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In this paper, we discuss the possibility of using multilevel Monte Carlo (MLMC) approach for weak ap-
proximation schemes. It turns out that by means of a simple coupling between consecutive time discretisa-
tion levels, one can achieve the same complexity gain as under the presence of a strong convergence. We
exemplify this general idea in the case of weak Euler schemes for Lévy-driven stochastic differential equa-
tions. The numerical performance of the new “weak” MLMC method is illustrated by several numerical
examples.
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1. Introduction

The multilevel path simulation method introduced in Giles [8] has gained huge popularity as a
complexity reduction tool in recent times. The main advantage of the MLMC methodology is
that it can be simply applied to various situations and requires almost no prior knowledge on
the path generating process. Any multilevel Monte Carlo (MLMC) algorithm uses a number of
levels of resolution, l = 0,1, . . . ,L, with l = 0 being the coarsest, and l = L being the finest. In
the context of a SDE simulation on the interval [0, T ], the level 0 corresponds to one timestep
�0 = T , whereas the level L has 2L uniform timesteps �L = 2−LT .

Assume that a filtered probability space (�,F,P, (Ft )) is given. Consider now a d-
dimensional process (Xt ) solving the following Lévy-driven SDE

Xt = X0 +
∫ t

0
a(Xs−) dZs, (1.1)

where X0 is a R
d -valued random variable, Zt = (Z1

t , . . . ,Z
m
t ), t ≥ 0 is a m-dimensional Lévy

process and the mapping a : Rd ×R
m �→R

d is Lipschitz continuous so that the solution of (1.1)
is well defined. Our aim is to estimate the expectation E[f (XT )], where f is a Lipschitz con-
tinuous function from R

d to R. Let Xl
T be an approximation for XT by means of a numerical

discretisation with time step �l (for various discretisation methods for (1.1) see, for example,
Platen and Bruti-Liberati [19] or the recent review of Jourdain and Kohatsu-Higa [13]). The
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main idea of the multilevel approach pioneered in Heinrich [10] and Giles [8] consists in writing
the expectation of the finest approximation E[f (XL

T )] as a telescopic sum

E
[
f
(
XL

T

)]= E
[
f
(
X0

T

)]+ L∑
l=1

E
[
f
(
Xl

T

)− f
(
Xl−1

T

)]
and then applying Monte Carlo to estimate each expectation in the above telescopic sum. More
formally, for any l = 1, . . . ,L, we independently generate Nl independent copies of the random
vector (Xl

T ,Xl−1
T ) ∈ R

d ×R
d and define the multilevel Monte Carlo estimator M of E[f (XT )]

as

M .= 1

N0
·

N0∑
i=1

f
(
X

0,(i)
T

)
︸ ︷︷ ︸

≈E(f (X0
T ))

+
L∑

l=0

1

Nl

·
Nl∑
i=1

(
f
(
X

l,(i)
T

)− f
(
X

l−1,(i)
T

))
︸ ︷︷ ︸

≈E[f (Xl
T )−f (Xl−1

T )]

.

One important prerequisite for MLMC to outperform the standard MC method is that Xl
T and

Xl−1
T are coupled in some way and this can be achieved by using the same discretised trajectories

of the underlying Lévy processes to construct (Xl
T ,Xl−1

T ). The degree of coupling is usually

measured in terms of the variance Var[f (Xl
T ) − f (Xl−1

T )]. It is shown in Giles [8] (see also
Giles and Xia [7]), that under the assumptions∣∣E[f (XL

T

)]− E
[
f (XT )

]∣∣≤ c1�
α
L, Var

[
f
(
Xl

T

)− f
(
Xl−1

T

)]≤ c2�
β
l , (1.2)

with some α ≥ 1/2, β > 0, c1 > 0 and c2 > 0, the computational complexity of the resulting
multilevel estimate needed to achieve the accuracy ε (in terms of RMSE) is proportional to

C =

⎧⎪⎨
⎪⎩

ε−2, β > 1,

ε−2 log2(ε), β = 1,

ε−2−(1−β)/α, 0 < β < 1.

The standard way of checking the assumptions (1.2) is to prove that the underlying approximation
scheme has weak convergence of order α and strong convergence of order β/2. Indeed, in the
latter case we have for any Lipschitz continuous function f ,

Var
[
f
(
Xl

T

)− f
(
Xl−1

T

)] ≤ cf E
[∣∣Xl

T − XT

∣∣2]+ cf E
[∣∣Xl−1

T − XT

∣∣2]
≤ 2cf �

β
l

with some constant cf > 0 depending on f . However, in recent years the so-called weak approx-
imation schemes, that is, schemes that, in general, fulfil only the first assumption in (1.2) became
quite popular. The weak Euler scheme is a first-order scheme with α = 1, and has been studied
by many researchers. Talay and Tubaro [22] show the first-order convergence of the weak Euler
scheme. The fact that the convergence rate of the Euler scheme also holds for certain irregu-
lar functions under a Hörmander type condition has been proved by Bally and Talay [2] using
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Malliavin calculus. The Itô-Taylor (weak-Taylor) high-order scheme is a natural extension of
the weak Euler scheme. In the continuous diffusion case, some new discretization schemes (also
called Kusuoka type schemes) which are of order α ≥ 2 without the Romberg extrapolation have
been introduced by Kusuoka [14], Lyons and Victoir [15], Ninomiya and Victoir [17], and Ni-
nomiya and Ninomiya [16]. A general class of weak approximation methods, comprising many
well known discretisation schemes, was constructed in Kohatsu-Higa and Tanaka [23]. The main
advantage of the weak approximation schemes is that simple discrete random variables can be
used instead of the Lévy increments. Unfortunately, due to the absence of the strong convergence,
the MLMC methodology can not be directly used with the weak approximation schemes. In this
paper we make an attempt to overcome this difficulty and develop a kind of “weak” MLMC
approach which can be applied to various weak approximation schemes.

The plan of the paper is as follows. First, we recall the Euler scheme for (1.1) and discuss
its convergence properties. Next, we show how to construct the corresponding MLMC algo-
rithm, which is able to reduce the complexity of the standard MC to order ε−2 log2(ε) under
only requirement that the Euler scheme converges weakly. Finally, we analyse the numerical
performance of the presented weak MLMC algorithms.

2. Euler scheme for Lévy-driven SDEs

Fix some n ∈ N and set � = T/n. Denote �Zj = Zj� − Z(j−1)�, j = 1, . . . , n. For a fixed
random vector X0, the Euler scheme for (1.1) reads as follows

X�
0 = X0,

(2.1)
X�

j� = X�
(j−1)� + a

(
X�

(j−1)�

)
�Zj , j = 1, . . . , n.

The convergence of the scheme (2.1) was extensively studied in the literature. The first conver-
gence result is due to Talay and Tubaro [22], who proved that in the case of a diffusion processes
with Z being a Brownian motion plus drift, the scheme weakly converges with order 1. In the
case of the general Lévy processes, the convergence of (2.1) was studied in Protter and Talay
[20], where it is shown that, under some assumption on the function a and the driving Lévy
process Z, the weak convergence rate 1/n can be recovered. In fact, the main drawback of the
scheme (2.1) is the necessity to sample from the distribution of �Zj exactly. Although such
exact sampling can be possible for particular Lévy processes (see [20] for some examples), in
general this turns out to be a hard numerical problem. This is why Jacod et al. [12] proposed
to replace the increments �Zj of the original Lévy process by simple random vectors ζj which
are easy to simulate. It is shown in [12] that if the distributions of �Zj and ζj are sufficiently
close, then the weak convergence rate 1/n continues to hold. These results on weak convergence
should be compared with ones on pathwise or strong convergence. In fact, the strong convergence
rates usually depend on the characteristics of the Lévy process Z. For example, Rubenthaler [21]
studied the strong error when neglecting jumps smaller than δ. In particular, Rubenthaler [21]
obtained the estimate of the form

E
[

max
j=0,...,n

∣∣X�
j� − Xj�

∣∣2]�
(

n−1 +
∫

|z|≤δ

z2ν(dz)

)
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with ν being the Lévy measure of Z. So the rates become quite poor if ν diverges at zero like z−α

with α close to 2. Recently, Fournier [6] has proposed a coupling method which allows to get
better rates of pathwise convergence in a one-dimensional case. He constructed an approximation
Xn,δ , satisfying

E
[

max
j=0,...,n

∣∣Xn,δ
j� − Xj�

∣∣2]�
(

n−1 + n
m4,δ(ν)

m2,δ(ν)

)
(2.2)

with mk,δ(ν) := ∫
|z|≤δ

|z|kν(dz). The approximation Xn,δ is constructed by replacing the jumps

of Z smaller than δ by an independent Brownian motion. Note that the second summand in the
right-hand side of (2.2) represents the approximation error for one increment of the driving Lévy
process times the number of such increments. In order to prove a bound for the Wasserstein
distance between X and Xn,δ , a suitable coupling was used. Note that since X is unknown, such
coupling is not implementable. A similar coupling idea in a multidimensional setting was used
in Dereich [3] to design a multilevel path simulation approach for (1.1). In particular, Dereich [3]
established a new estimate for the Wasserstein metric between an approximative solution Xn,δ

with Gaussian approximation and the genuine solution X, based on a Zaitsev’s generalization of
the well-known Komlós–Major–Tusnády coupling. This new estimate allowed the author in [3]
to extend the results of [6] to a multidimensional case.

3. Multilevel path simulation for weak Euler schemes

In order to successfully apply the multilevel approach, one needs to ensure that (1.2) hold. If the
scheme (2.1) has strong convergence of order β/2, that is,

E
[

max
j=0,...,n

∣∣X�
j� − Xj�

∣∣2]� �β,

then the conditions (1.2) hold with α = β/2. However, if some approximations ζj , j = 1, . . . , n,
are used instead of the genuine increments �Zj , strong convergence is not any longer guaran-
teed. Here we propose a general approach how to couple two approximations of X on different
time scales in order to guarantee that the second condition in (1.2) still holds with β = 1. In fact,
this would lead to a complexity estimate ε−2 log2(ε), does not matter how small is α ≥ 1/2.

3.1. Coupling idea

Let us fix two natural numbers nc (“coarse” discretisation level) and nf (“fine” discretisation
level) with nf = 2 ·nc and set �c = T/nc, �f = T/nf . In order to couple the Euler approxima-
tions X�c and X�f , we are going to couple the random matrices ζ c .= (ζ c

1 , . . . , ζ c
nc

) ∈R
nc ⊗R

m

and ζ f .= (ζ
f

1 , . . . , ζ
f
nf

) ∈ R
nf ⊗R

m. We define the approximation ζ c for the increments on the
coarse level in such a way that the differences

ζ c
j − ζ

f

2j−1 − ζ
f

2j , j = 1, . . . , nc (3.1)
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are small. In particular, we can take ζ c
j = ζ

f

2j−1 + ζ
f

2j . The idea behind this coupling is very
simple: in the case of the genuine Lévy increments we would get

�f Z2j−1 + �f Z2j = Z2j�f
− Z2(j−1)�f

= �cZj

with �f Zj := Z(j+1)�f
− Zj�f

and �cZj := Z(j+1)�c − Zj�c . Suppose that ζ
f

1 , . . . , ζ
f
nf

are

i.i.d. random vectors with moments mf,1
.= |E[ζ f

j ]| and mf,2
.= E[|ζ f

j |2], where | · | stands for
the Euclidian norm. The following proposition holds.

Proposition 1. Suppose that the coefficient function a in (1.1) is uniformly Lipschitz and has at
most linear growth, that is,∥∥a(x) − a

(
x′)∥∥≤ La

∣∣x − x′∣∣, ∥∥a(x)
∥∥2 ≤ B2

a

(
1 + |x|2) (3.2)

for any x, x′ ∈ R
d and some positive constants La and Ba , where for any matrix A, ‖A‖ stands

for the operator norm of the matrix A. Denote Rj
.= ζ c

j − ζ
f

2j−1 − ζ
f

2j and suppose that Rj ,

j = 1, . . . , nc, are zero mean i.i.d. random vectors. Moreover, assume that E[|X0|2] < ∞, then
the following estimate holds

E
[

max
j=0,...,nc

∣∣X�f

j� − X
�c

j�

∣∣2] ≤ c1
(
nf m2

f,2 + n2
f m2

f,1mf,2 + nf E
[|R1|2

])
(3.3)

× exp
[
c2
(
nf mf,2 + n2

f m2
f,1

)]
for some constants c1 > 0, c2 > 0 depending on La and Ba .

Corollary 2. If mf,2 = O(�f ), mf,1 = O(�f ) and E[|R1|2] = O(�2
f ) for �f → 0, then

E
[

max
j=0,...,nc

∣∣X�f

j� − X
�c

j�

∣∣2]= O(�f ), �f → 0.

Discussion

First, note that the conditions for (3.3) to hold are formulated not in terms of the original in-
crements (�Zj ), but rather in terms of their approximations (ζj ). For the case of the exact
increments, we obviously have mf,2 = O(�f ) and mf,1 = O(�f ), provided∫

Rd

|z|2ν(dz) < ∞,

where ν is a Lévy measure of Z. Furthermore, observe that under the assumptions of Corollary 2,
the second condition in (1.2) holds with β = 1 independently of the strong convergence order for
the corresponding Euler scheme. Finally, let us stress that the assumptions on the coefficient
function a are quite weak and standard in the framework of Lévy-driven SDEs. In fact, they
are needed to guarantee existence and uniqueness of the solution of (1.1) (see, e.g., Ikeda and
Watanabe [11]).
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3.2. MLMC algorithm

Fix some L > 0 and set �l = 2−lT , l = 0, . . . ,L. Denote

ζL
.= (ζL,1, . . . , ζL,2L) ∈R

2L ⊗R
m,

where the columns of the matrix ζL are i.i.d. random vectors in R
m. Now we define recur-

sively the independent random matrices ζL−1, . . . , ζ 0 with ζ l ∈ R
2l ⊗ R

m via ζ l−1 ∼ ς(ζ l) =
(ς1(ζ l ), . . . , ςl−1(ζ l )), where each vector ςj (ζ l ) is coupled with ζl,2j−1 and ζl,2j in such a way
that all differences

ςj (ζ l) − ζl,2j−1 − ζl,2j , j = 1, . . . ,2l−1,

are small. For example, one can simply put

ςj (ζ l) = ζl,2j−1 + ζl,2j , j = 1, . . . ,2l−1. (3.4)

Next, for any l = 1, . . . ,L, and any random matrix ζ ∈R
2l ⊗R

m, consider the approximations

Xl
0(ζ ) = X0,

Xl
j�l

(ζ ) = Xl
(j−1)�l

(ζ ) + a
(
Xl

(j−1)�l
(ζ )
)
ζj

with j = 1, . . . ,2l , and some r.v. X0 ∈ R
d . Finally, fix a vector of natural numbers N =

(N0, . . . ,NL) and define a weak MLMC estimate for E[f (XT )] as follows

YL,N
.= 1

N0

N0∑
n=1

[
f (X0

T

(
ζ (n)

)]+ L∑
l=1

1

Nl

Nl∑
n=1

[
f
(
Xl

T

(
ζ

(n)
l

))− f
(
Xl−1

T

(
ζ

(n)
l

))]
,

where ζ
(n)
l = ς(ζ

(n)
l ) and ζ

(n)
l , n = 1, . . . ,Nl , are i.i.d. copies of ζ l .

Proposition 3. Suppose that the function f is Lipschitz continuous and that the distribution
of ζL is chosen in such a way that∣∣E[f (XL

T (ζL)
)]− E

[
f (XT )

]∣∣≤ c�α
L (3.5)

for some c > 0 and α ≥ 1/2. Then under the assumptions of Proposition 1 and Corollary 2, and
under a proper choice of N and L, the complexity of the estimate YL,N needed to achieve the
accuracy ε (as measured by RMSE) is of order ε−2 log2(ε).

Remark 4. We start with the finest level L and go backwardly by coupling at each level l the
approximations on time scales �l and �l−1. The main difficulty lies in the fact that such a
coupling changes the distribution of the approximative increments and we need to keep track of
these changes, since the MLMC approach essentially relies on fact that the distribution does not
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change between two consecutive levels (telescopic sum property). This gives rise to a sequence
of distributions for approximative increments.

The distribution of the matrix ζ l under coupling (3.4) can be found explicitly in many inter-
esting cases (see examples below). In general, one can compute the characteristic function of
each vector ζl,j in a closed form, provided the characteristic function of ζL,j is known explicitly.
Using the Fourier inversion formula, one can then compute the density of each ζl,j . Let us also
note that there is a lot of freedom in the choice of the finest approximation ζL satisfying (3.5).

The case where (3.4) holds only approximately will play an important role for the general
Lévy processes (see Section 4.3).

4. Examples

4.1. Diffusion processes

Consider now a d-dimensional diffusion process (Xt ) solving the SDE

Xt = b(Xt ) dt + σ(Xt ) dWt , t ∈ [0, T ], (4.1)

where Wt = (W 1, . . . ,Wm) is a m-dimensional Brownian motion, b : Rd → R
d and σ : Rd →

R
d ×R

m are Lipschitz continuous functions. Although the increments of Wiener process can be
simulated exactly, we can consider the following (essentially) weak Euler scheme

X�
0 = X0,

X�
j� = X�

(j−1)� + b
(
X�

(j−1)�

)
� +

m∑
k=1

σk

(
X�

(j−1)�

)
ξk
j ,

where j = 1, . . . , n, and i.i.d. random variables (ξk
j ) satisfy

∣∣E[ξ1
j

]∣∣+ ∣∣E[(ξ1
j

)3]∣∣+ ∣∣E[(ξ1
j

)2]− �
∣∣≤ c�2 (4.2)

for some c > 0. Under some additional assumptions on the coefficient functions b and σ , and the
output function f spelled out in Talay and Tubaro [22] and Bally and Talay [2], it holds∣∣E[f (X�

T

)]− E
[
f (XT )

]∣∣≤ c�

for some c > 0. The simplest way of constructing a r.v. ξ with the property (4.2) is to take

P
(
ξ i
j = ±√

�
)= 1

2 , i = 1, . . . ,m. (4.3)

Observe that distribution of the components of the vector ξ l under coupling (3.4) in the ML
algorithm, is closely related to the Binomial distribution, namely

ξ i
l,j

2
√

�L

+ 2L−l−1 ∼ Bi

(
2L−l ,

1

2

)
. (4.4)
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Hence the generation of variates ξ i
l,j is straightforward when a generator of binomially dis-

tributed random variates is available. For a fixed L, the weak MLMC algorithm implies gen-
eration of ξ l for l starting from 0 up to L. Since all probabilities of distributions Bi(2L−l , 1

2 ) for
l ∈ {0,1, . . . ,L} are rational numbers, table look-up or alias methods (see [4]) can be used to
achieve fast single random number generation. Since the distributions of ξ l do not change be-
tween different runs of the MLMC method, all the preprocessing required can be done only once
and the resulting tables can be stored. In problem-specific hardware (FPGA or ASIC) these tables
can be kept in permanent shared constant storage, which is often cheap, fast and abundant. With
table lookup methods this would provide O(L) worst-case single random variate generation time
at the price of storing O(2L+1) items of preprocessing data, and with alias methods it is possible
to attain O(1) worst-case single random variate generation time at the price of storing O(2L+1)

items of preprocessing data. Note that the whole procedure of binomial increments generation
can be implemented with the use of integer numbers only. These algorithms can be used for
MLMC implementation in problem-specific hardware (see [18]) to increase the performance of
the MLMC method due to the faster random increments generation.

4.2. Jump diffusion processes

Consider now a d-dimensional jump diffusion process (Xt ) solving the SDE

Xt = X0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dWs +

∫ t

0

∫
Z

ρ(Xs−, z)N(ds, dz), (4.5)

where Wt = (W 1
t , . . . ,Wm

t ) is a standard m-dimensional Ft -adapted Brownian motion and
N(ds, dz) is a Poisson counting measure on R

+ × Z with a finite intensity measure ds ν(dz).
We assume W and N are independent, and that the mappings b: Rd �→ R

d , σ : Rd �→ R
d ⊗R

m

and ρ : Rd ×Z �→ R
d are Lipschitz continuous and have at most linear growth on [0, T ] so that

the solution of (4.5) is well defined.
Let � = {−1,0, . . . ,m}, M = {γ = (γ1, . . . , γl) : γi ∈ �, l ≥ 0}, and ∅ stands for the empty

set. For any nonempty γ = (γ1, . . . , γl) ∈ M , denote _γ = (γ2, . . . , γl), γ _ = (γ1, . . . , γl−1),
|γ | = l, ‖γ ‖ = |γ |+ number of zero components of γ and 〈γ 〉 is the number of negative compo-
nents of γ . For any mapping φ ∈ C2(Rd), define the operators associated with (4.5)

L−1[φ](x; z) .= φ
(
x + ρ(x, z)

)− φ(x),

L0[φ](x)
.=

d∑
i=1

bi(x)∂iφ(x) + 1

2

d∑
i,j=1

ςij (x)∂ijφ(x),

Lj [φ](x)
.=

d∑
i=1

σij (x)∂iφ(x), j = 1, . . . ,m,
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where

ςij (x)
.=

m∑
l=1

σil(x)σjl(x) and ∂j
.= ∂

∂xj
.

The composite operator is defined recursively as

Lγ [φ](x; z1, . . . , z〈γ 〉) = Lγ1

(
L−γ [φ](x; z1, . . . , z〈γ 〉)

)
if γ1 ≥ 0 and via

Lγ [φ](x; z1, . . . , z〈γ 〉) = L_γ [φ](x + ρ(x, z1); z2, . . . , z〈γ 〉
)

−L_γ [φ](x; z2, . . . , z〈γ 〉)

otherwise. Denote �Nj := N([(j − 1)�, j�],Z), then the Euler scheme for (4.5) reads as
follows

X�
0 = X0,

X�
j� = X�

(j−1)� + a
(
X�

(j−1)�

)
� +

m∑
k=1

bk

(
X�

(j−1)�

)
�Wk

j

+
�Nj∑
k=1

ρ
(
X�

(j−1)�,Zjk

)
, j = 1, . . . , n,

where Zjk , k = 1, . . . ,Nj , are independent random variables with the law ν(dz)
ν(Z)

. The (essentially)

weak Euler scheme can be constructed by replacing the random variables �Wk
j and �Nj by

simple approximations ξk
j and ηj , respectively which satisfy

∣∣E[ξk
j

]∣∣+ ∣∣E[(ξk
j

)3]∣∣+ ∣∣E[(ξk
j

)2]− �
∣∣ = O

(
�2),∣∣E[(ηj )

l
]− ν(Z)�

∣∣ = O
(
�2), l = 1,2,3,

for some c > 0. In particular, one can take

P
(
ξ i
j = √

�
) = 1

2 , P
(
ξ i
j = −√

�
)= 1

2 ,
(4.6)

P(ηj = 1) = p, P(ηj = 0) = 1 − p,

where |p − �ν(Z)| = O(�2). Moreover, the random variables (Zj,k) can be replaced by i.i.d.
random variables (ζj,k) satisfying

E
[
Lγ [�](x, ζ1,l1 . . . , ζ〈γ 〉,l〈γ 〉)

]= E
[
Lγ [�](x,Z1,l1 . . . ,Z〈γ 〉,l〈γ 〉)

]
(4.7)
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and

E
[
Lγ [�](x, ζ1,l1 , . . . , ζ〈γ 〉,l〈γ 〉)L�

γ [�](x, ζ1,l1 , . . . , ζ〈γ 〉,l〈γ 〉)
]

(4.8)
= E

[
Lγ [�](x,Z1,l1 , . . . ,Z〈γ 〉,l〈γ 〉)L�

γ [�](x,Z1,l1 , . . . ,Z〈γ 〉,l〈γ 〉)
]

for �(x) ≡ x, all x ∈R
d , |γ | ≤ 2 with 〈γ 〉 > 0 and k = 1,2, where Z is distributed according to

ν(dz)/ν(Z).

Remark 5. If d = m = 1, then coefficients functions of order |γ | = 2 with 〈γ 〉 > 0 take the form

L(0,−1)[�](x, ζ1,l1) = b(x)∂xρ(x, ζ1,l1),

L(1,−1)[�](x, ζ1,l1) = σ(x)∂xρ(x, ζ1,l1),

L(−1,0)[�](x, ζ1,l1) = b
(
x + ρ(x, ζ1,l1)

)− a(x),

L(−1,1)[�](x, ζ1,l1) = σ
(
x + ρ(x, ζ1,l1)

)− b(x),

L(−1,−1)[�](x, ζ1,l1 , ζ1,l2) = ρ
(
x + ρ(x, ζ1,l1), ζ1,l2

)− ρ(x, ζ1,l2).

If moreover ρ(x,u) = xu, a(x) = a0 + a1x
α , b(x) = b0 + b1x

β , we get

L(0,−1)[�](x, ζ1,l1) = (
a0 + a1x

α
)
ζ1,l1 ,

L(1,−1)[�](x, ζ1,l1) = (
b0 + b1x

β
)
ζ1,l1 ,

L(−1,0)[�](x, ζ1,l1) = a1x
α
[
(1 + ζ1,l1)

α − 1
]
,

L(−1,1)[�](x, ζ1,l1) = b1x
β
[
(1 + ζ1,l1)

β − 1
]
,

L(−1,−1)[�](x, ζ1,l1 , ζ1,l2) = xζ1,l1ζ1,l2 .

Similar results hold for multidimensional case as well. Hence for a large class of stochastic pro-
cesses, including affine and polynomial processes, the conditions (4.7) and (4.8) can be viewed
as generalised moment conditions.

In the corresponding ML algorithm, we can use the approximation ηL,j for �NL,j of the
form:

P(ηL,j = 1) = �Lν(Z), P(ηL,j = 0) = 1 − �Lν(Z).

Then the random variables ηl,j for l < L have a binomial distribution which can be easily simu-
lated as described in Section 4.1.

4.3. General Lévy processes

Consider a one-dimensional square integrable Lévy process (Zt )t≥0 of the form

Zt = bt + σBt +
∫ t

0

∫
R

zÑ(ds, dz),
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for some σ ≥ 0, where Ñ(ds, dz) is a compensated Poisson random measure on R+ ⊗ R with
intensity measure ds ν(dz), where

∫ |z|2ν(dz) < ∞. In order to apply the Euler approximation
scheme to (1.1), we need to approximate the increments �Zj . Asmussen and Rosinski [1] (see
also [12]) suggested to replace the small jumps in L by an appropriate Gaussian random variable.
So we define

ζ δ
�,j

.= �Zδ
j + Uδ

�,j ,

where Zδ is the same Lévy process as Z without its (compensated) jumps smaller than δ and
Uδ

�,j is Gaussian random variable with the same mean and variance as the neglected jumps. The
resulting Euler scheme takes the form

X
�,δ
0 = X0,

(4.9)
X

�,δ
j� = X

�,δ
(j−1)� + a

(
X

�,δ
(j−1)�

)
ζ δ
�,j , j = 1, . . . , n.

Let us discuss the first condition in (1.2) (weak convergence). As was shown in [5] (see also [12]),∣∣E[f (X�,δ
T

)]− E
[
f (XT )

]∣∣� � ∨ δ3−α, (4.10)

provided f ∈ C2(R) and

ν
({|z| > t

})
� t−α, t → +0. (4.11)

Note that each r.v. ζ δ
�,j can be represented as

ζ δ
�,j = �b + σ�,δ · ξj +

Nδ
�,j∑

i=1

(
Zδ

i,j − E
[
Zδ

i,j

])
, j = 1, . . . , n,

where σ 2
�,δ

.= �(σ 2 + ∫
|z|≤δ

z2ν(dz)), ξj ∼ N (0,1), Nδ
�,j ∼ Poiss(�ν({|z| > δ})) and Zδ

1,j ,

Zδ
2,j , . . . are i.i.d. random variables with the distribution

1|z|>δν(dz)/ν
({|z| > δ

})
.

Hence the cost of generating one trajectory by means of (4.9) is of order �−1 + ν({|z| > δ}). Let
us now fix two natural numbers nf , nc = 2 · nf , two positive real numbers δf , δc and describe

the coupling between ζ
δc

�c
and ζ

δf

�f
. Set

ζ
δc

�c,j
= 2�f b + σ�f ,δf

· (ξ2j + ξ2j−1)

+
N

δf
�f ,2j∑
i=1

(
Z

δf

i,2j 1|Zi,2j |>δc − E
[
Z

δf

i,2j 1|Zi,2j |>δc

])
(4.12)

+
N

δf
�f ,2j−1∑
i=1

(
Z

δf

i,2j−11|Zi,2j−1|>δc − E
[
Z

δf

i,2j−11|Zi,2j−1|>δc

])
,
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then

R .= ζ
δc

�c,j
− ζ

δf

�f ,2j − ζ
δf

�f ,2j−1

=
N

δf
�f ,2j∑
i=1

(
Z

δf

i,2j 1δf <|Zi,2j |≤δc − E
[
Z

δf

i,2j 1|Zi,2j |≤δc

])

+
N

δf
�f ,2j−1∑
i=1

(
Z

δf

i,2j−11|Zi,2j−1|≤δc − E
[
Z

δf

i,2j−11|Zi,2j−1|≤δc

])
.

As a result, E[R] = 0 and

E
[|R|2]≤ 2�f

∫
|z|≤δc

|z|2ν(dz). (4.13)

Hence the assumptions of Corollary 2 are fulfilled, provided∫
|z|≤δc

|z|2ν(dz) ≤ c�f

for some c > 0. Under (4.11), this is equivalent to the relation δc � �
1/(2−α)
f . Using the esti-

mate (4.10), we derive the complexity of the resulting coupled multilevel scheme.

Proposition 6. If α ≤ 3 − √
3 in (4.11), then the complexity of the coupled multilevel algorithm

presented in Section 3.2 with the coupling (4.12) is of order{
ε−2 · (log ε)2, α ≤ 1,

ε−2/(2−α), 1 < α ≤ 3 − √
3,

provided δl = �
1/(2−α)
l . For α > 3 − √

3 we can use the simplest coupling ζ
δc

�c,j
= ζ

δf

�f ,2j +
ζ

δf

�f ,2j−1 and constant δl = ε1/(3−α) to get upper estimate ε−(6−α)/(3−α) for the complexity of
the corresponding coupled multilevel algorithm.

Discussion

Observe that the complexity of the standard MC algorithm for estimating E[f (XT )] is bounded
above via {

ε−3, α ≤ 3/2,

ε−(6−α)/(3−α), 3/2 < α ≤ 2.

So the coupled MLMC approach is superior to the standard MC algorithm as long as α ≤ 3−√
3,

see Figure 1.
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Figure 1. The functions ρ(α), plotted here as functions of α represent the complexity of standard MC
and coupled MLMC algorithms in the following sense: for a given α, the MC (MLMC) algorithm has
complexity O(ε−ρ(α)) for a prescribed precision ε.

A similar behaviour can be observed in Dereich [3] (at least for α ≤ 1). We can further re-
place the restricted Lévy jump sizes (Z

δf

i,j ) by some simple random variables using the approach
presented in Section 4.2. Note that in the latter case the above complexity bounds continue to
hold.

5. Numerical experiments

In this section, we present numerical examples corresponding to process classes discussed in
Section 4. The MLMC algorithm is implemented according to the [8], with some changes, due
to the specific structure of the simulated process. Recall, that the MLMC estimator has the form:

YL,N = 1

N0

N0∑
n=1

[
f (X0

T

(
ζ (n)

)]+ L∑
l=1

1

Nl

Nl∑
n=1

[
f
(
Xl

T

(
ζ

(n)
l

))− f
(
Xl−1

T

(
ζ

(n)
l

))]

= Ŷ0 +
L∑

l=0

Ŷl .

But the general scheme is the same for all considered problems and can be summarized in the
following algorithm:

Input: Requested accuracy ε and set the final level L̂.
1. Set L := 2.
2. Compute Nl := 100 samples on levels l = 0,1,2.
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3. Estimate Var(Ŷl) and update Nl for each level l = 0, . . . ,L:

Nl := max

{
Nl,

⌈
2 · ε−2 ·

√
Var(Ŷl)2−l ·

L∑
k=0

√
Var(Ŷk) · 2k

⌉}
.

If the update Nl is increased less than 1% on the levels, then go to step 5.
4. Compute the additional number of samples and Go to step 3.
5. If L < 2 or max{|ŶL−1|/2, |ŶL|} ≥ ε/

√
2:

L := L + 1, Var(ŶL) = Var(ŶL−1)/2.

Else: Return
∑L

l=0 Ŷl .
6. If L > L̂, then

Display error: The final level L̂ is insufficient for the convergence.
Return

∑L
l=0 Ŷl .

7. Goto step 3.

In all of our numerical experiments we have chosen L̂ to be sufficiently large, so that L̂ ≥ L was
always satisfied.

5.1. Diffusion process

5.1.1. European max-call option

Consider a three dimensional process Xt = (X1
t ,X

2
t ,X

3
t ), t ∈ [0, T ], with independent compo-

nents where each process Xi
t solves one-dimensional SDE of the form (4.1) with b(x) = r ·x and

σ(x) = σ · x for some r, σ ∈R. We are interested in computing the expectation of

f (XT ) = e−r·T max
(
max

(
X1

T ,X2
T ,X3

T

)− K,0
)
.

We chose the following parameters:

r = 0.05, σ = 0.2, T = 1, K = 1, Xi
0 = 1, i = 1,2,3,

and L̂ = 9. In fact in this case the exact solution is available and for above parameter values, we
have E[f (XT )] ≈ 0.2276799594. The variance decay is presented on Figure 2. In particular, the
line α1 − α2 · l with α2 = 0.9753 fits the estimated log-variances best and this is in agreement
with Corollary 2. The corresponding RMSE is presented in Figure 3.

5.1.2. Geometric Asian option

Consider a one dimensional process Xt , t ∈ [0, T ], where each coordinate process Xi
t solves

one-dimensional SDE of the form (4.1) with b(x) = r · x and σ(x) = σ · x for some r, σ ∈ R. We
are interested in computing the expectation of the functional

f (X·) = e−r·T max

(
exp

(
1

T

∫ T

0
log(Xt ) dt

)
− K,0

)
.
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Figure 2. Three dimensional European max-call option: level variances for schemes with binomial and
normal increments.

The parameter values are

r = 0.05, σ = 0.2, T = 1, K = 1.

In this case, the exact value of the expectation is given by

E
[
f (X·)

]≈ 0.05546818634.

The variance decay is presented on Figure 4. Due the fact, that at first levels the variance decays
faster than predicted, we have fitted the variance decay only on the last 6 levels with the line
α1 − α2 · l and got α2 = 1.0059. The corresponding RMSE is presented in Figure 5.

5.2. Jump diffusions

Consider a jump SDE

dXt = (
r − λ · (em+0.5·θ2 − 1

)) · Xt · dt + σ · Xt · Wt + Xt · dJ (t),

Figure 3. Three dimensional European max-call option: estimated RMSE against the required precision ε

for different values of ε.
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Figure 4. Geometric Asian option: level log-variances for binomial and normal increments.

where

J (t) =
N(t)∑
j=1

(Yj − 1), log(Yj ) ∼N
(
m,θ2)

and N(t) is a Poisson process with rate λ. We are interested in computing the expectation of

f (XT ) = e−r·T max
(
X(T ) − K,0

)
.

The parameters’ values are

r = 0.05, σ = 0.2, λ = 0.5, m = 0.05, θ = 0.25, T = 1, K = 1.

It follows from [9] (Section 3.5) that, for above parameter values E[f (XT )] ≈ 0.153065585. We
have performed two types of simulations with the fixed top level L̂ = 8:

• Y was sampled from the lognormal distribution, while the increments of the Brownian mo-
tion were modelled as normal random variables;

Figure 5. Geometric Asian option: RMSE for binomial and normal increments.



Multilevel path simulation for weak schemes 943

• Y was sampled as a discrete random variable Ŷ according to the Remark 4.8, with mo-
ments matching first 6 moments of the lognormal distribution, while the increments of the
Brownian motion were modelled as discrete random variable defined by (4.4).

In both of those cases, the number of jumps ηl,j at the level l and step j is generated via

ηl,j ∼ Bi
(
2L̂−l ,2−L̂ · λ). (5.1)

One can see, that (5.1) can be implemented in the same spirit as (4.4). On the finest level L, we
allow only for two jumps 0 or 1. Let us denote by μi the ith moment of the lognormal distribution
with parameters m and θ . The random variable Ŷ takes 4 values with probabilities p1, . . . , p4.
The values and probabilities are obtained by solving the optimization problem:

Minimize

(
4∑

k=1

pk · x7
k − μ7

)2

subject to
4∑

k=1

pk · xi
k = μi, i = 1, . . . ,6.

The solution is

p1 = 0.608176614910593, x1 = 1.081500568717563,

p2 = 0.003503326771883, x2 = 2.376117006693613,

p3 = 0.226782660300013, x3 = 0.719559222085786,

p4 = 0.161537398017512, x4 = 1.581001071314797.

The variance decay is shown in Figure 6 for both types of simulations. We estimated RMSE of
the ML estimate based on the weak Euler scheme based on 50 independent runs, see Figure 7.

6. Proofs

Lemma 7. Suppose that the coefficient function a in (1.1) is uniformly Lipschitz and has at most
linear growth, that is,∥∥a(x) − a

(
x′)∥∥≤ La

∣∣x − x′∣∣, ∥∥a(x)
∥∥2 ≤ B2

a

(
1 + |x|2)

for any x, x′ ∈R
d and some positive constants La and Ba . Moreover, assume that E[|X0|2] < ∞,

then the following estimates hold

E
[∣∣Xf

n�f

∣∣2] ≤ 3B2
a · (n · mf,2 + n2 · m2

f,1

) · exp
(
3B2

a · (n · mf,2 + n2 · m2
f,1

))
,

E
[∣∣Xc

n�c

∣∣2] ≤ 3B2
a · (n · mf,2 + n2 · m2

f,1

) · exp
(
3B2

a · (n · mf,2 + n2 · m2
f,1

))
,

for n = 1, . . . , nc.
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Figure 6. European option: level log-variances for binomial increments and discrete jumps, normal incre-
ments and lognormal jumps.

Proof. Since

X
f
n�f

= X0 +
n∑

i=1

(
X

f
i�f

− X
f

(i−1)�f

)
,

Figure 7. European option: RMSE for binomial increments and discrete jumps, normal increments and
lognormal jumps.
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we have, due to independence of the increments

E
[∣∣Xf

n�f

∣∣2] = E

[∣∣∣∣∣X0 +
n∑

i=1

a
(
X

f

(i−1)�f

) · (ζ f
i − E

[
ζ

f
i

])+
n∑

i=1

a
(
X

f

(i−1)�f

) · E
[
ζ

f
i

]∣∣∣∣∣
2]

≤ 3E
[|X0|2

]+ 3
n∑

i=1

E
[∥∥a(Xf

(i−1)�f

)∥∥2]
mf,2

+ 3n

n∑
i=1

E
[∥∥a(Xf

(i−1)�f

)∥∥2]
m2

f,1

≤ 3E
[|X0|2

]+ 3B2
a · mf,2 ·

(
n +

n∑
i=1

E
[∣∣Xf

i−1

∣∣2])

+ 3B2
a · n · m2

f,1 ·
(

n +
n∑

i=1

E
[∣∣Xf

i−1

∣∣2]).

Using the discrete version of the Gronwall inequality (see Appendix), we get

E
[∣∣Xf

n�f

∣∣2]≤ 3B2
a · (n · mf,2 + n2 · m2

f,1

) · exp
(
3B2

a · (n · mf,2 + n2 · m2
f,1

))
.

The second inequality of the lemma can be proved in the same way. �

6.1. Proof of Proposition 1

Due to the Lemma 7, we have

E
[∣∣Xf

n�f

∣∣2]< A1, E
[∣∣Xc

n�c

∣∣2]< A2 (6.1)

for n = 1, . . . , nc, and constants A1, A2 not depending on n. We have

X
f
r�c

− Xc
r�c

= X
f

(r−1)�c
− Xc

(r−1)�c
+ [

a
(
X

f

(2r−1)�f

)− a
(
Xc

(r−1)�c

)]
ζ

f

2r

+ [
a
(
X

f

(r−1)�c

)− a
(
Xc

(r−1)�c

)]
ζ

f

2r−1 − a
(
Xc

(r−1)�c

)[
ζ c
r − ζ

f

2r − ζ
f

2r−1

]
.

Denote Dr
.= X

f
r�c

− Xc
r�c

, then we have the representation

Dr = Dr−1 + δr + εr

with

εr = [
a
(
X

f

(2r−1)�f

)− a
(
Xc

(r−1)�c

)](
ζ

f

2r − E
[
ζ

f

2r

])
+ [

a
(
X

f

(r−1)�c

)− a
(
Xc

(r−1)�c

)](
ζ

f

2r−1 − E
[
ζ

f

2r−1

])
− a

(
Xc

(r−1)�c

)[
ζ c
r − ζ

f

2r − ζ
f

2r−1

]
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and

δr = [
a
(
X

f

(2r−1)�f

)− a
(
Xc

(r−1)�c

)]
E
[
ζ

f

2r

]+ [
a
(
X

f

(r−1)�c

)− a
(
Xc

(r−1)�c

)]
E
[
ζ

f

2r−1

]
.

The Lipschitz continuity of the function a implies

E
[∥∥a(Xf

(2r−1)�f

)− a
(
Xc

(r−1)�c

)∥∥2] ≤ L2
aE
[∣∣Xf

(2r−1)�f
− Xc

(r−1)�c

∣∣2]
≤ 2L2

aE
[∣∣Dr−1

∣∣2]
+ 2L2

aB
2
a

(
1 + E

∣∣Xf

(r−1)�c

∣∣2)E[∣∣ζ f

2r−1

∣∣2]
and

E
[∥∥a(Xf

(r−1)�c

)− a
(
Xc

(r−1)�c

)∥∥2]≤ L2
aE
[∣∣Dr−1

∣∣2].
As a result

E
[|εr |2

] ≤ 3E
[∥∥a(Xf

(2r−1)�f

)− a
(
Xc

(r−1)�c

)∥∥2]E[∣∣ξf

2r

∣∣2]
+ 3E

[∥∥a(Xf

(r−1)�c

)− a
(
Xc

(r−1)�c

)∥∥2]E[∣∣ξf

2r−1

∣∣2]
+ 3E

[∥∥a(Xc
(r−1)�c

)∥∥2]E[∣∣ζ c
r − ζ

f

2r − ζ
f

2r−1

∣∣2]
≤ c1

(
1 + E

[∣∣Xf

(r−1)�c

∣∣2])E[∣∣ξf

2r−1

∣∣2]E[∣∣ξf

2r

∣∣2]
+ c2E

[|Dr−1|2
](

E
[∣∣ξf

2r

∣∣2]+ E
[∣∣ξf

2r−1

∣∣2])
+ c3

(
1 + E

[∣∣Xc
(r−1)�c

∣∣2])R
≤ c4

[
mf,2E

[|Dr−1|2
]+ m2

f,2 +R
]

for some constants c1, c2, c3, c4 and R .= E[|ζ c
r − ζ

f

2r + ζ
f

2r−1|2]. Analogously

E
[|δr |2

]≤ c5
[
m2

f,1E
[|Dr−1|2

]+ m2
f,1mf,2

]
for some c5 > 0. Define

Mr =
r∑

j=1

εj

and note that Mr is martingale with respect to the filtration

Fr
.= σ

(
X

f

(2j−1)�f
,Xc

(j−1)�c
,X

f

(j−1)�c
, j ≤ r

)
, r = 1, . . . , nc + 1.

Hence, the Doob inequality implies for any n ≤ nc:

E
[∣∣∣ sup

r=1,...,n

Mr

∣∣∣2] ≤ E
[|Mn|2

]

≤ c6mf,2

n∑
j=1

E
[|Dj−1|2

]+ c6nm2
f,2 + c6nR.
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So we have for Dn
.= maxj=1,...,n Dj

E
[|Dn|2

] ≤ 2 · n
n∑

j=1

E
[|δj |2

]+ 2 · E
[|Mn|2

]

≤ c7
(
mf,2 + nm2

f,1

) n∑
j=1

E
[|Dj−1|2

]+ c7n
(
m2

f,2 + nm2
f,1mf,2 +R

)
.

Finally, a discrete version of Gronwall lemma (see Appendix) implies

E
[|Dn|2

]≤ c8n
(
m2

f,2 + m2
f,1mf,2 +R

)
exp

(
c7
(
nmf,2 + n2m2

f,1

))
.

6.2. Proof of Proposition 6

We aim to minimize
L∑

l=0

Nl · (δ−α
l + �−1

l

)
subject to

min
(
�L,δ3−α

L

)≤ ε,

L∑
l=0

�l

Nl

≤ ε2.

We denote

al = (
δ−α
l + �−1

l

)
, l = 0, . . . ,L.

From Lagrange principle, we get

al = −λ · N−2
l · �l ⇒ Nl =

√
(−λ) · �l · a−1

l ⇒
L∑

l=0

�l

Nl

= 1√−λ
·

L∑
l=0

�l√
�l · a−1

l

= ε2 ⇒ √−λ = ε−2 ·
L∑

l=0

√
�l · al ⇒

Nl =
√

�l · a−1
l · ε−2 ·

L∑
l=0

√
�l · al.

So the cost has the representation

L∑
l=0

Nl · al =
L∑

l=0

al ·
√

�l · a−1
l · ε−2 ·

L∑
k=0

√
�k · ak

= ε−2 ·
(

L∑
l=0

√
�l · al

)2

= ε−2 ·
(

L∑
l=0

√
1 + �l

δα
l

)2

.
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According to the restrictions on the bias, we have

�L = M−L = ε, δL = ε1/(3−α) = �
1/(3−α)
L .

We now consider two cases.

1. We set δl = ε1/(3−α) constant on all the levels. Then the cost is bounded from above by

L∑
l=0

Nl · (δ−α
l + �−1

l

)� ε−2 · ε−α/(3−α) = ε−6−α/(3−α).

2. In the second case, we will set

δl = �
1/(2−α)
l .

Note, that δL = �
1/(2−α)
L < �

1/(3−α)
L , so the bias condition is fulfilled. Then the overall

cost

ε−2 ·
(

L∑
l=0

√
1 + �l

δα
l

)2

� ε−2 ·
(

L∑
l=0

√
1 + �

1−α/(2−α)
l

)2

� ε−2 ·
(

L∑
l=0

√
1 + �

(2−2·α)/(2−α)
l

)2

.

Combining all the cases together we get the statement.

Appendix

Lemma A.8. Let (yn) and (gn) be two nonnegative sequences and let c be a nonnegative con-
stant. If

yn ≤ c +
n∑

k=1

gkyk, n ≥ 0,

then

yn ≤ c exp

(
n∑

k=1

gk

)
.

Proof. We have

yn ≤ c +
∑

0≤k<n

cgk

∏
k<j<n

(1 + gj )

= c + c
∑

0≤k<n

[ ∏
k≤j<n

(1 + gj ) −
∏

k+1≤j<n

(1 + gj )

]
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= c + c

[ ∏
0≤j<n

(1 + gj ) −
∏

n+1≤j<n

(1 + gj )

]

= c
∏

0≤j<n

(1 + gj )

≤ c exp

( ∑
0≤j<n

gj

)
.

�
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