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This paper is a complement to the studies on the minimum of a real-valued branching random walk. In
the boundary case [Electron. J. Probab. 10 (2005) 609–631], Aïdékon in a seminal paper [Ann. Probab. 41
(2013) 1362–1426] obtained the convergence in law of the minimum after a suitable renormalization. We
study here the situation when the log-generating function of the branching random walk explodes at some
positive point and it cannot be reduced to the boundary case. In the associated thermodynamics framework,
this corresponds to a first-order phase transition, while the boundary case corresponds to a second-order
phase transition.
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1. Introduction

1.1. Model and main result

Consider a branching random walk on the real line R. Initially, a particle sits at the origin. Its chil-
dren form the first generation; their displacements from the origin correspond to a point process
L on the line. These children have children of their own (who form the second generation), and
behave, relative to their respective positions, like independent copies of L , and so on. Denote
by P the probability distribution on the space � of marked trees associated with this branching
random walk, and E the expectation with respect to P.

The genealogy of all particles forms a Galton–Watson tree T whose root is denoted by ∅.
Denote by {u : |u| = n} the set of particles at generation n ∈ N and by V (u) ∈ R the position
of u. Notice that

∑
|u|=1 δ{V (u)} = L . Denote by ν :=∑

|u|=1 1 the offspring number. Let φ be
the log-generating function of L :

φ(β) := logE

[∑
|u|=1

e−βV (u)

]
= logE

[∫
R

e−βxL (dx)

]
∈ (−∞,∞], β ∈ R.

We assume that L is not almost surely supported on a deterministic lattice. Therefore, φ is
strictly convex over its domain dom(φ) := {β,φ(β) < ∞} if dom(φ) is non-trivial.

We assume that T is supercritical and define Mn := min|u|=n V (u) the minimum of the branch-
ing random walk in the nth generation (with the convention min∅ ≡ ∞).

1350-7265 © 2018 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/15-BEJ784
mailto:barral@math.univ-paris13.fr
mailto:yueyun@math.univ-paris13.fr
mailto:thomas.madaule@math.univ-toulouse.fr


802 J. Barral, Y. Hu and T. Madaule

Hammersley [27], Kingman [30] and Biggins [9] have established the law of large numbers
for Mn under a fairly general setting: if {β > 0 : E[∑|u|=1 e−βV (u)] < +∞} �= ∅ then condi-

tioned upon the survival of the system, limn→∞ Mn

n
= v, where v = − inf{φ(β)/β : β > 0}.

Hammersley [27] raised the problem of finding the asymptotic behavior of Mn − vn. Due to
the convexity property of φ, if inf{φ(β)/β : β > 0} is attained at 0 < βv < ∞ and φ < ∞ on a
left neighborhood of βv (this is the case for instance when ν has a finite expectation), we have
either φ(βv)/βv = φ′(βv) or φ(βv)/βv > φ′(βv) and φ(β) = ∞ for β > βv , so that after making
the change of variable (V (u),u ∈ T) → (βvV (u) + φ(βv)|u|, u ∈ T), we can assume that either
φ(1) = 1 and φ′(1−) = 0, or φ(1) = 0, φ′(1−) < 0, and φ(β) = ∞ for all β > 1.

Several recent attempts to solve Hammersley’s problem led to significant contributions (see
[1,17,28] and the references therein), until the sharp answer was given by Aïdékon in [2] in the
“boundary case” (terminology introduced in [14]) which corresponds to φ(1) = φ′(1−) = 0.

We study here the asymptotic behavior of Mn outside the boundary case, that is, when

φ(1) = 0, (1.1)

φ′(1−) < 0 and φ(1+) = ∞. (1.2)

In the associated thermodynamics framework, this corresponds to a first-order phase transition,
while the boundary case corresponds to a second-order phase transition; see the forthcoming
Section 1.2 for detailed discussions.

For our purpose, it will be convenient to state our assumptions in terms of the distribution
of the i.i.d. increments X1, . . . ,Xn, . . . of the random walk (Sn) naturally associated with the
branching random walk and assumed to be defined on a probability space whose probability
measure is P. Denote by E the expectation with respect to P and set X = X1. The law of X,
denoted as PX , is defined under (1.1) by∫

R

f (x)PX(dx) := E

[∑
|u|=1

f
(
V (u)

)
e−V (u)

]
, (1.3)

for any bounded measurable function f . Observe that for all β , φ(β) = log
∫
R

e−(β−1)xPX(dx).
Then a sufficient condition for φ(1+) = ∞ is that near to −∞, PX(dx) has a density which
decays polynomially or subexponentially. In this paper, we only treat the polynomial decay case.

Our assumptions about PX and expressed in terms of X are the following: There exist some
constants γ > 3, α > 1, a slowly varying function 	 and some x0 < 0 such that

m := E[X] > 0, E
[(

X+)γ ]< ∞,
(1.4)

P(X ≤ x) =
∫ x

−∞
|y|−α−1	(y)dy ∀x ≤ x0,

with y+ := max(y,0) for any y ∈ [−∞,∞). We remark that the condition (1.4) implies (1.2):
The first property m > 0 is just a restatement of φ′(1−) < 0 whenever this derivative is de-
fined. The second and third properties imply in particular that X is in the domain of attrac-
tion of a stable law of index min(α,2). One naturally gets a branching random walk leading
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to such an X as follows: fix a random variable X obeying (1.4) and assume in addition that
1 < s = E[eX] = ∫

exPX(dx) < ∞ (in particular the second condition holds with all γ > 0).
Let (ξj )j≥1 be a sequence of random variables distributed according to s−1exPX(dx), not nec-
essarily independent. Let ν be a random integer independent of (ξj )j≥1 such that E[ν] = s, and
set L = ∑ν

j=1 δ{ξj }. When s is an integer, ν can be taken constant and equal to s, so that the
branching random walk is built on the s-adic tree.

For brevity, we extend the function 	 to the whole R, by letting 	(x) = 	(−x) for x ≥ |x0| and
	(x) = 1 for any x ∈ (x0, |x0|) [|x0| being large enough so that 	(x) > 0 for any x ≤ x0].

Under (1.1), it is known that on the set S of the survival of the system, Mn → ∞ a.s. (see, e.g.,
Shi [43]).

It is natural to study the convergence in law of Mn after renormalization. Under the condi-
tion (1.1), we introduce the martingale

Wn :=
∑
|u|=n

e−V (u), n ≥ 1,

which is called the additive martingale in the literature on the studies of branching random walks.
Let W∞ be the almost sure limit of the non-negative martingale Wn. The following integrability
hypothesis, which combined with E[X] > 0, is necessary and sufficient for W∞ to not vanish
almost surely [9,24,29]:

E

[(∑
|u|=1

e−V (u)

)(
log

∑
|u|=1

e−V (u)

)+]
< ∞, (1.5)

moreover W∞ > 0 on S.
To establish the convergence in law for Mn, it is necessary to assume some additional condi-

tions. To avoid the technical difficulties, we state below our result in the i.i.d. case, namely L
can be written as L =∑ν

i=1 δ{ξi } with (ξi) i.i.d. and independent of ν.

Theorem 1.1 (i.i.d. case). Assume (1.1), (1.4) and (1.5). Suppose that L =∑ν
i=1 δ{ξi } with (ξi)

i.i.d. and independent of ν. Then for any x ∈R,

lim
n→∞P(Mn ≥ αn + x) = E

(
exp

(−c∗exW∞
))

, (1.6)

where αn := (α + 1) logn − log	(n) and c∗ is a finite positive constant given as follows:

c∗ := m−(α+1)

∞∑
j=0

E
[
e−Mj

]
. (1.7)

We mention that the finiteness of c∗ is part of the proof of Theorem 1.6.
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Remark 1.2. In the i.i.d. case, namely when L = ∑ν
i=1 δ{ξi } with (ξi) i.i.d. and independent

of ν, (1.1), (1.4) and (1.5) are equivalent to the following set of assumptions:

{
E[ν] > 1,

E[ν logν] < ∞,
and

⎧⎪⎪⎨⎪⎪⎩
E
[
e−ξ

]= 1

E[ν] , E
[
ξe−ξ

]
> 0, E

[(
ξ+)γ e−ξ

]
< ∞,

P(ξ ∈ dx) = 1

E[ν] |x|−α−1	(x)e−x dx, for x ≤ x0,

with α > 1, γ > 3, a slowly varying function 	 and ξ := ξ1.

Example 1.3. To fix ideas, let us give a concrete family of examples. Fix α > 1, p ∈ (0,1),
x0 < 0, x′

0 > 0 and let ξ be a random variable with law equal to μp = pδx′
0
+ (1 − p)μ, where

μ((−∞, x]) = Cα,x0 1{x≤x0}e−|x||x|−α−1 + 1{x>x0}, with Cα,x0 := e|x0||x0|α+1.
By construction, we have E[e−βξ ] = ∞ if β > 1. Moreover,

E
[
e−ξ

] = pe−x′
0 + (1 − p)e|x0|

(
1 + |x0|

α

)
and

E
[
ξe−ξ

] = px′
0e−x′

0 − (1 − p)e|x0|
(

1 + α

α
|x0| + 1

α − 1

)
.

Let

p0 = e|x0|(1 + |x0|/α) − 1

e|x0|(1 + |x0|/α) − e−x′
0

∈ (0,1).

For all p ∈ (p0,1), we have E[e−ξ ] < 1. Moreover, if x′
0 is chosen large enough, then the increas-

ing function p ∈ (p0,1) �→ E[ξe−ξ ] vanishes at some point, say p̃0. Now, let ν be a random
integer with expectation E[e−ξ ]−1 and such that E[ν logν] < ∞. For each p ∈ (p0,1), let ξi ,
i ≥ 1, be independent random variables distributed according to μp , and also independent of ν.
They generate a point process

∑ν
i=1 δ{ξi } which is outside the boundary case when p ∈ (p̃0,1)

(and all the properties gathered in Remark 1.2 hold), in the boundary case when p = p̃0, and
reducible to the boundary case when p ∈ (p0, p̃0).

Remark 1.4. The general case will be treated in the Appendix. For instance, if L =∑ν
i=1 δ{ξi }

with all ξi = ξ a.s. for any i ≥ 1, and ξ independent of ν, then (1.6) still holds (with some
appropriate constant c∗).

Remark 1.5. In the boundary case, we have E[X] = 0, and the almost sure limit of the martin-
gale Wn vanishes (Biggins [10], Lyons [33]). Assuming that E[X2] < ∞ and some additional
integrability conditions, Aïdékon [2] proved a highly non-trivial universal result (see also [16]
for an alternative approach), namely the convergence in law for Mn − 3

2 logn as n → ∞ toward
a convoluted Gumbel distribution; specifically there exists a constant c′ > 0 depending on the
distribution of L such that

lim
n→∞P

(
Mn ≥ 3

2
logn + x

)
= E

(
exp

(−c′exD∞
)) ∀x ∈R, (1.8)
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where D∞ := limn→∞
∑

|u|=n V (u)e−V (u) is the non-trivial and non-negative limit of the so-
called derivative martingale [2,13,19]. Theorem 1.1 exhibits another universality class with the
Gumbel distribution convoluted by W∞ as limiting law.

Let us now say a few words on the normalizing sequence αn and the additional conditions

such as the i.i.d. case. For any u ∈ T \ {∅}, let
←
u be the parent of u. Define

�V (u) := V (u) − V (
←
u ), B(u) := {v : v �= u,

←
v = ←

u }. (1.9)

For any n ≥ 1 and |u| = n, denote by {u0 := ∅, u1, . . . , un−1, un = u} the shortest path relating
the root ∅ to u such that |ui | = i for any 0 ≤ i ≤ n.

It turns out that the minimal position Mn will be reached only by those particles |u| = n, such
that there is a unique i ∈ [1, n] such that �V (ui) < −n1+o(1). Moreover, to make V (u) = Mn,
necessarily i is near to n and this large drop �V (ui) will be of order −n, which in view of
the density function of X in (1.4) happens with probability of order e−αn . This phenomenon is
essential in the explanation of the normalizing constant αn. Moreover, the extra i.i.d. assumption
in Theorem 1.1 guarantees that with overwhelming probability, no v ∈ B(ui) can make a large
drop in the sense that �V (v) < −n1+o(1), which in turns implies that all particles |w| = n such
that V (w) = Mn are necessarily descendants of ui . This is the crucial point for the convergence
of Mn − αn in the i.i.d. case.

However, in the general case, some particles v ∈ B(ui) could also make a large drop; further-
more, v could also produce some descendants which reach Mn in the nth generation. To get the
convergence in law of Mn −αn, we have to control this possibility of simultaneous large drops in
the same generation and the relative displacements between the particles in B(ui) and ui itself. In
particular, we need to assume the convergence in law of these relative displacements conditioned
on V (ui) → −∞, which is our main additional hypothesis in the general case. We refer to the
Appendix for more details.

We end this subsection by a remark when the density of PX(dx) in (1.4) decays subexponen-
tially near to −∞.

Remark 1.6. Assume that as x → −∞, PX(dx)/dx ∼ c′|x|ae−c|x|b for some constants c >

0, c′ > 0 and a ∈R, 0 < b < 1. We conjecture that Mn is of order nb . Furthermore, if 0 < b < 1
2 ,

then we believe that the phenomenon of the unique large drop still holds which would lead to the
tightness of Mn − c(mn)b + a logn.

1.2. Connection with thermodynamics

Due to the interplay between branching random walk theory and some random energy models in
statistical physics, we find it useful to relate the above-mentioned fine results on Mn to critical
phenomena. In the setting of the previous section, that is, when v = 0 and βv = 1, define the
convex functions

Fn(β) = 1

n
log

∑
|u|=n

e−βV (u), n ≥ 1, β > 0.
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Figure 1. First-order phase transition.

In the random energy model introduced by Derrida and Spohn in [22] (in which T is a regular
tree and the increments of the branching random walks are i.i.d. and Gaussian, so that only the
boundary case occurs), these functions are the free energies of the directed polymers on the
disordered tree T. They converge almost surely pointwise on R+ to the free energy in infinite
volume

F(β) = 1[0,1](β)φ(β) + 0 · 1(1,∞)(β), β > 0

(see [4,11,20,39,41]). Suppose that φ′(1−) exists. The free energy F is analytic over its domain
except at 1. In the boundary case φ′(1−) = 0, F is only once differentiable; in the thermodynam-
ical setting this corresponds to a second-order phase transition at the inverse temperature β = 1.
When φ′(1−) < 0 and φ(1+) = ∞, F is continuous and non-differentiable; we face a first-order
phase transition at β = 1 (see Figures 1 and 2 for illustrations where φ(0) is assumed finite).

Next, we recall some known facts associated with the boundary case, and we provide conjec-
tures regarding analogous results associated with the case considered in this paper.

Aïdékon’s result (1.8) is a key point in understanding the asymptotic behavior of the Gibbs
measures μβ,n which assigns to each bond u of generation n the mass μβ,n(u) = e−βV (u)−nFn(β).
Based on [2], Madaule [35] showed that n(3/2)β

∑
|u|=n e−βV (u) converges in law; see also Webb

[47] in the Gaussian case on a regular tree. In the case where T is regular, say s-adic, Barral,
Rhodes and Vargas [8] showed, thanks to [35] and the theory of invariant distributions by random
weighted means (also called fixed points of the smoothing transformation theory) [3,9,12,24,29,
32,38], that for each β > 1, μβ,n converges in law to a random discrete measure μβ defined
as follows: Let μ be the critical Mandelbrot measure on {0, . . . , s − 1}N+ associated with the

Figure 2. Second-order phase transition (boundary case).



The minimum of a branching random walk outside the boundary case 807

branching random walk, that is, the measure which assigns mass e−V (u)D∞(u) to bond u, where
D∞(u) is the copy of D∞ built with the branching random walk rooted at u; let N

(β)
μ be a

positive Borel random measure on {0, . . . , s − 1}N+ ×R∗+ whose law conditionally on μ is that

of a Poisson point measure with intensity μ(dx)dz

z1+1/β ; then define the random measures νβ(A) =∫
A

∫
R∗+ zN

(β)
μ (dx,dz) and μβ = νβ/‖νβ‖. All these results provide a sharp description of the

asymptotic behavior of the associated directed polymer at temperatures lower than the critical
freezing temperature β = 1. In particular, when the temperature goes to 0 they describe how the
main part of the energy concentrates on a small number of atoms.

The convergence (1.8) and some of the previous results have been extended to the context of
log-correlated Gaussian fields [15,23,36,37], which confers them an additional degree of univer-
sality.

Let us also mention that Mn plays a role in the study of the modulus of continuity of the
0-dimensional measure μ [6].

Our result makes us conjecture that outside the boundary case, for β > 1, eβαn
∑

|u|=n e−βV (u)

converges in law as n → ∞; furthermore this would imply that the same convergence result as
in the boundary case holds for the Gibbs measures μβ,n on {0, . . . , s − 1}N+ if one replaces the
critical Mandelbrot measure by the standard Mandelbrot measure, namely the non-degenerate
measure which assigns mass e−V (u)W∞(u) to bond u. Such results would complete the parallel
between the freezing phenomena observed under a second- and a first-order phase transition.

Also, it is important to try and test the universality of such properties for instance by studying
their validity in the context of more general log-Lévy multiplicative chaos [5,7,25,42] than the
Gaussian case, for which there is a natural formulation of the notion of being in or outside the
boundary case.

Let us finish with a geometric description of the difference between second- and first-order
phase transition at the critical inverse temperature β = 1, and conditionally on non-extinction:
under a second-order phase transition, there exists a minimal supporting subtree T(0) for the free
energy in the sense that the bonds of generation n in T which mainly contribute to the free energy
Fn(1) are those u of T(0) ∩Tn; moreover, one observes the behavior, or singularity, V (u)

n
≈ 0 =

−φ′(1) for the potential V along ∂T(0), and #T(0) ∩ Tn ≈ eo(n). These properties are reminis-
cent of the fact that in the infinite volume limit ∂T(0) is of Hausdorff dimension 0 and such that
limn→∞ 1

n
log

∑
|u|=n,[u]∩∂T(0)�=∅ e−V (u) = F(1) = 0, with limn→∞ V (x|n)

n
= 0 for all x ∈ ∂T(0),

where x|n is the prefix of x of length n and ∂T is endowed with the standard ultrametric distance.
Consequently, the free energy concentrates on a single type of singularity (see [4,40]). Under
a first order phase transition, for all α ∈ [0,−φ′(1)], there exists a subtree T(α) of T such that
#T(α)∩Tn ≈ enα , the bonds u ∈ T(α)∩Tn satisfy V (u)

n
≈ α, and they substantially contribute to

the free energy Fn(1); in the infinite volume the fractal sets ∂T(α), α ∈ [0,−φ′(1)], are of respec-
tive Hausdorff dimension α, and such that limn→∞ 1

n
log

∑
|u|=n,[u]∩∂T (α) �=∅ e−V (u) = F(1) = 0,

and at each x ∈ ∂T(α) one observes the singularity limn→∞ V (x|n)

n
= α (see [4] for more details).

This can be interpreted as the coexistence of uncountably many equilibrium states in the system
at β = 1.

The next section is an outline of the proof of Theorem 1.1.
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Figure 3. Typical path of an extremal particle.

2. Outline of the proof of Theorem 1.1

The main estimate leading to Theorem 1.1 is the following asymptotic tail for Mn − αn.

Proposition 2.1 (i.i.d. case). Assume (1.1), (1.4), (1.5). Suppose that L =∑ν
i=1 δ{ξi } with (ξi)

i.i.d. and independent of ν. For any ε > 0, there exist A = A(ε) > 0 and an integer n0 = n0(ε)

such that for all n > n0 and x ∈ [A, n
logn

],∣∣P(Mn ≤ αn − x) − c∗e−x
∣∣≤ εe−x, (2.1)

where as before, αn := (α + 1) logn − log	(n) and c∗ > 0 is the constant defined in (1.7).

Remark 2.2. In the general case, under some additional assumptions (see (A.1), (A.2) and (A.3)
in the Appendix), Proposition 2.1 still holds with the same normlization sequence αn and some
positive constant c instead of c∗.

It turns out that the machinery developed by Aïdékon in [2] is general enough to be adapted
in the case considered in this paper. As a matter of fact, the proof of Proposition 2.1 (of which
Proposition 4.1 is one of the main ingredients) goes in the same spirit as that of Proposition 1.3
in Aïdékon [2], namely the localization of the trajectory of a particle u such that V (u) = Mn.
The main difference is that, while in the boundary case such a trajectory typically corresponds to
an excursion of length n, in our situation the trajectory (V (uj ),0 ≤ j ≤ n) grows linearly until
some generation k, near to n, where it makes a very large drop �V (uk). Moreover, we can prove
that n − k = O(1), �V (uk) = −(m+ o(1))n and in the i.i.d. case that no brothers of uk make a
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drop of size −(m+ o(1))n [Intuitively, (V (uj ),0 ≤ j ≤ n) has a unique large drop and this large
drop can only happen near to n thanks to Lemma 4.2].

Specifically, let us fix the threshold ζn := n

(logn)3 . For any u ∈ T, let τ
(u)
ζn

be the time of the first

large drop in the path {V (ui),1 ≤ i ≤ |u|}:
τ

(u)
ζn

:= inf
{
1 ≤ i ≤ |u| : �V (ui) < −ζn

}
,

with inf∅ := ∞. Under the assumptions (1.1) and (1.4), we analyze the particles leading to Mn

and obtain the following statement (see (5.1)): Let L and T be large constants. For all large n

and for a fixed x > 0, we consider the event {∃|u| = n : V (u) ≤ αn − x}. By Lemma 4.3 ((4.6)
and (4.8)), we may restrict our attention to those |u| = n whose trajectory (V (uj ),0 ≤ j ≤ n)

has a unique large drop, say at generation k ≡ τ
(u)
ζn

. Moreover, k ≥ n − T (see Lemma 4.5) and
mink≤j≤n V (uj ) ≥ αn − x − L with high probability (see Lemma 4.4). It follows that

P(Mn ≤ αn − x)

= E

[
1

ηn

∑
|u|=n

1{Mn=V (u)≤αn−x}
]

(2.2)

= E

[
1

ηn

∑
|u|=n

1{Mn=V (u)≤αn−x,min
τ
(u)
ζn

≤j≤n
V (uj )≥αn−x−L,τ

(u)
ζn

∈[n−T ,n]}

]
+ o(1)e−x,

where ηn :=∑
|u|=n 1{V (u)=Mn} and o(1) → 0 uniformly in n and x, as L,T → ∞.

The next step is to analyze the number ηn and the event {Mn = V (u)} in (2.2). To this end,
we need to introduce the probability measure Q considered by Lyons [33] for general branching
random walks (see also [46] for regular trees) and originally defined by Kahane and Peyrière [29]
for regular trees and in the case where W∞ is non-degenerate (Q is there defined as the skew
product of the probability P and the Mandelbrot measure μ [29] to study the Hausdorff dimension
of μ).

The following proposition is well known: Denote by (Fn, n ≥ 0) the natural filtration of the
branching random walk.

Proposition 2.3. Under (1.1), on the space �̂ of marked trees enlarged by an infinite distin-
guished ray (wn,n ≥ 0), called the spine, we may construct a probability measure Q such that:

(i) for any n ≥ 1 and |u| = n, we have

Q ◦ π−1|Fn
:= Wn • P|Fn

, Q
{
wn = u|π−1(Fn)

}= e−V (u)

Wn

, (2.3)

where π denotes the projection of �̂ on �;
(ii) under Q, (�V (wn),

∑
v∈B(wn) δ{�V (wn)−�V (v)})n≥1 is a sequence of i.i.d. random vari-

ables. Moreover, the distribution of (V (wn),n ≥ 0) under Q is the distribution of the random
walk (Sn,n ≥ 0) under P defined above;

(iii) under Q, conditionally on G := σ {u,�V (u),
←
u = wj , j ≥ 0}, the processes {V (uv) −

V (u), v ∈ T}, for u ∈⋃∞
j=1 B(wj ), are i.i.d and are distributed as {V (v), v ∈ T} under P.
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We refer the reader to [13,18,33,34,43] for detailed discussions on the change of measure and
the proof of Proposition 2.3.

We denote by EQ the expectation with respect to Q. By the change of measure (Proposi-
tion 2.3), the expectation term in (2.2) is equal to

EQ

[
1

ηn

eV (wn)1{Mn=V (wn)≤αn−x,min
τ
(wn)
ζn

≤j≤n
V (wj )≥αn−x−L,τ

(wn)
ζn

∈[n−T ,n]}

]
.

Write k := τ
(wn)
ζn

∈ [n − T ,n]. A crucial step in the localization of minimal particles, stated
as Proposition 5.1, says that under (1.1), (1.4), (1.5) and the i.i.d. assumption, for any |u| = n

such that V (u) = Mn, necessarily uk = wk , that is, the trajectory of the particle u and the spine
coincide at least until the generation k. Consequently, both ηn and {Mn = V (wn)} will only
depend on the subtree rooted at wk . By the Markov property of the branching random walk
under the probability Q, we get that

P(Mn ≤ αn − x)

=
n∑

k=n−T

eαn−xEQ

[
1{τ (wk)

ζn
=k,V (wk)≥αn−x−L}F

(L)
n−k

(
V (wk) − (αn − x − L)

)]+ o(1)e−x,

where F
(L)
j is a measurable function defined in (5.9). Using the fact that under Q, (V (wk), k ≥ 0)

is distributed as the random walk (Sk, k ≥ 0), it follows that

P(Mn ≤ αn − x)

= eαn−x
T∑

j=0

E
[
1{τζn=n−j,Sn−j ≥αn−x−L}F (L)

j

(
Sn−j − (αn − x − L)

)]+ o(1)e−x.

Finally, we apply a renewal result (Lemma 3.6) and get Proposition 2.1 by letting T ,L → ∞.
Theorem 1.1 follows from Proposition 2.1, exactly as the main result in Aïdékon [2] follows

from an analogous, though different, proposition (pages 1405–1407). However, we give a proof
for the reader’s convenience.

Proof of Theorem 1.1 as a consequence of Proposition 2.1. For B ≥ 0, define

Z[B] = {
u ∈ T : V (u) ≥ B,V (uk) < B,∀k < |u|}.

In the sense of [31], this is a very simple optional line and one has, by Theorem 9 in [31],

lim
B→∞

∑
u∈Z[B]

e−V (u) = W∞.

Fix x ∈ R and ε ∈ (0, c∗). Let A(ε) ≥ 0 and n0(ε) large be defined as in Proposition 2.1. Let
B > A(ε) + 2|x| such that (c∗ + ε)e−B/2 < 1. Almost surely Z[B] is a finite subset of T (since
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limn→∞ Mn = +∞ and the offspring number ν < ∞ a.s.), then we can find n1 ∈ N+ such that
n1 ≥ n0(ε) and

∀n ≥ n1 P(YB,n) ≥ 1 − ε,

where

YB,n =
{
V (u) − x ≤ n

logn
,∀u ∈Z[B]

}
∩ {

max
{|u| : u ∈Z[B]}≤ n − n0(ε)

}
.

Notice that by the choice of B , for any u ∈ Z[B], V (u) − x > A(ε). Now for n ≥ n1 we have

P(Mn ≥ αn + x) ≥ P(Mn ≥ αn + x,YB,n) = E

(
1YB,n

∏
u∈Z[B]

(
1 − �|u|,n

(
V (u) − x

)))
,

where we have used the conditional expectation along the stopping line and for 0 ≤ k ≤ n,
�k,n(x) := P(Mn−k < αn − x). By construction, we can apply Proposition 2.1 to each term
of the product and get

P(Mn ≥ αn + x) ≥ E

(
1YB,n

∏
u∈Z[B]

(
1 − (c∗ + ε)ex−V (u)

))
.

If necessary, we can enlarge A(ε) to get ∀u ∈Z[B], ex−V (u) ≤ e−A(ε) ≤ (c∗ + ε)−1, so we have

P(Mn ≥ αn + x) ≥ E

( ∏
u∈Z[B]

(
1 − (c∗ + ε)ex−V (u)

))− P
(
Yc

B,n

)
.

This yields

lim inf
n→∞ P(Mn ≥ αn + x) ≥ E

( ∏
u∈Z[B]

(
1 − (c∗ + ε)ex−V (u)

))− ε.

Moreover, since max{e−V (u) : u ∈ Z[B]} tends a.s. to 0 as B → ∞, we have
limB→∞

∑
u∈Z[B] log(1 − (c∗ + ε)ex−V (u)) = −(c∗ + ε)exW∞ hence by dominated conver-

gence

lim inf
n→∞ P(Mn ≥ αn + x) ≥ E

(
exp

(−(c∗ + ε)exW∞
))− ε,

and letting ε tend to 0 yields the desired lower bound. To get the upper bound, write

P(Mn ≥ αn + x) ≤ P(Mn ≥ αn + x,YB,n) + P
(
Yc

B,n

)
.

Following the similar reasoning as above, we get

lim sup
n→∞

P(Mn ≥ αn + x) ≤ E

( ∏
u∈Z[B]

(
1 − (c∗ − ε)ex−V (u)

))+ ε,

and conclude as for the lower bound. �
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The rest of the paper is organized as follows.
In Section 3, we collect some preliminary estimates on the one-dimensional random walk (Sn).

We prove Proposition 4.1 in Section 4, and Proposition 2.1 in Section 5 by admitting a localiza-
tion Lemma 6.1. The proof of Lemma 6.1 is given in Section 6.

Throughout the text, we denote by K , K ′ and K ′′ possibly with several subscripts, some
positive constants whose values may change from one paragraph to another one. We also wrote
f (n) ∼ g(n) if limn→∞ f (n)

g(n)
= 1.

3. Preliminaries on the one-dimensional random walk (Sn)

Recall that we considered in the Introduction a sequence of i.i.d. real-valued random variables
(Xi)i≥1 distributed like X, and the random walk (Sn) defined as Sn := S0 + X1 + · · · + Xn for
any n ≥ 1 with S0 ∈ R. Let Sn := max0≤k≤n Sk and Sn := min0≤k≤n Sk . For x ∈ R, denote the
distribution of (Sn) by Px if S0 = x and P = P0. We state some known facts as lemmas.

Lemma 3.1 ([21], page 1950, Lemma 2.1). Let (Sn) be a one-dimensional random walk satis-
fying E[|S1|b] < ∞ for b > 1. Let m := E[S1]. There exists a constant K = Kb > 0 such that for
all n ≥ 1, y ≥ nmax(1/b,1/2) and x > 0,

P
(
Sn − mn ≤ −x, min

1≤i≤n
Xi ≥ −y

)
≤ Ke−x/y, (3.1)

P
(
|Sn − mn| ≥ x, max

1≤i≤n
|Xi | ≤ y

)
≤ Ke−x/y. (3.2)

Lemma 3.2 (Gut [26], Theorem 6.2, page 93). Let S be a one-dimensional random walk with
positive mean m starting from 0. Let

R(x) :=
∞∑

n=0

P(Sn ≤ x), x ≥ 0.

Then

lim
x→∞

R(x)

x
= m.

Lemma 3.3 (Stone [44]). Assume (1.4). There exists a slowly varying function 	1 such that for
all x ∈R, �> 0 and n ≥ 1,

P
(
Sn ∈ [x, x + �])≤ �n−max(1/α,1/2)	1(n).

We mention that up to a multiplicative constant, 	1 only depends on the truncated second
moment of S1; see Vatutin and Wachtel [45]. In particular, if α > 2, we may choose 	1 ≡ K for
some large enough positive constant.
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Let us introduce the drop times in the random walk (Sn): for ζ > 0, define

τζ := inf{j ≥ 1 : Xj < −ζ }, (3.3)

τ
(2)
ζ := inf{j > τζ : Xj < −ζ }, (3.4)

the first and the second drop time of size ζ . We shall consider ζ ∈ [ ζn

4 ,4ζn] with

ζn := n

(logn)3
, n ≥ 2. (3.5)

Lemma 3.4. Assume (1.4). There exists some constant K > 0 such that for all n ≥ 2, −∞ <

y ≤ m
2 n,

P
(
Sn − y ∈ [0,1])≤ Kn−α	(n).

Proof. It is enough to consider large n. Observe that

P
(
Sn − y ∈ [0,1]) ≤ P(Sn − y ≤ 1, τζn > n) + P

(
Sn − y ∈ [0,1], τ (2)

ζn
≤ n

)
+

n∑
i=1

P
(
Sn − y ∈ [0,1], τζn = i, τ

(2)
ζn

> n
)

(3.6)

=: A(3.6) + B(3.6) + C(3.6).

For any y ≤ m
2 n,

A(3.6) ≤ P
(

Sn − mn ≤ 1 − m

2
n, τζn > n

)
≤ Ke−((m/2)n−1)/ζn ≤ e−(m/3)(logn)3

, (3.7)

where we have applied Lemma 3.1 to get the second inequality in (3.7). For B(3.6), we deduce
from Lemma 3.3 that

B(3.6) =
n−1∑
i=1

n∑
j=i+1

P
(
τζn = i, τ

(2)
ζn

= j, Sn − y ∈ [0,1])

≤
n−1∑
i=1

n∑
j=i+1

P
(
τζn = i, τ

(2)
ζn

= j
)
(n − j + 1)−max(1/α,1/2)	1(n − j + 1)

≤ n × ζ−2α
n 	(ζn)

2n1−max(1/α,1/2) max
1≤k≤n

	1(k) = o
(
n−α

)
,

since 2 − α − max(1/α,1/2) < 0. Finally, for all n ≥ 2, let

E
(n)
i :=

{∣∣Sn − Xi − m(n − 1)
∣∣≤ n

logn

}
, 1 ≤ i ≤ n. (3.8)
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Observe that for any ζn

4 ≤ ζ ≤ 4ζn and 1 ≤ i ≤ n,1

P
(
τζ = i, τ

(2)
ζ > n,

(
E

(n)
i

)c)
= P

(
τζ = n,

(
E(n)

n

)c)
= P(Xn < −ζ )P

(
min

1≤j≤n−1
Xj ≥ −ζ,

∣∣Sn−1 − m(n − 1)
∣∣> n

logn

)
.

Now by using a union bound and Markov’s inequality, we get

P
(
τζ = i, τ

(2)
ζ > n,

(
E

(n)
i

)c)
≤ ζ−α	(ζ )

(
P
(

max
1≤j≤n−1

Xj ≥ ζ
)

+ P
(

max
1≤j≤n−1

|Xj | ≤ ζ,
∣∣Sn−1 − m(n − 1)

∣∣> n

logn

))
(3.9)

≤ ζ−α	(ζ )
(
nζ−γ E

[(
X+)γ ]+ Ke−n/(ζ logn)

) (
by using (1.4) and (3.2)

)
≤ n−(α+γ−1)	2(n),

with some slowly varying function 	2. Using exchangeability,

C(3.6) = nP
(
Xn < −ζn, Sn − y ∈ [0,1], τζn = n

)
≤ n−(α+γ−2)	2(n) + nE

[
1
E

(n)
n

P
(
Xn + s − y ∈ [0,1],Xn < −ζ

)|s=Sn−1

]
,

by using the independence of Xn and Sn−1. Notice that

sup
x≤−(m/3)n

	(x)

|x|α+1
≤ (

1 + o(1)
)
	(n)

(
m

3
n

)−α−1

≤ Ke−αn, (3.10)

by using Karamata’s representation for the slowly varying function 	. On E
(n)
n , y − Sn−1 ≤

−m
2 n + m+ n

logn
≤ −m

3 n − 1. It follows from (1.4) and (3.10) that on E
(n)
n , uniformly for s =

Sn−1, P(Xn + s − y ∈ [0,1]) ≤ (1 + o(1))	(n)(m3 n)−α−1, which implies that for all large n,
C(3.6) ≤ (m3 )−α−1(1 + o(1))n−α	(n). Lemma 3.4 follows from (3.6). �

Recall that αn = (α + 1) logn − log	(n).

1We consider ζ instead of ζn for the use of (3.9) in the proof of Lemma 3.5; Moreover, by exchangeability, the probability

P(τζ = i, τ
(2)
ζ > n, (E

(n)
i

)c) does not depend on i.
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Lemma 3.5. Assume (1.4). There exist K > 0 and a slowly varying function 	3 ≥ 1 such that for
all large n ≥ n0, ∀ζ ∈ [ ζn

4 ,4ζn], a ≤ n
logn

, we have that

P
(
Sn − y ∈ [a, a + 1], min

τζ ≤j≤n
Sj ≥ y, τ

(2)
ζ ≤ n

)
(3.11)

≤ R(a + 1)n1−max(1/α,1/2)−2α	3(n) ∀y ∈R,

whereas for all −∞ < y < m
2 n,

P
(
Sn − y ∈ [a, a + 1], min

τζ ≤j≤n
Sj ≥ y, τζ ≤ n < τ

(2)
ζ

)
≤ KR(a + 1)e−αn . (3.12)

Moreover, for any ε > 0, there exists some λ = λ(ε) > 0 such that for all −∞ < y < m
2 n,

P
(
Sn − y ∈ [a, a + 1], min

τζ ≤j≤n
Sj ≥ y, |Sn − Sτζ | > λ,τζ ≤ n

)
≤ εe−αn . (3.13)

Similar results hold if we replace the interval [a, a + 1] by [a, a +�] with an arbitrary positive
constant �.

Proof of Lemma 3.5. We shall prove that for any 1 ≤ i < n,

P
(
Sn − y ∈ [a, a + 1], min

τζ ≤j≤n
Sj ≥ y, τζ = i, τ

(2)
ζ ≤ n

)
(3.14)

≤ R(a + 1)i−max(1/α,1/2)n−2α	3(n) ∀y ∈ R,

whereas for all −∞ < y < m
2 n,

P
(
Sn − y ∈ [a, a + 1], min

τζ ≤j≤n
Sj ≥ y, τζ = i, τ

(2)
ζ > n

)
(3.15)

≤ KP(Sn−i+1 ≤ a + 1)e−αn + n−(α+γ−1)	3(n).

Clearly, up to a multiplicative constant, (3.11) and (3.12) follow from (3.14) and (3.15) by
taking the sum over i ∈ 1,2, . . . , n − 1.

Let us denote by P(3.14)(i) the probability term in (3.14). By considering the time-reversed

random walk (Sn − Sn−k,0 ≤ k ≤ n)
(d)= (Sk,0 ≤ k ≤ n), we get that for any 1 ≤ i ≤ n − 1,

(Sn,minτζ ≤j≤n Sj , {τζ = i < τ
(2)
ζ ≤ n}) has the same distribution as (Sn, Sn − Sσn, {σn = n −

i + 1 > τζ }), where σn := max{k ∈ [1, n],Xk < −ζ } (with the usual convention max∅ := 0). It
follows that

P(3.14)(i) = P
(
Sn − y ∈ [a, a + 1], Sn−i+1 ≤ Sn − y,σn = n − i + 1 > τζ

)
≤ P

(
Sn − y ∈ [a, a + 1], Sn−i ≤ a + 1,Xn−i+1 < −ζ, τζ < n − i + 1

)
= E

[
1{Xn−i+1<−ζ,τζ <n−i+1,Sn−i≤a+1}PSn−i+1

(
Si−1 − y ∈ [a, a + 1])],
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by the Markov property at n − i + 1. Set g(i) = supz∈R Pz(Si − y ∈ [a, a + 1]). We have

P(3.14)(i) ≤ g(i − 1)P(Xn−i+1 < −ζ, τζ < n − i + 1, Sn−i ≤ a + 1)

≤ g(i − 1)
∑

1≤j<n−i+1

P(Xn−i+1 < −ζ,Xj < −ζ, Sj−1 ≤ a + 1)

(3.16)
= g(i − 1)P(X < −ζ )2

∑
1≤j<n−i+1

P(Sj−1 ≤ a + 1)

≤ g(i − 1)ζ−2α	(ζ )2R(a + 1),

for all large n. According to Stone’s local limit theorem (Lemma 3.3), for i ≥ 2 one has g(i−1) ≤
i−max(1/α,1/2)	1(i), since g(0) ≤ 1, this yields (3.14) as we shall choose

	3(n) := max
(
	2(n),42α(logn)6α max

1≤i≤n,ζn/4≤ζ≤4ζn

	1(i)	(ζ )2,1
)
,

where 	2(n) is the slowly varying function that appeared in (3.9).
To prove (3.15), we first establish an inequality implying that when Sn = o(n), with high

probability there is a unique large drop Xτζ before n and the drop is of order of magnitude −mn.

Recall (3.8) for the definition of E
(n)
i . Define for any i ∈ [1, n],

P(3.17)(i) := P
(
Sn − y ∈ [a, a + 1], min

i≤j≤n
Sj ≥ y, τζ = i, τ

(2)
ζ > n,E

(n)
i

)
. (3.17)

In view of (3.9), (3.15) will follow if we can prove that

P(3.17)(i) ≤ KP(Sn−i+1 ≤ a + 1)e−αn . (3.18)

By conditioning on σ {Xj ,1 ≤ j ≤ n, j �= i}, we have that

P(3.17)(i) ≤ P
(
Sn − min

i≤j≤n
Sj ≤ a + 1, Sn − y ∈ [a, a + 1],E(n)

i

)
(3.19)

= E
[
1{Sn−mini≤j≤n Sj ≤a+1,E

(n)
i }P

(
Xi + t − y ∈ [a, a + 1])|t=Sn−Xi

]
.

On E
(n)
i , |t −m(n−1)| ≤ n

logn
, so z ≡ a +1+y − t ≤ −m

3 n for all large n ≥ n0 and uniformly
for all a ≤ n

logn
and y < m

2 n, hence it follows from (1.4) and (3.10) that

P(3.17)(i) ≤ Ke−αnP
(
Sn − min

i≤j≤n
Sj ≤ a + 1,E

(n)
i

)
,

which yields (3.18) by using the fact that P(Sn − mini≤j≤n Sj ≤ a + 1) = P(Sn−i+1 ≤ a + 1).
This completes the proof of (3.15).

Remark that in (3.19), if we replace the event {Sn − mini≤j≤n Sj ≤ a + 1} by {|Sn − Si | > λ}
with λ > 0, then for any i ∈ [1, n],

P
(|Sn − Si | > λ,Sn − y ∈ [a, a + 1],E(n)

i

)≤ Ke−αnP
(|Sn − Si | > λ

)
. (3.20)
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Denote by P(3.13) the probability term in (3.13). Notice that by (3.11), the probability that the

event in (3.13) holds together with {τ (2)
ζ ≤ n} is bounded by R(a + 1)n1−max(1/α,1/2)−2α	3(n) ≤

ε
4 e−αn for all large n ≥ n0(ε). On the other hand, we deduce from (3.15) then Lemma 3.2 that
for some large but fixed integer k = k(ε, a),

P
(
Sn − y ∈ [a, a + 1], min

τζ ≤j≤n
Sj ≥ y, τζ < n − k, τ

(2)
ζ > n

)
≤ K

∞∑
j=k

P(Sj ≤ a + 1)e−αn + n1−(α+γ−1)	3(n)

≤ ε

4
e−αn,

for all n ≥ n1(ε) [recalling that γ > 3]. Therefore,

P(3.13) ≤ ε

2
e−αn + P

(
Sn − y ∈ [a, a + 1], |Sn − Sτζ | > λ,n − k ≤ τζ ≤ n < τ

(2)
ζ

)
≤ ε

2
e−αn + (k + 1)n−(α+γ−1)	2(n)

+
n∑

i=n−k

P
(
Sn − y ∈ [a, a + 1], |Sn − Sτζ | > λ,τζ = i,E

(n)
i

)
,

by applying (3.9) to i = n,n−1, . . . , n−k. Since γ > 3, (k+1)n−(α+γ−1)	2(n) ≤ ε
4 e−αn , which

in view of (3.20) imply that P(3.13) ≤ 3ε
4 e−αn + K

∑k
j=0 P(|Sj | > λ)e−αn ≤ εe−αn , if we choose

some λ = λ(k, ε) large enough. This proves (3.13) and completes the proof of Lemma 3.5. �

We present a renewal result associated to the random walk (Sn)n≥0.

Lemma 3.6. Under (1.4). Let G : R+ × R → R be a measurable function such that for some
b > 1 and some positive constant K > 0,

sup
z∈R

∣∣G(x, z)
∣∣≤ K(1 + x)−b ∀x ≥ 0. (3.21)

Assume furthermore that for any x ∈R+, limz→−∞ G(x, z) exists, and denote it by G∗(x). Then

lim
n→∞ eαnE

[
1{τζ =n,Sn≥y}G(Sn − y,Xn)

]= m−(α+1)

∫ ∞

0
G∗(x)dx, (3.22)

uniformly on |y| ≤ n
logn

and ζn

4 ≤ ζ ≤ 4ζn.

In the proof of Proposition 2.1 [i.i.d. case], we shall apply Lemma 3.6 to some function
F

(L)
j (x) which does not depend on z. We keep the possibility of dependence on z in the lemma

to deal with the general case of Proposition 2.1 (see Remark 2.2).
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Proof of Lemma 3.6. Without loss of generality, we may assume that G takes non-negative
values. Let ε > 0 be small. Let E

(n)
n := {|Sn−1 − m(n − 1)| ≤ n

logn
} as in (3.8). By (3.9),

P
(
τζ = n,

(
E(n)

n

)c)≤ n−(α+γ−1)	2(n) ≤ εe−αn,

for all large n. Let us denote by E(3.22) the expectation term in (3.22). Then

eαnE(3.22) = eαnE
[
1{τζ =n,Sn≥y}∩E

(n)
n

G(Sn − y,Xn)
]+ O(ε). (3.23)

To deal with the above expectation term, we distinguish two situations according to the value
of Sn − y: Clearly,

eαnE
[
1{τζ =n,Sn−y≥n/ logn}∩E

(n)
n

G(Sn − y,Xn)
]

≤ eαnK

(
1 + n

logn

)−b

P(Xn < −ζ )

(3.24)

= K

(
1 + n

logn

)−b

eαn

∫ −ζ

−∞
|x|−α−1	(x)dx

≤ ε,

uniformly in ζ ∈ [ ζn

4 ,4ζn] since b > 1. If 0 ≤ Sn − y < n
logn

, then on the event E
(n)
n , Xn =

Sn − Sn−1 satisfies that |Xn + m(n − 1)| ≤ 3 n
logn

uniformly in |y| ≤ n
logn

, a fortiori, Xn ≤ −ζ so
that τζ ≤ n. In view of (3.23) and (3.24), we get that

eαnE(3.22) = eαnE
[
1{τζ =n,0≤Sn−y<n/ logn}∩E

(n)
n

G(Sn − y,Xn)
]+ O(ε)

= eαnE
[
1{0≤Sn−y<n/ logn}∩E

(n)
n

G(Sn − y,Xn)
]− Rn + O(ε),

with

Rn := eαnE
[
1{τζ ≤n−1,0≤Sn−y<n/ logn}∩E

(n)
n

G(Sn − y,Xn)
]
.

By using the density of Xn, we see that for all large n,

eαnE
[
1{0≤Sn−y<n/ logn}∩E

(n)
n

G(Sn − y,Xn)
]

(3.25)

= E
[

1
E

(n)
n

∫
{0≤Sn−1+z−y<n/ logn}

G(Sn−1 + z − y, z)
(
eαn |z|−α−1	(z)

)
dz

]
,

where we notice that |z + m(n − 1)| ≤ 3 n
logn

, and hence eαn |z|−α−1	(z) = m−(α+1) + o(1) uni-
formly in y. Thus, we get that

eαnE
[
1{0≤Sn−y<n/ logn}∩E

(n)
n

G(Sn − y,Xn)
]

= (
m−(α+1) + o(1)

)
E
[

1
E

(n)
n

∫
1{0≤Sn−1+z−y<n/ logn}G(Sn−1 + z − y, z)dz

]
(3.26)
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= (
m−(α+1) + o(1)

)
E
[

1
E

(n)
n

∫ n/ log(n)

0
G(x,x + y − Sn−1)dx

]
=: (m−(α+1) + o(1)

)
E(3.26).

Notice that for any fixed x ∈ R+ and |y| ≤ n
logn

, 1
E

(n)
n

G(x, x + y − Sn−1) converges a.s. to
G∗(x) as n → ∞. Indeed −Sn−1 tends linearly to −∞ and 1

E
(n)
n

converges to 1 a.s. by the
Kolmogorov–Marcinkiewicz–Zygmund law of large numbers. It then follows from (3.21) and
the dominated convergence theorem that E(3.26) → ∫∞

0 G∗(x)dx, uniformly in |y| ≤ n
logn

.
It remains to show that Rn → 0 as n → ∞, uniformly in |y| ≤ n

logn
. Observe that the same

computation from (3.25) to (3.26) gives that

Rn = (
m−(α+1) + o(1)

)
E
[

1{τζ ≤n−1}∩E
(n)
n

∫ n/ log(n)

0
G(x,x + y − Sn−1)dx

]
.

By (3.21),
∫∞

0 supz∈R |G(x, z)|dx ≤ K
b−1 . Then for some constant K ′ > 0,

|Rn| ≤ K ′P(τζ ≤ n − 1).

Finally, P(τζ ≤ n − 1) ≤ (n − 1)P(X1 < −ζ ) ≤ nζ−α	(ζ ) which tends to 0 uniformly in
ζ ∈ [ ζn

4 ,4ζn]. This yields the desired conclusion. �

4. Tightness of the minimum

The tightness of Mn − αn holds in a general setting, for instance, (1.1) and (1.4) are enough to
get the upper bound of P(Mn ≤ αn − x) which will be useful in the proof of Proposition 2.1.

Proposition 4.1. Under (1.1) and (1.4), there exists some positive constant K such that for all
n ≥ 2 and x ≥ 0,

P(Mn ≤ αn − x) ≤ Ke−x, (4.1)

where we recall that αn := (α + 1) logn − log	(n).

We note in passing that a computation of the second moment and an application of Paley–
Zygmund’s inequality will give the lower bound for P(Mn ≤ αn − x) if we assume (1.5) and an
additional technical hypothesis (e.g., (A.2) in the Appendix).

Before presenting the proof of Proposition 4.1, we fix some notation which will be used
throughout the rest of this paper: For |u| = n, we write [∅, u] ≡ {u0 := ∅, u1, . . . , un−1, un = u}
the shortest path from the root ∅ to u such that |ui | = i for any 0 ≤ i ≤ n. For any u,v ∈ T, we
use the partial order u < v if u is an ancestor of v and u ≤ v if u < v or u = v. By the standard
words-representation in a tree, u < v if and only if the word v is a concatenation of the word u

with some word s, namely v = us with |s| ≥ 1. Denote by T(u) := {v : u ≤ v} the subtree rooted
at u and by Tn := {v : |v| = n} the set of vertices at generation n for any integer n. Let

←
v be the

parent of v for any v �=∅.
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The following so-called many-to-one formula (4.2) can be obtained as a consequence of the
spinal decomposition (see Proposition 2.3): Under (1.1), for any n ≥ 1 and any measurable func-
tion g :Rn → [0,+∞),

E

[∑
|u|=n

g
(
V (u1), . . . , V (un)

)]= E
[
eSng(S1, . . . , Sn)

]
. (4.2)

The proof of Proposition 4.1 will be based on the forthcoming three lemmas. The first one is a
well-known fact in the studies of branching random walk.

Lemma 4.2. Assume (1.1). We have that

P
(∃u ∈ T,V (u) ≤ −x

)≤ e−x ∀x > 0. (4.3)

Proof. We give the proof for the sake of completeness: By considering the first generation k ≥ 1
for which there exists some |u| = k such that V (u) ≤ −x, we get that

P
(∃u ∈ T,V (u) ≤ −x

) ≤
∞∑

k=1

E

[∑
|u|=k

1{V (u)≤−x,V (ui )>−x,∀i≤k}
]

=
∞∑

k=1

E
[
eSk 1{Sk≤−x,Si>−x,∀i≤k}

]
≤ e−x

∞∑
k=1

P(Sk ≤ −x,Si > −x,∀i ≤ k)

≤ e−x,

where the above equality follows from the many-to-one formula (4.2). �

To state the second lemma, we need to introduce some notation similar to that in (3.3) and
(3.4): Recall that ζn := n

(logn)3 . For any u ∈ T, let τ
(u)
ζn

and τ
(2,u)
ζn

be the first and the second time

of a large drop in the path {V (ui),1 ≤ i ≤ |u|}:
τ

(u)
ζn

:= inf
{
i ∈ [1, |u|] : V (ui) − V (ui−1) < −ζn

}
, (4.4)

τ
(2,u)
ζn

:= inf
{
i ∈ (τ (u)

ζn
, |u|] : V (ui) − V (ui−1) < −ζn

}
, (4.5)

with inf∅ := ∞. Recall that αn = (α +1) logn− log	(n). Our second lemma says that for those
u such that V (u) ≤ αn − x, necessarily there is a unique large drop before |u|.

Lemma 4.3. Assume (1.1) and (1.4). For any ε > 0, there exists n0(ε) > 0 such that for any
n ≥ n0(ε) and all x ≥ 0,

P
(∃u ∈ Tn,V (u) ≤ αn − x, τ

(u)
ζn

> n
) ≤ εe−x, (4.6)
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P

(
∃u ∈ Tn,V (u) ≤ αn − x, min

τ
(u)
ζn

≤j≤n

V (uj ) ≥ −x − αn, τ
(2,u)
ζn

≤ n
)

≤ εe−x. (4.7)

Consequently, for any x > 0,

P
(∃u ∈ Tn,V (u) ≤ αn − x, τ

(2,u)
ζn

≤ n
)≤ εe−x. (4.8)

We may replace in (4.7) min
τ

(u)
ζn

≤j≤n
V (uj ) ≥ −x −αn by min

τ
(u)
ζn

≤j≤n
V (uj ) ≥ −x −nb with

any constant b ∈ (0, α + 1
α

− 2).

Proof of Lemma 4.3. By the many-to-one formula (4.2) and using the notation (3.3) and (3.4),
the probability term in (4.6) is less than

E

(∑
|u|=n

1{V (u)≤αn−x,τ
(u)
ζn

>n}

)
= E

(
eSn1{Sn≤αn−x,τζn>n}

)
≤ e−x+αnP(Sn ≤ αn − x, τζn > n)

≤ e−x+αnP
(
Sn − mn ≤ αn − mn, min

1≤i≤n
Xi ≥ −ζn

)
≤ e−(m/2)(logn)3

e−x,

for all large n, say n ≥ n1 and where we have used Lemma 3.1 for the last inequality. This
proves (4.6).

Let us denote by P(4.7) the probability term in (4.7). Then

P(4.7) ≤ E

[∑
|u|=n

1{V (u)≤αn−x,min
τ
(u)
ζn

≤j≤n
V (uj )≥−x−αn,τ

(2,u)
ζn

≤n}

]
= E

[
eSn1{Sn≤αn−x,minτζn≤j≤n Sj ≥−x−αn,τ

(2)
ζn

≤n}
]

≤
�2αn�+1∑

k=1

ek−x−αnP
(
Sn + αn + x ∈ [k − 1, k), min

τζn≤j≤n
Sj ≥ −x − αn, τ

(2)
ζn

≤ n
)
.

By applying (3.11) with y ≡ −x − αn, we get that [R is a non-decreasing function] for any
1 ≤ k ≤ �2αn� + 1,

P
(
Sn + αn + x ∈ [k − 1, k), min

τζn≤j≤n
Sj ≥ −x − αn, τ

(2)
ζn

≤ n
)

≤ n1−1/α−2α	3(n)R(2αn + 2),

which implies that

P(4.7) ≤ e−x−αne2αn+1n1−1/α−2α	3(n)R(2αn + 2) = e−xn2−α−1/α	4(n)

with some slowly varying function 	4. Since for α > 1, 2 − α − 1/α < 0, (4.7) follows.
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Finally, we deduce from (4.7) and Lemma 4.2 that the probability term in (4.8) is less than
εe−x + P(∃u ∈ T : V (u) < −x − αn) ≤ εe−x + e−αn−x ≤ 2εe−x yielding (4.7). �

Below is the third and the last lemma that we need in the proof of Proposition 4.1.

Lemma 4.4. Assume (1.1) and (1.4). There exist K,c4 > 0 such that for any n and L0 ∈ N∗
large enough, and for any x ≥ 0 and L ∈ [L0, (2 + α) logn],

P

(
∃u ∈ Tn,V (u) ≤ αn − x, min

τ
(u)
ζn

≤j≤n

V (uj ) − (αn − x) ∈ [−L,−L + 1], τ (u)
ζn

≤ n < τ
(2,u)
ζn

)
(4.9)

≤ Ke−c4Le−x.

Consequently, there exists some constant c2 > 0 such that for any L ≥ L0,

P

(
∃u ∈ Tn,V (u) ≤ αn − x, min

τ
(u)
ζn

≤j≤n

V (uj ) ≤ αn − x − L,τ
(u)
ζn

≤ n < τ
(2,u)
ζn

)
(4.10)

≤ Ke−c2Le−x.

Proof. Let P(4.9) the probability term in (4.9). Pick a constant β ∈ (0, 1
4(2+α)

). Notice that L <

(2 + α) logn implies eβL ≤ n1/4. For notational simplification, we write in this proof

y ≡ y(n, x,L) := αn − x − L

(notice that y < mn/2 if n is large enough).
For any u ∈ Tn satisfying the condition in the probability term in (4.9), there exists p ∈

[τ (u)
ζn

, n] such that V (up) ∈ [y, y + 1]. Then τ
(u)
ζn

= τ
(up)

ζn
, and

P(4.9) ≤
n∑

p=1

P

(
∃u ∈ Tn, min

τ
(u)
ζn

≤j≤n

V (uj ) ≥ y,V (up) − y ∈ [0,1],

V (u) ≤ y + L,τ
(u)
ζn

≤ p, τ
(2,u)
ζn

> n
)

(4.11)

≤
n−�eβL�∑

p=1

A(4.11)(p) +
n∑

p=n−�eβL�
B(4.11)(p),

with

A(4.11)(p) := E

[∑
|u|=n

1{min
τ
(u)
ζn

≤j≤n
V (uj )≥y,V (up)−y∈[0,1],V (u)≤y+L,τ

(u)
ζn

≤p,τ
(2,u)
ζn

>n}

]
,

B(4.11)(p) := E

[∑
|v|=p

1{min
τ
(v)
ζn

≤j≤p
V (vj )≥y,V (v)−y∈[0,1],τ (v)

ζn
≤p<τ

(2,v)
ζn

}

]
,
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where the sum of the expectation term of B(4.11)(p) is obtained by considering v = up satisfying
V (up) ∈ [y, y + 1]. We omitted the dependence on n in both A(4.11)(p) and B(4.11)(p). By
using (4.2), we have

B(4.11)(p) = E
[
eSp 1{minτζn≤j≤p Sj ≥y,Sp−y∈[0,1],τζn≤p<τ

(2)
ζn

}
]

≤ ey+1P
(

min
τζn≤j≤p

Sj ≥ y,Sp − y ∈ [0,1], τζn ≤ p < τ
(2)
ζn

)
(4.12)

≤ K ′eye−αp ,

where the last inequality follows from (3.12) by remarking that ζp

4 ≤ ζn ≤ 4ζp for any p ∈
[n − �eβL�, n]; moreover e−αp ∼ e−αn , so for all large n,

n∑
p=n−�eβL�

B(4.11)(p) ≤ 2K ′ey+βLe−αn ≤ Ke−x−L/2.

It remains to estimate A(4.11)(p). By applying (4.2),

A(4.11)(p) = E
[
eSn1{minτζn≤j≤n Sj ≥y,Sp−y∈[0,1],Sn≤y+L,τζn≤p,τ

(2)
ζn

>n}
]

≤ ey+LP
(

min
τζn≤j≤n

Sj ≥ y,Sp − y ∈ [0,1], Sn − y ∈ [0,L], τζn ≤ p, τ
(2)
ζn

> n
)
.

By applying the Markov property at time p, we see that the above probability term is equal to

E
[
1{minτζn≤j≤p Sj ≥y,Sp−y∈[0,1],τζn≤p<τ

(2)
ζn

}PSp

(
Sn−p ≥ y,Sn−p − y ∈ [0,L], τζn > n − p

)]
.

For any z ≡ Sp ∈ [y, y + 1], Pz(Sn−p ≥ y,Sn−p − y ∈ [0,L], τζn > n − p) ≤ P(Sn−p ≥
−1, Sn−p ∈ [−1,L + 1], τζn > n − p). Recalling that y = αn − x − L, we get

A(4.11)(p) ≤ eαn−xI(4.13)J(4.13), (4.13)

with

I(4.13) := P
(

min
τζn≤j≤p

Sj ≥ y,Sp − y ∈ [0,1], τζn ≤ p < τ
(2)
ζn

)
,

J(4.13) := P
(
Sn−p ≥ −1, Sn−p ∈ [−1,L + 1], τζn > n − p

)
.

For 1 ≤ p < �n
4 �, we apply Lemma 3.1 to see that J(4.13) ≤ P(Sn−p ≤ L + 1, τζn > n − p) ≤

Ke−(3mn/4−(L+1))/ζn , hence for 1 ≤ p < �n
4 �,

A(4.11)(p) ≤ Keαn−xe−(3mn/4−(L+1))/ζn ≤ e−(m/2)(logn)3
e−x. (4.14)

For �n
4 � ≤ p ≤ n − �eβL�, we apply (3.12) for I(4.13) (with y ≡ αn − L − x ≤ αn ≤ m

2 p and

ζ = ζn ∈ [ ζp

4 ,4ζp]), and L + 1 times Lemma 3.4 for J(4.13) (recall that n − p ≥ �eβL� ≥ eβL0
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large and thus L ≤ m
2 (n − p)) we get

A(4.11)(p) ≤ K ′eαn−xe−αn(L + 1)
	(n − p)

(n − p)α
≤ K ′′e−x(L + 1)

	(n − p)

(n − p)α
,

which together with (4.14) yield that

n−�eβL�∑
p=1

A(4.11)(p) ≤ e−xne−(m/2)(logn)3 + K ′′e−x(L + 1)

n−�eβL�∑
p=�n/4�

	(n − p)

(n − p)α

≤ Ke−xe−((α−1)/2)βL,

proving (4.9).
It remains to prove (4.10). Let c3 := 1

2(α+2)
. Remark that if L ≥ αn

1−c3
, then αn − L ≤ −c3L

and it follows from Lemma 4.2 that

P

(
∃u ∈ Tn, min

τ
(u)
ζn

≤j≤n

V (uj ) ≤ αn − x − L,τ
(u)
ζn

≤ n
)

≤ e−c3L−x.

Therefore, it is enough to treat the case L0 ≤ L < αn

1−c3
. As n ≥ n0, αn

1−c3
≤ (2 +α) logn. Then

the probability term in (4.10) is less than

P

(
∃u ∈ Tn,V (u) ≤ αn − x, min

τ
(u)
ζn

≤j≤n

V (uj ) − (αn − x) ≤ −c3L,τ
(u)
ζn

≤ n < τ
(2,u)
ζn

)

+
αn+c3L∑

k=L

P

(
∃u ∈ Tn,V (u) ≤ αn − x, min

τ
(u)
ζn

≤j≤n

V (uj ) − (αn − x) ∈ [−k,−k + 1),

τ
(u)
ζn

≤ n < τ
(2,u)
ζn

)
≤ e−c3L−x +

αn/(1−c3)∑
k=L

e−c4k−x

≤ e−c3L−x + K ′e−c4L−x.

We get (4.10) by choosing c2 := min(c3, c4). �

Now we can tackle the proof of Proposition 4.1.

Proof of Proposition 4.1. Fix an arbitrary integer L ≥ L0 (L0 as in Lemma 4.4) and consider n

large enough to have L ∈ [L0, (2 + α) logn]. Then

P(Mn ≤ αn − x) ≤ P
(1)
(4.15) + P

(2)
(4.15) + P

(3)
(4.15) + P

(4)
(4.15), (4.15)
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with

P
(1)
(4.15) := P

(∃u ∈ T,V (u) ≤ −x
)
,

P
(2)
(4.15) := P

(
∃u ∈ Tn,V (u) ≤ αn − x, min

τ
(u)
ζn

≤j≤n

V (uj ) > −x, τ
(2,u)
ζn

≤ n
)

+ P
(∃u ∈ Tn,V (u) ≤ αn − x, τ

(u)
ζn

> n
)
,

P
(3)
(4.15) :=

αn+1∑
k=L

P

(
∃u ∈ Tn,V (u) ≤ αn − x, min

τ
(u)
ζn

≤j≤n

V (uj ) − (αn − x) ∈ [−k,−k + 1),

τ
(u)
ζn

≤ n < τ
(2,u)
ζn

)
,

P
(4)
(4.15) := P

(
∃u ∈ Tn,V (u) ≤ αn − x, min

τ
(u)
ζn

≤j≤n

V (uj ) ≥ αn − x − L,τ
(u)
ζn

≤ n < τ
(2,u)
ζn

)
.

Based on (4.3), (4.6), (4.8) and (4.9), we only need to estimate P
(4)
(4.15). By the many-to-one

formula (4.2), we get that

P
(4)
(4.15) ≤ E

[∑
|u|=n

1{V (u)≤αn−x,min
τ
(u)
ζn

≤j≤n
V (uj )≥αn−x−L,τ

(u)
ζn

≤n<τ
(2,u)
ζn

}

]
≤ E

[
eSn1{Sn≤αn−x,minτζn≤j≤n Sj ≥αn−x−L,τζn≤n<τ

(2)
ζn

}
]

≤ eαn−xP
(
Sn ≤ αn − x, min

τζn≤j≤n
Sj ≥ αn − x − L,τζn ≤ n < τ

(2)
ζn

)

≤ eαn−x
L∑

k=1

P
(
Sn − αn + x ∈ [−k,−k + 1], min

τζn≤j≤n
Sj ≥ αn − x − L,τζn ≤ n < τ

(2)
ζn

)
≤ Ke−xL2,

where to obtain the last estimate, we have used the display (3.12) (with y = −αn + x + L,
a = L − k there) and the fact that R(a + 1) ∼ ma as a → ∞. This completes the proof of
Proposition 4.1. �

We end this section by a lemma which will be used in Section 5.

Lemma 4.5. Assume (1.1) and (1.4). Let ε > 0. For any L > 0, there are some integers T =
T (ε,L) and n0 = n0(ε,L) > T such that for all n ≥ n0 and all x > 0:

P

(
∃u ∈ Tn,V (u) ≤ αn − x, min

τ
(u)
ζn

≤j≤n

V (uj ) ≥ αn − x − L,τ
(u)
ζn

≤ n − T , τ
(2,u)
ζn

> n
)
(4.16)

≤ εe−x.
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Proof. Denote by P(4.16) the probability term in (4.16) and write y = αn − x − L. Then by the
many-to-one formula

P(4.16) ≤ E

[∑
|u|=n

1{V (u)≤y+L,min
τ
(u)
ζn

≤j≤n
V (uj )≥y,τ

(u)
ζn

≤n−T ,τ
(2,u)
ζn

>n}

]
= E

[
eSn1{Sn≤y+L,minτζn≤j≤n Sj ≥y,τζn≤n−T ,τ

(2)
ζn

>n}
]

≤
n−T∑
i=1

�L�+1∑
k=1

ey+kP
(
Sn − y ∈ [k − 1, k), min

τζn≤j≤n
Sj ≥ y, τζn = i, τ

(2)
ζn

> n
)
.

Each probability term in the above double sum is less than, by (3.15), KP(Sn−i+1 ≤ k)e−αn +
n−(α+γ−1)	3(n) ≤ KP(Sn−i+1 ≤ L+1)e−αn +n−(α+γ−1)	3(n), hence by taking the double sum
over i and k,

P(4.16) ≤ K ′e−x
n∑

j=T

P(Sj ≤ L + 1) + e−xeαnn−(α+γ−2)	3(n).

Taking T = T (ε,L) large enough such that
∑∞

j=T P(Sj ≤ L + 1) < ε
2K ′ (according to

Lemma 3.2) and n0 large enough so that eαnn−(α+γ−2)	3(n) ≤ ε
2 for all n ≥ n0, we get (4.16). �

5. Proof of Proposition 2.1

The proof of Proposition 2.1 relies on the analysis of the trajectory of a particle which reaches
the minimum at time n. The main step in the proof is to show that in the i.i.d. case, all minimal
particles will have a (unique) common large drop; see Proposition 5.1 for the precise statement.

At first, we shall make use of the estimates in Section 4 to localize the generation at which the
minimal particles make a large drop.

Let ε > 0 be small and x > 0. Let L ≡ L(ε) ≥ L0 where L0 is given by Lemma 4.4 be such
that Ke−c2L < ε. Consider the event that there is some u ∈ Tn such that V (u) ≤ αn − x. By
(4.6) and (4.8), with a cost at most 2εe−x , we may assume that τ

(u)
ζn

≤ n, which in view of (4.10)
yields that we may furthermore assume min

τ
(u)
ζn

≤j≤n
V (uj ) > αn − x − L with an extra cost

at most equal to εe−x . Finally by (4.16), there exists some integer T ≡ T (L, ε) such that we
may assume τ

(u)
ζn

> n − T with an extra cost at most equal to εe−x . Consequently, for all large
n ≥ n1(ε) and for all x > 0,

P(Mn ≤ αn − x)

= E

[∑|u|=n 1{Mn=V (u)≤αn−x,min
τ
(u)
ζn

≤j≤n
V (uj )≥αn−x−L,τ

(u)
ζn

∈[n−T ,n]}∑
|u|=n 1{V (u)=Mn}

]
+ O(ε)e−x (5.1)

= EQ

[
eV (wn)

1{Mn=V (wn)≤αn−x,min
τ
(wn)
ζn

≤j≤n
V (wj )≥αn−x−L,τ

(wn)
ζn

∈[n−T ,n]}∑
|u|=n 1{V (u)=Mn}

]
+ O(ε)e−x,
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where we have used the change of measure (cf. Proposition 2.3) for the last equality and O(ε)

denotes, as usual, some term bounded by a numerical constant times ε (here by 5ε).
The next goal is to analyze the number of minima

∑
|u|=n 1{V (u)=Mn} and the set {Mn =

V (wn)} in (5.1). To this end, we consider the following event:

En(x) :=
{
∀k ≤ τ

(wn)
ζn

,∀v ∈ B(wk), min
u∈T(v),|u|=n

V (u) > αn − x
}
, (5.2)

where B(wk), defined in (1.9), denotes the set of brothers of wk , and T(v) denotes as before the
subtree rooted at v. The following result, the key in the proof of Proposition 2.1, ensures that in
the i.i.d. case, all minimal particles must be descendants of w	 if 	 := τ

(wn)
ζn

is the first large drop
time of the path (V (wi)0≤i≤n).

Proposition 5.1 (i.i.d. case). Assume (1.1), (1.4) and (1.5). Suppose that L =∑ν
i=1 δ{ξi } with

(ξi) i.i.d. and independent of ν. Then for any ε,L,T > 0 there exists x1 > 0 such that for any n

large enough and x ≥ x1,

Q

(
V (wn) ≤ αn − x, min

τ
(wn)
ζn

≤j≤n

V (wj ) ≥ αn − x − L,τ
(wn)
ζn

∈ [n − T ,n], (En(x)
)c)

(5.3)
≤ εe−αn .

Consequently, for all x ≥ x1 and all large n,

EQ

[
eV (wn)1{V (wn)≤αn−x,min

τ
(wn)
ζn

≤j≤n
V (wj )≥αn−x−L,τ

(wn)
ζn

∈[n−T ,n],(En(x))c}
]≤ εe−x. (5.4)

Remark 5.2. Without the i.i.d. assumption on L , Proposition 5.1 still holds if we change the
definition of En(x) by replacing k ≤ τ

(wn)
ζn

by k < τ
(wn)
ζn

.

Let us postpone the proof of Proposition 5.1 to Section 6 and give the proof of Proposition 2.1.

Proof of Proposition 2.1. It follows from (5.1) and (5.4) that for any x ≥ x1, for n large enough,

P(Mn ≤ αn − x)

= EQ

[
eV (wn)

1{Mn=V (wn)≤αn−x,min
τ
(wn)
ζn

≤j≤n
V (wj )≥αn−x−L,τ

(wn)
ζn

∈[n−T ,n]}∑
|u|=n 1{V (u)=Mn}

,En(x)

]
+ O(ε)e−x

(5.5)

=
n∑

k=n−T

EQ

[
eV (wn)

1{Mn=V (wn)≤αn−x,mink≤j≤n V (wj )≥αn−x−L,τ
(wn)
ζn

=k}∑
|u|=n,u∈T(wk) 1{V (u)=V (wn)}

,En(x)

]
+ O(ε)e−x

=
n∑

k=n−T

EQ

[
A(5.5)(k)

]+ O(ε)e−x,
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where

A(5.5)(k) := eV (wn)
1{Mn=V (wn)≤αn−x,mink≤j≤n V (wj )≥αn−x−L,τ

(wn)
ζn

=k}∑
|u|=n,u∈T(wk) 1{V (u)=V (wn)}

, n − T ≤ k ≤ n,

and in the last equality in (5.5) we have again used (5.4). Obviously, the following upper bound
holds:

A(5.5)(k) ≤ eV (wn)1{V (wn)≤αn−x,mink≤j≤n V (wj )≥αn−x−L,τ
(wn)
ζn

=k}. (5.6)

Recall that under Q, (V (wj ), j ≥ 0) is distributed as the random walk (Sj , j ≥ 0) under P.
Then

EQ

[
A(5.5)(k)

]≤ eαn−xP
(
Sn ≤ αn − x, min

k≤j≤n
Sj ≥ αn − x − L,τζn = k

)
≤ KLe−x, (5.7)

by using (3.11) and (3.12).
Observe that {τ (wn)

ζn
= k} = {τ (wk)

ζn
= k}. We deduce from the Markov property at k that

EQ

[
A(5.5)(k)

]= eαn−xEQ

[
1{τ (wk)

ζn
=k,V (wk)≥αn−x−L}F

(L)
n−k

(
V (wk) − (αn − x − L)

)]
, (5.8)

where for any j ≥ 0, F
(L)
j : R+ → [0,1] is the measurable function defined as follows:

F
(L)
j (s) := es−LEQ

[
eV (wj )

1{Mj =V (wj )}1{V (wj )≤L−s,V (wj )≥−s}∑
|v|=j 1{V (v)=Mj }

]
, (5.9)

where V (wj ) := min0≤i≤j V (wi). Recall that under Q, (V (wk))k≥0 is distributed as (Sk)k≥0
under P. Then by combining (5.5) and (5.8), we get

P(Mn ≤ αn −x) =
T∑

j=0

eαn−xE
[
1{τζn=n−j,Sn−j ≥αn−x−L}F (L)

j

(
Sn−j − (αn −x −L)

)]+O(ε)e−x.

Observe that F
(L)
j (s) ≤ es−LEQ[eV (wj )1{V (wj )≤L−s,V (wj )≥−s}] ≤ Q(V (wj ) ≤ L − s) =

P(Sj ≤ L − s), it follows from (1.4) that for any s ≥ 0,

F
(L)
j (s) ≤ P(Sj ≤ L − s) ≤ jP

(
X ≤ L − s

j

)
≤ Kj,L(1 + s)−α	(s). (5.10)

In view of (5.10), we can apply Lemma 3.6 to F
(L)
j (·), for any fixed 0 ≤ j < T . This gives

that for any L ≥ L1 and large T , for all large n ≥ n1(ε,L,T ) and x ∈ [x1,
n

logn
],∣∣∣∣∣P(Mn ≤ αn − x) − m−(α+1)e−x

T∑
j=0

∫ ∞

0
F

(L)
j (s)ds

∣∣∣∣∣≤ O(ε)e−x. (5.11)
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Notice that in view of (4.1), (5.11) implies that for any L ≥ L1 and large T ,

m−(α+1)
T∑

j=0

∫ ∞

0
F

(L)
j (s)ds ≤ K + O(ε). (5.12)

Now we apply the Fubini theorem to see that∫ ∞

0
F

(L)
j (s)ds = EQ

[
eV (wj )

(
e−V (wj ) − e−L−V (wj )

)1{Mj =V (wj )}1{V (wj )≤L}∑
|v|=j 1{V (v)=Mj }

]
.

On the other hand, we deduce from the monotone convergence theorem (when T and L tend to
∞) that

lim
L→∞ lim

T →∞m−(α+1)

T∑
j=0

∫ ∞

0
F

(L)
j (u)du = m−(α+1)

∞∑
j=0

EQ

[
1{Mj =V (wj )}∑
|v|=j 1{V (v)=Mj }

]

= m−(α+1)
∞∑

j=0

E
[
e−Mj

]
= c∗,

where in the second equality we have used the change of measure (2.3) to see that for any j ≥ 1,

EQ[ 1{Mj =V (wj )}∑
|v|=j 1{V (v)=Mj } ] = E[∑|u|=j e−V (u)

1{Mj =V (u)}∑
|v|=j 1{V (v)=Mj } ] = E[e−Mj ]. Moreover, c∗ ≤ K thanks

to (5.12) and the fact that ε can be arbitrarily small. This and (5.11) yield Proposition 2.1. �

6. Proof of Proposition 5.1

Recall from (1.9) that B(u) is the set of brothers of u for any u ∈ T \ {∅}. To prove Proposi-
tion 5.1, we shall discuss whether the vertex wn is good or not: If wn is good, then with high
probability no descendent of the particles in

⋃
k≤τ

(wn)
ζn

B(wk) stays at a position smaller than

αn − x (i.e., close to the minimum Mn). If wn is not good, then with high probability wn cannot
be a minimal particle (see the forthcoming Lemma 6.1).

Let us give the precise definition of good vertices: Fix 0 < � < min(α−1
2 , 1

12 ). Let B > 0 be a
large constant and J be a large integer. Recall (4.4) and (4.5).

Let us say that u ∈ Tn is a good vertex if for any x ≥ 0,

τ
(2,u)
ζn

> n ≥ τ
(u)
ζn

> J and
∑

v∈B(uk)

e−(V (v)+x) ≤
{

eB−x, if 1 ≤ k ≤ J,

e−k�
, if J < k < τ

(u)
ζn

.
(6.1)

The condition {n ≥ τ
(u)
ζn

> J } will be automatically satisfied in the event that we are interested
in.

The following lemma treats the case when wn is not good.
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Lemma 6.1. Under (1.1), (1.4) and (1.5), for any L,T , ε > 0, there exists J (L,T , ε) such that
for all J ≥ J (L,T , ε) , there exists B(J,L,T , ε) > 0 such that for all B ≥ B(J,L,T , ε), for any
n large enough and x ≥ 0,

Q

(
V (wn) ≤ αn − x, min

τ
(wn)
ζn

≤j≤n

V (wj ) ≥ αn − x − L,τ
(wn)
ζn

∈ [n − T ,n], wn not good
)
(6.2)

≤ εe−αn .

We stress that we do not need the i.i.d. assumption in Lemma 6.1.
By admitting Lemma 6.1 for the moment, we can prove Proposition 5.1.

Proof of Proposition 5.1. For brevity, we use the following notation:

Fn ≡ Fn,T ,x :=
{
V (wn) ≤ αn − x, min

τ
(wn)
ζn

≤i≤n

V (wj ) ≥ αn − x − L,τ
(wn)
ζn

∈ [n − T ,n]
}
. (6.3)

By (6.2), the probability term in (5.3) is less than

εe−αn +Q
(
Fn,wn good,

(
En(x)

)c)
≤ εe−αn +

n∑
t=n−T

Q

(
Fn, t = τ

ζ
(wn)
n

, τ
(2,wn)
ζn

> n,∃v ∈ B(wt ), min
u≥v,|u|=n

V (u) ≤ αn − x
)
(6.4)

+
n∑

t=n−T

EQ

[
1{Fn,t=τ

ζ
(wn)
n

,wn good}
t−1∑
j=1

∑
v∈B(wj )

1{minu≥v,|u|=n V (u)≤αn−x}

]

=: εe−αn + A(6.4) + B(6.4),

with obvious definitions of A(6.4) and B(6.4), and where A(6.4) corresponds to the possibility

k = τ
(wn)
ζn

and B(6.4) to k < τ
(wn)
ζn

.
In what follows, we shall bound separately A(6.4) and B(6.4). We stress that the i.i.d. hypothesis

on the point process, L =∑ν
i=1 δ{ξi } with (ξi) i.i.d. and independent of ν, will be only used in

the estimation on A(6.4).

Firstly, we estimate A(6.4). Let ϒ
(n)
t := {|V (wt−1) − m(n − 1)| ≤ n

logn
, |V (wt ) − (αn − x)| ≤

logn}. For any t ∈ [n − T ,n], we remark that

Q
(
Fn, t = τ

ζ
(wn)
n

, τ
(2,wn)
ζn

> n,
(
ϒ

(n)
t

)c)
≤ Q

(
t = τ

ζ
(wn)
n

, τ
(2,wn)
ζn

> n,
∣∣V (wt−1) − m(n − 1)

∣∣> n

logn

)
+Q

(
V (wn) ≤ αn − x, min

τ
(wn)
ζn

≤i≤n

V (wj ) ≥ αn − x − L, t = τ
ζ

(wn)
n

,

∣∣V (wt) − (αn − x)
∣∣> logn

)
.
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Recall that under Q, (V (wj )j≥0) is distributed as the real-valued random walk (Sj )j≥0 un-
der P. Then an immediate application of (3.9) and (3.13) gives that for any n large enough and
x ≥ 0,

n∑
t=n−T

Q
(
Fn, t = τ

ζ
(wn)
n

,
(
ϒ

(n)
t

)c)≤ εe−αn .

Then we have

A(6.4) ≤ εe−αn +
n∑

t=n−T

Q

(
ϒ

(n)
t , t = τ

ζ
(wn)
n

,∃v ∈ B(wt ), min
u≥v,|u|=n

V (u) ≤ αn − x
)

≤ εe−αn (6.5)

+
T∑

t=0

sup
z,|z+mn|≤2n/logn

Q

(∣∣V (w1) − z
∣∣≤ logn,∃v ∈ B(w1), min

u≥v,|u|=t
V (u) ≤ −m

2
n

)
.

For any t ∈ N, let (M
(j)
t )j≥0 a sequence of i.i.d. random variables distributed as Mt the mini-

mum of the branching random walk at time t . By Proposition 2.3, for any z ∈ R, and the i.i.d.
hypothesis we have

Q

(∣∣V (w1) − z
∣∣≤ logn,∃v ∈ B(w1), min

u≥v,|u|=t+1
V (u) ≤ −m

2
n

)

= E

[
ν∑

i=1

e−ξi 1{|ξi−z|≤logn}1{∃j �=i,ξj +M
(j)
t ≤−(m/2)n}

]

=
∞∑

k=1

P(ν = k)kE
[
e−ξi 1{|ξi−z|≤logn}

]
P

(
∃j ∈ {1, . . . , k − 1}, ξj + M

(j)
t ≤ −m

2
n

)
.

By (1.4), there exists a slowly varying function 	̃(n) such that

sup
z,|z+mn|≤2n/logn

E
[
e−ξi 1{|ξi−z|≤logn}

]≤ n−(α+1)	̃(n).

By Lemma 4.2, for any k ≥ 1,

P

(
∃j ∈ {1, . . . , k − 1}, ξj + M

(j)
t ≤ −m

2
n

)
≤ kE

[
e−ξ1−mn/2]

= k

E[ν]e−(m/2)n,

by using the fact that E[e−ξ1] = 1
E[ν] .
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Combining these two inequalities then using (1.5) we get

Q

(∣∣V (w1) − z
∣∣≤ logn,∃v ∈ B(w1), min

u≥v,|u|=t
V (u) ≤ −m

2
n

)

≤ n−α−1	̃(n)

(
e(m/8)n∑
k=1

k2e−(m/2)n +
∞∑

k=e(m/8)n

kP(ν = k)

)

≤ n−α−1	̃(n)
(
e−(m/4)n +E(ν1{ν≥e(m/8)n})

)
≤ cn−α−1	̃(n)

(
e−(m/4)n + n−1).

In addition to (6.5), it yields for any ε > 0,

A(6.4) ≤ 2εe−αn,

once n is large enough.
Now we shall treat B(6.4). By the spinal decomposition (Proposition 2.3(iii)), for any t ∈

[n − T ,n], j ∈ [1, t) and v ∈ B(wj ), conditionally on G = σ {u,�V (u),
←
u = wj , j ≥ 0} and

on {V (v) = b}, we have

Q

(
min

u≥v,|u|=n
V (u) ≤ αn − x

∣∣G)= P(Mn−j ≤ αn − x − b).

If j ≤ 2n
3 , we apply Proposition 4.1 to get that P(Mn−j ≤ αn − x − b) ≤ Ke−(b+x+αn−j −αn),

whereas if 2n
3 < j ≤ t , we apply Lemma 4.2 (which holds obviously for all x ∈ R) and get that

P(Mn−j ≤ αn − x − b) ≤ e−(b+x−αn). Taking into account the fact that wn is good, we obtain

EQ

[ ∑
v∈B(wj )

1{minu≥v,|u|=n V (u)≤αn−x}
∣∣∣G]≤

⎧⎪⎨⎪⎩
2Keαn−αn−j eB−x, if j ≤ J,

Keαn−αn−j e−j�
, if j ∈ (J, 2

3n
]
,

eαne−j�
, if j ∈ ( 2

3n, t
)
.

By summing these inequalities, for n large enough we get that

B(6.4) ≤ K ′(J eB−x + e−J�/2) n∑
t=n−T

Q
(
Fn, t = τζn(wn),wn good

)
≤ K ′(J eB−x + e−J�/2) n∑

t=n−T

P
(
Sn ≤ αn − x, min

τζn≤i≤n
Si ≥ αn − x − L, t = τζn, τ

(2)
ζn

> n
)

≤ K ′′(J eB−x + e−J�/2)
(1 + L)T e−αn,

where for the second inequality we have used (4.2) for Fn ∩ {t = τζn(wn)} and for the last in-
equality, we have applied (3.15) to y = αn − x − L and a = 1, . . . , �L�. Finally, we choose
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J = J (L,T ,K ′′) large enough and x ≥ x1(B,J ) so that K ′′(J eB−x + e−J�/2
)(1 + L)T ≤ ε.

Then B(6.4) ≤ εe−αn and (5.3) follows. This proves Proposition 5.1. �

It remains us to prove Lemma 6.1. For any integers k ≤ n, define S[k,n] := minj∈[k,n] Sj .

Proof of Lemma 6.1. Firstly, we will prove that with overwhelming probability the trajectory of
(V (wi))i≥0 contains only one big jump and never drops too low. Recall the notation Fn defined
in (6.3). Write for brevity

y := αn − x − L.

We shall use several times the fact that under Q, (V (wj ), j ≥ 0) has the same law as
(Sj , j ≥ 0) under P. Then by (3.14) with a = 0,1, . . . , �L�, we get that for some constant KL > 0
depending on L,

Q
(
Fn, τ

(2,wn)
ζn

≤ n
) =

n∑
i=n−T

P
(
S[τζn ,n] ≥ y, τζn = i, Sn ∈ [y, y + L], τ (2)

ζn
≤ n

)
(6.6)

≤ KL

n∑
i=n−T

n−2αi−1/α	3(n) ≤ εe−αn,

for all large n. We claim that there exists some positive constant c4 = c4(L,T ) such that for all
n large,

Q

(
Fn, min

1≤j<τ
(wn)
ζn

V (wj ) ≤ −c4, τ
(2,wn)
ζn

> n
)

≤ O(ε)e−αn . (6.7)

Let us denote by Q(6.7) the probability term in (6.7). Denote by j be the first time such that
V (wj ) ≤ −c4; then by using the Markov property at j , we get that

Q(6.7) =
n∑

i=n−T

i−1∑
j=1

E
[
1{Sj−1>−c4,Sj ≤−c4,mink≤j Xk≥−ζn}

× PSj

(
Sn−j ≤ y + L, min

τζn≤i≤n−j
Si ≥ y, τζn = i − j, τ

(2)
ζn

> n − j
)]

.

If j ≥ n
2 by Lemma 3.1 (with x = mj + c4 and y = ζn there) we get that

P
(
Sj ≤ −c4,min

k≤j
Xk ≥ −ζn

)
≤ Ke−(logn)3/K,

whereas for j ≤ n
2 , since y − Sj ≤ y + c4 + ζn ≤ m

2 (n − j), by using �L� times (3.15) (with
a ∈ [0,L] being integer), we deduce that for any i ∈ [n − T ,n] and on {Sj ≤ −c4,mink≤j Xk ≥
−ζn},

PSj

(
Sn−j ≤ y + L,S[τζn ,n−j ] ≥ y, τζn = i − j, τ

(2)
ζn

> n − j
)≤ K ′(1 + L)e−αn (6.8)
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(we used the fact that e−αn−j = O(e−αn) when j ≤ n
2 ). It follows that

Q(6.7) ≤
n∑

i=n−T

i−1∑
j=n/2

Ke−(logn)3/K + K ′(1 + L)e−αn

n∑
i=n−T

n/2∑
j=1

P(Sj−1 ≥ −c4, Sj < −c4)

≤ εe−αn + K ′(1 + L)T e−αn

n/2∑
j=1

P(Sj−1 ≥ −c4, Sj < −c4)

≤ εe−αn + K ′(1 + L)T e−αnP
(

min
k≥0

Sk < −c4

)
≤ 2εe−αn,

by choosing c4 = c4(L,T ) large enough to get the last inequality. Then (6.7) follows.
By combining (6.6) and (6.7), to get Lemma 6.1 it is enough to prove the following assertion:

for any L,T , ε > 0 there exist B > 0 and J such that for any n ≥ n0(J,B,L,T , ε), x ≥ 0,

Q

(
Fn, min

1≤j<τ
(wn)
ζn

V (wj ) ≥ −c4, τ
(2,wn)
ζn

> n, wn not good
)

≤ O(ε)e−αn . (6.9)

Recall that 0 < � < min(α−1
2 , 1

12 ). Before establishing (6.9), we prove the following claim.

Claim 6.2. (i) There is a sequence of positive real numbers (εj ) such that limj→∞ εj = 0 and
for any integer j and z ∈ R, y ≥ 0,

∞∑
p=j

P
(
Sp − p� ≤ z,Sp ≥ −y

)≤ 10

m

(
z − mj

10

)+
+ εj

(
1 + y + z+). (6.10)

(ii) There exists some positive constant KL,T > 0 such that for all large n and k ∈ [1, n − T ),

sup
z≤−mn/5

P
(
Sn−k ≤ z, min

τζn≤i≤n−k
Si ≥ z − L,τζn ∈ [n − k − T ,n − k], τ (2)

ζn
> n − k

)
(6.11)

≤ KL,T e−αn .

Proof. (i) Observe that∑
p≥j

P
(
Sp − p� ≤ z,Sp ≥ −y

)
≤
(

10

m
z − j

)+
+

∑
p≥max(10z/m,j)

P
(
Sp ∈ [−y, z + p�

])
.
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Then observe that z + p� ≤ m
2 p for all p ≥ 10z

m and p ≥ j0 if j0 is large enough. By applying
Lemma 3.4, we get

∑
p≥j

P
(
Sp − p� ≤ z,Sp ≥ −y

) ≤ 10

m

(
z − mj

10

)+
+ K

∑
p≥max(10z/m,j)

l(p)(y + z+ + p�)

pα

≤ 10

m

(
z − mj

10

)+
+ εj

(
1 + y + z+),

with ε = O(j(1−α)/2), proving (6.10).
(ii) Denote by P(6.11) the probability term in (6.11). Then

P(6.11) =
n−k∑

j=n−k−T

P
(
Sn−k ≤ z, min

j≤i≤n−k
Si ≥ z − L,τζn = j, τ

(2)
ζn

> n − k
)

=:
n−k∑

j=n−k−T

P(6.11)(j).

Notice that z − L ≤ Sn−k ≤ z. Therefore, if S′ := Sn−k − Xj ≥ − m
10n then Xj ≤ z + m

10n ≤
− m

10n. Moreover, z − L − S′ ≤ Xj ≤ z − S′. By the independence of Xj and S′, we get that

P
(

z − L ≤ Sn−k ≤ z, τζn = j, S′ ≥ − m

10
n

)
≤ sup

b≤−(m/10)n

P
(
Xj ∈ [b − L,b])≤ KLe−αn,

by using the density of Xj given by (1.4). On the other hand, if S′ := Sn−k − Xj < − m
10n then

we can apply Lemma 3.1 to see that

P
(

S′ < − m

10
n, τζn = j, τ

(2)
ζn

> n− k

)
≤ P

(
Sn−k−1 < − m

10
n, τζn > n− k − 1

)
≤ Ke−mn/(10ζn).

Therefore, P(6.11)(j) ≤ KLe−αn + Ke−mn/(10ζn) and (6.11) follows if we take KL,T = 2(1 +
T )KL. This completes the proof of Claim 6.2. �

Let us go back to the proof of (6.9). Define for any k ≥ 1, ξ(wk) :=∑
v∈B(wk)

e−�V (v). Then∑
v∈B(wk)

e−(V (v)+x) = e−V (wk−1)−xξ(wk). (6.12)

Notice that the sequence {ξ(wk),�V (wk)}k≥1 are i.i.d. under Q. Define ξ = ξ(w1).
Let n be large enough so that n − T > J . On {τ (2,wn)

ζn
> n} ∩ {wn not good}, either there

is some 1 ≤ k ≤ J such that ξ(wk) > eB+V (wk−1) or some J < k < τ
(wn)
ζn

such that ξ(wk) >

eV (wk−1)+x−k�
. We discuss separately these two cases and give the precise choices of J and B:

The first case: J < k < τ
(wn)
ζn

and the choice of J .
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Notice that τ
(wn)
ζn

∈ [n − T ,n]. For any J < k < n − T , we apply the Markov property at k to
arrive at

Q(6.13)(k)

:= Q

(
k < τ

(wn)
ζn

, ξ(wk) > ex+V (wk−1)−k�

, min
1≤j≤k

V (wj ) ≥ −c4,Fn, τ
(2,wn)
ζn

> n
)

(6.13)

= EQ

[
1{ξ(wk)>ex+V (wk−1)−k�

,min1≤j≤k V (wj )≥−c4,minj≤k �V (wj )≥−ζn}gn−k

(
V (wk)

)]
,

with

gn−k(b) := P
(
Sn−k ≤ y − b + L, min

τζn≤j≤n−k
Sj ≥ y − b,

τζn ∈ [n − k − T ,n − k], τ (2)
ζn

> n − k
)
, z ∈R.

When k ≤ n
2 , we can apply (3.12) to get that for b := V (wk) ≥ −c4,

gn−k(b) ≤ K ′
Le−αn,

with some positive constant K ′
L depending on L [in fact K ′

L = O(L2)].
For k ≥ n

2 , if b := V (wk) > mn
4 , then y + L − b ≤ −mn

5 and gn−k(b) ≤ KL,T e−αn by (6.11).
Consequently, we get that for any J < k < n − T and x ≥ 0,

Q(6.13)(k) ≤ K ′′
L,T e−αnQ

(
ξ(wk) > eV (wk−1)−k�)

+ 1{k≥n/2}Q
(

V (wk) ≤ mn

4
,min

j≤k
�V (wj ) ≥ −ζn

)
.

Moreover, Q(V (wk) ≤ mn
4 ,minj≤k �V (wj ) ≥ −ζn) = P(Sk ≤ mn

4 ,minj≤k Xj ≥ −ζn) ≤
Ke−mn/(4ζn) by Lemma 3.1. Since under Q, ξ(wk) is independent of V (wk−1) which is dis-
tributed as Sk−1 under P, and, moreover, ξ(wk) has the same law as ξ , it follows from (6.10)
that ∑

J<k≤n−T

Q(6.13)(k) ≤ K ′′
T ,Le−αnEQ

[ ∑
J<k≤n−T

P
(
log ξ(wk) ≥ Sk−1 − k�, Sk−1 ≥ −c4

)]
+ Kne−mn/(4ζn)

≤ KT,Le−αn

(
EQ

[(
log ξ − mJ

10

)+]
+ εJEQ

[
1 + c4 + (log ξ)+

])
+ Kne−mn/(4ζn),

with εJ → 0 as J → ∞. By (1.5), EQ[(log ξ)+] ≤ E[∑|u|=1 e−V (u)(log[∑|u|=1 e−V (u)])+] <

∞, thus we choose and then fix J = J (ε,T ,L) large enough so that EQ[(log ξ − mJ
10 )+] +
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εJEQ[1 + c4 + (log ξ)+] ≤ ε
KL,T

. Then for all large n, we get that

∑
J<k≤n−T

Q(6.13)(k) ≤ 2εe−αn . (6.14)

The second (and last) case: 1 ≤ k ≤ J and the choice of B .
Under Q and conditionally on {V (wk) = z}, the process {V (wi+k),0 ≤ i ≤ n − k} is dis-

tributed as {Si,0 ≤ i ≤ n − k} under Pz. It follows from the Markov property at k that

Q

(
ξ(wk) ≥ eB+V (wk−1),Fn, min

1≤j≤k
V (wj ) ≥ −c4, τ

(2,wn)
ζn

> n
)

= EQ

[
1{ξ(wk)≥eB+V (wk−1),min1≤j≤k V (wj )≥−c4}

× PV (wk)

(
Sn−k ≤ y + L, min

τζn−k≤j≤n−k
Sj ≥ y, τζn ∈ [n − k − T ,n − k], τ (2)

ζn
> n − k

)]
≤ KLQ

(
ξ(wk) ≥ eB+V (wk−1), min

1≤j≤k
V (wj ) ≥ −c4

)
e−αn,

where KL > 0 denotes some constant depending on L and we have applied (3.12) to get the last
inequality [remark that y − V (wk) ≤ y + c4 ≤ m

2 (n − k)]. Furthermore,

EQ

[
J∑

k=1

1{log ξ(wk)≥B+V (wk−1),min1≤j≤k V (wj )≥−c4}

]

≤
J∑

k=1

Q

(
V (wk−1) ≤ −B

2

)
+

J∑
k=1

2

B
EQ

[(
log

(
ξ(wk)

))+]

=
J∑

k=1

P
(

Sk−1 ≤ −B

2

)
+ 2J

B
EQ

[
(log ξ)+

]
≤ ε

KL

,

by choosing B = B(J,L,T , ε) large enough. Finally, we have

Q

(
∃k ∈ [1, J ] : ξ(wk) ≥ eB+V (wk−1), min

1≤j≤k
V (wj ) ≥ −c4,Fn, τ

(2,wn)
ζn

> n
)

≤ εe−αn . (6.15)

By combining (6.14) and (6.15), we get (6.9) and, therefore, complete the proof of
Lemma 6.1. �
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Appendix

The convergence in law in Theorem 1.1 holds in fact under a setting more general than the i.i.d.
case. As mentioned before, the main contribution to the renormalization Mn − αn comes from
the large drop which is unique in the i.i.d. case. However, in the general case, nothing prevents
from the possible simultaneous large drops (in the same generation), this is why we need some
assumptions.

The main additional hypothesis, which ensures the convergence of the relative displacements
at the large drop time, is stated as follows: Assume that

For any f :R→ R+ measurable with compact support
(A.1)

lim
z→−∞EQ

[
e−∑

v∈B(w1) f (V (w1)−V (v))|V (w1) = z
]→

∫
�(dθ)e−〈f,θ〉,

where B(w1) is defined in (1.9), � is the distribution of some point process on R ∪ {−∞} and
we use the notation 〈f, θ〉 := ∫

R
f (x)θ(dx) for any θ ∈ M, the space of σ -finite measures on

R ∪ {−∞}. For instance, when L =∑ν
i=1 δ{ξi } with (ξi) i.i.d. and independent of ν it is easily

seen that (A.1) holds with � = δ{−∞}.
In view of the compact support hypothesis of f in (A.1), we also need two other technical

hypotheses in the truncation argument:

Under Q, as z → −∞, the laws of #B(w1) conditionally on
{
V (w1) = z

}
are tight, (A.2)

lim
λ→∞ lim sup

z→−∞
Q

( ⋃
v∈B(w1)

{
V (w1) − V (v) ≥ λ

}∣∣∣V (w1) = z

)
→ 0. (A.3)

The assumptions (A.1), (A.2) and (A.3) hold for a variety of situations, for instance, in addition
to the i.i.d. case and the case in Remark 1.4, here is another simple example: L = ∑3

i=1 δ{ξi }
with ξ1 an independent copy of ξ2 and ξ3 = ξ2 a.s., it is easy to check that (A.1), (A.2) and
(A.3) are satisfied with � = 1

3δ{−∞} + 2
3δ{0}. However, we do not know how to describe these

assumptions in a completely general setting under the original probability P.
We have the following convergence in law of Mn − αn in the general case:

Theorem A.3. Assume (1.1), (1.4) and (1.5), as well as (A.1), (A.2) and (A.3). Then for any
x ∈R,

lim
n→∞P(Mn ≥ αn + x) = E

(
exp

(−cexW∞
))

,

where c > 0 is some finite constant.

As in the i.i.d. case, the key estimate in the proof of Theorem A.3 is to establish Proposi-
tion 2.1, with some positive constant c instead of c∗, under the assumptions (A.1), (A.2) and
(A.3). To this end, as mentioned in Remark 5.2, we firstly modify the definition of En(x) in (5.2)
by replacing k ≤ τ

(wn)
ζn

by k < τ
(wn)
ζn

so that (5.3) still holds. The main difference comes from
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the expression of A(5.5)(k): Because of the possibility of large drops from the particles in B(wk)

[here k = τ
(wn)
ζn

is the large drop time], A(5.5)(k) should be replaced by

eV (wn)
1{Mn=V (wn)≤αn−x,mink≤j≤n V (wj )≥αn−x−L,τ

(wn)
ζn

=k}∑
←
v =wk−1

∑
|u|=n,u∈T(v) 1{V (u)=V (wn)}

.

By using (A.1), we are able to estimate the contribution of these v ∈ B(wk) to
∑

|u|=n,u∈T(v) ×
1{V (u)=V (wn)} and to {Mn = V (wn)}, after a truncation argument based on (A.2) and (A.3). Fi-
nally, the constant c will follow from an application of the renewal result Lemma 3.6. We feel
free to omit the details.
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