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The aim of the paper is to establish asymptotic lower bounds for the minimax risk in two generalized
forms of the density deconvolution problem. The observation consists of an independent and identically
distributed (i.i.d.) sample of n random vectors in R

d . Their common probability distribution function p can
be written as p = (1 − α)f + α[f � g], where f is the unknown function to be estimated, g is a known
function, α is a known proportion, and � denotes the convolution product. The bounds on the risk are
established in a very general minimax setting and for moderately ill posed convolutions. Our results show
notably that neither the ill-posedness nor the proportion α play any role in the bounds whenever α ∈ [0,1),
and that a particular inconsistency zone appears for some values of the parameters. Moreover, we introduce
an additional boundedness condition on f and we show that the inconsistency zone then disappears.

Keywords: Lp-risk; adaptive estimation; density estimation; generalized deconvolution model; minimax
rates; Nikol’skii spaces

1. Introduction

In statistics, deconvolution is one of the most well-known model among non-parametric ill-posed
inverse problems, where basically one wishes to recover an unknown real-valued function f after
it has been smoothed by a known operator. We will consider a multidimensional setting where
this operator is the convolution one, defined via some integrable real-valued “noise” function g.

Generalized deconvolution model. Our first model consists in a mix between the direct obser-
vation problem and the pure deconvolution problem. Consider the following observation scheme:

Zi = Xi + εiYi, i = 1, . . . , n, (1.1)

where Xi, i = 1, . . . , n, are i.i.d. d-variate random vectors with common density f to be es-
timated. The noise variables Yi, i = 1, . . . , n, are i.i.d. d-variate random vectors with known
common density g. At last εi ∈ {0,1}, i = 1, . . . , n, are i.i.d. Bernoulli random variables with
P(ε1 = 1) = α, where α ∈ [0,1] is supposed to be known.

Let us note that the case α = 1 corresponds to the pure deconvolution model Zi = Xi +Yi, i =
1, . . . , n, whereas the case α = 0 corresponds to the direct observation scheme Zi = Xi, i =
1, . . . , n. The intermediate case α ∈ (0,1) can be treated as the mathematical modeling of the
following situation. One part of the data, namely (1 − α)n, is observed without noise. If the
indexes corresponding to these observations were known, the density f could be estimated using
only this part of the data, with the accuracy corresponding to the direct case. The main question
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we will address in this intermediate case is whether the same accuracy would be achievable if the
latter information is not available? We will see that the answer is positive, but the construction
of optimal estimation procedures is based upon ideas corresponding to the pure deconvolution
model.

Convolution structure density model. Our second model is a generalization of the generalized
deconvolution model itself. For any fixed α ∈ [0,1] and R > 1, and for any g ∈ L1(R

d) introduce

Fg(R) = {
f ∈ B1,d (R) : (1 − α)f + α[f � g] ∈P

(
R

d
)}

,

where B1,d (R) denotes the ball of radius R in L1(R
d) and P(Rd) denotes the set of probability

densities on R
d . Suppose that we observe i.i.d. vectors Zi, i = 1, . . . , n, with common unknown

density p satisfying the following structural assumption:

p = (1 − α)f + α[f � g], f ∈ Fg(R),α ∈ [0,1]. (1.2)

Here α ∈ [0,1] and g : Rd → R are supposed to be known and f : Rd → R is the function to be
estimated. We remark that the observations scheme (1.2) coincides with the observations scheme
(1.1) if additionally f,g ∈P(Rd).

What is more, the convolution structure density model (1.2) can be studied for an arbitrary
g ∈ L1(R

d) and f ∈ Fg(R), but later on we will restrict ourselves to the case g ∈ P(Rd). Then on
the one hand we have P(Rd) ⊂ Fg(R) for any R > 1, but reciprocally some function f ∈ Fg(R)

is not necessarily a density, except in the particular case α = 0.
As it stands, one may question the reason for the Introduction of the convolution structure

density model. In fact, the main motivation lies in the calculation of the upper bounds of the min-
imax risk defined further. Indeed, in a separate work, the authors have constructed a performant
estimation technique, along the lines of what [14] developed in the direct case. However this
estimator, like (to the authors knowledge) most of those available in the literature, exploit nei-
ther f ≥ 0 nor

∫
f = 1. Thus, it is interesting to consider a broader setting than the generalized

deconvolution model, by removing the assumption that f is a probability density, and to check
if some estimators of interest are optimal in this new setting.

The minimax framework. We will study the deconvolution problem in the minimax perspec-
tive, which is very widespread in the statistical literature (see [30] for examples of problems
and methods in this setting). We want to estimate the target function f using the observations
Z(n) = (Z1, . . . ,Zn) given in each one of the two models (1.1) and (1.2). By estimator we mean
any Z(n)-measurable map f̂ : Rn → Lp(Rd).

The accuracy of an estimator f̂ is measured by the Lp-risk

R(n)
p [f̂ , f ] := (

Ef ‖f̂ − f ‖p
p

)1/p
, p ∈ [1,∞), R(n)∞ [f̂ , f ] := Ef

(‖f̂ − f ‖∞
)
.

Here Ef denotes the expectation with respect to the probability measure Pf of the observa-
tions Z(n) = (Z1, . . . ,Zn), ‖ · ‖p , p ∈ [1,∞) denotes the Lp-norm on R

d , and ‖ · ‖∞ denotes
the supremum norm on Rd . The objective is to construct an estimator of f possessing a small
Lp-risk.
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In the framework of the minimax approach, the density f is assumed to belong to a functional
class �, which is specified on the basis of some prior information on f . Then a natural accuracy
measure of an estimator f̂ is its maximal Lp-risk over �,

R(n)
p [f̂ ;�] = sup

f ∈�

R(n)
p [f̂ , f ].

The main question is: how to construct a rate–optimal, or optimal in order, estimator f̂∗ such
that

R(n)
p [f̂∗;�] 	 φn(�) := inf

f̂

R(n)
p [f̂ ;�], n → ∞?

Here the infimum is taken over all possible estimators, and φn(�) is called the minimax risk. We
refer to the outlined problem as the problem of minimax density deconvolution/estimation with
Lp-loss on the class �. Then the first problem arising here consists in bounding from below
the minimax risk φn(�) in an optimal way, that is, with bounds as large as possible as for the
dependency on n (and on other parameters appearing in � if possible). The aim of the paper is
to address this problem, whereas the determination of the upper bounds and the development of
rate-optimal estimators will be addressed in a separate paper.

In the framework of the convolution structure density model we will consider � =N
r,d ( 
β, 
L)∩
Fg(R), where N
r,d ( 
β, 
L) is the anisotropic Nikol’skii class defined further. Here we only note
that a Nikol’skii class belongs to the family of Besov functional classes and it is, in fact, the
largest Besov class, see [25], Chapter 6.2.

Moreover we will consider � = N
r,d ( 
β, 
L) ∩ P(Rd), which allows to get the results in the
framework of the generalized deconvolution model.

At last we study � =N
r,d ( 
β, 
L,M) ∩P(Rd), where

N
r,d ( 
β, 
L,M) =N
r,d ( 
β, 
L) ∩ {
G :Rd → R : ‖G‖∞ ≤ M

}
, M > 0.

It will allow us to understand how the boundedness assumption on the underlying function may
have effects on the minimax rate of convergence.

Moreover let us note that our main purpose is to precise how the lower bounds depend on
the size n of the sample, when n → +∞. Furthermore, we also study the dependence of the
remaining constants on 
L, which, remind, is the radium vector in the Nikol’skii space.

Overview of the existing results. As already mentioned, our models include as particular cases
density estimation in the direct observation and in the pure deconvolution settings. As far as we
know, the intermediate case mixing both situations has not been studied yet from a minimax per-
spective. However, of course there is a vast literature dealing with each one of the two particular
cases.

First, let us consider the direct observation setting. The latest results in the density estimation
over � = N
r,d ( 
β, 
L,M) under Lp-loss, 1 ≤ p < +∞, were obtained in [14]. The authors obtain
the following lower and upper bounds for the minimax risk:

c(lnn)an−ρ ≤ φn(�) ≤ C(lnn)bn−ρ,



Lower bounds 887

where ρ > 0, a ≥ 0, b ≥ 0 are constants completely determined by the class parameters 
β , 
r
and the norm index p. Different relation between these parameters leads to four regimes of the
decay of minimax risk (cf. Theorem 2) and it is worth noting that a = b in two zones among
four. Moreover in the same paper, an inconsistency result is also obtained for the sup-norm loss.
Along with the results of [20], this gives a complete picture on density estimation is sup-norm
loss.

Now let us focus on the results in the pure deconvolution setting. We only mention here
papers dealing partly or completely with our framework, that is, deconvolution in the den-
sity setting, in Lp-loss, from a minimax perspective. Moreover, the behavior of the Fourier
transform of the noise function g plays an important role in our results, as actually in all the
works on deconvolution. Indeed ill-posed problems correspond to Fourier transforms decaying
towards zero. Our results will be established for “moderately” ill posed problem, so we detail
only results in papers studying that type of operators. This assumption means that there exist

μ = (μ1, . . . ,μd) ∈ (0,∞)d and ϒ > 0 such that the Fourier transform ǧ of g satisfies:

ϒ1

d∏
j=1

(
1 + t2

j

)−μj /2 ≤ ∣∣ǧ(t)
∣∣≤ ϒ2

d∏
j=1

(
1 + t2

j

)−μj /2 ∀t = (t1, . . . , td) ∈R
d .

Let us first present some results in dimension one. Later on B(β, r, q,L) denotes the Besov
functional classes. In particular Nikol’skii class correspond to q = +∞, including Holder case
r = q = +∞, and Sobolev class corresponds to q = r . Early works include in particular [7], who
developed consistent estimators under L1-loss (but not yet in a minimax sense) whenever the set
of points where |ǧ(t)| �= 0 is of full Lebesgue measure. Later on [28] establish upper and lower
bounds for the L2 loss of a family of estimators in three cases of noise functions: normal, Cauchy
and double-exponential. However, here again they did not use the minimax framework yet in the
choice of the regularity space for the target.

Fan [10] uses the Lp-loss (with 1 ≤ p < +∞) and the Holder class � = B(β,∞,∞,L),
β > 0,L > 0. The author also assumes that the target functions are compactly supported in some
interval [a, b] and obtains the following lower bound:

φn(�) ≥ Cn−1/(2+(2μ+1)/β). (1.3)

This rate is obtained in several papers as a convergence rate of an estimator, and hence upper
bounds for the minimax risk. For example, the L2 loss and the Sobolev class � = B(β,2,2,L)

was considered by [6,26] and [15] (who made the additional condition that β > 1
2 ). They all

developed estimators, based on wavelets for the first paper, on penalization and model selection
in the second paper, and on a ridge method in the third paper. They all establish the convergence
rate of the estimators, which turns out to be (1.3). Note also that one chapter of the book by [24]
gathers results on one-dimensional density estimation in L2 loss over Sobolev or Holder spaces.
These results are similar to the aforementioned ones: lower and upper bounds are established for
the minimax risk, estimators based on ridge methods, wavelets, or kernels are developed. Fan and
Koo [11] use the L2-loss and the Besov class � = B(β, r, q,L). They establish a lower bound for
the minimax risk for any 1 ≤ q ≤ ∞ under the condition β > 1

r
. Once again the rate is the same



888 O.V. Lepski and T. Willer

as in (1.3). They also establish an upper bound under the additional assumptions that 1 ≤ r ≤ 2,
μ < r

2−r
(β + 1

2 − 1
r
) and f has a fixed compact support.

Lounici and Nickl [22] examined the case of the L∞-loss. They obtain a lower and an upper
bound for the minimax risk over the class of Holder spaces � = B(β,∞,∞,L) with β > 0, but
they remark that the results can be generalized to the class of Besov spaces � = B(β, r, q,L).
The found rate coincides with whose given in (1.3).

There are very few results in the multidimensional setting. It seems that [23] was the first paper
where the deconvolution problem was studied for multivariate densities. It is worth noting that
[23] considered more general weakly dependent observations and this paper formally does not
deal with minimax setting. However the results obtained in this paper could be formally com-
pared with the estimation under L∞-loss (p = ∞) over the isotropic Hölder class of regularity 2,
that is, the Nikol’skii class with 
β = (2, . . . ,2) and 
r = (∞, . . . ,∞). Let us also remark that the
paper does not contain any lower bound result.

In [5], the authors consider the L2-loss and the Sobolev class � = B( 
β, 
2, 
2, 
L) with the
restriction ∀j ∈ {1, . . . , d}, βj > 1

2 . They also assume that all the components of the noise vectors
are independent. They then obtain the following lower bound:

φn(�) ≥ Cn
−1/(2+∑d

j=1((2μj +1)/βj ))
.

They also obtain an upper bound containing the same rate in n, either on the Sobolev class as
above intersected with L1, or on the Nikol’skii class � = N
2,d

( 
β, 
L,M) with the restriction

∀j ∈ {1, . . . , d}, βj > 1
2 .

Let us briefly mention without details other types of deconvolution problems which are beyond
the scope of this paper. First, there are several results on pointwise estimation, see, for example,
[2,4,9,12], or the already cited paper [5]. Second, note that other types of ill-posedness can ap-
pear. In particular, an exponential type of decay for |ǧ| yields a “severely” ill-posed problem.
All of the aforementioned papers from 1993 onward studied these kinds of problems. Moreover,
papers such as [2,29] and [3] focus exclusively on severely ill-posed problems. Still another per-
spective is used in [1], where the operator is moderately ill-posed but the target function is “ex-
ponentially” smooth. Note that some convolution operators are neither moderately nor severely
ill-posed. For example, [15] investigate the case of oscillating behavior of |ǧ|, and [17] investi-
gate the case of the boxcar deconvolution with badly approximate width (but in the white noise
setting), where |ǧ| behaves in an unstable way.

Note that there is also a vast literature on deconvolution in the white noise instead of the
density setting. Here one assumes that the function f � g is observed after being corrupted by an
additive gaussian white noise. Then let us mention in particular the work by [16] who assume
that f and g are one dimensional and periodic and develop an adaptive estimator, which turns
out to be rate-optimal as shown by the minimax bounds in [32].

The remainder of the paper is organized as follows. Section 2 describes the assumptions on
the functions f and g appearing in our models. Section 3 contains the main results, which com-
prehend lower bounds for the minimax risk in three situations: the generalized deconvolution
problem, the convolution structure model, and the generalized deconvolution problem with a
uniformly bounded target density. Moreover the results in the case of the Lp-loss and of the uni-
form loss are presented separately. In Section 4, we discuss the optimality of the results presented
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in Section 3. We present a general conjecture related to the construction of an estimation proce-
dure which would attain the asymptotics found in Theorem 1–3. Moreover, we consider some
particular cases where the construction of an estimator attaining our lower bounds is straightfor-
ward. Sections 5 and 6 contain the proofs of the main results. The proofs of auxiliary lemmas are
postponed to Appendix.

2. Definitions and assumptions

In this section, we give the definition of functional classes used in the description of the min-
imax risk and present the assumptions imposed on the function g used in the definition of the
convolution operator.

Anisotropic Nikol’skii classes. Let (e1, . . . , ed) denote the canonical basis of R
d . For any

function f : Rd → R
1 and any real number u ∈ R, define the first order difference operator

with step size u in direction of the variable xj by


u,jf (x) = f (x + uej ) − f (x), j = 1, . . . , d.

By induction, the kth order difference operator with step size u in direction of the variable xj is
defined as


k
u,jf (x) = 
u,j


k−1
u,j f (x) =

k∑
l=1

(−1)l+k

(
k

l

)

ul,j f (x). (2.1)

Definition 1. For given vectors 
r = (r1, . . . , rd) ∈ [1,∞]d , 
β = (β1, . . . , βd) ∈ (0,∞)d and 
L =
(L1, . . . ,Ld) ∈ (0,∞)d , we say that a function f :Rd →R

1 belongs to the anisotropic Nikol’skii

class N
r,d ( 
β, 
L) if:

(i) ‖f ‖rj ≤ Lj for all j = 1, . . . , d ;
(ii) for every j = 1, . . . , d there exists a natural number kj > βj such that∥∥
kj

u,j f
∥∥

rj
≤ Lj |u|βj , ∀u ∈ R,∀j = 1, . . . , d.

Recall also that we introduced

N
r,d ( 
β, 
L,M) =N
r,d ( 
β, 
L) ∩ {
G : Rd →R : ‖G‖∞ ≤ M

}
, M > 0.

Assumptions on the density g. Let J∗ denote the set of all subsets of {1, . . . , d}. Set J = J∗∪∅

and for any J ∈ J let |J | denote the cardinality of J while {j1 < · · · < j|J |} denotes its elements.

For any J ∈ J∗ define the operator DJ = ∂ |J |
∂tj1 ···∂tj|J |

and let D∅ denote the identity operator. For

any Q ∈ L1(R
d) let Q̌(t), t ∈ R

d , be the Fourier transform of Q.

Assumption 1. g is bounded, and DJ ǧ exists for any J ∈ J∗ and satisfies:



890 O.V. Lepski and T. Willer

(1) if α ∈ [0,1) then there exists d1 > 0 such that

sup
J∈J∗

∥∥DJ ǧ
∥∥∞ ≤ d1;

(2) if α = 1 then there exists d2 > 0 such that

sup
J∈J∗

∥∥ǧ−1DJ ǧ
∥∥∞ ≤ d2.

Let us remark that Assumption 1 is very weak if α ∈ [0,1) and it is verified for many dis-
tributions, including multivariate centered Laplace and Gaussian ones. In the case α = 1, this
assumption is much more restrictive. In particular, it does not hold for Gaussian law but it is still
checked for the Laplace distribution.

Assumption 2. If α = 1 then there exist 
μ = (μ1, . . . ,μd) ∈ (0,∞)d and ϒ > 0 such that

∣∣ǧ(t)
∣∣≤ ϒ

d∏
j=1

(
1 + t2

j

)−μj /2 ∀t = (t1, . . . , td) ∈R
d .

The consideration of the Lp-risk on N
r,d ( 
β, 
L) ∩ Fg(R) requires to enforce Assumption 1 in
the case α = 1. For any I, J ∈ J define DI,J =DI (DJ ) and note that obviously DI,J =DJ,I .

Assumption 3. DI,J ǧ exists for any I, J ∈ J and:

(i) sup
I,J∈J

∥∥DI,J (ǧ)
∥∥

1 =: d3 < ∞;

(ii) sup
J∈J∗

∫
Rd

g(z)

(∏
j∈J

z2
j

)
dz < ∞.

Assumption 3 is not much restrictive and it is checked for multivariate centered Gaussian and
Laplace distributions.

3. Main results

To present our results in an unified way, let us define 
μ(α) = 
μ, α = 1, 
μ(α) = (0, . . . ,0),
α ∈ [0,1), and introduce the following quantities.

1

β(α)
=

d∑
j=1

2μj (α) + 1

βj

,
1

ω(α)
=

d∑
j=1

2μj (α) + 1

βj rj
, L(α) =

d∏
j=1

L
(2μj (α)+1)/βj

j .

Define for any 1 ≤ s ≤ ∞ and α ∈ [0,1]
κα(s) = ω(α)

(
2 + 1/β(α)

)− s, τ (s) = 1 − 1/ω(0) + 1/
(
sβ(0)

)
.
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Convolution structure density model. Set p∗ = [maxl=1,...,d rl] ∨ p and introduce

�(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1/p

1 − 1/ω(α) + 1/β(α)
, κα(p) > pω(α);

β(α)

2β(α) + 1
, 0 < κα(p) ≤ pω(α);

τ(p)

(2 + 1/β(α))τ (∞) + 1/[ω(α)β(0)] , κα(p) ≤ 0, τ
(
p∗)> 0;

ω(α)(1 − p∗/p)

κα(p∗)
, κα(p) ≤ 0, τ

(
p∗)≤ 0.

Here and later, we assume 0/0 = 0, which implies in particular that ω(α)(1−p∗/p)
κα(p∗) = 0 if p∗ = p

and κα(p) = 0. Also, the following observation will be useful in the sequel:

�(α) = min

[
1 − 1/p

1 − 1/ω(α) + 1/β(α)
,

1

2 + 1/β(α)
,

(3.1)
τ(p)

(2 + 1/β(α))τ (∞) + 1/ω(α)β(0)
,
ω(α)(1 − p∗/p)

κα(p∗)

]
.

Put finally

δn =

⎧⎪⎪⎨⎪⎪⎩
L(α)n−1, κα(p) > 0;

L(α)n−1 ln(n), κα(p) ≤ 0, τ
(
p∗)≤ 0;[

L(0)
]−κα(p)/(ω(α)pτ(p))

L(α)n−1 ln(n), κα(p) ≤ 0, τ
(
p∗)> 0.

Theorem 1. Let L0 > 0 and 1 ≤ p < ∞ be fixed. Then for any 
β ∈ (0,∞)d , 
r ∈ [1,∞]d ,

L ∈ [L0,∞)d , R > 1, 
μ ∈ (0,∞)d and g ∈ P(Rd), satisfying Assumptions 1–3, there exists
c > 0 independent of 
L such that

lim inf
n→∞ inf

f̃n

sup
f ∈N
r,d ( 
β, 
L)∩Fg(R)

δ
−�(α)
n R(n)

p [f̃n;f ] ≥ c,

where infimum is taken over all possible estimators. If additionally 
μ(α) ∈ [0,1/2)d in the case
κα(p) ≤ 0, then

lim inf
n→∞ inf

f̃n

sup
f ∈N
r,d ( 
β, 
L)∩P(Rd )

δ
−�(α)
n R(n)

p [f̃n;f ] ≥ c.

Following the terminology used in [14], we will call the set of parameters satisfying κα(p) >

pω(α) the tail zone, satisfying 0 < κα(p) ≤ pω(α) the dense zone and satisfying κα(p) ≤ 0
the sparse zone. In its turn, the latter zone is divided in two sub-domains: the sparse zone 1
corresponding to τ(p∗) > 0 and the sparse zone 2 corresponding to τ(p∗) ≤ 0. The notion of
dense and sparse zones appeared in the statistical literature in the mid-nineties in [8] and go up to
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the wavelet decomposition of the underlying density. The tail zone was discovered in [18] and its
existence is related to the function estimation on the whole space. In particular, the consideration
of compactly supported densities allows to eliminate this zone. The fact that the sparse zone is
divided in two sub-domains was discovered in [14] (bounded case) and in [21] (unbounded case).
This division can be informally viewed as some “degree of sparsity”. It can be easily observed by
analyzing the family of functions on which the lower bound established in the theorem is proved.

Some remarks are in order.

10. In view of the inclusion P(Rd) ⊂ Fg(R) for any g ∈ P(Rd) and R > 1, we remark that
the second assertion of the theorem is stronger than the first one. In particular, it provides with
the lower bound for the minimax risk in the generalized deconvolution model (1.1). Note that the
additional condition 
μ(α) ∈ [0,1/2)d is always satisfied if α �= 1 since 
μ(α) = 0. Moreover, for
any α ∈ [0,1) the asymptotics of the of Lp-risk found in Theorem 1 are independent of α. Also,
it is worth mentioning that all our results in the case α ∈ (0,1) are proved under the very weak
Assumption 1.

We would like to emphasize that the asymptotics of the Lp-risk defined on N
r,d ( 
β, 
L) ∩P(Rd)

in the case 
μ(α) /∈ [0,1/2)d , α = 1, on the sparse zone in the observation model (1.1) remains
an open problem. However, as it will follow from Theorem 2 below the asymptotics found in
Theorem 1 in the tail and the dense zone are correct on N
r,d ( 
β, 
L) ∩ P(Rd) as well, whatever
the value of 
μ(α).

20. The assertions of Theorem 1 in the case α �= 0 are completely new. In the case α = 0, the
lower bounds from Theorem 1 coincide with those found in [14] when the tail or dense zone are
considered. The result corresponding to the sparse zone even for α = 0 was not known. Let us
discuss this zone more in detail.

Case κα(p) ≤ 0, τ(p∗) ≤ 0, p∗ = p. As it follows from Theorem 1 there is no uniformly
consistent estimator under the Lp-loss, 1 < p < ∞, over N
r,d ( 
β, 
L) ∩ Fg(R) or over
N
r,d ( 
β, 
L) ∩ P(Rd) if 
μ(α) ∈ [0,1/2)d . We will see that the latter condition is necessary and
sufficient for nonexistence of uniformly consistent estimators over these two functional classes.

Case κα(p) ≤ 0, τ(p∗) ≤ 0, p∗ > p. It is interesting to note that this case does not appear in
the dimension 1 or, more generally, when isotropic Nikol’skii classes are considered. Indeed, if
rl = r for all l = 1, . . . , d , then p∗ > p means r > p which, in its turn, implies τ(p∗) = τ(r) =
1 > 0.

30. Note that if p = 1, then necessarily κα(p) > pω(α) (the tail zone) and, therefore, a uni-
formly consistent estimator under L1-loss does not exist.

40. Let α = 1 and let p = 2 and rl = 2 for any l = 1, . . . , d . It is easy to check that whatever
the value of 
β and 
μ, the corresponding set of parameters belongs to the dense zone. The lower
bound for the L2-risk in the deconvolution model was recently obtained in [5] but under more re-
strictive assumption imposed on the density g. It is worth noting that in this case the asymptotics
found in Theorem 1 is the minimax rate of convergence, see [5].

Deconvolution density model. Bounded case. The problem that we address now is inspired by
the following observation. Looking at (3.1) we remark that the elimination of any zone will im-
prove the accuracy of estimation. A similar problem was investigated in the recent paper [14],
where in the direct case α = 0 the authors proposed the tail dominance condition which allows
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to reduce and sometimes to eliminate the tail zone. In particular, under this assumption the uni-
formly consistent estimation under L1-loss is possible.

Our goal is to impose in some sense minimal assumptions on the underlying function which
would allow to eliminate the inconsistency zone κα(p) ≤ 0, τ (p∗) ≤ 0,p∗ = p. It turns out
that in order to do this it suffices to add to the Nikol’skii class the uniform boundedness of the
underlying function. Thus, our objective is to find a lower bound for minimax risk defined on
N
r,d ( 
β, 
L,M) ∩P(Rd). Introduce

ρ(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1/p

1 − 1/ω(α) + 1/β(α)
, κα(p) > pω(α);

β(α)

2β(α) + 1
, 0 < κα(p) ≤ pω(α);

τ(p)

(2 + 1/β(α))τ (∞) + 1/[ω(α)β(0)] , κα(p) ≤ 0, τ(∞) > 0;

ω(α)

p
, κα(p) ≤ 0, τ(∞) ≤ 0.

Similarly to (3.1)

ρ(α) = min

[
1 − 1/p

1 − 1/ω(α) + 1/β(α)
,

1

2 + 1/β(α)
,

(3.2)
τ(p)

(2 + 1/β(α))τ (∞) + 1/(ω(α)β(0))
,
ω(α)

p

]
.

Theorem 2. Let L0 > 0 and 1 ≤ p < ∞ be fixed. Then for any 
β ∈ (0,∞)d , 
r ∈ [1,∞]d , 
L ∈
[L0,∞)d , M > 0, 
μ ∈ (0,∞)d and g ∈ P(Rd), satisfying Assumptions 1 and 2 there exists c > 0
independent of 
L such that

lim inf
n→∞ inf

f̃n

sup
f ∈N
r,d ( 
β, 
L,M)∩P(Rd )

δ−ρ(α)
n R(n)

p [f̃n;f ] ≥ c,

where the infimum is taken over all possible estimators.

Remark 1. The result of Theorem 2 in the case α �= 0 is completely new. When α = 0, the lower
bounds from Theorem 2 coincide with those found in [14] when the tail, dense or sparse zone 1
are considered. As to the sparse zone 2, even if α = 0, we improve in order the result obtained
in [14]. Indeed, the asymptotics found in [14] is proportional to n−ρ(0), which is smaller in order
than δ

ρ(0)
n . Moreover, we will see that the asymptotics given by δ

ρ(α)
n yields the minimax rate of

convergence on the whole sparse zone for any α ∈ [0,1].

Comparing the assertions of Theorems 1 and 2 we conclude that the results of Theorem 2
concerning the tail and the dense zone imply those of Theorem 1. Moreover, their proofs do not
require Assumption 3.
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Let us also remark that the rate-index ρ(α) coincides with �(α) if p∗ = ∞, which is not
a simple coincidence. Indeed, since p < ∞ then p∗ = ∞ means that there exists l ∈ {1, . . . , d}
such that rl = ∞. Hence, any function belonging to the corresponding Nikol’skii class is bounded
by Ll in view of the definition of the class. Note, however, that the condition p∗ = ∞ is much
stronger than the belonging of the underlying function to N
r,d ( 
β, 
L,M).

What is more, analyzing the proof of Theorem 1 in the case κα(p) ≤ 0, τ (p) ≤ 0,p∗ = p, we
can conclude that

lim inf
n→∞ lim

M→∞ inf
f̃n

sup
f ∈N
r,d ( 
β, 
L,M)∩P(Rd )

R(n)
p [f̃n;f ] > 0.

It shows that in some sense, the assumption f ∈ N
r,d ( 
β, 
L,M) is the minimal one allowing to
assert the existence of a uniformly consistent estimator on the whole sparse zone.

Bounds for the L∞-risk. Introduce ρ = τ(∞)
(2+1/β(α))τ(∞)+1/[ω(α)β(0)] .

Theorem 3. Let L0 > 0, 
β ∈ (0,∞)d , 
r ∈ [1,∞]d , 
L ∈ [L0,∞)d , M > 0, 
μ ∈ (0,∞)d and
g ∈P(Rd), satisfying Assumptions 1 and 2, be fixed. Then:

(1) if τ(∞) > 0 there exists c > 0 independent of 
L such that

lim inf
n→∞ inf

f̃n

sup
f ∈N
r,d ( 
β, 
L)∩P(Rd )

([
L(0)

]1/(ω(α)τ(∞))
L(α)n−1 ln(n)

)−ρR(n)∞ [f̃n;f ] ≥ c,

where the infimum is taken over all possible estimators;
(2) there is no uniformly consistent estimator if τ(∞) ≤ 0.

The assertions of the theorem are new if α �= 0. If α = 0 the same bound was obtained in [14]
and the asymptotics found in the first assertion is the minimax rate of convergence, see [20]. In
the univariate case d = 1, if α = 1, and r = ∞ (Hölder class) the first assertion of the theorem
was proved in [22].

Remark 2. In view of the embedding theorem for Nikol’skii spaces [25], Section 6.9, the condi-
tion τ(∞) > 0 guarantees that all the functions belonging to N
r,d ( 
β, 
L) are uniformly bounded
by a constant completely determined by 
L. In view of the latter remark, we can assert that The-
orem 3 is a particular case of Theorem 2. However, although the proofs of these theorem have
a lot of common elements, they are different. At least, the authors were unable to find a single
proof for both theorems.

4. Are the lower bounds sharp?

Since all the results presented in the previous section deal with lower bounds for the minimax
risk only, a natural question is: are the asymptotics that we found optimal? In other words is
it possible to construct an estimator whose accuracy coincides up to numerical constants with
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the asymptotics established in Theorems 1–3? As it was mentioned above, the development of
rate-optimal estimators will be addressed in a separate paper. Here we would like to discuss
some general ideas which, at a glance, will lead to the construction of an estimator which is
adaptive over the scale of Nikol’skii classes. Moreover, we consider some particular cases where
the construction of an estimator attaining our lower bounds is straightforward.

Below we will discuss only the results of Theorems 1 and 2. An estimator attaining simultane-
ously the asymptotics proved in Theorem 3 was recently constructed in [27]. The latter implies
that our results concerning the estimation under sup-norm loss are sharp.

4.1. General conjecture

For any 
h = (h1, . . . , hd) ∈ (0,∞)d set V
h =∏d
j=1 hj and introduce

K
h(t) = V −1

h K(t1/h1, . . . , td/hd), t ∈ R

d,

where K :Rd → R is a kernel obeying some restrictions discussed later.
For any 
h ∈ (0,∞)d let M(·, 
h) satisfy the operator equation

K
h(y) = (1 − α)M(y, 
h) + α

∫
Rd

g(t − y)M(t, 
h)dt, y ∈ R
d . (4.1)

Introduce for any 
h ∈ (0,∞)d and x ∈ R
d the kernel estimator

f̂
h(x) = n−1
n∑

i=1

M(Zi − x, 
h). (4.2)

Let Hd denote the diadic grid in (0,∞)d . We believe that for any given x ∈ R
d a data-driven

selection rule from the family of kernel estimators {f̂
h(x), 
h ∈ Hd} will attain simultaneously:

� the rates found in Theorems 1–2 on the whole sparse zone;
� the rates found in Theorems 1–2 up to a logarithmic factor on the tail and the dense zones,

under the following assumptions imposed on the density g.

(1) If α = 1, then there exists 
μ = (μ1, . . . ,μd) ∈ (0,∞)d and ϒ0 > 0 such that

∣∣ǧ(t)
∣∣≥ ϒ0

d∏
j=1

(
1 + t2

j

)−μj /2
, ∀t = (t1, . . . , td ) ∈R

d . (4.3)

Comparing (4.3) with Assumption 2 we can assert that they both are coherent. Indeed, we
come to the following assumption

ϒ0

d∏
j=1

(
1 + t2

j

)−μj /2 ≤ ∣∣ǧ(t)
∣∣≤ ϒ

d∏
j=1

(
1 + t2

j

)−μj /2
, ∀t ∈R

d .
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This assumption is well known in the literature, and corresponds to a moderately ill-posed statis-
tical inverse problem. In particular, it is checked for the centered multivariate Laplace law.

(2) If α ∈ (0,1), then there exists ε > 0 such that∣∣1 − α + αǧ(t)
∣∣≥ ε, ∀t ∈ R

d . (4.4)

Note first that (4.4) is verified for many distributions. In particular, it holds with ε = 1 − α

if ǧ is a real positive function. The latter is true, in particular, for centered multivariate Laplace
and Gaussian laws and for any probability law obtained by an even number of convolutions of
a symmetric distribution with itself. Moreover, this condition always holds with ε = 1 − 2α if
α < 1/2.

The selection scheme that we have in mind is a generalization of two pointwise procedures.
The first one is developed in [19] and the second one in [14]. In particular, the kernel K used in
the operator equation (4.1) has to be chosen as it was suggested in these aforementioned papers.

4.2. Particular cases

Let 
r = (p, . . . ,p). It is easily seen that in this case κα(p) = 2β(α)p > 0, ω(α) = β(α)p and,

therefore, independently of 
β and α the case p ≥ 2 corresponds to the dense zone and p < 2
describes the tail zone. Let f̂
h, 
h ∈ (0,1)d , be the kernel estimator defined in (4.2). Introduce

b
h(f, ·) =
∫
Rd

K
h(u − ·)f (u)du − f (·);

ξ
h(f, ·) = n−1
n∑

i=1

[
M(Zi − x, 
h) −Ef M(Zi − x, 
h)

]
.

Using the relation (4.1), one easily gets

R(n)
p [f̂
h, f ] ≤ ∥∥b
h(f, ·)∥∥

p
+ (

Ef

∥∥ξ
h(f, ·)∥∥p

p

)1/p
.

The choice of K proposed in [19] and in [14] implies, see for instance [13], for any 1 ≤ p < ∞

sup
f ∈N
r,d ( 
β,L)

∥∥b
h(f, ·)∥∥
p

≤ C1

d∑
j=1

Ljh
βj

j , ∀
h ∈ (0,1)d .

Here, C1 is a constant independent of 
h. The restriction 
r = (p, . . . ,p) is crucial for the latter
bound.

Suppose additionally that the Fourier transform Ǩ of K satisfies

∫
Rd

∣∣Ǩ(t)
∣∣ d∏
j=1

(
1 + t2

j

)μj (α)/2 dt ≤ k1,

∫
Rd

∣∣Ǩ(t)
∣∣2 d∏

j=1

(
1 + t2

j

)μj (α) dt ≤ k2
2,
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for some constants k1 > 0 and k2 > 0. Taking into account that

Ef

∥∥ξ
h(f, ·)∥∥p

p
=
∫
Rd

Ef

(∣∣ξ
h(f, x)
∣∣p)dx

and applying the Rozentahl inequality to the sum of i.i.d. centered random variables ξ
h(f, ·) we
get for any p ≥ 2

sup
f ∈N
r,d ( 
β,L)

(
Ef

∥∥ξ
h(f, ·)∥∥p

p

)1/p ≤ C2n
−1/2

d∏
j=1

h
−1/2−μj (α)

j , ∀
h ∈ (0,1)d .

Here C2 is a constant independent of 
h and n. Thus, we have for any p ≥ 2

sup
f ∈N
r,d ( 
β,L)

R(n)
p [f̂
h, f ] ≤ C1

d∑
j=1

Ljh
βj

j + C2n
−1/2

d∏
j=1

h
−1/2−μj (α)

j , ∀
h ∈ (0,1)d .

Minimizing the right-hand side of this inequality w.r.t. 
h ∈ (0,1)d , we come to the rate found in
Theorem 1, which corresponds to the dense zone.

The situation is more delicate when 1 < p < 2 (recall that there is no consistent estimator
under the L1-loss). Indeed, applying Bahr–Esseen inequality, [31], we obtain

sup
f ∈N
r,d ( 
β,L)

(
Ef

∥∥ξ
h(f, ·)∥∥p

p

)1/p ≤ C2n
−1+1/p

∥∥M(·, 
h)
∥∥

p
, ∀
h ∈ (0,1)d .

Under slightly weaker assumptions than Assumptions 1 and 3(i), the following estimate is avail-
able for any 1 < p < 2. There exists C3 such that

∥∥M(·, 
h)
∥∥

p
≤ C3

d∏
j=1

h
1/p−1−μj (α)

j , ∀
h ∈ (0,1)d .

Thus, we have

sup
f ∈N
r,d ( 
β,L)

R(n)
p [f̂
h, f ] ≤ C1

d∑
j=1

Ljh
βj

j + C4n
−1+1/p

d∏
j=1

h
1/p−1−μj (α)

j , ∀
h ∈ (0,1)d .

Minimizing the right-hand side of this inequality w.r.t. 
h ∈ (0,1)d , we come to the rate found in
Theorem 1, which corresponds to the tail zone in the case α ∈ [0,1). Contrary to this, if α = 1,
the minimum obtained is larger in order than the asymptotics given in Theorem 1. We conjecture
that the result of Theorem 1 is sharp. This implies, in particular, that in the pure deconvolution
model the linear estimators are no more rate-optimal (minimax) whenever p < 2.
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5. Proof of Theorems 1–2

The proofs below are very long, technical and tricky and we break them in several parts.
In Section 5.2, we present three different constructions of finite sets of functions on which the

announced lower bounds are established. All three constructions are used in the different parts
of the proof of Theorem 1 while the proof of Theorem 2 uses the first construction only. Each
construction contains several parameters to be chosen. We present the relationships between them
allowing to assert that the corresponding set of functions belongs to the considered functional
class.

Section 5.3 is devoted to the proof of a generic lower bound based on the constructions pre-
sented in Section 5.2. The results we obtain are explicitly expressed in terms of the aforemen-
tioned parameters and their proofs require to impose some additional restrictions on them. All
conditions together with the obtained bounds are summarized in Section 5.3.3.

The proofs of Theorems 1 and 2 are given in Sections 5.4–5.6 and they consist in the optimal
choice of the parameters satisfying the restrictions found in the previous sections.

5.1. Technical lemmas

Set T (x) = π−d
∏d

j=1(1 + x2
j )−1, x = (x1, . . . , xd) ∈Rd , and for any N > 0 and a> 0 define

f̄0,N (x) = (2N)−d

∫
Rd

T (y − x)1[−N,N ]d (y)dy, f0,N (·) = ad f̄0,Na(·a).

Lemma 1. (1) f0,N is a probability density for any value of N and a. Moreover, for any 
β ∈
(0,∞)d , 
r ∈ (0,∞]d and L0 > 0 there exists a> 0 such that

f0,N (·) ∈ N
r,d
( 
β,2−1 
L0

)
, ∀N > 0,

where 
L0 = (L0, . . . ,L0).
(2) For any M > 0 one can find N(M) > 0 such that

f0,N (·) ∈ N
r,d
( 
β,2−1 
L0,M

)
, ∀N ≥ N(M).

(3) Set A = a[2π{1 + 4a2}]−1. Then, for any x ∈ R
d and any N ≥ 2

f0,N (x) ≥ Ad

d∏
j=1

[
N−11[−1−N,N+1](xj ) + (

x2
j − N2)−11R\[−1−N,N+1](xj )

]
.

The first and second assertions of the lemma are obvious and the third one will be proven in
the Appendix.

For any g ∈P(Rd) let Ng > 0 be a given solution of the equation∫
[−Ng,Ng]d

g(u)du = 2−1.
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For any J ∈ J define

�J = {
x ∈R

d : |xj | > N + Ng + 1, j ∈ J, |xj | ≤ N + Ng + 1, j ∈ J̄
}
,

where as usual J̄ = {1, . . . , d} \ J and later on the product over an empty set is supposed to be
equal to 1.

Lemma 2. For any g ∈ P(Rd) and any N ≥ 2

[f0,N � g](x) ≥ B
∑
J∈J

(
N |J |−d

∏
j∈J

x−2
j

)
1�J

(x), ∀x ∈R
d,

where B depends on Ng and a only.

5.2. Three general constructions of a finite set of functions

Let f (0) = f0,N , where f0,N is constructed in Lemma 1 with the parameter N = Nn > 8 ∨
N(M/2) which will be chosen later. Recall that in view of the first and second assertions of
Lemma 1

f (0) ∈N
r,d
( 
β,2−1 
L0,2−1M

)∩P
(
R

d
)
. (5.1)

Set n = (�maxj=1,...,d βj �)∨ (�maxj=1,...,d μj �)+ 3 and let λ :R1 → R
1, λ ∈C

n(R1), λ �≡ 0 be
a function possessing the following properties.

supp(λ) ⊆ [−1,1], λ∞ = sup
k=0,...,n

∥∥λ(k)
∥∥∞ < ∞. (5.2)

Obviously, the second property is the consequence of the first one since λ ∈ C
n(R1).

For any l = 1, . . . , d let 1 > σl = σl(n) → 0, n → ∞, and Ml ∈ N
∗, Ml ≤ N(8σl)

−1 + 1, be
the sequences to be specified later. Define also

xj,l = {
2(1 − Ml) + 4(j − 1)

}
σl, j = 1, . . . ,Ml, l = 1, . . . , d,

and let M = {1, . . . ,M1} × · · · × {1, . . . ,Md}. For any m = (m1, . . . ,md) ∈M introduce

�m(x) =
d∏

l=1

λ

(
xl − xml,l

σl

)
, x ∈R

d ,

�m = [xm1,1 − 2σ1, xm1,1 + 2σ1] × · · · × [xmd,d − 2σd, xmd,d + 2σd ] ⊂R
d .

Note that in view of the first condition in (5.2), if U̇ denotes the interior of a set U :

supp(�m) ⊂ �m, ∀m ∈ M, (5.3)

�̇m ∩ �̇j = ∅, ∀m, j ∈ M : m �= j. (5.4)
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For m ∈ M define

π(m) =
d−1∑
j=1

(mj − 1)

(
d∏

l=j+1

Ml

)
+ md.

It is easily checked that π defines an enumeration of the set M, and π :M → {1,2, . . . , |M|} is
a bijection. For any w ∈ {0,1}|M| define

Fw(x) =A
∑

m∈M
wπ(m)�m(x), x ∈R

d ,

where ws , s = 1, . . . , |M| are the coordinates of w, and A is a parameter to be specified.
Let W be a subset of {0,1}|M|. We remark that the construction of the set of functions

{Fw,w ∈ {0,1}|M|} almost coincides with the construction proposed in [14], in the proof of
Theorem 3. Thus, completely repeating the computations done in the latter paper we can assert
that the assumption

Aσ
−βl

l

(
SW

d∏
j=1

σj

)1/rl

≤ (2C1)
−1Ll, ∀l = 1, . . . , d, (5.5)

guarantees that Fw ∈N
r,d ( 
β,2−1 
L) for any w ∈ W .
Here SW := supw∈W |{s : ws �= 0}| and C1 is a universal constant completely determined by

the function λ. It is important to mention that the proof of (5.5) uses only the condition (5.2),
which is the same as in [14].

5.2.1. First construction

Suppose additionally that ∫
R1

ykλ(y)dy = 0, ∀k = 0, . . . ,n. (5.6)

It is easy to see that the set of functions satisfying (5.2) and (5.6) is not empty. One of the possible
constructions of such λ consists in the following. Define

λ(t) =
n+2∑
s=1

as

(
1 − t2)s+n1[−1,1](t), t ∈ R

1.

It is obvious that λ ∈ C
n(R1) and it satisfies the two conditions in (5.2), whatever the values of

a1, . . . , an+2. Condition (5.6) is reduced to

n+2∑
s=1

asbs(k) = 0, ∀k = 0, . . . ,n,
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where we have put bs(k) = ∫ 1
−1(1 − t2)s+ntk dt .

The latter system of linear equations always has a solution (a1, . . . , an+2) �= (0, . . . ,0) since
the number of equations (n+1) is less than the number of variables (n+2). It implies in particular
that λ �≡ 0 since λ is a polynomial on [−1,1].

It follows from (5.2), (5.3) and (5.4) that

‖Fw‖∞ ≤ Aλd∞, ∀w ∈ {0,1}|M|, (5.7)

and (5.6) with k = 0 implies that∫
Rd

Fw(x)dx = 0, ∀w ∈ {0,1}|M|. (5.8)

Define for any w ∈ {0,1}|M|

fw(x) = f (0)(x) + Fw(x), x ∈ R
d

and remind that f (0) ∈P(Rd). It yields, first, together with (5.8) for any w ∈ {0,1}|M|∫
Rd

fw(x)dx = 1. (5.9)

Next, under (5.5) fw ∈N
r,d ( 
β, 
L) for any w ∈ W in view of (5.1) since minj=1,...,d Lj ≥ L0.
At last, if we impose the restriction Ml ≤ N(8σl)

−1 + 1
2 , then by construction of Fw , for any

w ∈ {0,1}|M|

Fw(x) = 0, ∀x /∈ [−N/4,N/4]d .

This yields fw(x) = f (0)(x) ≥ 0 for all x /∈ [−N/4,N/4]d .
On the other hand, in view of the third assertion of Lemma 1

f (0)(x) ≥ AN−d, ∀x ∈ [−N/4,N/4]d .

Therefore, if we require, putting C2 = 2−1Aλ−d∞ ,

A ≤ C2N
−d , (5.10)

this will imply together with (5.7) for any x ∈ [−N/4,N/4]d

fw(x) ≥ f (0)(x) − ‖Fw‖∞ ≥ 2−1f (0)(x) + 2−1AN−d − ‖Fw‖∞ ≥ 2−1f (0)(x).

Thus, we have finally

fw(x) ≥ 2−1f (0)(x) > 0, ∀x ∈R
d ,∀w ∈ {0,1}|M|, (5.11)

and we conclude that under (5.10) fw ≥ 0 for any w ∈ {0,1}|M|.
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Thus, we assert in view of (5.9) and (5.11) that under (5.10) fw is a probability density for any
w ∈ {0,1}|M|. Thus, we can assert that under restrictions (5.5) and (5.10) {f (0), fw,w ∈ W } is a
finite set of probability densities from N
r,d ( 
β, 
L).

It remains to note that for any N providing C2N
−dλd∞ ≤ 2−1M we guarantee ‖Fw‖∞ ≤ 2−1M

for any w ∈ {0,1}|M| in view of (5.7) and (5.10). Thus, we conclude that under (5.5) and (5.10){
f (0), fw,w ∈ W

}⊂N
r,d ( 
β, 
L,M) ∩P
(
R

d
)
. (5.12)

Here we have also taken into account (5.1).

5.2.2. Second construction

Instead of (5.6), suppose now that

λ(y) ≥ 0, ∀y ∈R. (5.13)

Introduce for any w ∈ {0,1}|M|

fw(x) =
(

1 − ‖λ‖d
1AS(w)

d∏
l=1

σl

)
f (0)(x) + Fw(x), x ∈R

d,

where we have put S(w) = |{s : ws �= 0}|. Noting that∫
Rd

Fw(x)dx = ‖λ‖d
1AS(w)

d∏
l=1

σl

in view of (5.3) and (5.4), we obtain using (5.1)∫
Rd

fw(x)dx = 1, ∀w ∈ {0,1}|M|. (5.14)

If we require, putting C3 = 2−1‖λ‖−d
1 , that

ASW

d∏
l=1

σl ≤ C3 (5.15)

we obtain that fw ≥ 0 for any w ∈ W , which together with (5.14) yields {f (0), fw,w ∈ W } ⊂
P(Rd). Here we have used that Fw ≥ 0 for any w ∈ {0,1}|M| in view of (5.13), and that SW =
supw∈W S(w).

Note also, that under (5.5) and (5.15) {f (0), fw,w ∈ W } ⊂ N
r,d ( 
β, 
L) in view of (5.1). Thus,
we can conclude that if (5.5) and (5.15) are fulfilled{

f (0), fw,w ∈ W
}⊂N
r,d ( 
β, 
L) ∩P

(
R

d
)
. (5.16)

Note that SW

∏d
l=1 σl ≤ CNd , where C is a universal constant, and therefore, the restriction

(5.15) is weaker in general than the condition (5.10). Thus, the latter restriction leads to the
inclusion (5.12) which is stronger than the inclusion (5.16) obtained under (5.15).
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5.2.3. Third construction

This construction will be used only if α = 1. We will assume that (5.6) holds and use the first
construction, that is, for any w ∈ {0,1}|M|

fw(x) = f (0)(x) + Fw(x), x ∈ R
d .

We already proved that {f (0), fw,w ∈ W } ⊂ N
r,d ( 
β, 
L) if (5.5) holds. Thus, it remains to find
conditions guaranteeing {f (0), fw,w ∈ W } ⊂ Fg(R). Obviously f (0) ∈ B1,d (R), so we need to
find conditions assuring that (remember that α = 1):

fw ∈ B1,d (R), (5.17){[
f (0) � g

]
, [fw � g],w ∈ W

} ⊂ P
(
R

d
)
. (5.18)

We start with finding condition guaranteeing the verification (5.17). We have:

∫
Rd

∣∣fw(x)
∣∣dx ≤

∫
Rd

f (0)(x)dx +
∫
Rd

∣∣Fw(x)
∣∣dx ≤ 1 + ‖λ‖d

1ASW

d∏
l=1

σl.

Putting C0,3 = (R − 1)8d‖λ‖−d
1 and imposing

ANdSW

d∏
l=1

σl ≤ C0,3 (5.19)

we can assert that (5.17) holds (remember that N ≥ 8).
Now, let us find conditions guaranteeing (5.18). Since f (0), g ∈ P(Rd) we have in view

of (5.8)∫
Rd

[
f (0) � g

]
(x)dx = 1,

∫
Rd

[fw � g](x)dx = 1, ∀w ∈ {0,1}|M|. (5.20)

Moreover, f (0), g ∈P(Rd) implies obviously [f (0) � g] ≥ 0 and, therefore,[
f (0) � g

] ∈ P
(
R

d
)
. (5.21)

Thus, it remains to find conditions under which

[fw � g] ≥ 0, ∀w ∈ W. (5.22)

10. We have for any w ∈ W in view of the Young inequality

‖Fw � g‖∞ ≤ ‖g‖∞‖Fw‖1 ≤ ‖g‖∞‖λ‖d
1ASW

d∏
l=1

σl.
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In view of Lemma 2 [f 0 � g](x) ≥ BN−d for any x ∈ �∅ and, therefore, if we require that

ANdSW

d∏
l=1

σl ≤ C1,3 (5.23)

holds with C1,3 = (2‖g‖∞‖λ‖d
1)−1B we can assert that

[fw � g](x) ≥ [
f (0) � g

]
(x) − ‖Fw � g‖∞ ≥ 2−1[f (0) � g

]
(x), ∀x ∈ �∅. (5.24)

20. Set �(x) =∏d
l=1 λ(xl/σl) and let �̌ denote the Fourier transform of �. Note that in view

of Assumption 3 and the conditions (5.2) imposed on λ

DJ,J
[
ǧ(t)�̌(t)

]=
∑

I,J⊆J∪∅
DI,J (�̌(t)

)
DJ\I,J\J (ǧ(t)

)
. (5.25)

Moreover, �̌(t) =∏d
l=1 σlλ̌(tlσl) and, therefore for any I,J ⊆ J ∪∅

DI,J (�̌(t)
)=

∏
l∈I∩J

σ 3
l λ̌′′(tlσl)

∏
l∈{I∪J }\{I∩J }

σ 2
l λ̌′(tlσl)

∏
l∈J\{I∪J }

σlλ̌(tlσl),

where λ̌′ and λ̌′′ denote the first and the second derivative of λ̌, respectively.
Hence, we have, putting λ̃ = |λ̌| ∨ |λ̌′| ∨ |λ̌′′| and taking into account that σl ≤ 1, l = 1, . . . , d ,

∣∣DI,J (�̌(t)
)∣∣≤ d∏

l=1

σlλ̃(tlσl) ≤ ‖λ̃‖d∞
d∏

l=1

σl, ∀I,J ⊆ J ∪∅,∀t ∈R
d . (5.26)

30. For any J ∈ J set QJ (y) = (
∏

j∈J y2
j )[� � g](y), y ∈ Rd and note that QJ ∈ L1(R

d).
Indeed,∫

Rd

∣∣Q(y)
∣∣dy ≤

(
d∏

l=1

σl

)
‖λ‖d−|J |

1

∫
Rd

g(z)
∏
j∈J

[∫
R

∣∣λ(u)
∣∣(z − uσj )

2 du

]
dz < ∞

in view of (5.2) and Assumption 3(ii).
Let Q̌J denote the Fourier transform of QJ which is well-defined since QJ ∈ L1(R

d). Then,
we have for any t = (t1, . . . , td ) ∈ R

d in view of (5.25)

Q̌J (t) = (−1)|J |DJ,J
[
ǧ(t)�̌(t)

]= (−1)|J | ∑
I,J⊆J∪∅

DI,J (�̌(t)
)
DJ\I,J\J (ǧ(t)

)
.

It yields, together with (5.26) and Assumption 3(i) for any J ∈ J

‖QJ ‖∞ ≤ (2π)−d‖Q̌J ‖1 ≤ (2π)−d
∑

I,J⊆J∪∅

∥∥DI,J (�̌)
∥∥∞

∥∥DJ\I,J\J (ǧ)
∥∥

1

(5.27)

≤ d3(2π)−d
(
4‖λ̃‖∞

)d d∏
l=1

σl.



Lower bounds 905

40. Let J ∈ J∗ be fixed and set F̃w,J (x) = [Fw(x) � g](x)
∏

j∈J x2
j .

We obviously have in view of the triangle inequality

sup
x∈�J

∣∣F̃w,J (x)
∣∣≤A

∑
m∈M

wπ(m) sup
x∈�J

∣∣�̃m,J (x)
∣∣,

where we have put �̃m,J (x) = [�m � g](x)
∏

j∈J x2
j .

Note that the definition of �J implies for any x = (x1, . . . , xd) ∈ �J

x2
l ≤ 4(xl − xml,l)

2, ∀l ∈ J,∀m ∈ M. (5.28)

Here we have also used that the definition of xs,l, s = 1, . . . ,Ml, l = 1, . . . , d , together with the
restriction Ml ≤ N(8σl)

−1 + 1
2 imply that |xml,l | ≤ N/4 for any l = 1, . . . , d and m ∈M.

It yields for any m ∈ M in view of the definition of �m

sup
x∈�J

|�̃m,J | ≤ 4|J | sup
x∈�J

∣∣�m(x)
∣∣∏
j∈J

(xj − xml,l)
2 ≤ 4d sup

y∈Rd

∣∣[� � g](y)
∣∣∏
j∈J

y2
j =: 4d‖QJ ‖∞,

and, therefore, we deduce from (5.27) for any w ∈ W

sup
x∈�J

|F̃w,J | ≤ d3(2π)−d
(
16‖λ̃‖∞

)d
ASW

d∏
l=1

σl.

We get finally

∣∣Fw(x)
∣∣≤ (∏

j∈J

x−2
j

)
d3(2π)−d

(
16‖λ̃‖∞

)d
ASW

d∏
l=1

σl, ∀x ∈ �J .

In view of Lemma 2, [f 0 � g](x) ≥ B(N |J |−d
∏

j∈J x−2
j ), for any x ∈ �J and, therefore, if we

require that

ANdSW

d∏
l=1

σl ≤ C2,3 (5.29)

holds with C2,3 = 2−1Bd
−1
3 (2π)d(16‖λ̃‖∞)−d we can assert that for any J ∈ J∗

[fw � g](x) ≥ [
f (0) � g

]
(x) − ∣∣[Fw � g](x)

∣∣≥ 2−1[f (0) � g
]
(x), ∀x ∈ �J . (5.30)

Since �J ,J ∈ J, is a partition of Rd , (5.24) and (5.30) imply that if ANdSW

∏d
l=1 σl ≤ C1,3 ∧

C2,3

[fw � g](x) ≥ 2−1[f (0) � g
]
(x) ≥ 0, ∀x ∈R

d . (5.31)

Set C′
3 = C0,3 ∧ C1,3 ∧ C2,3 and assume

ANdSW

d∏
l=1

σl ≤ C′
3. (5.32)
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It remains to note that (5.31) implies (5.22), which together with (5.19), (5.20) and (5.21) allows
us to conclude that {

f (0), fw,w ∈ W
}⊂N
r,d ( 
β, 
L) ∩ Fg(R), (5.33)

if the restrictions (5.5) and (5.32) are fulfilled.

5.3. Generic lower bound

As before the notation C1,C2, . . . , is used for the constants independent of 
L.
Let P denote the probability law on {0,1}|M| such that

P(w) = ς
∑|M|

s=1 ws (1 − ς)|M|−∑|M|
s=1 ws , w ∈ {0,1}|M|,

where ς ∈ (0,1/2] will be chosen later. Denote by E the mathematical expectation with respect
to P. Choose also

W =
{

w ∈ {0,1}|M| :
|M|∑
s=1

ws ≤ 2ς |M|
}

and note that this choice of W implies SW ≤ 2ςM. Hence, (5.5) will be fulfilled if

Aσ
−βl

l

(
2ς |M|

d∏
j=1

σj

)1/rl

≤ (2C1)
−1Ll, ∀l = 1, . . . , d,

and (5.15) and (5.32) will be held if

Aς |M|
d∏

l=1

σl ≤ 2−1C3, Aς |M|Nd
d∏

l=1

σl ≤ 2−1C′
3.

Choose Ml = N(8σl)
−1, l = 1, . . . , d , assuming without loss of generality that Ml is an integer.

It yields

|M| = (N/8)d

(
d∏

l=1

σl

)−1

. (5.34)

Then, (5.5) and (5.32) are reduced respectively, to

Aσ
−βl

l

(
ςNd

)1/rl ≤ C−1
1 Ll, ∀l = 1, . . . , d; (5.35)

AN2dς ≤ C3. (5.36)

We note also that (5.32) implies (5.15) if we replace C3 and C′
3 by C3 ∧ C′

3 since N > 1. Hence,
we conclude that (5.36) implies (5.15).
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Moreover, let us suppose that ς ≥ 4|M|−1 and, therefore, necessarily

Ndς ≥ 23d+2
d∏

l=1

σl. (5.37)

Note also that since π is bijection the following inclusion holds for any j ∈M

W ⊃
{
w ∈ {0,1}|M| :

∑
m∈M,m�=j

wπ(m) ≤ 2ς |M| − 1

}
=: Wj. (5.38)

5.3.1. Generic lower bound via the first and the third constructions

Let � be either N
r,d ( 
β, 
L,M)∩P(Rd) or N
r,d ( 
β, 
L)∩Fg(R). We have under (5.35) and either
(5.10) or (5.36) in view of either (5.12) or (5.33) for any estimator f̂

R(f̂ ) := sup
f ∈�

Ef ‖f̂ − f ‖p
p ≥ E1WEfw‖f̂ − fw‖p

p.

10. Denote f̃ = f̂ − f (0) and remark that

‖f̂ − fw‖p
p ≥

∑
j∈M

∫
�j

∣∣f̃ (x) − Fw

∣∣p dx =
∑
j∈M

∫
�j

∣∣f̃ (x) −Awπ(j)�j(x)
∣∣p dx,

in view of (5.3) and (5.4). Thus, we get

R(f̂ ) ≥
∑
j∈M

∫
�j

E1Wj

(
Efw

∣∣f̃ (x) −Awπ(j)�j(x)
∣∣p)dx. (5.39)

Set for any j ∈M

f
j
w,0(·) = f (0) +A

∑
m∈M,m�=j

wπ(m)�m(·), f
j
w,1(·) = f

j
w,0(·) +A�j(·)

and define

Zj(w) :=
dP

f
j
w,1

dP
f

j
w,0

(
Z(n)

)=
n∏

k=1

(1 − α)f
j
w,1(Zk) + α[f j

w,1 � g](Zk)

(1 − α)f
j
w,0(Zk) + α[f j

w,0 � g](Zk)
. (5.40)

We have

Efw

∣∣f̃ (x) −Awπ(j)�j(x)
∣∣p = 1wπ(j)=1Ef

j
w,1

∣∣f̃ (x) −A�j(x)
∣∣p + 1wπ(j)=0Ef

j
w,0

∣∣f̃ (x)
∣∣p

= E
f

j
w,0

(
1wπ(j)=1Zj(w)

∣∣f̃ (x) −A�j(x)
∣∣p + 1wπ(j)=0

∣∣f̃ (x)
∣∣p).
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Noting that wπ(m),m ∈ M, are i.i.d. under P, since π is a bijection, and taking into account that

neither 1Wj , f
j
w,0 nor Zj depends on wπ(j) we obtain

E1Wj

(
Efw

∣∣f̃ (x) −Awπ(j)�j(x)
∣∣p)

= E1WjEf
j
w,0

(
ςZj(w)

∣∣f̃ (x) −A�j(x)
∣∣p + (1 − ς)

∣∣f̃ (x)
∣∣p)

(5.41)
≥ E1WjEf

j
w,0

min
[
ςZj(w),1 − ς

](∣∣f̃ (x) −A�j(x)
∣∣p + ∣∣f̃ (x)

∣∣p)
≥ 21−pAp

∣∣�j(x)
∣∣pE1WjEf

j
w,0

(
min

[
ςZj(w),1 − ς

])
.

Here we have used the trivial inequality |a − b|p ≤ 2p−1(|a|p + |b|p). Denote

bj(ς) = inf
w∈Wj

E
f

j
w,0

(
min

[
ςZj(w),1 − ς

])
and remark that for any j ∈ M and any ς ∈ (4/|M|,1/2] in view of Tchebychev inequality

P(Wj) ≥ 1 − (|M| − 1)ς(1 − ς)

(|M|ς + ς − 1)2
≥ 1 − |M|ς

(|M|ς − 1)2
≥ 5/9. (5.42)

Here we have used that |M|ς ≥ 4. We obtain from (5.39), (5.41) and (5.42) for any ς ∈
(4/|M|,1/2]

inf
f̂

R(f̂ ) ≥ (5/9)21−pAp‖λ‖dp
p

(
d∏

l=1

σl

)∑
j∈M

bj(ς). (5.43)

20. Using the trivial equality 2(a ∧ b) = a + b − |a − b| we get for any j ∈ M and ς ∈
(4/M,1/2] applying the Hölder inequality

2bj(ς) ≥ 1 − sup
w∈Wj

√
E

f
j
w,0

{
ςZj(w) − (1 − ς)

}2

(5.44)

≥ 1 − sup
w∈Wj

√
1 − 2ς + ς2E

f
j
w,0

Z2
j (w).

Since Zk , k = 1, . . . , n are i.i.d. random vectors, we have in view of (5.40) for any w ∈ Wj

E
f

j
w,0

Z2
j (w) =

{∫
Rd

{(1 − α)f
j
w,1(x) + α[f j

w,1 � g](x)}2

(1 − α)f
j
w,0(x) + α[f j

w,0 � g](x)
dx

}n

.

Since f
j
w,1(·) = f

j
w,0(·) + A�j(·), f

j
w,0 is a probability density and

∫
Rd �j = 0 in view of (5.6)

we obtain

E
f

j
w,0

Z2
j (w) =

{
1 +A2

∫
Rd

[(1 − α)�j(x) + α[�j � g](x)]2

(1 − α)f
j
w,0(x) + α[f j

w,0 � g](x)
dx

}n

.
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At last, f
j
w,0(x) ≥ 2−1f (0)(x) for all x ∈Rd in view of (5.11) if the first construction is used.

On the other hand, f
j
w,0 = fwj , where the sequence wj is obtained from w by replacing the

coordinate wπ(j) by zero. Let us remark that the definition of W implies wj ∈ W for any j ∈ M
and, therefore f

j
w,0 ∈ {fw,w ∈ W } for any w ∈ W . Hence [f j

w,0 � g](x) ≥ 2−1[f (0) � g](x) for

all x ∈ Rd in view of (5.31) if the third construction is used.
Recalling that the third construction is used only if α = 1 we come to the following bound

being true for both constructions.

E
f

j
w,0

Z2
j (w) ≤

{
1 + 2A2

∫
Rd

[(1 − α)�j(x) + α[�j � g](x)]2

(1 − α)f (0)(x) + α[f (0) � g](x)
dx

}n

. (5.45)

We remark that the right-hand side of the obtained inequality is independent of w.
30. We have ∫

Rd

[(1 − α)�j(x) + α[�j � g](x)]2

(1 − α)f (0)(x) + α[f (0) � g](x)
dx

=
∫

�∅

[(1 − α)�j(x) + α[�j � g](x)]2

(1 − α)f (0)(x) + α[f (0) � g](x)
dx (5.46)

+ α2
∑
J∈J∗

∫
�J

[�j � g]2(x)

(1 − α)f (0)(x) + α[f (0) � g](x)
dx.

Here we have used that �j is compactly supported on [−N/4,N/4]d .
Let us bound the first integral in the right-hand side. In view of the third assertion of Lemma 1

and Lemma 2, there exists a universal constant T such that

(1 − α)f (0)(x) + α
[
f (0) � g

]
(x) ≥ T N−d, ∀x ∈ �∅.

It yields∫
�∅

[(1 − α)�j(x) + α[�j � g](x)]2

(1 − α)f (0)(x) + α[f (0) � g](x)
dx ≤ T −1Nd

[
(1 − α)‖�j‖2 + α‖�j � g‖2

]2
. (5.47)

Recall that �(x) = ∏d
l=1 λ(xl/σl) and note that ‖�j‖2 = ‖�‖2 and ‖�j � g‖2 = ‖� � g‖2

whatever the value of j. It yields in particular in view of (5.47)∫
�∅

[(1 − α)�j(x) + α[�j � g](x)]2

(1 − α)f (0)(x) + α[f (0) � g](x)
dx ≤ T −1Nd

[
(1 − α)‖�‖2 + α‖� � g‖2

]2
, (5.48)

and, we remark that the latter bound is independent of j.
In view of the Young inequality ‖� � g‖2 ≤ ‖�‖2. Thus, we have

2A2
∫

�∅

[(1 − α)�j(x) + α[�j � g](x)]2

(1 − α)f (0)(x) + α[f (0) � g](x)
dx ≤ 2T −1‖λ‖2d

2 A2Nd

(
d∏

l=1

σl

)
. (5.49)
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If α = 1, then we need a sharper upper bound than the one in (5.49). Remind that λ̌ and �̌

denote the Fourier transform of λ and � respectively. Then in view of the Plancherel theorem
one has in view of Assumption 2

‖� � g‖2 = (2π)−d

∫
Rd

∣∣ǧ(t)
∣∣2 d∏

l=1

σ 2
l

∣∣λ̌(tlσl)
∣∣2 dt

≤ ϒ2
d∏

l=1

(2π)−1σ 2
l

∫
R

∣∣λ̌(vσl)
∣∣2(1 + v2)−μj dv.

Combining the obtained inequality with (5.49), we remark that the two bounds can be written
in an unified way. Indeed, for any α ∈ [0,1]

2A2
∫

�∅

[(1 − α)�j(x) + α[�j � g](x)]2

(1 − α)f (0)(x) + α[f (0) � g](x)
dx

≤ C3,1A
2Nd

d∏
l=1

σ 2
l

∫
R

∣∣λ̌(vσl)
∣∣2|v|−2μl (α) dv (5.50)

= C3,1A
2NdId(α)

d∏
j=1

σ
1+2μl (α)

l ,

where C3,1 is a universal constant and I (α) = supl∈{1,...,d}
∫
R

λ̌2(u)|u|−2μl (α) du. Note that I (α)

is well defined since the conditions (5.2) and (5.6) imply∣∣λ̌(v)
∣∣≤ C3,2|v|n,

where C3,2 is a constant completely determined by the function λ and by the number n. It yields

I (α) ≤ C2
3,2

∫ 1

−1
|v|2n−2 supl∈{1,...,d} μl (α) dv + ‖λ̌‖2

2 =: C2
3,3 < ∞

since 2n> 2μl(α) for any l = 1, . . . , d . We deduce from (5.50)

2A2
∫

�∅

[(1 − α)�j(x) + α[�j � g](x)]2

(1 − α)f (0)(x) + α[f (0) � g](x)
dx ≤ C3,4A

2Nd

d∏
l=1

σ
2μl (α)+1
l . (5.51)

40. In view of the third assertion of Lemma 1 and Lemma 2 we also have

(1 − α)f (0)(x) + α
[
f (0) � g

]
(x) ≥ T −1N |J |−d

∏
j∈J

x−2
j , ∀x ∈ �J .
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It yields for any J ∈ J∗

∫
�J

[�j � g]2(x)

(1 − α)f (0)(x) + α[f (0) � g](x)
dx ≤ T Nd−|J |

∫
�J

(
[�j � g](x)

∏
j∈J

xj

)2

dx. (5.52)

Continuing (5.52) and using (5.28) we obtain by changing the variables for any J ∈ J∗

∫
�J

[�j � g]2(x)

(1 − α)f (0)(x) + α[f (0) � g](x)
dx ≤ 4T Nd

∫
Rd

(
[� � g](y)

∏
j∈J

yj

)2

dy. (5.53)

Here we have also used that N ≥ 8. We remark that the obtained bound is independent of j.
50. Denote RJ (x) = [� � g](x)

∏
j∈J xj and let ŘJ be the Fourier transform of RJ .

Then, we have for any t = (t1, . . . , td ) ∈ R
d

ŘJ (t) = i|J |DJ
[
ǧ(t)�̌(t)

]= i|J |DJ

[
ǧ(t)

d∏
l=1

σlλ̌(tlσl)

]
. (5.54)

Here we have used the definition of � and the fact that the right-hand side of (5.54) is well-
defined in view of Assumption 1 and the conditions (5.2) imposed on λ.

Let J be an arbitrary subset of J ∪∅. First, since σl ≤ 1, l = 1, . . . , d , we get∣∣∣∣∣DJ
d∏

l=1

σlλ̌(tlσl)

∣∣∣∣∣≤
d∏

l=1

σl

(∣∣λ̌(tlσl)
∣∣∨ ∣∣λ̌′(tlσl)

∣∣), ∀t ∈ R
d, (5.55)

where λ̌′ is the first derivative of the function λ̌.
Second, in view of Assumption 1∣∣DJ ǧ(t)

∣∣≤ d1, ∀t ∈R
d, if α ∈ (0,1); (5.56)∣∣DJ ǧ(t)

∣∣= ∣∣ǧ(t)ǧ−1(t)DJ ǧ(t)
∣∣≤ d2

∣∣ǧ(t)
∣∣, ∀t ∈R

d, if α = 1. (5.57)

It remains to note that∣∣DJ
[
ǧ(t)�̌(t)

]∣∣≤ 2|J | sup
J⊆J∪∅

∣∣DJ ǧ(t)
∣∣ sup
J⊆J∪∅

∣∣DJ �̌(t)
∣∣,

and we obtain from (5.54), (5.55), (5.56) and (5.57) that for any j ∈M, J ∈ J∗ and t ∈ R
d

∣∣ŘJ (t)
∣∣ ≤ 2dd1

d∏
l=1

σl

(∣∣λ̌(tlσl)
∣∣∨ ∣∣λ̌′(tlσl)

∣∣), α ∈ (0,1);

∣∣ŘJ (t)
∣∣ ≤ 2dd2

∣∣ǧ(t)
∣∣ d∏
l=1

σl

(∣∣λ̌(tlσl)
∣∣∨ ∣∣λ̌′(tlσl)

∣∣)
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≤ 2dϒd2

d∏
l=1

σl

(∣∣λ̌(tlσl)
∣∣∨ ∣∣λ̌′(tlσl)

∣∣)(1 + t2
l

)−μl/2
, α = 1.

To get the last inequality we have used Assumption 2. We remark that both bounds can be rewrit-
ten in an unified way. Namely for any α ∈ (0,1]

∣∣ŘJ (t)
∣∣ ≤ d

d∏
l=1

σl

(∣∣λ̌(tlσl)
∣∣∨ ∣∣λ̌′(tlσl)

∣∣)(1 + t2
l

)−μl (α)/2
, (5.58)

where we have put d= 2d max[d1,ϒd2].
Thus, in view of the Plancherel theorem, one has∫

Rd

(
[� � g](y)

∏
j∈J

yj

)2

dy = (2π)−d‖ŘJ ‖2
2

≤ C3,5

d∏
l=1

σ 2
l

∫
R

(∣∣λ̌(vσl)
∣∣∨ ∣∣λ̌′(vσl)

∣∣)2|v|−2μl (α) dv.

Note that |λ̌′(v)| ≤ C3,2|v|n−1, for any v ∈ R, in view of (5.2) and (5.6), and that 2(n − 1) >

2μj (α) for any j = 1, . . . , d . Hence repeating the computations that led to (5.51), we obtain

∫
Rd

(
[� � g](y)

∏
j∈J

yj

)2

dy ≤ C3,6

d∏
l=1

σ
2μl (α)+1
l .

It yields together with (5.53) for any J ∈ J∗

2A2
∫

�J

[�j � g]2(x)

(1 − α)f (0)(x) + α[f (0) � g](x)
dx ≤ C3,7A

2Nd
d∏

l=1

σ
2μj (α)+1
l , (5.59)

where as previously C3,7 is a universal constant.
We deduce from (5.45), (5.46), (5.51) and (5.59) that there exists a universal constant C4 such

that for any α ∈ [0,1], j ∈M and w ∈ Wj

E
f

j
w,0

Z2
j (w) ≤

(
1 + C4A

2Nd

d∏
l=1

σ
2μl (α)+1
l

)n

. (5.60)

Suppose now that the following restriction holds

C4A
2Nd

d∏
j=1

σ
2μj (α)+1
l ≤ n−1

∣∣ln (ς)
∣∣. (5.61)
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Under this condition 2bj(ς) ≥ 1 − √
1 − ς ≥ 2−1ς and we obtain from (5.43) and (5.34)

φn(�) = inf
f̂

sup
f ∈�

R(n)
p [f̂ , f ] ≥ C5A

(
Ndς

)1/p
, (5.62)

where, remind, � be either N
r,d ( 
β, 
L,M) ∩P(Rd) or N
r,d ( 
β, 
L) ∩ Fg(R).

5.3.2. Generic lower bound via the second construction

The considerations in this section are very similar to the previous ones. Let � = N
r,d ( 
β, 
L) ∩
P(Rd).

We have under (5.35) and (5.36) in view of (5.16) for any estimator f̂

R(f̂ ) := sup
f ∈�

Ef ‖f̂ − f ‖p
p ≥ E1WEfw‖f̂ − fw‖p

p.

Set for brevity B = ‖λ‖d
1A

∏d
l=1 σl and remind that wj is obtained from w by replacing the

coordinate wπ(j) by zero. For any j ∈ M put Sj =A�j −Bf (0) and introduce

f
j
w,0(·) = f (0)

(
1 −BS

(
wj))+A

∑
m∈M,m�=j

wπ(m)�m(·), f
j
w,1(·) = f

j
w,0(·) + Sj(·).

Denote f̃ = f̂ − (1 −BS(wj))f (0) and remark that similarly to (5.39)

R(f̂ ) ≥
∑
j∈M

∫
�j

E1Wj

(
Efw

∣∣f̃ (x) − wπ(j)Sj(x)
∣∣p)dx. (5.63)

Let us remark first that fw = 1wπ(j)=1f
j
w,1 + 1wπ(j)=0f

j
w,0 and

f
j
w,0 = fwj,

∫
Rd

Sj(x)dx = 0, ∀j ∈M. (5.64)

Next, noting that ‖f (0)‖∞ ≤ (2N)−d and using the obvious inequality |a − b|p ≥ 21−p|a|p −
|b|p , we get∫

�j

∣∣Sj(x)
∣∣p dx ≥ 21−pAp‖λ‖dp

p

(
d∏

l=1

σl

)
− 2d(2−p)N−dp‖λ‖dp

1 Ap

(
d∏

l=1

σl

)p+1

≥ 2−pAp‖λ‖dp
p

(
d∏

l=1

σl

)
,

for all N ≥ C, where C is a constant completely determined by λ and a. Define

Zj(w) :=
dP

f
j
w,1

dP
f

j
w,0

(
Z(n)

)=
n∏

k=1

(1 − α)f
j
w,1(Zk) + α[f j

w,1 � g](Zk)

(1 − α)f
j
w,0(Zk) + α[f j

w,0 � g](Zk)
. (5.65)
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Completely repeating the computations that led to (5.43) and taking into account (5.44) we assert
that

inf
f̂

R(f̂ ) ≥ C6A
p

(
d∏

l=1

σl

)∑
j∈M

(
1 − sup

w∈Wj

√
1 − 2ς + ς2E

f
j
w,0

Z2
j (w)

)
. (5.66)

As previously, we have

E
f

j
w,0

Z2
j (w) =

{∫
Rd

{(1 − α)f
j
w,1(x) + α[f j

w,1 � g](x)}2

(1 − α)f
j
w,0(x) + α[f j

w,0 � g](x)
dx

}n

.

We have already mentioned that the definition of the set W implies that wj ∈ W for any w ∈ W

and any j ∈ M. Hence, in view of the first equality in (5.64)
∫

f
j
w,0 = 1 and

∫ [f j
w,0 �g] = 1 since

g is a density. It yields together with the second relation in (5.64)

E
f

j
w,0

Z2
j (w) =

{
1 +

∫
Rd

[(1 − α)Sj(x) + α[Sj � g](x)]2

(1 − α)f
j
w,0(x) + α[f j

w,0 � g](x)
dx

}n

.

Recall that (5.11) holds under (5.36), since λ is positive, and, therefore,

E
f

j
w,0

Z2
j (w) ≤

{
1 + 2

∫
Rd

[(1 − α)Sj(x) + α[Sj � g](x)]2

(1 − α)f (0)(x) + α[f (0) � g](x)
dx

}n

.

Since Sj =A�j −Bf (0) we obtain taking into account that λ is positive function

E
f

j
w,0

Z2
j (w)

≤
{

1 + 2A2
∫
Rd

[(1 − α)�j(x) + α[�j � g](x)]2

(1 − α)f (0)(x) + α[f (0) � g](x)
dx − 4AB

(
d∏

l=1

σl

)
‖λ‖d

1 + 2B2

}n

.

It remains to note A(
∏d

l=1 σl)‖λ‖d
1 =B and, therefore,

E
f

j
w,0

Z2
j (w) ≤

{
1 + 2A2

∫
Rd

[(1 − α)�j(x) + α[�j � g](x)]2

(1 − α)f (0)(x) + α[f (0) � g](x)
dx

}n

.

Since the right-hand side of the latter inequality is exactly the same as in (5.45), the computations
which led to the lower bound (5.62) under the restriction (5.61) remain true in the case considered
here as well. Note however that the calculations led to (5.61) exploit heavily the fact that∫
R

(∣∣λ̌(v)
∣∣∨ ∣∣λ̌′(v)

∣∣)2|v|−2μj (α) dv ≤
∫ 1

−1

(∣∣λ̌(v)
∣∣∨ ∣∣λ̌′(v)

∣∣)2|v|−2μj (α) dv + ∥∥|λ̌| ∨ ∣∣λ̌′∣∣∥∥2
2 < ∞.

It was guaranteed by the condition (5.6) imposed on λ, which is not verified now since we sup-
posed that λ is a positive function. Hence, necessarily |λ̌(0)| �= 0 and the integral above converges
at 0 if and only if μj (α) < 1/2.
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Thus, if 
μ(α) ∈ [0,1/2)d and (5.61) holds, we have

φn

(
N
r,d ( 
β, 
L) ∩P

(
R

d
))= inf

f̂

sup
f ∈N
r,d ( 
β, 
L)∩P(Rd )

R(n)
p [f̂ , f ] ≥ C5A

(
Ndς

)1/p
. (5.67)

5.3.3. Conclusions

The goal of this paragraph is to put together all the conditions found in the previous sections, in
order to present the results in an unified way, and then to precise the organization of the remainder
of the proofs.

Remind that the parameter N is chosen sufficiently large, and that ς ≤ 2−1. In each case, we
have to check five conditions. Four of them are common to every case, namely:

Ndς ≥ 23d+2
d∏

l=1

σl; (5.68)

Aσ
−βl

l

(
ςNd

)1/rl ≤ C1Ll, ∀l = 1, . . . , d; (5.69)

A2Nd

d∏
j=1

σ
2μj (α)+1
j ≤ C4n

−1
∣∣ln (ς)

∣∣. (5.70)

These conditions are found in (5.37), (5.35) and (5.61) respectively. A fourth condition is that
σl ∈ (0,1) for each l.

Lastly there is a fifth condition, which is specific to the situation under study. A first possibility
is to check (5.36), i.e.

AN2dς ≤ C3. (5.71)

Then we deduce from (5.62)

φn

(
N
r,d ( 
β, 
L) ∩ Fg(R)

) ≥ C5A
(
Ndς

)1/p
. (5.72)

Moreover, if 
μ(α) ∈ [0,1/2)d then we deduce from (5.67)

φn

(
N
r,d ( 
β, 
L) ∩P

(
R

d
)) ≥ C5A

(
Ndς

)1/p
. (5.73)

A second possibility is to check (5.10), that is,

ANd ≤ C2. (5.74)

Then we deduce from (5.62)

φn

(
N
r,d ( 
β, 
L,M) ∩P

(
R

d
)) ≥ C5A

(
Ndς

)1/p
. (5.75)

Our objective now is to specify the parameters A, N , ς and σl , l = 1, . . . , d in order to maximize
the right-hand side of (5.72), (5.73) and (5.75) so that the relationships (5.68), (5.69), (5.70) and
either (5.71) or (5.74) are simultaneously fulfilled.
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5.4. Proof of Theorems 1 and 2. Tail and dense zones

We note that if κα(p) > 0 the lower bounds of asymptotics of minimax risk announced in Theo-
rems 1 and 2 are the same. Hence, in view of the obvious inclusions N
r,d ( 
β, 
L,M) ⊂N
r,d ( 
β, 
L)

and P(Rd) ⊂ Fg, g ∈ P(Rd), it suffices to consider the minimax risk over N
r,d ( 
β, 
L,M) ∩
P(Rd) only. Also remind that

1

β(α)
=

d∑
j=1

2μj (α) + 1

βj

,
1

ω(α)
=

d∑
j=1

2μj (α) + 1

βj rj
, L(α) =

d∏
j=1

L
(2μj (α)+1)/βj

j .

Later on ci, i = 1, . . . ,4, denote the constants independent of 
L.

Tail zone: κα(p) > pω(α). Choose ς = c2, N = (L(α)n−1)
− 1

d−d/ω(α)+d/β(α) and

σl = (c1Ll)
−1/βl

(
L(α)n−1) 1/βl−1/(βl rl )

1−1/ω(α)+1/β(α) , A= c3
(
L(α)n−1) 1

1−1/ω(α)+1/β(α) .

Here c2 ≤ 1/2 and we remark that N → ∞, n → ∞, which guarantees that N is large enough
for all n large enough.

Note also that our choice implies
∏d

l=1 σl ≤ c
−1/β

1 L(0)−1, which guarantees that (5.68) holds
for all n large enough, since N → ∞, n → ∞. Also, choosing c3 ≤ C2 we assert that (5.74)
holds.

Moreover (5.69) and (5.70) become respectively,

c1c3c
1/rl
2 ≤ C1; (5.76)

c
−1/β(α)

1 c2
3 ≤ C4| ln c2|. (5.77)

Note also that σl ≤ (c1L0)
−1/βl , l = 1, . . . , d for all n large enough and, therefore, choosing

c1 ≥ L−1
0 we guarantee that σl ≤ 1, l = 1, . . . , d , which was the unique requirement to the choice

of this sequence. Putting finally c2 = c3 we can assert that (5.76) and (5.77) are fulfilled if c3 is
chosen small enough.

It remains to note that (5.75) yields

φn

(
N
r,d ( 
β, 
L,M) ∩P

(
R

d
))≥ C5

(
L(α)n−1)(1−1/p)/(1−1/ω(α)+1/β(α))

and the assertions of Theorems 1 and 2 concerning the tail zone are established.

Dense zone: 0 < κα(p) ≤ pω(α). Choose ς = c−1
4 , Nd = c4 and

σl = (c1Ll)
−1/βl

(
L(α)n−1) β(α)/βl

2β(α)+1 , A= c3
(
L(α)n−1) β(α)

2β(α)+1 .

Here c4 is chosen large enough. Note also that our choice implies
∏d

l=1 σl → 0, n → ∞, which
guarantees the verification of (5.68) for all n large enough. Moreover, (5.74) is fulfilled for all n

large enough since A → 0, n → ∞ and Nd = c4.
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Additionally, (5.69) and (5.70) become respectively,

c1c3 ≤ C1;
c
−1/β(α)

1 c2
3c4 ≤ C4 ln (2).

Both inequalities are fulfilled if we choose c3 small enough. It remains to note that σl ≤ 1, for
any l = 1, . . . , d , and sufficiently large n since σl → 0, n → ∞. We deduce from (5.75)

φn

(
N
r,d ( 
β, 
L,M) ∩P

(
R

d
))≥ C5

(
L(α)n−1)β(α)/(2β(α)+1)

and the assertions of Theorems 1 and 2 concerning the dense zone are established.

It will be suitable for us to continue our considerations by proving first the assertion of The-
orem 2 corresponding to the sparse zone. Its proof exploits the same condition (5.74) and the
required lower bound is deduced as previously from (5.75).

5.5. Proof of Theorem 2. Sparse zone

Sparse zone 1: τ(∞) > 0. Choose Nd = c4,

ς = [
L(0)

]− (2+1/β(α))ω(α)
(1−1/ω(0))(2+1/β(α))ω(α)+1/β(0)

(
L(α)n−1 ln(n)

) 1
(1−1/ω(0))(2+1/β(α))β(0)+1/ω(α) ; (5.78)

A = c3
[
L(0)

] 1
(1−1/ω(0))(2+1/β(α))ω(α)+1/β(0)

(
L(α)n−1 ln(n)

) (1−1/ω(0))β(0)
(1−1/ω(0))(2+1/β(α))β(0)+1/ω(α) (5.79)

and let c4 be chosen large enough. Let us remark that (5.74) is fulfilled for all n large enough in
view of Nd = c4 and A→ 0, n → ∞, because ω(0) > 1. Define

σl = L
−1/βl

l

[
L(0)

] (1/βl )−[(2+1/β(α))ω(α)]/(βl rl )

(1−1/ω(0))(2+1/β(α))ω(α)+1/β(0)
(
L(α)n−1 lnn

) (1/βl )(1−1/ω(0))β(0)+1/(βl rl )

(1−1/ω(0))(2+1/β(α))β(0)+1/ω(α) . (5.80)

First, we note that σl < 1 for all n large enough since σl → 0, n → ∞, l = 1, . . . , d , in view of
ω(0) > 1. Next, (5.68) becomes c4 ≥ 23d+2 and, therefore, it is verified for c4 large enough.

At last, (5.69) becomes c3c
1/rl
4 ≤ C1 and it is satisfied if one chooses c3 small enough. More-

over, for all n large enough (5.70) will be satisfied if

c2
3c4 ≤ 2−1C4

[(
1 − 1/ω(0)

)(
2 + 1/β(α)

)
β(0) + 1/ω(α)

]
and, therefore, it suffices to choose c3 small enough.

We deduce from (5.75) that

φn

(
N
r,d ( 
β, 
L,M) ∩P

(
R

d
))

(5.81)

≥ C7
([

L(0)
]− κα(p)

ω(α)pτ(p) L(α)n−1 lnn
) τ (p)

(1−1/ω(0))(2+1/β(α))+1/[ω(α)β(0)] .
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Sparse zone 2: τ(∞) ≤ 0. Choose A = C2c3c
−1
4 , Nd = c4 and

σl = (c1Ll)
−1/βl

(
L(α)n−1 lnn

)ω(α)/(βlrl ), ς = (
L(α)n−1 lnn

)ω(α)
.

Here c4 is chosen large enough and c3 ≤ 1. First we note that (5.74) is obviously fulfilled.
Next, taking into account that Ll ≥ L0, l = 1, . . . , d , we assert that (5.68) holds if

c4
(
L(α)n−1 lnn

)ω(α)(1−1/ω(0)) ≥ 23d+2c
−1/β(0)

1 L
−1/β(0)

0 .

Since we consider ω(0) ≤ 1 the latter inequality will be fulfilled if c4 is large enough.
Moreover, σl ≤ (c1L0)

−1/βl ≤ 1, l = 1, . . . , d , if c1 is sufficiently large. Furthermore, (5.69)
becomes

C2c
1/rl−1
4 c1c3 ≤ C1

and it is satisfied if one chooses c3 small enough.
Note at last that for all n large enough (5.70) will be fulfilled if

C2
2c

2
3c

−1
4 c

−1/β(α)

1 ≤ 2−1C4ω(α),

and it is satisfied by choosing c4 large enough. We deduce from (5.75) that

φn

(
N
r,d ( 
β, 
L,M) ∩P

(
R

d
))≥ C5

(
L(α)n−1 lnn

)ω(α)/p
.

This together with (5.81) and (3.2) proves the assertion of the theorem corresponding to the
sparse zone.

5.6. Proof of Theorem 1. Sparse zone

Sparse zone 1: κ(p) ≤ 0, τ (p∗) > 0. Here we will use the choice of parameters given in
(5.78)–(5.80) and let Nd = c4 as before. We have already showed that (5.68)–(5.70) are ful-
filled in this case. Hence we have to check (5.71) and to verify that σl ≤ 1 for any l = 1, . . . , d .
The following relations will be helpful for this verification

(1/βl)
(
1 − 1/ω(0)

)
β(0) + 1/(βlrl)

= (1/βl)
{
τ
(
p∗)β(0) + [

1/rl − 1/p∗]}> 0, ∀l = 1, . . . , d;(
1 − 1/ω(0)

)(
2 + 1/β(α)

)
β(0) + 1/ω(α)

= τ
(
p∗)(2 + 1/β(α)

)
β(0) − [

κα

(
p∗)/(ω(α)p∗)]> 0;

(1 − 1/ω(0))β(0) + 1

(1 − 1/ω(0))(2 + 1/β(α))β(0) + 1/ω(α)
= β(0)τ (p∗) + 1 − 1/p∗

(1 − 1/ω(0))(2 + 1/β(α))β(0) + 1/ω(α)
> 0.

To get the first inequality we have used that τ(p∗) > 0 and p∗ ≥ maxl=1,...,d rl , while the second
one is based on τ(p∗) > 0 and κα(p∗) ≤ 0. The third inequality is the consequence of the second
one, τ(p∗) > 0 and p∗ ≥ p ≥ 1.
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In view of the first and second inequalities we have σl → 0, n → ∞ and therefore, σl ≤ 1, l =
1, . . . , d , for all n large enough. Note also that (5.71) is reduced to

c3c
2
4

[
L(0)

] 1−(2+1/β(α))ω(α)
(1−1/ω(0))(2+1/β(α))ω(α)+1/β(0)

(
L(α)n−1 ln(n)

) (1−1/ω(0))β(0)+1
(1−1/ω(0))(2+1/β(α))β(0)+1/ω(α) ≤ C3.

In view of the third inequality above the left-hand side of the latter inequality tends to zero and,
therefore, it is fulfilled for all n large enough.

Thus, we deduce from (5.72) and, if 
μ(α) ∈ [0,1/2)d , from (5.73)

φn

(
N
r,d ( 
β, 
L) ∩ Fg(R)

) ≥ C7
([

L(0)
]− κα(p)

ω(α)pτ(p) L(α)n−1 lnn
) τ (p)

(1−1/ω(0))(2+1/β(α))+1/[ω(α)β(0)] ;

φn

(
N
r,d ( 
β, 
L) ∩P

(
R

d
)) ≥ C7

([
L(0)

]− κα(p)
ω(α)pτ(p) L(α)n−1 lnn

) τ (p)
(1−1/ω(0))(2+1/β(α))+1/[ω(α)β(0)] .

This, together with (3.1) complete the proof of Theorem 1 in the sparse zone 1.

Zone of inconsistency and the sparse zone 2: κα(p) ≤ 0, τ (p∗) ≤ 0. Set

�n =
⎧⎨⎩
(
L(α)n−1

∣∣ln(n)
∣∣) ω(α)

κα(p∗) , κα

(
p∗)< 0;

en2
, κα

(
p∗)= 0;

and note that �n → ∞, n → ∞. In view of the latter remark, we will assume that n is large
enough, such that �n > 1. We start our considerations with the following remark. The case
κα(p∗) = 0 is possible only if p∗ = p since κα(·) is strictly decreasing. Choose Nd = c4,

σl = (c1Ll)
−1/βl�

(rl−p∗)/(βlrl )
n , ς = �

−p∗
n , A= c3�n. (5.82)

Let us remark that A → ∞, n → ∞, and, therefore, (5.74) in not satisfied anymore. We will see
that (5.71), which, remind, is weaker than (5.74), is fulfilled. Note also that A → ∞, n → ∞,
which means that the family of functions constructed in Section 5.2 is not uniformly bounded.

Let us start with the verification of (5.68)–(5.71) which are reduced in view of (5.82) for all n

large enough to

c4�
−p∗τ(p∗)
n ≥ 23d+2(c1L0)

−1/β(0); (5.83)

c1(c4)
1/rl c3 ≤ C1; (5.84)

c4c
2
3c

−1/β(α)

1 L−1(α)�
κα(p∗)/ω(α)
n ≤ C4p

∗n−1 ln (�n). (5.85)

c3c
2
4�

1−p∗
n ≤ C3. (5.86)

Note, additionally, that σl ≤ (c1L0)
−1/βl since rl ≤ p∗ for any l = 1, . . . , d . Hence, choosing c1

large enough we guarantee that σl ≤ 1.
Since τ(p∗) ≤ 0 and �n ≥ 1 choosing c4 large enough we guarantee the verification of (5.83).

Choosing c3 small enough we satisfy (5.84) and (5.86) since p∗ ≥ 1. If κα(p∗) < 0 for all n

large enough (5.85) will be fulfilled if c4c
2
3c

−1/β(α)

1 ≤ 2−1C4p
∗|ω(α)/κα(p∗)| and, therefore it

suffices to choose c3 small enough.
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At last, if κα(p∗) = 0 (5.85) becomes c4c
2
3c

−1/β(α)

1 L−1(α) ≤ C4p
∗n and it is verified for all

n large enough.
Thus, we deduce from (5.72) and, if 
μ(α) ∈ [0,1/2)d , from (5.73)

φn

(
N
r,d ( 
β, 
L) ∩ Fg(R)

)≥ C7�
1−p∗/p
n , φn

(
N
r,d ( 
β, 
L) ∩P

(
R

d
))≥ C7�

1−p∗/p
n

and, first, we remark that there is no uniformly consistent estimator if p∗ = p.
If p∗ > p, which implies as mentioned above that κα(p) < 0, we obtain

φn

(
N
r,d ( 
β, 
L) ∩ Fg(R)

)
, φn

(
N
r,d ( 
β, 
L) ∩P

(
R

d
))≥ C7

(
L(α)n−1

∣∣ln(n)
∣∣) ω(α)(1−p∗/p)

κα(p∗) .

This, together with (3.1) complete the proof of Theorem 1 in the sparse zone 2.

6. Proof of Theorem 3

As it was already mentioned, the proof of this theorem has many common elements with the
proof of Theorem 2. In particular, we will use the first construction of the finite set of functions
developed in Section 5.2 and the same choice of parameters as in Section 5.5 (the sparse zone 1).
However the approach used in the proof of the generic lower bound in Section 5.3 cannot be
applied to the consideration of L∞-risks. The approach which will be applied here is based upon
the following general bound formulated in Lemma 3 below. The statement of this lemma is a
simple consequence of Theorem 2.4 from [30].

Lemma 3. Let F be a given set of probability densities. Assume that for any sufficiently large in-
teger n one can find a positive real number zn and a finite subset of functions F = {f (0), f (j), j ∈
Jn} ⊂ F such that ∥∥f (i) − f (j)

∥∥
p

≥ 2zn, ∀i, j ∈ Jn ∪ {0} : i �= j ; (6.1)

lim sup
n→∞

1

|Jn|2
∑
j∈Jn

Ef (0)

{
dPf (j)

dPf (0)

(
X(n)

)}2

=: C < ∞. (6.2)

Then for any q ≥ 1

lim inf
n→∞ inf

f̃

sup
f ∈F

z−1
n

(
Ef ‖f̃ − f ‖q

p

)1/q ≥ (
√

C + √
C + 1)−2/q,

where the infimum on the left-hand side is taken over all possible estimators.

6.1. Proof of the theorem

We will apply Lemma 3 with F = N
r,d ( 
β, 
L) ∩ P(Rd) and F = {f (0), fw,w ∈ W }, where
{f (0), fw,w ∈ W } is given in the first construction of Section 5.2.
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We have already proved, c.f. (5.12), that under (5.5) and (5.10){
f (0), fw,w ∈ W

}⊂N
r,d ( 
β, 
L) ∩P
(
R

d
)
. (6.3)

Let W̃ = (w̃1, . . . , w̃|M|) be the canonical basis of R|M|. Let W = (wm := ˜wπ(m),m ∈ M),
which is the same as W̃ up to some reordering. Thus, W will play the role of Jn in the lemma.

Let 0 ∈ {0,1}M denote the sequence with zero entries. With this notation f (0) = f0 and we
have for any w,w′ ∈ W in view of (5.3) and (5.4)

‖fw − fw′ ‖∞ = ‖Fw − Fw′‖∞ = A sup
m∈M

∣∣w(m) − w′
(m)

∣∣ sup
x∈�m

∣∣�m(x)
∣∣=A‖λ‖d∞

(6.4)
=: 2zn.

We conclude that (6.1) is verified with zn = 2−1A‖λ‖d∞. It remains to check (6.2).
As before, for any w ∈ W, let

E(w) := Ef 0

{
dPfw

dPf (0)

(
X(n)

)}2

=
{∫

Rd

{(1 − α)fw(x) + α[fw � g](x)}2

(1 − α)f (0)(x) + α[f (0) � g](x)
dx

}n

.

Since f (0) is a probability density and
∫
Rd �m = 0,m ∈ M, in view of (5.6) we obtain

E(w) =
{

1 +A2
∫
Rd

{(1 − α)�j(x) + α[�j � g](x)}2

(1 − α)f (0)(x) + α[f (0) � g](x)
dx

}n

.

Here j ∈M is uniquely determined from the relation wj = 1 since π is a bijection.
We note that up to the factor 2 the latter expression coincides with the one found in (5.45).

Hence the bound (5.60) is applicable and we obtain for any w ∈ W

E(w) ≤
(

1 + C4A
2Nd

d∏
l=1

σ
2μl (α)+1
l

)n

.

Taking into account that the right-hand side of the latter inequality is independent of w and that
|Jn| = |W| = |M| we can assert that (6.2) holds with C = 1 if we assume

C4A
2Nd

d∏
l=1

σ
2μl (α)+1
l ≤ n−1 ln |M|. (6.5)

Choose as previously Ml = N(8σl)
−1, l = 1, . . . , d , which yields, remind, that

|M| = (N/8)d

(
d∏

l=1

σl

)−1

.
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Choose also Nd = c4, where, remind c4 is large enough. Then (6.5) is reduced to

A2
d∏

j=1

σ
2μj (α)+1
l ≤ C4n

−1

∣∣∣∣∣ln
(

d∏
l=1

σl

)∣∣∣∣∣. (6.6)

Noting that SW = 1 we reduce (5.5) to

Aσ
−βl

l

(
d∏

j=1

σj

)1/rl

≤ C1Ll, ∀l = 1, . . . , d. (6.7)

Let us assume now that τ(∞) > 0, and let A and σl, l = 1, . . . , d , be chosen in accordance
with (5.79) and (5.80), respectively. We have already checked that σl ≤ 1, l = 1, . . . , d . Note also
that (5.10) is verified as well since A→ 0, n → ∞ while N = c4.

The simplest algebra shows that choosing c3 in the definition of A small enough we guaran-
tee the verification of (6.6) and (6.7). The first assertion of the theorem follows now from the
statement of Lemma 3 and (6.4).

Let now τ(∞) ≤ 0 and choose A = C2c3c
−1
4 and

σl = (c1Ll)
−1/βl

(
L(α)n−1 lnn

)ω(α)/(βlrl ).

Here c4 is chosen large enough and c3 ≤ 1. Then (5.10) is verified and σl ≤ (c1L0)
−1/βl ≤ 1, l =

1, . . . , d , if c1 is sufficiently large. Moreover, for all n large enough (6.6) can be reduced to

(C2)
2c2

3c
−2
4 c

−1/β(α)

1 ≤ C4ω(α)

2ω(0)

which is checked if one chooses c3 small enough. Additionally, (6.7) can be reduced to

C2c3c
−1
4 c

1−1/(rlβ(0))

1

(
L(α)n−1 lnn

)−(τ (∞)ω(α))/rlL−1/rl (0) ≤ C1.

If τ(∞) < 0 the latter inequality holds for all n large enough. If τ(∞) = 0, we have

C2c3c
−1
4 c

1−1/(rlβ(0))

1 L−1/rl (0) ≤ C1.

It remains to recall that L(0) ≥ L
1/β(0)

0 and, therefore, the above inequality holds if c3 is small
enough. The second assertion of the theorem follows now from the statement of Lemma 3
and (6.4).

Appendix

A.1. Proof of the third assertion of Lemma 1

Set M = Na and define

L(z) = (2Mπ)−1
∫
R

(
1 + (y − z)2)−11[−M,M](y)dy.
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We have for any z ∈ [−M − a,M + a]

L(z) := (2Mπ)−1
∫
R

(
1 + (y − z)2)−11[−M,M](y)dy = (2Mπ)−1

∫ M−z

−M−z

(
1 + u2)−1 du

≥ (2Mπ)−1
∫ M

a

(
1 + u2)−1 du ≥ (2Mπ)−1

∫ 2a

a

(
1 + u2)−1 du ≥ AM−1,

where we have denoted A = a[2π{1 + 4a2}]−1. Here we have used that N ≥ 2 ⇒ M ≥ 2a.
If z /∈ [−M − a,M + a], noting that |u| ≥ a for any u ∈ [−M − z,M − z], we get

L(z) ≥ a2(2Mπ
{
1 + a2})−1

∫ M−z

−M−z

u−2 du = C
(
z2 − M2)−1

,

where we have put C = a2[π{1 + a2}]−1. Thus, we obtain for any N ≥ 2

L(z) ≥ AM−11[−M−a,M+a](z) + C
(
z2 − M2)−11R\[−M−a,M+a](z), ∀z ∈R

and, therefore,

aL(va) ≥ AN−11[−N−1,N+1](v)
(A.1)

+ Ca−1(v2 − N2)−11R\[−N−1,N+1](v), ∀v ∈R.

It remains to note that f0,N (x) =∏d
j=1 aL(axj ) and that Ca−1 > A and the second assertion of

the lemma follows.

A.2. Proof of Lemma 2

Set A= [−N − 2Ng − 1,N + 2Ng + 1] and note that (A.1) implies

aL(va) ≥ C1N
−1, ∀v ∈ A,∀N ≥ 2,

where C1 = A ∧ [2Ca−1(5 + 12Ng + 4N2
g )−1].

The latter inequality together with (A.1) yields

2aL(va) ≥ aL(va)1A(v) + aL(va)1R\[−N−1,N+1](v)

≥ C1N
−11A(v) + v−2Ca−11R\[−N−1,N+1](v), ∀v ∈ R

d .

Since, remind, f0,N (x) =∏d
j=1 aL(axj ) we get, putting C2 = 2−d [C1 ∧ Ca−1]d ,

f0,N (x) ≥ C2

d∏
j=1

[
N−11A(xj ) + x−2

j 1R\[−1−N,N+1](xj )
]
, ∀x ∈ R

d . (A.2)
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For any J ∈ J and z ∈ R
d set zJ = {zj , j ∈ J } ∈ R

|J | and we will write z = (zJ , zJ̄ ).
Let J ∈ J be fixed. We have for any x ∈ �J by changing the variables

[f̄0,N � g](x) =
∫
R|J |

∫
Rd−|J |

g
(
yJ , [x − y]J̄

)
f0,N

([x − y]J , yJ̄

)
dy

(A.3)

≥
∫

[−Ng,Ng]|J |

∫
Ad−|J |

g
(
yJ , [x − y]J̄

)
f0,N

([x − y]J , yJ̄

)
dy,

since we integrate positive functions.
Note that yJ ∈ [−Ng,Ng]|J | and x ∈ �J imply that |xj − yj | > N + 1 for any j ∈ J . This,

together with yJ̄ ∈Ad−|J | yields in view of (A.2)

f0,N

([x − y]J , yJ̄

)≥ C2N
|J |−d

∏
j∈J

(yj − xj )
−2.

Since |xj | ≥ 1 and |yj | ≤ Ng for any j ∈ J

(yj − xj )
−2 ≥ (

2y2
j + 2x2

j

)−1 ≥ x−2
j

(
2y2

j + 2
)−1 ≥ (

2N2
g + 2

)−1
x−2
j .

Let j1 < · · · < jd−|J | be the elements of J̄ . We get, continuing (A.3) and putting C3 = C2(2N2
g +

2)−d

[f0,N � g](x) ≥ C3N
|J |−d

∏
j∈J

x−2
j

∫
[−Ng,Ng]|J |

∫
Ad−|J |

g
(
yJ , [x − y]J̄

)
dy

= C3N
|J |−d

∏
j∈J

x−2
j

∫
[−Ng,Ng]|J |

∫ N+2Ng+1+xj1

−N−2Ng−1+xj1

· · ·
∫ N+2Ng+1+xjd−|J |

−N−2Ng−1+xjd−|J |
g(u)du

≥ C3N
|J |−d

∏
j∈J

x−2
j

∫
[−Ng,Ng]d

g(u)du = BN |J |−d
∏
j∈J

x−2
j , ∀x ∈ �J ,

where B = 2−1C3. Here to get the penultimate inequality we have used the definition of �J

while the last equality follows from the definition of Ng .
Since the collection {�J ,J ∈ J} forms a partition of Rd we have for any x ∈R

d

[f̄0,N � g](x) ≥ B
∑
J∈J

(
N |J |−d

∏
j∈J

x−2
j

)
1�J

(x).
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