» — 0.

Step 4: Using the expression for §; ,(z) derived in Lemma 5.2, relation (5.13) can be obtained

from similar arguments as in Steps 1-3 of this proof. In particular, it can be shown that 5, — 0.
O

5.3. Convergence of random part

In this section, it is shown that, almost surely s; ,(z) — E[s¢ »(z)] — 0 and B; ,(z,a) —
E[B:,p(z,a)] — O for any z € C* when the entries of Z are i.i.d. standardized random vari-
ables with arbitrary distributions. The concentration inequalities on s; ,(z) and B; ,(z,a) are
derived by using the McDiarmid’s inequality given in Lemma S.2 and the proof of almost sure
convergence is obtained through the use of the Borel-Cantelli lemma. To apply the McDiarmid
inequality, treat C; as a function of the independent rows of Z, say, z’lk, e z;. Let

Z(‘/):Z—ejeJTZ=Z—ejzj, j:11~--1p,
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where Z = [z] : -~ : 2},]". Let further X(;) be the p x n matrix obtained from the original data
matrix X with the jth row removed, that is,

q
4
X(j) = ZAZZU)L .
=0

Define S = n~'X(;D: X}, and CY) = /n/p(SY’ — ¥.), where D; = [L + (L7)*]/2. It
follows then from the relation

(< q *
Se=— (Z Ae(Zg) + ejZ;)Ll>Dr (Z Au(Z) + eﬂ?)”)

=0 £=0

) 1 q q q
=SS+ (Z aje§DeX(y + 3 X(Deyjeaj + ) ajeyiiDeyjedsy ).
=0 £=0 £,0'=0

where aj; = Age;, y;‘.‘e = szZ, that

q q q
Co=CY +) ajetfe+) Gieajy+ D o] pajeasy, (5.20)
£=0 £=0 £,0'=0

*

mak.ing use of the not.ations Cje = .(np)’l/z).);{zAX(j) and “’t{,ﬂ = (pn)’l/zy;‘eAyﬂ/. The fol-
lowing lemma will be instrumental in determining the convergence of the random part.

Lemma 5.4. Under the assumptions of Theorem 2.1, it follows that

3@+ DIH]|

_ 1 ~ 1 , 1
diff, ;(H) = 5 Tr((C, — z)™'H) — ;Tr((cgﬁ —zI) H)| < 50

where H is an arbitrary p x p Hermitian matrix with ||H|| bounded.

Proof. First observe that ) 0.0=0@p ¢ @jediy isa Hermitian matrix of rank ¢ 4 1 and hence we
3

i
“jfuje — ngv;fe where ujp = 2_1/2({jz +aje) and vjp = 2_1/2({ﬂ — ajg). Define the matri-

can write it as ZZ:O ®jebjeb*,, where each @, € {—1, 41} and observe that aj/gg“;.ke + g“jeajfz =

ces Dy = cY) + Yo ujeut, and Dyj =Dy — Yo vjev’,, and notice that it then follows
from (5.20) that C; =Dy + Y7 _ @jebjeb%,. Therefore,

diff, ; (H) < %‘Tr((C, —zD)7'H) — Tr((D2; — zD " 'H)|

+ L [Tr((Ds; — 2~ H) ~ To(D1; — b~ 'B)|
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1

1 ) _
+ [ T(D1 = 27 H) = () — ) )|
=Kj1+Kjp2+ Kj3.
In the following an estimate for K, is given. For 1 <k < g + 1, let then Tg.k) =Dy +

Zlg;(l) ngv;fz, so that T;O) =D; and T;qﬂ) = Dy;. An application of Lemmas S.1 and S.3
implies that

14 - - -
Kjp=— Y |Tr((T¥ —21)7'H) - Te((T% " - 21) "' H)|
k=1
1 qZH V(T =D TR — 2D e g+ DH
o 1+v7k(T§'k_1) — D)k - PR@)

Estimates for K; and K3 can be obtained in a similar way, leading to the bound (g +
1)(p3(2))~'|H|| in each case. This proves the lemma. (Il

Lemma 5.4 gives the bound diff; ;(I,) < 3(g + D(p3(z))~" and diff; j(Tc(a)) < 3(q +
1)(p?s(z))_1L%. Let diff’r’ ; be defined as diff; ; with C, replaced with C._, where the latter

T
matrix in turn is obtained from the former replacing its jth’s row zj

(z/j)*. From Lemma 5.4, it follows then that

with an independent copy

1 -1 / -1 6(g+1)
;|Tf((cr —aD7) = Tr((C, —2I) )| < @)
and
2
%|Tr((C, —zD7'I; (a)) = Tr((C, — zI)_lF,(a))| < %. (5.21)

Recognizing that s; ,(z) = p~! Tr((C; —zD)™!) and B, (z, ) = p~! Tr((C; —z1)~'T'; (a)) and
applying the McDiarmid’s inequality (Lemma S.2) yields that, for any ¢ > 0,

p(2)e?
P(|Sf,p(Z) - ]E[Sr,p(Z)“ > 8) < 4CXP<—W> (522)
and
P(|Br.p(z,2) —E[Br p(z,2)]| > €) <4exp<—LZ)82>. (5.23)
o e - 18(q + 1)2L,2

Now the Borel-Cantelli lemma implies that [s; ,(z) — E[s; ,(2)]| — 0 and [B8; ,(z,a) —
E[B:,p(z, a)]| — 0 almost surely under (2.3). Moreover, it can be readily seen that these almost
sure convergence results also hold for §; , and fr_,.
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5.4. Existence, uniqueness and continuity of the solution

This section provides a proof of the existence of a unique solution s;(z) and B;(z, a), for a €
supp(F A) and z € CT, to the set of equations (2.8)—(2.10). Assuming that these solutions exist,
it can be shown that §; () 2%, (z) and ,E’T,p(z, a) 2% Br(z,a) forany a € supp(FA) and z €
C™. In view of the results derived in Section 5.3 and Lemma 5.3, it suffices to show that for every
sequence {p;:j € N} there exists a further subsequence {p;: j € N} such that E(B,,I;_/. (z,a))
converges to a limit B;(z, a) satisfying (2.8)—(2.10). The verification is based on a diagonal
subsequence argument and the Arzela—Ascoli theorem.

Lemma 5.5. Let {p;: j € N} denote a subsequence of the integers N and define pr,p;(z,a) =
E[Br,p_, (z, a)]. Then the following statements hold.

(a) There is a further subsequence {p;: j € N} such that p; j.(z, @) convergences uniformly in
ac supp(FA) and pointwise in z € C* to a limit p; (z, a) which is analytic in z and continuous
ina;

(b) The limit p,(z, a) in (a) coincides with B (z, a) and is the Stieltjes transform of a measure
on the real line with mass f R:(a,b) dFA(b) satisfying (2.9).

Proof. Step 1: Define F = {pr.pj@(,a)ace supp(FA)}. For any compact set K C CT,

|y (@ @) < LT/ minS(2) = M(K).

Let {a;, ap, ...} be an enumeration of the dense subset supp(F A) N Q™ of supp(F 'A). An ap-
plication of Lemma S.9 yields that for any a, there exists a further subsequence {p;(ay): j € N}
such that --- C {pj(ag)} C{pj(ac-1)} C--- C{p;(a)} such that ,ot,pj(a{)(z, ay) converges uni-
formly on compact subsets of C* to a limit denoted by p;(z, a;), which is an analytic function
of z € C* for each £ € N. Choosing the diagonal subsequence {p;(a;): N}, it follows that

Iof,pj(aj)(z5 ag) = pr(z,ar) (j = 00)

for all £ € N uniformly on compact subsets of CT. Note that the limit is defined on C* x
(supp(F) N Q™).

Step 2: It is shown in Section S.5 of the Supplementary Material that, for any fixed z € C*
and subsequence {p;}, {pr p;(z, @)} are equicontinuous functions. Since pr p,(a,) (2, a) converges
pointwise to p(z, a) on the dense subset supp(F A) N Q™ of supp(F A), the Arzela—Ascoli the-
orem (Lemma S.10) implies that p; p,(a,)(z,a) uniformly converges to a limit, a continuous
function of a € supp(FA), that coincides with p,(z, a) fora e supp(FA) N Q™. Thus, the limit
pe(z, a) is now defined on CT x supp(F*) and is analytic in z € C*. From (5.14), it follows
that the limit p; (z, a) coincides with B;(z, a) for a € supp(F A).

Step 3: It remains to show that B (z, a) is the Stieltjes transform of a measure on the real line
with mass m(a) := fRT (a,b) dFA(b). This is equivalent to showing that (m.(a))"'B.(z,a)
is the Stieltjes transform of a Borel probability measure. The proof relies on the Lemma 5.6,
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stated below. From the definition of ,81, p(z,a) and the fact that I';(a) is a positive definite
matrix with bounded norm, it follows that (mf,,,(a))_l,éf,p(z, a) is the Stieltjes transform of
a probability measure p, , where m; ,(a) = p~ ! Tr(I'; (a)). The measure p,a is such that
Ip.a((x,00) < [Tz (@)||(my,,(a)) "' FC((x, 00)) for all x. Now, by the tightness of the se-
quence {F Coy (by Lemma 5.6), it follows that {1, 4} is a tight sequence of probability measures.
Now, by Step 2 and the conclusion in Section 5.3, it follows there is a subsequence {p,} such that
the Stieltjes transform of (m. p, (a))~! Bz, p, (z,a) converges almost surely to (m (@) 'B:(z,a)
for each z € Ct. The conclusion that (m(a))~! B:(z,a) is the Stieltjes transform of a Borel
probability measure then follows from Lemma S.11. (]

Lemma 5.6. Under the conditions of Theorem 2.2, FC+ is a tight sequence.

It should be noted that Lemma 5.6, together with s¢ ,(z) 25 s¢(z) for z € CT, proves the
existence of the LSD of C;. The proof of Lemma 5.6 is given in Section S.3 of the Supplementary
Material.

Next, we prove the uniqueness of the solutions S(z, a) under the constraint that the solutions
belong to the class of Stieltjes kernels that are analytic on C* for all a € supp(F ). First, we
verify the uniqueness of the solution for z € CT(vg) = {z € C*:3(z) > v} for sufficiently large
vo > 0. At the same time, continuity of the solution with respect to F A is verified. Accordingly,
let B;(z,a) satisfy (2.9) for any a € supp(F A) In view of establishing the continuous depen-
dence of B;(z,a), and hence s;(z), on F A ,on F A and the kernel R+, suppose that there is
a possibly different distribution F' A and a possibly different kernel R, (but having the same
properties as R;) such that ,3, (z, a) satisfies

, aecR™,

B R.(a,b)dFA
ﬂf(z,a)z—/R(a b)d FA(b)

7+ B (z,b)

and is a Stieltjes transform of a measure for all a € supp(F A). Note that, by the defining equa-
tions and the continuity of R (a, b), and R (a, b), the functions §(z, a) and S(z, a) are contin-
uous in a for all z € CT. Also,

Bz (z,a) — Br(z, a)
Re(a,b)(B(2,b) — B (2, D)) dFAD) [ (Ry(a,b) — R (a, b)) dFAD)
:/ (2 + B (2, D)z + Be (2, b)) _/ 2+ Bz, b)
~ / Re(a,b)d(FADb) — F4)
z+ B:(z,b)

(5.24)

Define

1Bz ) = Be(z. )|y = / |B(z.a) — B (z.0) [ dFA (). (5.25)
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Then, by Cauchy—Schwarz inequality,

|B:(z,2) — B (z, )|

<3‘/ Re(a,b)(B:(z, b) —BT(Z_,
B (24 Be(z,0))(z + B (2, b))

2
+rM (@) +rP(a)

5 9 (5.26)
~ R=(a,b)dF(b
s3[/Wﬂf@,b»—ﬂr@,bnzdFAan}[ ACLCLIa, 2}
|z + Bz (z,b)[*lz + Br (2, b)|
+riV@ +rP ),
where
A oy (R:(a,b) — R,
r’(a)=3 R ,
T () | z+ﬂr(z,b) 2” T 7.'”00
where [R; — Relloo = SUpg permo [Re (a, b) — Ry (a, b)|, and
R.(a,b)d 2 6L IRe — RellZ i
rl(’z)(a)::;‘/ ‘[(a ) (_ < ( 1 ” 'L’2 T“OO) ”FA—F'A”%V,
< + ﬁ‘f (Z’ b) v
where || - ||Tv denotes the total variation distance. Taking vg = max{l, «/§L1}, if follows for
v > v that
R2(a, b)dFA_(b) - L} !
2+ B: (2, D)z + Be (2, b)2 ~ vt 4
Therefore, by (5.26), for v > vy,
|mﬂa9—&@wwi54/09@%H$WMdF%m
(5.27)

o ] _
= S (IRe = Rell +2(LE 4+ IRe = Re ) [F4 = FA|R,).

If FA=FA, and R, = R, (5.27) and the continuity of B;(z,a) and B;(z,a) in a imply that
B:(z,a) = B (z,a) for z € C*(vp) and a € supp(F A). Then, since both are analytic functions on
CT for every fixed a € supp(F A), the uniqueness of the solution in z € C* follows. Moreover,
(5.27) proves the continuous dependence of the solution $;(z,-) on R, and F A, with respect
to the topology of uniform convergence and that of total variation norm, respectively. From this,
similar properties for s, are easily deduced.

6. Proof of Theorem 2.2

In this section, the results are extended to the setting that ¢ is not fixed, but tends to infinity at
certain rate. In fact, ¢ = O(p!/*) is an appropriate choice. This rate plays a crucial role in two
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places of the derivations. First in verifying properties (such as continuity) of the solution and then
in transitioning from the Gaussian to the non-Gaussian case. The latter situation requires the 1/4
power, while the former can be worked out under the weaker assumption that ¢ = o(p'/?). It is
shown here that the LSD of the truncated process is the same as that of the linear process almost
surely. Denote then by

1 n n
r— _n< dOoXEXE+ Y X}ITX,“*> (6.1)
t=t+1 t=1+1

the symmetrized auto-covariance matrix for the truncated process X' = Zzzo AvZi 4, t €.
Let L(F, G) denote the Levy distance between distribution function F' and G, defined by

L(F,G)=inf{e > 0: F(x —¢) —e < G(x) < F(x + &) +¢}.
In view of Lemma S.7, the aim is to show that

L3(F&, F&) < ! Tr(C, —CY)> >0 as. (6.2)
p

To this end, define X, = X, — X = Z(?O:qul A, Z,;_, and notice that

1 "=t 1 "=t
S: — Strr = E Z(X’X;k+r + XH'TX;k) - 5 Z(X;rX?Ir + X;r—‘er;r*)
t=1 t=1
1 "=t B 1 "=t _ B
2n (XTX;r-‘:-kr + Xt+rX ) + E Z(X;rx;k+r + Xl-‘rTXgr*)

t=1 t=1

n—t

1 I - -
5, Z(thz*ﬂ + X X7)
= S‘[,l + St,2 + Sr,3~

Therefore,
||CT—C“||F<3<—||s”—IE[SH]||F —||sfz—E[sfz]||F ||sf,3—E[sT,3]||2F). (6.3)

Hence, to prove that (6.2) holds, it suffices to show that
oo n 5
> SE[[Sri —EISil|;] <00, i=1.23, (6.4)
p=1 r?

due to the Borel-Cantelli lemma. The corresponding detailed calculations are performed in Sec-
tion S.6 of the Supplementary Material.
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7. Extension to non-Gaussian settings

In this section, it is shown that Theorem 2.1 extends beyond the Gaussian setting. In order
to show this, Lindeberg’s replacement strategy as developed in [4] is applied to a process
consisting of truncated, centered and rescaled versions of the original innovation entries Z;;.

To formally define this transformatlon let ¢, > 0 be such that ¢, — 0, p'/%¢, — oo and
P(Z11] = n1/48,,) <n~ 8,, The existence of such an ¢, follows from (Z1) and (Z2). Let then
Zt‘] = Zt‘j ]{\ij|5n1/4sp} denote the truncated innovations and Zt‘j = (Z — ]E[Z ])/(ZSd(ij))
the standardized versions where ¢ € {R, I} with the superscripts R and I denoting the real and
imaginary parts. Let further X, = ZZZO A¢Z,_y, t € Z, and define the autocovariance matrix of

(X;:1 € Z) be defined by
N n A A
C-( = \/j S‘[ _E[S‘L’] s
i )

S, = 2(n_t)< > OXXp 4 Z X, TX*) (7.1)

t=1+1 t=1+1

where

The LSD of the auto-covariance matrix of C; is the same as that of ér, since, according to [2]
and [8], an application of a rank inequality and Bernstein’s inequality implies that

sup| FCr (x) — FE (x)| >0 as.

For notational simplicity, the truncated, centered and rescaled variables are therefore henceforth
still denoted by Z;; (correspondingly, X ;) and it is assumed that they are i.i.d. with |Z1| <
nl/ 4sp, E[Z1] =0, E[|Z; 1|2] = 1, the real and imaginary parts are independent with equal
variance, and E[|Z1|*] = 4 for some finite constant 4.

Consider now the process (X,:¢ € Z) given by

q
X = ZAg Wi_s, teZ, (7.2)

with the innovations (W;:t € Z) consisting of i.i.d. real- or complex-valued (not necessarily
Gaussian) entries W, satisfying:

(T1) E[W;1=0,E[|W;|*] =1 and E[|W;,|*] < C for some finite constant C > 0;

(T2) In case of complex-valued innovations, the real and imaginary parts of W, are indepen-
dent with E[R(W;,)] =E[3(W;;)] =0 and IE[SR(Wj,)z] = E[S‘(Wj,)z] =1/2;

(T3) |Wj | < n1/4£p with ¢, > 0 such that ¢, — 0 and p1/4sp — 00;

(T4) The W, are independent of the Z;; defined in Theorem 2.1.
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It is assumed that the coefficient matrices (Ay: ¢ € N) satisfy conditions (A1)—(A4). Define the
lag-t auto-covariance matrix of (X):r € Z) by

! ! - I(v! \* - , I\
St = 20 _f)( Yo Xi(Xi_) T+ D X (X)) ) (1.3)

t=1+1 t=t+1

so that the corresponding renormalized lag-t auto-covariance matrix is given by

C= [o(s —E[S.)

and the lag-t Stieltjes transform by s (@)= %Tr(C’t —zI)~!, 7 € C*. We denote the Stieltjes
transform of C, defined in terms of the bounded (after trunctation and normalization) Z ;;’s, by
sz, p- Since we have proved the existence and uniqueness of LSD in the case where Z;’s are i.i.d.
standard Gaussian, it follows that for all z € CT, sz,p(z) converges a.s. to the Stieltjes transform
of the LSD determined by (2.8) and (2.9). Thus, proving that the results hold for non-Gaussian
innovations means showing that (i) s;’p (2)— E[s;,p (z)] = Oa.s. and (ii) E[s¢, »(z) — s;’p (2)]—0
for all z € C* under (2.3). Since (5.22) has been derived without invoking Gaussianity of the
innovations, (i) follows readily. To show that (ii) holds requires an application of the Linderberg
principle developed in [4]. This task is equivalent to verifying that the difference

E(l Tr(C, —zl)—1> —E(l Tr(C, —zI)_l> (7.4)
p p

tends to zero. The arguments for (ii) to hold are provided in Section S.7 of the Supplementary
Material.
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