
Bernoulli 23(2), 2017, 825–862
DOI: 10.3150/15-BEJ760

Semiparametric topographical mixture
models with symmetric errors
C. BUTUCEA1, R. NGUEYEP TZOUMPE2 and P. VANDEKERKHOVE1,3

1Université Paris-Est, LAMA (UMR 8050), UPEMLV, F-77454, Marne-la-Vallée, France.
E-mail: *Cristina.Butucea@u-pem.fr
2IBM Watson Research Center, 1101 Kitchawan Road, Yorktown Heights NY 10598, USA.
E-mail: ngueyep@us.ibm.com
3UMI Georgia Tech – CNRS 2958, School of aerospace, Georgia Institute of Technology, 270 Ferst Drive
Atlanta GA 30332-0150, USA. E-mail: **Pierre.Vandekerkhove@u-pem.fr

Motivated by the analysis of a Positron Emission Tomography (PET) imaging data considered in Bowen
et al. [Radiother. Oncol. 105 (2012) 41–48], we introduce a semiparametric topographical mixture model
able to capture the characteristics of dichotomous shifted response-type experiments. We propose a point-
wise estimation procedure of the proportion and location functions involved in our model. Our estimation
procedure is only based on the symmetry of the local noise and does not require any finite moments on the
errors (e.g., Cauchy-type errors). We establish under mild conditions minimax properties and asymptotic
normality of our estimators. Moreover, Monte Carlo simulations are conducted to examine their finite sam-
ple performance. Finally, a statistical analysis of the PET imaging data in Bowen et al. is illustrated for the
proposed method.
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1. Introduction

The model we propose to investigate in this paper is a semiparametric topographical mixture
model able to capture the characteristics of dichotomous shifted response-type experiments such
as the tumor data in [5], Figure 4. Let suppose that we visit at random the space R

d (d ≥ 1)
by sampling a sequence of i.i.d. random variables Xi , i = 1, . . . , n, having common probability
distribution function (p.d.f.) � : Rd → R+. For each Xi we observe an output response Yi whose
distribution is a mixture model with probability parameters depending on the design Xi . For
simplicity, let us consider first a mixture of two nonlinear regression model:

Yi = W(Xi )
(
a(Xi ) + ε̃1,i

)+ (
1 − W(Xi )

)(
b(Xi ) + ε̃2,i

)
, (1.1)

where locations are a, b : Rd → R, the errors {ε̃1,i , ε̃2,i}i=1,...,n are supposed to be i.i.d. with
zero-symmetric common p.d.f. f . The mixture in model (1.1) occurs according to the random
variable W(x) at point x, with probability π :Rd → (0,1),

W(x) =
{

1, with probability π(x),
0, with probability 1 − π(x).
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Moreover we assume that, conditionally on the Xi ’s, the {ε̃1,i , ε̃2,i}i ’s and the W(Xi )’s are inde-
pendent. Such a model is related to the class of Finite Mixtures of Regression (FMR), see [14]
for a good overview. Briefly, statistical inference for the class of parametric FMR model was
first considered by [28] who proposed a moment generating function based estimation method.
An EM estimating approach was proposed by [11] in the two-component case. Variations of the
latter approach were also considered in [24] and [35]. Hawkins et al. [16] studied the estimation
problem of the number of components in the parametric FMR model using approaches derived
from the likelihood equation. In [22], the authors investigated a Bayesian approach to estimate
the regression coefficients and also proposed an extension of the model in which the number
of components is unknown. Zhu and Zhang [38] established the asymptotic theory for maxi-
mum likelihood estimators in parametric FMR models. More recently, Städler, Bühlmann and
van de Geer [29] proposed an �1-penalized method based on a Lasso-type estimator for a high-
dimensional FMR model with d ≥ n. As an alternative to parametric approaches to the estimation
of a FMR model, some authors suggested the use of more flexible semiparametric approaches.
These approaches can actually be classified into two groups: semiparametric FMR (SFMR) of
type I and type II. We say a mixture model is of type I when the mixture probability and location
parameters are Euclidean, but the mixing distribution is nonparametric, whereas a model is of
type II when, the other way around, the mixture probability and location are nonparametric but
the mixing density is known or belongs to a parametric family.

The study of SFMR of type I comes from the seminal work of [15] in which d-variate semi-
parametric mixture models of random vectors with independent components were considered.
These authors proved in particular that, for d ≥ 3, we can identify a two-component mixture
model without parametrizing the distributions of the component random vectors. To the best of
our knowledge, Leung and Qin [26] were the first in estimating a FMR model semiparamet-
rically in that sense. In the two-component case, they studied the case where the components
are related by Anderson’s [1] exponential tilt model. Hunter and Young [21] studied the iden-
tifiability of an m-component type I SFMR model and numerically investigated a Expectation–
Maximization (EM) type algorithm for estimating its parameters. Vandekerkhove [36] proposed
an M-estimation method for a two-component semiparametric mixture of linear regressions with
symmetric errors (type I) in which one component is known. Bordes, Kojadinovic and Vandek-
erkhove [3] revisited the same model by establishing new moment-based identifiability results
from which they derived explicit

√
n-convergent estimators.

The study of type II SFMR models started with [19] who considered a semiparametric lin-
ear FMR model with Gaussian noise in which the mixing proportions are possibly covariates-
dependent. They established also the asymptotic normality of their local maximum likelihood
estimator and investigated a modified EM-type algorithm. Huang, Li and Wang [18] generalized
the latter work to nonlinear FMR with possibly covariates-dependent noises. Toshiya [33] con-
sidered a Gaussian FMR model where the joint distribution of the response and the covariate
(possibly functional) is itself modeled as a mixture. More recently [27] considered a penalized
maximum likelihood approach for Gaussian FMR models with logistic weights.

To improve the flexibility of our FMR model (1.1) and address the study of models involv-
ing design-dependent noises, such as the radiotherapy application from [5] displayed below in
Figure 1, we will consider a slightly more general model:

Yi = W(Xi )
(
a(Xi ) + ε1,i (Xi )

)+ (
1 − W(Xi )

)(
b(Xi ) + ε2,i (Xi )

)
, (1.2)
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Figure 1. Display of the original PET-radiotherapy data from [5].

such that, given {X = x}, the common p.d.f. of the εj,i(x), j = 1,2, denoted fx, is zero-
symmetric. We will say that the above model is of type III, that is, it combines type I and
type II properties. Indeed, no parametric assumption is made about the mixing distribution of
the errors nor about the mixing proportion and the location parameters, which are possibly
design dependent. Our model is still said semiparametric because, given {X = x}, the vector
θ(x) = (π(x, )a(x), b(x)) will be viewed as an Euclidean parameter to be estimated.

Examples of design-point noise dependency:

(i) (Topographical scaling). The most natural transformation is probably when considering a
topographical scaling of the errors, with σ : Rd → R

∗+, such that εj,i(Xi ) = σ(Xi )ε̃j,i , j = 1,2,
where the ε̃j,i ’s are similar to those involved in (1.1). The conditional p.d.f of the errors εj,i

given {X = x} is defined by

fx(y) = 1

σ(x)
f

(
y

σ(x)

)
, y ∈R. (1.3)

Indeed, if f is zero-symmetric then the errors’ distribution inherits trivially the same symmetry
property.

(ii) (Zero-symmetric varying mixture). Another useful example could be the varying mixing
proportion mixture model of r zero-symmetric distributions. For k = 1, . . . , r , we consider pro-
portion functions λk : Rd → (0,1) with

∑r
k=1 λk(x) = 1 for all x ∈ Rd . The conditional p.d.f of

the errors εj,i given {X = x} is defined by

fx(y) =
r∑

k=1

λk(x)fk(y), y ∈ R,

where the fk functions are zero-symmetric p.d.f.’s.
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(iii) (Antithetic location model). Consider a location function μ : Rd → R and f any arbitrary
p.d.f. The conditional p.d.f of the errors εj,i given {X = x} is defined by

fx(y) = 1
2f

(
y − μ(x)

)+ 1
2f

(−y + μ(x)
)
, y ∈R,

and also results into a zero-symmetric p.d.f.

Note that any combination of the above situations could be considered in model (1.2) free from
specifying any parametric family (provided the resulting zero-symmetry hold). This last remark
reveals, in our opinion, the main strength of our model in the sense that it could prove to be a
very flexible exploratory tool for the analysis of shifted response-type experiments. Our paper is
organized as follows. Section 2 is devoted to identifiability results and a detailed description of
our estimation method, while Section 3 is concerned with its asymptotic properties. The finite-
sample performance of the proposed estimation method is studied for various scenarios through
Monte Carlo experiments in Section 4. In Section 5, we propose to analyze the Positron Emission
Tomography (PET) imaging data considered in [5]. Finally, Section 6 is devoted to auxiliary
results and main proofs.

2. Estimation method

Let us define the joint density of a couple (Yi,Xi ), i = 1, . . . , n, designed from model (1.2):

g(y,x) = [
π(x)fx

(
y − a(x)

)+ (
1 − π(x)

)
fx
(
y − b(x)

)]
�(x), (y,x) ∈ R

d+1, (2.1)

while the conditional density of Y given {X = x} (denoted for simplicity Y/X = x) is

gx(y) = g(y,x)/�(x) = π(x)fx
(
y − a(x)

)+ (
1 − π(x)

)
fx
(
y − b(x)

)
. (2.2)

We are interested in estimating the parameter θ0 = θ(x0) = (π(x0), a(x0), b(x0)) at some fixed
point x0 belonging to the interior of the support of � (�(x0) > 0), denoted supp(�). For simplicity
and identifiability matters, we will suppose that θ0 belongs to the interior of the parametric space
� = [p,P ] × 	, where 0 < p ≤ P < 1 and 	 denotes a compact set of R2 \ {(a, a) : a ∈ R}.

At fixed x0, we prove, following [4], that identifiability holds up to label switching. Indeed,
in [7] authors restricted the set of parameters to [p,P ] × 	, where 0 < p ≤ P < 1/2. Another
way to avoid label switching is to assume 0 < p ≤ P < 1 and a < b. In order to have global
identifiability of our model, we assume that at some fixed point x we have a(x) < b(x) and
that functions a and b are differentiable and transversal (i.e., at each crossing point x where
a(x) = b(x) gradients are different). The rest of this section is dedicated to identifiability of the
model and the estimation procedure.

2.1. Mixture of regression models as an inverse problem

We see in formula (2.2), that the conditional density of Y given {X = x} can be viewed as a
mixture of the errors distribution fx given {X = x} with locations (a(x), b(x)) and mixing pro-
portion π(x). Mixture of populations with different locations is a well known inverse problem.
Our inversion procedure is done in Fourier domain.
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For any function g in L1 ∩L2, let us define its Fourier transform by

g∗(u) =
∫

exp(iuy)g(y) dy for all u ∈R.

Here, the estimation method is based on the Fourier transform of the conditional density gx(y)

of Y/X = x. If the p.d.f. fx belongs to L1 ∩L2 then so does gx. Denote its Fourier transform by
g∗

x(u) for all u ∈R. In our model, we observe that

g∗
x(u) = (

π(x)eiua(x) + (
1 − π(x)

)
eiub(x)

)
f ∗

x (u), u ∈R.

Let us denote, for all t = (π, a, b) in � and u in R,

M(t,u) := πeiua + (1 − π)eiub. (2.3)

Note that |M(t,u)| ≤ 1 for all (t, u) ∈ � ×R. Then, we have

g∗
x(u) = M

(
θ(x), u

)
f ∗

x (u).

We introduce for convenience ω := {ω(1),ω(2)} a permutation of set {1,2}, that is, ω ∈ {id, s}
where s(1) = 2 and s(2) = 1. For t = (π, a, b), we denote [t]ω := tIω=id + (1 − π,b, a)Iω=s

the parameter affected by a permutation ω of the labels (label 1 corresponding to location a

and label 2 corresponding to location b). Let us fix x0 ∈ supp(�) such that θ(x0) belongs to the
interior of �, denoted

◦
�. Noticing that the p.d.f. fx0 is zero-symmetric we therefore have that

f ∗
x0

(u) ∈ R, for all u ∈ R. If t belongs to �, we prove in the next theorem the picking property


(g∗
x0

(u)M̄(t, u)
)= 0 for all u ∈R, if and only if ∃ω ∈ {id, s} : t = [

θ(x0)
]
ω
,

where 
 : C → R denotes the imaginary part of a complex number and M̄ the complex
conjugate of M . This result, which is a consequence of the linear independence of the
{sin(α1u), . . . , sin(αpu)} family proved in [4] using standard Vandermonde type determinant
properties, allows us to build a contrast function for the parameter t ∈ �:

S(t) := Sx0(t) :=
∫


(g∗
x0

(u)M̄(t, u)
)2

�2(x0)w(u)du. (2.4)

The function w :Rd →R+ is a bounded p.d.f. which helps in computing the integral via Monte-
Carlo method and solves integrability issues. We stress the fact that using �2 instead of � comes
from the fact that the contrast estimates a quadratic functional, rather than an expected value.

Remark. The idea of using Fourier transform in order to solve the inverse mixture problem was
introduced in [7] for density models. In the regression models, we deal with the conditional
density of Y/X = x0 and consider that it could possibly exist x0 ∈ supp(�) such that π(x0) = 1/2
and then M(θ(x0), u) can be 0. This has a major incidence on the definition of the function S(t)

where M̄(t, u) appears at the numerator (contrarily to Butucea and Vandekerkhove, [7] where
M(t,u) appeared at the denominator). Moreover, smoothing of the information that data bring at
a fixed design point x0 changes dramatically the behavior of the estimators as we shall see later
on.
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2.2. Local and global identifiability

We prove in the following theorem that our model is identifiable (up to a permutation of the
labels) and that S(t) defines a contrast on the parametric space �.

Theorem 1 (Identifiability and contrast property). Consider model (1.2) provided with
fx(·) ∈ L2 for all x ∈ R

d . For a fixed point x0 in the interior of the support of �, we assume
that fx0(·) is zero-symmetric and that θ0 = θ(x0) is an interior point of �. Then we have the
following properties:

(i) The Euclidean parameter θ0 = (π(x0), a(x0), b(x0)) is identifiable up to a permutation of
the labels when the function fx0(·) is uniquely identified.

(ii) The function S in (2.4) is a contrast function, that is, for all t ∈ �, S(t) ≥ 0 and S(t) = 0
if and only if there exists ω ∈ {id, s} such that t = [θ0]ω .

Proof. (i) The local (for fixed x0) identifiability of model (2.2) over � and the set F of
zero-symmetric densities, that is, using notations involved in (2.3), for all (t, t ′) ∈ �2 and
(f,f ′) ∈F2,

M(t,u)f ∗(u) = M
(
t ′, u

)
f ′∗(u) ⇒ ∃ω ∈ {id, s} : t ′ = tω and f = f ′,

is deduced from the proof of Theorem 2.1 in [4]. The main difference here is that we allow π to lie
in (0,1) whereas in [4] the proportion mixing parameter was constrained to belong to [0,1/2).
This constraint was also an implicit lexicographical ordering to avoid multiple label-permuted
mixture representation. When revisiting step by step the proof of the latter theorem, it appears
that the condition π �= 1/2 is essentially used to avoid spurious model representation when the
mixing proportion is allowed to be equal to zero (see discussion of Case 1, top of page 1223, and
the counter-example, page 1206, in [4]). When π > 0, the discussion of equation (37) in [4] leads
to two obvious solutions (π, a, b) = (π ′, a′, b′) and (π, a, b) = (1 − π ′, b′, a′). To prove that
possibly spurious solutions are non-admissible, it suffices to adapt the re-parametrization in (38)
of [4] to the cases (a − a′, b − b′) �= (0,0) and (a − b′, b − a′) �= (0,0), which basically leads to
consider (by symmetry) the following conditions: for β1 = ππ ′, β2 = π(1−π ′), β3 = π ′(1−π),
β4 = (1 − π)(1 − π ′):

• β3 + β4 = 0 ⇔ π = 1,
• β2 + β3 = 0 and β4 = 0 ⇔ π = 1 or π ′ = 1,
• β3 = 0 and β4 − β2 = 0 ⇔ π ′ = 0 and π = 1/2, or π = 1 and π ′ = 1,
• β2 = 0 and β4 − β3 = 0 ⇔ π = 0 and π ′ = 1/2, or π ′ = 1 and π = 1.

Note that the above solutions are all non-admissible when (π,π ′) ∈ (0,1)2. From this remark,
we deduce that the Euclidean part of model (2.2) is also identifiable, up to a permutation of
the labels, over our parametric space � (including π = 1/2). To identify now the local noise
distribution, we proceed similarly to Step 3 in [4]. Because for ω ∈ {id, s}

M(t,u)f ∗(u) = M(tω,u)f ′∗(u) = M(t,u)f ′∗(u), u ∈R,

we have to consider the two following cases:
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• π �= 1/2. Since |M(t,u)| ≥ |1 − 2π | > 0, we deduce f ∗
x = f ′∗

x and fx = f ′
x.

• π = 1/2. Here it is to be observed that, for t fixed in �, M(t,u) = 0 occurs to be null on a
countable set of R. Indeed,

M(t,u) = 0 ⇔ au = bu + π + 2kπ, k ∈ Z ⇔ u ∈
{

π + 2kπ

a − b
, k ∈ Z

}
.

Nevertheless, this behavior does not affect the identifiability of the noise distribution since
we can conclude that the real functions f ∗ and f ′∗ coincide over R except on a countable
set of isolated points which is equivalent, by a continuity argument, to the equality over the
whole real line.

This concludes the proof of (i).
(ii) The proof is similar to the proof of Proposition 1 in [7], replacing f ∗(·) and g∗(·) by f ∗

x0
(·)

and g∗
x0

(·), respectively, and noticing that �(x0) is bounded away from zero. �

Label switching and global identifiability. The label switching phenomenon relies on the fact
that the writing of the likelihood of a mixture model is invariant when permuting the label of its
components. For example, when considering a k-component mixture model, there exists up to k!
mixture representations of the same distribution. To avoid these multiple representations (which
obviously affects the estimation methods and their interpretation), there exists many different ap-
proaches: (i) in the parametric case, Teicher [32] suggest, for example, to create a lexical ordering
on the parametric space, (ii) in the Bayesian case, some MCMC-based relabelling algorithms are
proposed, see [8,30] or [37], (iii) in the two-component semiparametric case, the mixture propor-
tion affected to the first component is constrained to be less than 1/2, see [4]. In our case, since
we plan to estimate the conditional model (2.2) over a grid of design-points, it would be precisely
great to non-restrict the proportion mixture function π(·) to be upper-bounded by 1/2 and also
to be able to deal with intersecting curve functions a(·) and b(·). To better understand these sit-
uations and propose some practical implementations, we propose now to state, using arguments
similar to [18], the global identifiability of our model (2.1) when d = 1. For this purpose, let us
introduce the concept of transversality.

Definition 1. Let x ∈ R, and let a(x) and b(x) two continuously differentiable real curve-
functions. We say that a(x) and b(x) are transversal if (a(x) − b(x))2 + ‖ȧ(x) − ḃ(x)‖2 �= 0,
for any x ∈ R, where ‖ · ‖ denotes the Euclidean norm.

The transversality condition imposed on two real curve-functions a(x) and b(x) implies that
if a(x) = b(x), then ȧ(x) �= ḃ(x).

Proposition 1. Let us suppose that supp(�) is an interval of R and that π(x) ∈ (0,1), respectively
a(x) and b(x), is a continuous function, respectively are both differentiable real-functions. If
a(x0) < b(x0) at some fixed point x0 in the interior of the supp(�) and if a(x) and b(x) are
transversal then our model (2.1) is globally identifiable over supp(�).
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Proof. Let us consider the subset of R

E = {
xk : a(xk) = b(xk)

}
,

where the parameter curves intersect. Since parameter curves are transversal, any point in E
is an isolated point. This implies that the set E ⊂ R has no finite accumulation (limit) point
and contains at most countably many points. Therefore, without loss of generality, we assume
that: xk < xk+1 and (xk,xk+1) ∩ E =∅, k ∈ Z. Assume that the conditional model (2.2) admits
another representation, that is, there exist functions (π ′, a′, b′, f ′

x) such that

gx(y) = π ′(x)f ′
x
(
y − a′(x)

)+ (
1 − π ′(x)

)
fx
(
y − b′(x)

)
.

We proved in (i) of Theorem 1, that for any x /∈ E , model (2.2) is identifiable, it follows that there
exists a permutation ωx := {ωx(1),ωx(2)} of set {1,2}, that is, ωx ∈ {id, s} where s(1) = 2 and
s(2) = 1, depending on x such that:{

π ′(x) = π(x), a′(x) = a(x), b′(x) = b(x), if ωx = id ,
π ′(x) = 1 − π(x), a′(x) = b(x), b′(x) = a(x), if ωx = s.

Since the parameter curves (a(x), b(x)) are continuous and do not intersect on any interval
(xk,xk+1) the permutation ω(x) must be constant on the latter interval. In addition, for any
xk ∈ E , consider a small interval (xk − ε,xk + ε) such that (xk − ε,xk + ε) ∈ (xk−1,xk+1). Now,
since the parameter curves are transversal, they have different derivatives at xk , hence the permu-
tation must be constant on the neighborhood (xk − ε,xk + ε). Indeed, without lack of generality,
suppose that ωx = id for x ∈ (xk,xk + ε) and ωx = s for x ∈ (xk − ε,xk), then the functions a′
and b′ are non-differentiable anymore since, for example:(

ȧ′)+(xk) = ȧ(xk) �= ḃ(xk) = (
ȧ′)−(xk), (2.5)

where (ȧ′)+(xk) and (ȧ′)−(xk) denote, respectively, the right- and left-hand side derivative of
a′(·) at point xk . Therefore, there exists a permutation ω independent of x ∈ supp(�) such that{

π ′(x) = π(x), a′(x) = a(x), b′(x) = b(x), if ω = id ,
π ′(x) = 1 − π(x), a′(x) = b(x), b′(x) = a(x), if ω = s,

which concludes the proof of the global identifiability. �

Rules under the thumb. The proof of the above proposition inspires us two practical approaches
to handle the label switching problem and lack of identifiability at curve intersection points.

• Label switching. Let us consider, without loss of generality, two nearest neighbors (x1,x2)

over a grid of testing points. Suppose that a(x1) and b(x1) are identified well separated and
(λ,α,β) is a minimizer of Sx2(·), that is, Sx2(λ,α,β) = 0. Since no big jump is expected
by moving from x1 to x2, a way to decide which solution is more likely acceptable between
t1 = (t1,i )1≤i≤3 = (λ,α,β) and t2 = (t2,i )1≤i≤3 = (1 − λ,β,α) could be to select the t with
index r ∈ {1,2} satisfying

r = arg min
i∈{1,2}

{∣∣ti,2 − a(x1)
∣∣+ ∣∣ti,3 − b(x1)

∣∣}. (2.6)
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This approach allows actually to get a sort of prior ordering very similar to the lexicograph-
ical ordering proposed by Teicher [32].

• Crossing point. Let us consider, without loss of generality, three points (x1,x2,x3) for
which we guess, based on local (estimated) adjacent patterns of functions a(·) and b(·),
that a(x1) < b(x1) and a(x3) > b(x3). If x1 and x3 are close enough, we can suspect that
x2 is in the neighborhood of a crossing point, that is, a(x2) � b(x2), and decide to estimate
θ(x2) by using an estimate-based linear interpolation:

θ̃ (x2) := θ̂ (x3) − θ̂ (x1)

x3 − x1
(x2 − x1) + θ̂ (x1), (2.7)

where the general estimator θ̂ (·) is to be defined in (2.10).

Remark. For mixture models with higher number of components, that is,

Yi =
J∑

j=1

Wj(Xi )
(
γj (Xi ) + εj,i(Xi )

)
, i = 1, . . . , n,

where (W1(x), . . . ,WJ (x)) are distributed according to a J -components (J > 2) multino-
mial distribution with parameters (π1(x), . . . , πJ (x)), and noises (εj,i ), j = 1, . . . , J , i.i.d.
according to fx, we assume that there exists a compact set � ⊂]0,1[J−1×R

J of param-
eters (π1(x), . . . , πJ−1(x), γ1(x), . . . , γJ (x)) where the model is identifiable. Note that the
3-components mixture model has been studied closely in [4] and [20] where sufficient identi-
fiability conditions were given. The case where d > 3 is more involved for full description and it
is still an open question. Identifiability of a location mixture of probability densities was proven
in [2] when the mixing density is a Pólya frequency function. In this setup, if the conditional den-
sity of the errors is a symmetric Pólya frequency function, the estimation procedure described
hereafter can be adapted over the parameter space � with analogous results.

2.3. Estimation procedure

In order to build an estimator of the contrast S(t) defined in (2.4), a local smoothing has to be
performed in order to extract the information that the random design X1, . . . ,Xn brings to the
knowledge of the conditional law of Y/X = x0. We use a kernel smoothing approach, but local
polynomials or wavelet methods could also be employed. This smoothing is a major difference
with respect to the density model considered in [7] and all the rates will depend on the smoothing
parameter applied to the kernel function.

Estimation of θ(x0). We choose a kernel function K : Rd → R belonging to L1 and to L4 and
some bandwidth parameter h > 0 to be described later on. For x0 ∈ supp(�) fixed, we denote

Zk(t, u,h) := (
eiuYk M̄(t, u) − e−iuYk M̄(t,−u)

)
Kh(Xk − x0)

= (
eiuYkM(t,−u) − e−iuYkM(t, u)

)
Kh(Xk − x0) (2.8)

= 2 · 
(eiuYkM(t,−u)
)
Kh(Xk − x0),
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where Kh(x) := h−dK(x/h). Indeed, M̄(t, u) = M(t,−u) for all t and u. The empirical contrast
of S(t) is defined by

Sn(t) = − 1

4n(n − 1)

n∑
j �=k,j,k=1

∫
Zk(t, u,h)Zj (t, u,h)w(u)du, (2.9)

where w : R→R
∗+ is a bounded p.d.f., having a finite moment of order 4, that is,

∫
u4w(u)du <

∞. From this empirical contrast, we then define the estimator

θ̂n = arg inf
t∈�

Sn(t), (2.10)

of θ0 = θ(x0) where the parametric space � is now constrained, for unicity of solution, according
to a prior knowledge provided by the rule (2.6). For simplicity, we will suppose that at the point
of interest x0 we have a(x0) < b(x0), which translates into:

� = [p,P ] × 	ord, (2.11)

where 0 < p ≤ P < 1 and 	ord denotes a compact set of {(a, b) ∈ R
2 : a < b}. We shall study

successively the properties of Sn(t) as an estimator of S(t) and deduce consistency and asymp-
totic normality of θ̂n as an estimator of θ0.

Estimation methodology for fx0 . For the estimation of the local noise density fx0 we suggest to
consider the natural smoothed version of the plug-in density estimate given in [36], Section 2.2,
under the assumption that π(x0) �= 1/2.

Let us denote by ϕ(x, y) = �(x)fx(y). We plug θ̂n in the natural smoothed nonparametric
kernel estimator of ϕ(x, y) deduced from (2.3), whenever the unknown parameter θ0 is re-
quired. For x0 fixed, we consider the Fourier transform of ϕ(x0, y): ϕ∗

x0
(u) = �(x0)f

∗
x0

(u) =
�(x0)g

∗
x0

(u)/M(θ0, u). Provided that π̂n �= 1/2, which insures |M(θ̂n,u)| ≥ |1 − 2π̂n| �= 0, we
estimate by

ϕ∗
x0,n

(u) = 1

n

n∑
k=1

Q∗(h1,nu)eiuYk

M(θ̂n, u)
Kh2,n

(Xk − x0),

where Q is a univariate kernel (
∫

Q = 1 and Q ∈ L2) and (h1,n, h2,n) are bandwidth parameters
properly chosen. Note that G∗

n(u) := Q∗(h1,nu)/M(θ̂n, u) is in L1 and L2 and has an inverse
Fourier transform which we denote by Gn(u/h1,n)/h1,n. Therefore, the estimator of ϕ(x0, y) is

ϕn(x0, y) = 1

nh1,n

n∑
k=1

Gn

(
y − Yk

h1,n

)
Kh2,n

(Xk − x0).

Finally the estimator of fx0 is obtained by considering

f̂x0(y) = fn(y|x0)Ifn(y|x0)≥0∫
R

fn(y|x0)Ifn(y|x0)≥0 dy
, where fn(y|x0) = ϕn(x0, y)

�n(x0)
, (2.12)



Semiparametric topographical mixture models 835

where �n(x0) = 1
n

∑n
k=1 Kh2,n

(Xk −x0). The asymptotic properties of this local density estimator
are not established yet but we strongly guess that the bandwidth conditions required to prove its
convergence and classical convergence rate are similar to those found in the conditional density
estimation literature, see [6] or [9].

3. Performance of the method

We give upper bounds for the mean squared error of Sn(t). We are interested in consistency and
asymptotic normality of θ̂n and this requires some small amount of smoothness α > 1 for the
functions π,a and b and for the p.d.f. of the errors. From now on, ‖v‖ denotes the Euclidean
norm of vector v.

We say that a function F is Hölder α-smooth if it belongs to the set of functions L(α,M) with
α = k + β > 0 (k ∈N and β ∈ (0,1]) and M > 0, such that F has k bounded derivatives and, for
all multi-index j = (j1, . . . , jd) ∈N

d with |j | := j1 + · · · + jd = k, we have∣∣F (j)(x) − F (j)(y)
∣∣≤ M‖x − y‖β, (x,y) ∈R

d ×R
d .

A1. We assume that the functions π,a, b, � belong to L(α,M) with α,M > 0.

Remark. We may actually suppose that the functions appearing in our model have different
smoothness parameters, but the rate will be governed by the smallest smoothness parameter.

An important consequence of this assumption is that the density � is uniformly bounded by
some constant depending only on α and M , that is, sup�∈L(α,M) ‖�‖∞ < ∞.

A2. Assume that fx(·) ∈ L1 ∩ L2 for all x ∈ R
d . In addition, we require that there exists a

w-integrable function ϕ such that∣∣f ∗
x (u) − f ∗

x′(u)
∣∣≤ ϕ(u)

∥∥x − x′∥∥α
,

(
x,x′) ∈ R

d ×R
d, u ∈R.

Remark. Note that for the scaling model (1.3), if f is the N (0,1) p.d.f. and σ(·) is bounded and
Hölder α-smooth, we have:

∣∣f ∗
x (u) − f ∗

x′(u)
∣∣≤ u2

2

∣∣σ 2(x) − σ 2(x′)∣∣≤ C
u2

2

∥∥x − x′∥∥α
.

A3. We assume that the kernel K is such that
∫ |K| < ∞,

∫
K4 < ∞ and that it satisfies also

the moment condition ∫
‖x‖α

∣∣K(x)
∣∣dx < ∞.

A4. The weight function w is a p.d.f. such that∫ (
u4 + ϕ(u)

)
w(u)du < ∞.
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The following results will hold true under the additional assumption on the kernel (see A3):∫
xjK(x) dx = 0, for all j such that |j | ≤ k.

Proposition 2. For each t ∈ � and x0 ∈ supp(�) fixed, suppose θ0 ∈ ◦
� and that assumptions

A1–A4 hold. Then, the empirical contrast function Sn(·) defined in (2.9) satisfies

E
[(

Sn(t) − S(t)
)2]≤ C1h

2α + C2
1

nhd
,

if h → 0 and nhd → ∞ as n → ∞, where constants C1,C2 depend on �, K , w, α and M but
are free from n,h, t and x0.

Theorem 2 (Consistency). Let suppose that assumptions of Proposition 2 hold. The estimator
θ̂n defined in (2.9)–(2.10) converges in probability to θ(x0) = θ0 if h → 0 and nhd → ∞ as
n → ∞.

The following theorem establishes the asymptotic normality of the estimator θ̂n of θ0. Recall
that θ0 = θ(x0) belongs to � and that there exists L∗ > 0 such that �(x0) ≥ L∗. We see that the
local smoothing with bandwidth h > 0 deteriorates the rate of convergence to

√
nhd instead of√

n for the density model. In the asymptotic variance, we will use the following notation:

J̇ (θ0, u) := 
(−Ṁ(θ0, u)M̄(θ0, u)
)
f ∗

x0
(u)�(x0), (3.1)

and

V (θ0, u1, u2) := 4 ·
∫


(eiu1yM̄(θ0, u1)
) · 
(eiu2yM̄(θ0, u2)

)
gx0(y) dy, (3.2)

where the function M(·, ·) is defined in (2.3). Note that J̇ (θ0, ·) is uniformly bounded by some
constant and that V is well defined for all (u1, u2) ∈ R×R and also uniformly bounded by some
constant.

Theorem 3 (Asymptotic normality). Suppose that assumptions of Proposition 2 hold. The
estimator θ̂n of θ0 defined by (2.9)–(2.10), with h → 0 such that nhd → ∞ and such that
h2α+d = o(n−1), as n → ∞, is asymptotically normally distributed:√

nhd(θ̂n − θ0) → N(0,S) in distribution,

where S = 1
4I−1�I , with

I = −1

2

∫
J̇ (θ0, u)J̇ (θ0, u)�w(u)du,

and

� :=
∫ ∫

J̇ (θ0, u1)J̇
�(θ0, u2)V (θ0, u1, u2)w(u1)w(u2) du1 du2,

for J̇ defined in (3.1) and V in (3.2).
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The above results show that our estimator of θ0 behaves like any nonparametric pointwise
estimator. This is indeed the case and we provide in the next theorem the best achievable con-
vergence rates uniformly over the large set of functions involved in our model, see assumptions
A1–A2.

Theorem 4 (Minimax rates). Suppose A1–A4 and consider x0 ∈ supp(�) fixed such that

�(x0) ≥ L∗ > 0 for all � ∈ L(α,M) and θ0 = θ(x0) ∈ ◦
� \{1/2}. The estimator θ̂n of θ0 defined by

(2.9)–(2.10), with h � n−1/(2α+d), as n → ∞, is such that

supE
[‖θ̂n − θ0‖2]≤ Cn−2α/(2α+d),

where the supremum is taken over all the functions π,a, b, � and f ∗ checking assumptions
A1–A2. Moreover,

inf
Tn

supE
[‖Tn − θ0‖2]≥ cn−2α/(2α+d),

where C,c > 0 depend only on α,M,�,K and w, and the infimum is taken over the set of all
the estimators Tn (measurable function of the observations (X1, . . . ,Xn)) of θ0.

Proof hints. Throughout the proofs of the previous results, we learn that the estimator θ̂n of
θ0, behaves asymptotically as Ṡn(θ0) which is a U -statistic with a dominant term whose bias
is of order h2α and whose variance is smaller than C2(nhd)−1. The bias-variance compromise
will produce an optimal choice of the bandwidth h of order n−1/(2α+d) and a rate n−2α/(2α+d).
It is the optimal rate for estimating a Hölder α-smooth regression function at a fixed point and
the optimality results in the previous theorem are a consequence of the general nonparametric
problem, see [23,31,34].

4. Practical behaviour

4.1. Algorithm

We describe below the initialization scheme and the optimization method used to determine the
estimates of the locations a(xk), b(xk) and the weight functions π(xk) for a fixed sequence of
testing points {xk, k = 1, . . . ,K}. To simply differentiate these testing points from the design
data points, we will allocate specifically the index k for the numbering of the testing points and
the index i for the numbering of the dataset points, that is, {(xi , yi), i = 1, . . . , n}.

Initialization:

1. For each design data point xi , i = 1, . . . , n, fit a kernel regression smoothing m̄(xi ) with
local bandwidth h̄xi

. The R package lokerns, see [17], can be used.
2. Classify each data point (xi , yi), i = 1, . . . , n according to: if yi > m̄(xi ) classify (xi , yi) in

group 1 associated with location a(·), otherwise classify it in group 2 associated with b(·).
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3. For each xk , k = 1, . . . ,K , obtain initial value ā(xk), respectively b̄(xk), by fitting a kernel
regression smoothing based on the observations (xi , yi), i = 1, . . . , n, previously classified
in group 1 with local bandwidth h̄1,xk

, respectively in group 2 with local bandwidth h̄2,xk
.

4. Compute the local bandwidth hxk
= min(h̄1,xk

, h̄2,xk
).

5. Fix an arbitrary single value π̄ for all the π(xk)’s.

Estimation:

1. Generate one w-distributed i.i.d. sample (Ur), r = 1, . . . ,N dedicated to the pointwize
Monte Carlo estimation of Sn(t) defined by:

SMC
n (t) = − 1

4n(n − 1)N

n∑
j �=k,j,k=1

N∑
r=1

Zk(t,Ur ,h)Zj (t,Ur,h).

In the Sections 4.2 and 5, we will consider N = n and w the p.d.f. corresponding to the
mixture 0.1 ·N (0,1) + 0.9 · U[−2,2].

2. Compute the minimizer θ̂ (xk) = (π̂(xk), â(xk), b̂(xk)) of SMC
n (·) evaluated at each point

x0 = xk , by using the starting values (π̄ , ā(xk), b̄(xk)) and the local bandwidth hxk
.

In our simulations, the above minimization will be deliberately done over a non-constrained
space, that is, generically θ(·) ∈ [0.05,0.95] × [A,B]2, with A < B . Our goal is to analyze
experimentally if a performant initialization procedure is able to prevent from spurious phe-
nomenons like the label switching or component merging occurring when π(x0) is close to 0.5.
This kind of information is actually very relevant to interpret correctly some cross-over effects
as the one we will observe in Figure 10(a). Note that other initialization methods can be figured
out. We can for instance use, similarly to [18], a mixture of polynomial regressions with constant
proportions and variances to pick initial values ā(x) and b̄(x), or the R package flexmix, see
[13], that implements a general framework for finite mixture of regression models based on EM-
type algorithms (we selected this latter approach for the analysis of radiotherapy application in
Section 5).

4.2. Simulations

In this section, we propose to measure the performances of our estimator θ̂n(·) over a testing
sequence {xk = k/K}, k = 1, . . . ,K = 20. Given that in the simulation setting the true function
θ(·) is known, we can compute, similarly to [18], the Root Average Squared Errors (RASE) of
our estimator. To this end we generate M = 100 datasets (X[z]

i , Y
[z]
i )1≤i≤n, z = 1, . . . ,M of sizes

n = 400, 800, 1200, for each of the scenario described below and, for each scalar parameter
s = a, b,π , denote by RASE[z]

s the RASE performance associated to the zth dataset, defined
by RASE[z]

s = (1/K
∑K

k=1 R
[z]
s (k))1/2, where R

[z]
s (k) = (ŝ[z](xk) − s(xk))

2, and the empirical
RASE by

RASEs = 1

M

M∑
z=1

RASE[z]
s . (4.1)
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Let us also define the empirical squared deviation at point xk by νk = 1
M

∑M
z=1 R

[z]
s (k), and

empirical variance of the squared deviation at xk by σ 2
s (k) = 1

M−1

∑M
z=1(R

[z]
s (k) − νk)

2. From
these quantities we deduce the averaged variance of the squared deviations defined by

σ 2
s = 1

K

K∑
k=1

σ 2
s (k). (4.2)

In all the simulation setups, we use the same mixing proportion function π(·):

π(x) = sin(3πx) − 1

15
+ 0.4, x ∈ [0,1].

Gaussian setup (G). The errors εj,i(x)’s are distributed according to a Gaussian topographical
scaling model corresponding to (1.3), that is, f is the N (0,1) p.d.f. when the location and scaling
functions are

a(x) = 4 − 2 sin(2πx), b(x) = 1.5 cos(3πx) − 3, σ (x) = 0.9 exp(x), x ∈ [0,1].
Student setup (T). The errors εj,i(x)’s are distributed according to a Student distribution with

continuous degrees of freedom function denoted df (x). The locations and degrees of freedom
functions are

a(x) = 3 − 2 sin(2πx), b(x) = 1.5 cos(3πx) − 2, df (x) = −5x + 8, x ∈ [0,1].
Laplace setup (L). The errors εj,i(x)’s are distributed according to a Laplace distribution with

scaling function ν(x). The locations and scaling functions are

a(x) = 5 − 3 sin(2πx), b(x) = 2 cos(3πx) − 4, ν(x) = x + 1, x ∈ [0,1].
The selected bandwidths, whose mean and standard deviation are reported in Table 1, are ob-
tained at the initialization step and are extracted from the function lokerns of the R-library
lokern. This function calculates an estimator of the regression function with an automatically
chosen local plugin bandwidth function. The automatically chosen bandwidths are calculated by
finding the bandwidths that minimize the asymptotically optimal mean squared error. To estimate
the variance component in the mean squared error this method estimates a functional of a smooth
variance function for our heteroscedastic errors.

Table 1. Mean and standard deviation of the lokerns-selected Bandwidth

Sample size Gauss Student Laplace

n = 400 0.0915 (0.0185) 0.0812 (0.0147) 0.0877 (0.0220)
n = 800 0.0860 (0.0099) 0.0780 (0.0091) 0.0823 (0.0151)
n = 1200 0.0813 (0.0072) 0.0743 (0.0061) 0.0791 (0.0122)
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Table 2. Mean and Standard Deviation of RASEs for data with Gaussian Errors

Sample size Method RASEπ RASEa RASEb

n = 400 NMRG 0.011 (0.015) 0.579 (1.064) 0.228 (0.374)
NMR-SE 0.007 (0.011) 1.031 (2.061) 0.293 (0.581)

n = 800 NMRG 0.010 (0.013) 0.505 (0.986) 0.219 (0.401)
NMR-SE 0.003 (0.005) 0.492 (0.998) 0.150 (0.269)

n = 1200 NMRG 0.009 (0.012) 0.474 (0.892) 0.215 (0.401)
NMR-SE 0.002 (0.003) 0.311 (0.572) 0.123 (0.264)

Comments on Tables 2–4. We report for the simulation setups (G), (T) and (L) the quantities
RASEs defined in (4.1), and between parenthesis σ 2

s defined in (4.2), for s = π,a, b. In these
tables, we label our method as NMR-SE (Nonparametric Mixture of Regression with Symmet-
ric Errors). To illustrate the contribution of our method, we compare our results with the RASE
obtained by using the local EM-type algorithm proposed by Huang, Li and Wang [18] for Non-
parametric Mixture of Regression models with Gaussian noises (method labeled for simplicity
NMRG). When the errors of the simulated model are Gaussian, the NMRG estimation should
outperform our method, since the NMRG method assumes correctly that the errors are normally
distributed, while our method does not make any parametric assumption on the distribution of
the errors. When the sample size n = 400, the NMRG is more precise than our method, since
the RASEs ’s and σ 2

s ’s are both smaller for the NMRG. When we increase the sample size of the
simulated datasets to n = 800, 1200, our method becomes more competitive and yields RASEs ’s
and σ 2

s ’s that are lower than those obtained by NMRG. This surprising behavior is probably due
to the fact that in model (1.2) we impose the equality in law of the noises up to a shift param-
eter, when in the NMRG approach possibly different variances are fitted to each kind of noise,
increasing by the way drastically the degrees of freedom of the model to be addressed.

In Tables 3 and 4, we observe that our method has globally smaller RASEs ’s and σ 2
s ’s. This

result is not surprising, given that in the estimation methodology of Huang, Li and Wang [18],
the distribution of the noise are then completely misspecified under the simulation setups (T)
and (L). Note however, that when the sample size is small n = 400, the NMRG displays better
results, which can be explained by the fact that when we generate small size datasets, the points

Table 3. Mean and Standard Deviation of RASEs for data with Student Errors

Sample size Method RASEπ RASEa RASEb

n = 400 NMRG 0.013 (0.018) 0.330 (0.557) 0.135 (0.196)
NMR-SE 0.010 (0.016) 0.454 (0.932) 0.217 (0.473)

n = 800 NMRG 0.011 (0.014) 0.276 (0.530) 0.101 (0.156)

NMR-SE 0.004 (0.007) 0.192 (0.374) 0.175 (0.561)

n = 1200 NMRG 0.010 (0.014) 0.216 (0.433) 0.111 (0.165)
NMR-SE 0.003 (0.005) 0.127 (0.255) 0.053 (0.096)
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Table 4. Mean and Standard Deviation of RASEs for data with Laplacian Errors

Sample size Method RASEπ RASEa RASEb

n = 400 NMRG 0.011 (0.014) 0.815 (1.527) 0.323 (0.493)
NMR-SE 0.007 (0.001) 1.242 (2.420) 0.376 (0.714)

n = 800 NMRG 0.010 (0.013) 0.659 (0.192) 0.283 (0.428)
NMR-SE 0.003 (0.005) 0.489 (0.870) 0.191 (0.398)

n = 1200 NMRG 0.009 (0.012) 0.592 (1.072) 0.236 (0.346)
NMR-SE 0.002 (0.003) 0.308 (0.566) 0.127 (0.2548)

that are supposed to be in the tails of the non-normal distributions are less likely to appear in the
dataset. So in that case it can be reasonable to assume that the Gaussian distribution approximates
the errors distribution well.

Comments on Figures 2–6. To illustrate the sensitivity of our method and compare it graph-
ically to the NMRG approach, we plot in Figure 1 different samples coming from the setups
(G), (T), and (L) for n = 1200, and in blue lines the corresponding true location functions a(·)
and b(·). In Figure 2, respectively Figure 3, we plot in grey the M = 200 segment-line interpo-
lation curves obtained by connecting the points (xk, ŝ

[z](xk)), k = 1, . . . ,K where s(·) = a(·),
b(·) for the NMRG method, respectively our NMR-SE method. In Figures 4 and 5 we do the
same for s(·) = π(·). In Figures 2–5, the dashed red lines represent the mean curves obtained by
connecting the points (xk, s̄(xk)), k = 1, . . . ,K with s̄(xk) = 1/M

∑M
z=1 ŝ[z](xk) and s(·) = a(·),

b(·) and π(·). Let us observe first that the good behavior of the NMR-SE method is confirmed
by the small variability of the curves in Figures 3 and 5 compared to those in Figures 2 and 4
corresponding to the NMRG method. Second, it is important to notice that sometimes, since we
did not constrained our method to have π ∈ [p,P ] with 0 < p < P < 1/2, we run into some
spurious estimation due to label switching or component merging phenomenon.

Figure 2. Examples of simulated datasets with different distribution errors.
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Figure 3. Mean Curves estimated with NMRG.

Figure 4. Mean Curves estimated with NMR-SE.

Figure 5. Mixing proportions estimated with NMRG.
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Figure 6. Mixing proportions curves estimated with NMR-SE.

Around the value π(x) = 1/2. We propose in this paragraph to investigate the practical behav-
ior of our methodology when π(x) lies possibly in a neighborhood of 1/2. In such a case it is
known that our model is not identifiable locally. Indeed, there exist various representations of the
same observed conditional density, that is:

gx(y) = 1
2fx

(
y − a(x)

)+ 1
2fx

(
y − b(x)

)= 1hx
(
y − μ(x)

)+ 0hx
(
y + μ(x)

)︸ ︷︷ ︸
degenerated 2nd component

in model (2.2)

, (4.3)

where μ(x) := [a(x) + b(x)]/2 and

hx(y) := gx
(
y + μ(x)

)= 1
2fx

(
y − [

a(x) − b(x)
]
/2
)+ 1

2fx
(
y + [

a(x) − b(x)
]
/2
)
.

Practically, for moderate values of n, it is reasonable to think that for π(x) close to 0.5 our method
could detect a (1−ε)hx(y −μ(x))+εhx(y +μ(x))-type model, where ε denotes a generic small
quantity, close to the degenerated representation in (4.3) instead of the true model (2.2).

To illustrate the behavior of our method in circumstances “close” to the above situation, we
consider the following setup.

Balanced Gaussian setup (BG). The errors εj,i(x)’s are distributed according to a Gaussian
topographical scaling model corresponding to (1.3), that is, f is the N (0,1) p.d.f. when the
location and scaling functions are

a(x) = 5 − 2 sin(2πx), b(x) = 1.5 cos(3πx), σ (x) = 0.9 exp(x), x ∈ [0,1].

and the mixing proportion function is

π(x) = sin(3πx) − 1

8
+ 0.65. (4.4)
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Figure 7. Simulated situations with some mixing proportions close to 0.5 and n = 1200.

Our methodology is applied on the (BG) setup with n = 1200, corresponding to Figure 7, and
n = 2000, corresponding to Figure 8. As it is shown in Figure 7(c), the above parametrization
allows to get mixing proportion close to 1/2 for x values basically lying in the interval [0.3,0.7].

Comments on Figures 7 and 8. For simplicity, let us point out first that on the interval [0,0.3)

the variance of the noises is basically rather small and the mean curves near to each other when
the variances observed on (0.7,1] are large and the mean curves distant from each other. When
we examine the performances of our method on these intervals it appears that the results are
reasonably good on [0,0.3) for both n = 1200 and 2000 while they turn to be much more un-
stable, specially when considering the mixing proportion curves, on (0.7,1] for n = 1200 with
a significant improvement for n = 2000. This behavior is probably due to the poor quality of
the empirical kernel estimate Sn(t) in (2.9) for x design values in the range corresponding to
bumpy and highly dispersed conditional densities gx, which is precisely the case for x ∈ (0.7,1]
compared to x ∈ [0,0.3).

Now, for x ∈ [0.3,0.7] corresponding to π(x) values qualitatively close to 0.5, we observe
the consequences of the lack of identifiability described in (4.3) since the estimate of π̂ (x) are

Figure 8. Simulated situations with some mixing proportions close to 0.5 and n = 2000.
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strongly attracted by 0 or 1 when we also observe that â(x) or b̂(x) are attracted by the spurious
value μ(x) = (a(x)+b(x))/2. Nevertheless, it is important to notice that this drawback is signif-
icantly reduced when the sample size n increases from 1200 to 2000, which is in agreement with
our asymptotic results proved under the identification constraint π ∈ [p,P ] with 0 < p < P < 1
expressed in Theorems 1–3.

5. Application in radiotherapy

In this section, we implement the proposed methodology to a dataset obtained from applying
Positron Emission Radiotherapy (PET) to a canine patient with locally advanced Sinonasal Neo-
plasia. These data were provided by [5], Figure 4, who used them to quantify the associations
between pre-radiotherapy and post-radiotherapy PET-parameters via spatially resolved mixture
of linear regressions. Intensity Modulated Radiotherapy is an advanced radiotherapy method that
uses computer controlled device to deliver radiation of varying intensities to tumor or smaller
areas within the tumor. There is evidence showing that the tumor is not homogeneous in its re-
sponse to the radiation, and that some regions are more resistant than others. Functional imaging
techniques (such as Positron Emission Tomography) can be used to identify the radiotherapy
resistant regions within the tumor. For instance, an uptake in PET imaging of follow-up 2-deoxy-
2-[18F]fluoro-D-glucose (FDG) is empirically linked to a local recurrence of the disease. Bowen
et al. [5], use this approach to construct a prescription function that maps the image intensity
values into a local radiation dose that will maximize the probability of a desired clinical out-
come. In their manuscript, they validate the use of molecular imaging based prescription function
against clinical outcome by establishing an association between imaging biomarkers (PET imag-
ing pre-radiotherapy) and regional imaging response to known dosage of therapy (PET imaging
post-radiotherapy). The regional imaging response captures the change in imaging signal over
an individual image volume element (called a voxel). In our model of interest (1.2), the pre-
radiotherapy PET imaging intensities correspond to the input Xi ’s, and the post-radiotherapy
PET imaging levels are the outputs Yi ’s. For many patients, the empirical link between post-
treatment PET of FDG (regional imaging response) and pre-treatment PET of FDG (imaging
biomarker at baseline) is well captured by a mixture regression model with two components.
For a set of voxels with similar pre-treatment PET intensities, the nature of the response to the
radiotherapy leads to two groups of voxels. The first group corresponds to voxels that respond
well to the radiotherapy, and the second group contains the non-responding voxels. In our model
of interest (1.2), the non-responding voxel group corresponds to the case where W(Xi ) = 1. The
location parameters of each group appears to change as the pre-radiotherapy imaging intensity
Xi varies. These changes in location are captured in our model by the location functions a(·) or
b(·), where a(·), respectively b(·), is the component mean function for the completely responding
(CR), respectively non-responding (NR), voxel. Additionally, the proportion of voxels π(Xi ) that
respond well to treatment depends on the pre-treatment level of the PET, so the mixture model
should also account for a mixing proportion that depends on the input Xi . For a given input x, we
assume that the intensity level of the completely responding and the non-responding voxel have
approximately the same p.d.f. fx up to a shift parameter, with the topographical scaling structure
(1.3) presented in the Introduction. The variance of the distribution also changes with the level
of the covariate (pre-treatment PET FDG). In many cases the variance increases as the intensity
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of a voxel’s PET pre-radiotherapy increases, this is simply due to the fact the responding vox-
els will have a low post-treatment PET intensity, while the non-responding voxels will not. The
aforementioned topographical scaling property, will allow to model this behavior. To obtain ini-
tial values for the location curves a(·) and b(·), we first use the R package flexmix, see [13],
which allows us to fit defined parametric functions to the mixture. For the mixing proportion
function we set a fixed constant value π̄(x) = 0.4. The bandwidths are computed according to
the methodology described in Section 4.1, except that the groups are now determined as an out-
put of the flexmix package. The behavior of the local bandwidths selected by the flexmix
package is displayed in Figure 9.

We propose to apply the NMRG and NMR-SE to this dataset. In Figure 10(a), we show the
PET image response to radiotherapy at 3 months, measured by FDG PET uptake, versus the pre-
treatment FDG PET uptake. We also display component means obtained by fitting the NMRG
and the NMR-SE. For both methods, we observe that the location functions b(x) corresponding
to the completely responding voxels, show little variation across the range of values of pre-
treatment FDG PET. NMRG and NMR-SE yield fitted means b(x) that are pretty similar to each
other.

The fitted location functions a(x) are associated with the non-responding voxels. For both
methods, the estimated component means a(x) increase with the pre-treatment FDG PET up-
take. A significant difference between NMR-SE and NMRG lies in the fact that the estimated
location function a(x) of NMR-SE is slightly greater than the estimated location function ob-
tained with NMRG. This implies that more voxels will be attributed to the non-responding group
when we use NMRG instead of NMR-SE. This is confirmed by the Figure 10(b), where we dis-
play the mixing proportions π(x) for each method. As expected, we see that the NMRG yields
mixing proportions of non-responding voxels that are larger than the mixing proportions obtained
by using our method. The NMRG mixing proportions lies between (40% and 70 %), while the
NMR-SE mixing proportions is between (18% and 60%). The NMR-SE mixing proportion of
non-responding voxels is less than 40% for this patient when pre-treatment FDG PET uptake
is between 2.75 SUV and 6.875 SUV. We can conclude based on the results from our method
that the current radiation dose could be appropriate for patients that exhibit pre-treatment FDG
PET uptake close to the range aforementioned. On the other hand, NMRG does not present a
wide range of pre-treatment FDG uptake where the non-responding mixing proportion is less
than 50%. We see in addition in Figure 11 that the conditional distributions, obtained from for-
mula (2.12) with h1,n = h2,n = 0.2, are about zero-symmetric with reasonably small trimming
effect due to Ifn(y|x0)≥0 in (2.12) (tiny wave effect on both sides of the main mode). This is a good
model validation tool since we are actually able to recover, after local Fourier inversion, the basic
symmetry assumption technically made on the distributions of the errors; see for quality com-
parison other existing (nonconditional) semiparametric inversion density estimates performed on
real datasets: Figures 1–2(a) in [4], Figure 3 in [7], Figure 5 in [36], or Figures 2–3 in [3].

6. Auxiliary results and main proofs

Let us denote by ‖ · ‖ the Euclidean norm of a vector and by ‖ · ‖2 the Frobenius norm of any
squared matrix. Recall the definition of Zk in (2.8) and let J (t, u,h) := E[Z1(t, u,h)]. Let Żk

and J̇ denote respectively, the gradient of Zk and J with respect to their first argument t .
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Figure 9. Behavior of the local bandwidths selected by the flexmix package in the PET application.

Figure 10. Location and mixing proportion function estimation by using NMR-SE and NMRG methods.
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Figure 11. Density Estimates of the errors for the different levels of PET Tx FDG values.

Lemma 1. Under assumption A1 we have:

(i) For all (u,h) ∈ R×R∗+ and any k = 1, . . . , n,

sup
t∈�

∣∣Zk(t, u,h)
∣∣≤ 2‖K‖∞

hd
, sup

t∈�

∣∣J (t, u,h)
∣∣≤ 2‖�‖∞

∫
|K|.

(ii) For all (u,h) ∈ R×R
∗+ and any k = 1, . . . , n,

sup
t∈�

∥∥Żk(t, u,h)
∥∥≤ 4

(
1 + |u|)‖K‖∞

hd
, sup

t∈�

∥∥J̇ (t, u,h)
∥∥≤ 4

(
1 + |u|)‖�‖∞

∫
|K|.

(iii) For all (u,h) ∈ R×R
∗+ and any k = 1, . . . , n,

sup
t∈�

∥∥Z̈k(t, u,h)
∥∥

2 ≤ C
(
1 + |u| + u2)‖K‖∞

hd
,

sup
t∈�

∥∥J̈k(t, u,h)
∥∥

2 ≤ C
(
1 + |u| + u2)‖�‖∞ ·

∫
|K|,

for some constant C > 0.

Proof of Lemma 1. (i) It is easy to see, from |M(t,u)| ≤ 1, that

∣∣Zk(t, u,h)
∣∣≤ 2

∣∣Kh(Xk − x0)
∣∣≤ 2

‖K‖∞
hd

,

and that

∣∣J (t, u,h)
∣∣≤ 2

∣∣∣∣
∫


(g∗
x(u)M̄(t, u)

)
Kh(x − x0)�(x) dx

∣∣∣∣≤ 2‖�‖∞ ·
∫

|K|.
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(ii) We note that

Żk(t, u,h) =
{

eiuYk

(
e−iuα − e−iuβ

−iuπe−iuα

−iu(1 − π)e−iuβ

)
− e−iuYk

(
eiuα − eiuβ

iuπeiuα

iu(1 − π)eiuβ

)}
Kh(Xk − x0),

and that

E
[
Żk(t, u,h)

] = J̇k(t, u,h)

=
∫ {

gx∗(u)

(
e−iuα − e−iuβ

−iuπe−iuα

−iu(1 − π)e−iuβ

)
− gx∗(−u)

(
eiuα − eiuβ

iuπeiuα

iu(1 − π)eiuβ

)}

× Kh(x − x0)�(x) dx.

We thus have ∥∥Żk(t, u,h)
∥∥ = ∥∥eiuYk Ṁ(t,−u) − e−iuYk Ṁ(t, u)

∥∥Kh(Xk − x0)

≤ (
2
(
22 + P 2u2 + (1 − p)2u2))1/2

Kh(Xk − x0)

≤ 4
(
1 + |u|)‖K‖∞

hd
,

and ∥∥J̇k(t, u,h)
∥∥ =

∫ ∥∥g∗
x(u)Ṁ(t,−u) − g∗

x(−u)Ṁ(t, u)
∥∥∣∣Kh(x − x0)�(x)

∣∣dx

≤ (
2
(
22 + P 2u2 + (1 − p)2u2))1/2

∫ ∣∣Kh(x − x0)�(x)
∣∣dx

≤ 4
(
1 + |u|)‖�‖∞.

∫
|K|.

(iii) Formula of M̈(t, u) being tedious, we shortly write that

Z̈k(t, u,h) = {
eiuYk M̈(t,−u) − e−iuYk M̈(t, u)

}
Kh(Xk − x0),

and deduce our bound from the above expression using arguments similar to (i) and (ii). �

Lemma 2. (i) For all (t, t ′) ∈ �2, there exists a constant C1 > 0 such that

∣∣Sn(t) − Sn

(
t ′
)∣∣≤ C1

∥∥t − t ′
∥∥ n∑

j �=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n − 1)
.

(ii) For all (t, t ′) ∈ �2, there exists a constant C2 > 0 such that

∥∥S̈n(t) − S̈n

(
t ′
)∥∥

2 ≤ C2
∥∥t − t ′

∥∥ n∑
j �=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n − 1)
.
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(iii) There exists some constants C1,C2 > 0 depending on �,α,M,K such that

E

[(
n∑

j �=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n − 1)
− �2(x0)

)2]
≤ C1h

2α + C2

nhd
,

as h → 0 and nhd → ∞.

Proof. (i) By a first order Taylor expansion we have

Sn(t) − Sn

(
t ′
)= − 1

2n(n − 1)

∫ (
t − t ′

)� n∑
j �=k,j,k=1

Żk(tu, u,h)Zj (tu, u,h)w(u)du,

where for all u ∈ R, tu lies in the line segment with extremities t and t ′. Therefore, according to
calculations made in the proofs of Lemma 1(i) and (ii), we obtain

∣∣Sn(t) − Sn

(
t ′
)∣∣≤ ∥∥t − t ′

∥∥∫
R

4
(
1 + |u|)w(u)du

∣∣∣∣∣
n∑

j �=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n − 1)

∣∣∣∣∣,
which ends the proof of (i) by using assumption A4.

(ii) Let recall first that

S̈n(t) = −1

2n(n − 1)

∑
k �=j

∫ [
Z̈k(t, u,h)Zj (t, u,h) + Żk(t, u,h)Żj (t, u)�

]
w(u)du.

We shall bound from above as follows∥∥S̈n(t, u) − S̈n

(
t ′, u

)∥∥
2 ≤ 1

2n(n − 1)

∑
k �=j

{∥∥∥∥
∫ (

Z̈k(t, u,h) − Z̈k

(
t ′, u,h

))
Zj (t, u)w(u)du

∥∥∥∥
2

+
∥∥∥∥
∫

Z̈k

(
t ′, u,h

)(
Zj (t, u,h) − Zj

(
t ′, u,h

))
w(u)du

∥∥∥∥
2

+
∥∥∥∥
∫

Żk(t, u,h)
(
Żj (t, u,h) − Żj

(
t ′, u,h

))�
w(u)du

∥∥∥∥
2

+
∥∥∥∥
∫ (

Żk(t, u,h) − Żk

(
t ′, u,h

))
Żj

(
t ′, u,h

)�
w(u)du

∥∥∥∥
2

}
.

For each term in the previous sum, we use Taylor expansion and upper-bounds similar to those
developed in the proof of Lemma 1, and get∥∥S̈n(t, u) − S̈n

(
t ′, u

)∥∥
2

≤ ∥∥t − t ′
∥∥C ∫ (

1 + |u| + u2 + |u|3)w(u)du

∣∣∣∣∣
n∑

j �=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n − 1)

∣∣∣∣∣,
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for some constant C > 0, which finishes the proof by using assumption A4.
(iii) The proof is a consequence of Proposition 2 hereafter. �

Proof of Proposition 2. We shall bound from above the mean square error by the usual decom-
position into squared bias plus variance.

Note that

E
[
Sn(t)

] = −1

4

∫ (
E
[
Z1(t, u,h)

])2
w(u)du

as (Yi,Xi ), i = 1, . . . , n are independent. Moreover,

E
[
Z1(t, u,h)

] =
∫ ∫ (

eiuyM(t,−u) − e−iuyM(t, u)
)
Kh(x − x0)g(y,x) dy dx

=
∫ (∫ (

eiuyM(t,−u) − e−iuyM(t, u)
)
gx(y) dy

)
�(x)Kh(x − x0) dx

=
∫ (

g∗
x(u)M(t,−u) − g∗

x(−u)M(t, u)
)
�(x)Kh(x − x0) dx.

Let us denote by L(x, t, u) := g∗
x(u)M(t,−u) − g∗

x(−u)M(t, u), which is further equal to

L(x, t, u) = 2i · 
(g∗
x(u)M(t,−u)

)= 2i · 
(M(
θ(x), u

)
M(t,−u)

)
f ∗

x (u).

We can write E[Z1(t, u,h)] = [(L(·, t, u)�) �Kh](x0), where � denotes the convolution product.
The bias of Sn(t) is bounded from above as follows:

∣∣E[
Sn(t)

]− S(t)
∣∣ = 1

4

∣∣∣∣
∫ ([(

L(·, t, u)�
)
� Kh

]2
(x0) − L2(x0, t, u)�2(x0)

)
w(u)du

∣∣∣∣
≤ 1

4

∫ ∣∣[(L(·, t, u)�
)
� Kh

]
(x0) − L(x0, t, u)�(x0)

∣∣
× ∣∣[(L(·, t, u)�

)
� Kh

]
(x0) + L(x0, t, u)�(x0)

∣∣w(u)du.

Now ∣∣L(x0, t, u)�(x0)
∣∣≤ 2‖�‖∞ ≤ 2C,

as ‖�‖∞ is further bounded by a constant C = C(α,M) depending only on α,M > 0, uniformly
over � ∈ L(α,M) (see remark following condition A1). We also have

E
[
Z1(t, u,h)

] = ∣∣[(L(·, t, u)�
)
� Kh

]
(x0)

∣∣≤ ∫ ∣∣L(x, t, u)
∣∣l(x)|K|h(x − x0) dx

(6.1)

≤ 2C

∫
|K|.
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Moreover, for all u ∈ R,∣∣[(L(·, t, u)�
)
� Kh

]
(x0) − L(x0, t, u)�(x0)

∣∣
≤
∫ ∣∣L(x + x0, t, u)�(x + x0) − L(x0, t, u)�(x0)

∣∣ · |K|h(x) dx

≤ c
(|u| + ϕ(u)

)∫ ‖x‖α · |K|h(x) dx ≤ c · hα
(|u| + ϕ(u)

)∫ ‖x‖α · |K|(x) dx,

under our assumptions A1–A4. Indeed, that implies that L(·, t, u)�(·) is Hölder α-smooth for all
(t, u) ∈ � ×R, with some constant c > 0, see Lemma 3. Therefore, we get

∣∣E[
Sn(t)

]− S(t)
∣∣≤ 2C

(
1 +

∫
|K|

)
c

(∫
‖x‖α · |K|(x) dx

)
·
(∫

|u|w(u)du

)
· hα.

Similarly to Sn(t) variance decomposition, we write

Sn(t) − E
[
Sn(t)

]
= −1

4n(n − 1)

∑
j �=k

(∫ (
Zj (t, u,h)Zk(t, u,h) − E2[Z1(t, u,h)

])
w(u)du

)

= −1

2n

∑
j

∫ (
Zj(t, u,h) − E

[
Z1(t, u,h)

])
E
[
Z1(t, u,h)

]
w(u)du

+ −1

4n(n − 1)

×
∑
j �=k

(∫ (
Zj (t, u,h) − E

[
Z1(t, u,h)

])(
Zk(t, u,h) − E

[
Z1(t, u,h)

])
w(u)du

)

= T1 + T2, say.

Terms in T1 and T2 are uncorrelated and thus Var(Sn(t)) = Var(T1) + Var(T2).
On the one hand,

Var(T1) = 1

4n
Var

(∫ (
Z1(t, u,h) − E

[
Z1(t, u,h)

])
E
[
Z1(t, u,h)

]
w(u)du

)

= 1

4n
E

[∣∣∣∣
∫ (

Z1(t, u,h) − E
[
Z1(t, u,h)

])
E
[
Z1(t, u,h)

]
w(u)du

∣∣∣∣2
]

≤ 1

4n
E

[∫ ∣∣Z1(t, u,h) − E
[
Z1(t, u,h)

]∣∣2w(u)du

]∫ ∣∣E[
Z1(t, u,h)

]∣∣2w(u)du,

according to Cauchy–Schwarz inequality. Now we use (6.1) and obtain

Var(T2) ≤ 1

4n

(
2C

∫
|K|

)2 ∫
E
[∣∣Z1(t, u,h)

∣∣2]w(u)du.
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We have,

E
[∣∣Z1(t, u,h)

∣∣2] = E
[
E
[∣∣2i · 
(eiuY M(t,−u)

)∣∣2|X](Kh(X − x0)
)2]

= 4E
[∣∣
(g∗

X(u)M(t,−u)
)∣∣2(Kh(X − x0)

)2]
≤ 4

∫
1

h2d
K2

(
x − x0

h

)
�(x) dx

≤ 4C

∫
K2

hd
.

Therefore,

Var(T1) ≤ 4C3 (
∫ |K|)2

∫
K2

nhd
, (6.2)

for all t ∈ �, h > 0.
On the other hand,

Var(T2) = 1

16n(n − 1)

× E

[∣∣∣∣
∫ (

Z1(t, u,h) − E
[
Z1(t, u,h)

])(
Z2(t, u,h) − E

[
Z2(t, u,h)

])
w(u)du

∣∣∣∣2
]

≤ 1

16n(n − 1)

× E

[∫ ∣∣Z1(t, u,h) − E
[
Z1(t, u,h)

]∣∣2∣∣Z2(t, u,h) − E
[
Z2(t, u,h)

]∣∣2w(u)du

]

≤ 1

16n(n − 1)

∫
E2[∣∣Z1(t, u,h)

∣∣2]w(u)du ≤ 1

16n(n − 1)

(
2C

∫
K2

hd

)2

= C2(
∫

K2)2

4n(n − 1)h2d
,

which is clearly a o((nhd)−1) and concludes the proof. �

Lemma 3 (Smoothness of L(x, t, u)�(x)). Assume A1–A4. There exists a constant C > 0, such
that for all (x,x′) ∈R

d ×R
d and all (t, u) ∈ � ×R:∣∣L(x, t, u)�(x) − L

(
x′, t, u

)
�
(
x′)∣∣≤ C

(|u| + ϕ(u)
)∥∥x − x′∥∥α

.

Proof. For t = (π, a, b) ∈ �, and (x, u) ∈ R
d ×R we write

L(x, t, u)�(x) = f ∗
x (u)�(x)T (x, t, u) and T (x, t, u) :=

4∑
i=1

Ti (x, t, u),
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where

T1(x, t, u) = π(x)π sin
[
u
(
a(x) − a

)]
,

T2(x, t, u) = π(x)(1 − π) sin
[
u
(
a(x) − b

)]
,

T3(x, t, u) = (
1 − π(x)

)
π sin

[
u
(
b(x) − a

)]
,

T4(x, t, u) = (
1 − π(x)

)
(1 − π) sin

[
u
(
b(x) − b

)]
.

For all (x,x′) ∈ R
d ×R

d we have∣∣L(x, t, u)�(x) − L
(
x′, t, u

)
�
(
x′)∣∣

≤ 2
∣∣f ∗

x (u)�(x)
∣∣∣∣T (x, t, u) − T

(
x′, t, u

)∣∣+ 2
∣∣T (x′, t, u

)∣∣∣∣f ∗
x (u)�(x) − f ∗

x′(u)�
(
x′)∣∣

≤ 2‖�‖∞
∣∣T (x, t, u) − T

(
x′, t, u

)∣∣+ 2
∣∣f ∗

x (u)�(x) − f ∗
x′(u)�

(
x′)∣∣.

Let us now show the α-smooth Hölder property of T1, the proof for the other Ti ’s being com-
pletely similar. For all (x,x′) ∈ R

d ×R
d

∣∣T1(x, t, u) − T1
(
x′, t, u

)∣∣ ≤ ∣∣sin
[
u
(
a(x) − a

)]− sin
[
u
(
a
(
x′)− a

)]∣∣+ ∣∣π(x) − π
(
x′)∣∣

≤ |u|∣∣(a(x) − a
(
x′)]∣∣+ ∣∣π(x) − π

(
x′)∣∣

≤ M|u|∥∥x − x′∥∥α + M
∥∥x − x′∥∥α

.

On the other hand, we have∣∣f ∗
x (u)�(x) − f ∗

x′�
(
x′)∣∣ ≤ ∣∣�(x) − �

(
x′)∣∣+ ‖�‖∞

∣∣f ∗
x (u) − f ∗

x′(u)
∣∣,

≤ (
M + ‖�‖∞ϕ(u)

)∥∥x − x′∥∥α
,

which concludes the proof. �

Proof of Theorem 2. Our method is based on a consistency proof for mininum contrast esti-
mators by [10], pages 94–96. Let us consider a countable dense set D in �, then inft∈� Sn(t) =
inft∈D Sn(t), is a measurable random variable. We define in addition the random variable

W(n, ξ) = sup
{∣∣Sn(t) − Sn

(
t ′
)∣∣; (t, t ′) ∈ D2,

∥∥t − t ′
∥∥≤ ξ

}
,

and recall that S(θ0) = 0. Let us consider a non-empty open ball B∗ centered on θ0 such that S is
bounded from below by a positive real number 2ε on �\B∗. Let us consider a sequence (ξp)p≥1

decreasing to zero, and take p such that there exists a covering of � \ B∗ by a finite number κ

of balls (Bi)1≤i≤κ with centers ti ∈ �, i = 1, . . . , κ , and radius less than ξp . Then, for all t ∈ Bi ,
we have

Sn(t) ≥ Sn(ti) − ∣∣Sn(t) − Sn(ti)
∣∣≥ Sn(ti) − sup

t∈Bi

∣∣Sn(t) − Sn(ti)
∣∣,
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which leads to

inf
t∈�\B∗

Sn(t) ≥ inf
1≤i≤κ

Sn(ti) − W(n, ξp).

As a consequence, we have the following events inclusions

{θ̂n /∈ B∗} ⊆
{

inf
t∈�\B∗

Sn(t) < inf
t∈B∗

Sn(t) < Sn(θ0)
}

⊆
{

inf
1≤i≤κ

Sn(ti) − W(n, ξp) < Sn(θ0)
}

⊆ {
W(n, ξp) > ε

}∪
{

inf
1≤i≤κ

(
Sn(ti) − Sn(θ0)

)≤ ε
}
.

In addition, we have

P
(

inf
1≤i≤κ

(
Sn(ti) − Sn(θ0)

)≤ ε
)

≤ 1 −
κ∏

i=1

(
1 − [

P
(∣∣Sn(ti) − S(ti)

∣∣≥ ε
)+ P

(∣∣Sn(θ0) − S(θ0)
∣∣≥ ε

)])
,

where, according to Proposition 2, the last two terms in the right-hand side of the above inequality
vanish to zero if hdn → ∞ and h → 0 as n → ∞. To conclude we use Lemma 2 and notice that,
for all (t, t ′) ∈ �2, we have∣∣Sn(t) − Sn

(
t ′
)∣∣

≤ C‖t − t ′‖
n(n − 1)

∣∣∣∣∣
n∑

j �=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

∣∣∣∣∣ (6.3)

≤ C
∥∥t − t ′

∥∥�2(x0) + C
∥∥t − t ′

∥∥∣∣∣∣∣
n∑

j �=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n − 1)
− �2(x0)

∣∣∣∣∣.
We deduce from above that

P
(
W(n, ξp) > ε

) ≤ P

(
Cξp�2(x0) >

ε

2

)

+
(

2Cξp

ε

)2

E

[(
n∑

j �=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n − 1)
− �2(x0)

)2]
,

where the last term in the right-hand side is of order (nhd)−1 + h2α and tends to 0 by our as-
sumption on h. Since for p sufficiently large we have Cξp�2(x0) < ε/2 and thus P(Cξp�2(x0) >

ε/2) = 0, this concludes the proof of the consistency in probability of θ̂n when nhd → ∞ and
h → 0 as n → ∞. �
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Proof of Theorem 3. By a Taylor expansion of Ṡn around θ0, we have

0 = Ṡn(θ̂n) = Ṡn(θ0) + S̈n(θ̄n)(θ̂n − θ0),

where θ̄n lies in the line segment with extremities θ̂n and θ0.
Let us study the behaviour of

Ṡn(θ0) = −1

2n(n − 1)

∑
j �=k

∫
Żk(θ0, u,h)Zj (θ0, u,h)w(u)du,

where Żk denotes the gradient of Zk with respect to the first argument. Recall that θ0 = θ(x0) =
(π(x0), a(x0), b(x0)) and therefore

J (t, u,h) = E
[
Z1(t, u,h)

]= 2i

∫

(M(

θ(x), u
)
M(t,−u)

)
f ∗

x (u)�(x)Kh(x − x0) dx,

satisfies J (θ0, u,h) → 0 as h → 0. Indeed, the last integral may be equal to 0 if the set {x :
θ(x) = θ(x0)} has Lebesgue measure 0, or tends (by uniform continuity in x of the integrand) to

2i
(M(
θ(x0), u

)
M
(
θ(x0),−u

))
f ∗

x0
(u)�(x0) = 0.

Moreover,

Żk(t, u,h) = 
(Ṁ(t,−u)eiuYk
)
Kh(Xk − x0).

Denote J̇ (t, u,h) = E[Żk(t, u,h)] and observe that

J̇ (t, u,h) =
∫


(Ṁ(t,−u)M
(
θ(x), u

)
f ∗

x (u)
)
Kh(x − x0)�(x) dx.

Then, we decompose Ṡn(θ0) as follows

Ṡn(θ0)

= −1

2n(n − 1)

∑
j �=k

∫ (
Żk(θ0, u,h) − J̇ (θ0, u,h)

)(
Zj (θ0, u,h) − E

[
Zj (θ0, u,h)

])
w(u)du

(6.4)

− 1

2n

n∑
j=1

∫
J̇ (θ0, u,h)

(
Zj (θ0, u,h) − E

[
Zj (θ0, u,h)

])
w(u)du

:= −1

2

(
An(h) + Bn(h)

)
,

where terms in An(h) and Bn(h) are uncorrelated. On the one hand, we use a multivariate central
limit theorem for independent random variables taking values in a Hilbert space, following [25]
or [12], Theorem 4, page 396. This will give us the limit behavior of the term

Bn(h) = 1

n

n∑
j=1

Uj (h), Uj (h) :=
∫

J̇ (θ0, u,h)
(
Zj (θ0, u,h) − E

[
Zj (θ0, u,h)

])
w(u)du.
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The random variables Uj (h), j = 1, . . . , n are independent, centered, but their common law
depend on n via h. Our goal is to show that

nhd Var
(
Bn(h)

)=
n∑

j=1

Var

(√
hd

n
Uj (h)

)
→ �, as n → ∞ (6.5)

and that

n∑
j=1

E

[∥∥∥∥
√

hd

n
Uj (h)

∥∥∥∥4]
= h2d

n
E
[∥∥U1(h)

∥∥4]→ 0, as n → ∞. (6.6)

Indeed, (6.6) implies the Lindeberg’s condition in [25]:

n∑
j=1

E

[∥∥∥∥
√

hd

n
Uj (h)

∥∥∥∥∥
2

· I‖√hd/nUj (h)‖≥ε

]
→ 0, as n → ∞, for any ε > 0.

On the other hand, we prove that√
nhdAn(h) → 0, in probability, as n → ∞, (6.7)

stating that
√

nhdAn(h) negligible term and that, as a consequence, the limiting behavior of√
nhdṠn(θ0) is only driven by

√
nhdBn(h). This will end the proof of the theorem.

Let us prove (6.5) and (6.6). Note that nhd Var(Bn(h)) = hd Var(U1(h)) and that

Var
(
U1(h)

)
=
∫ ∫

J̇ (θ0, u1, h)J̇�(θ0, u2, h)Cov
(
Z1(θ0, u1, h),Z1(θ0, u2, h)

)
w(u1)w(u2) du1 du2.

Similarly to Proposition 2, by uniform continuity in x of the integrand in J̇ , we get

lim
h→0

J̇ (θ0, u,h) := J̇ (θ0, u).

See that ‖J̇ (θ0, u)‖ ≤ 2(1 + |u|)‖�‖∞ and that the latter upper bound is integrable with respect
to the measure w(u)du by assumption on w. It remains to study:

Cov
(
Z1(θ0, u1, h),Z1(θ0, u2, h)

)
= E

[
Z1(θ0, u1, h)Z1(θ0, u2, h)

]− E
[
Z1(θ0, u1, h)

]
E
[
Z1(θ0, u2, h)

]
.

From (6.1), we deduce that

hd
∣∣E[

Z1(θ0, u1, h)
]
E
[
Z1(θ0, u2, h)

]∣∣≤ hd

(
2C

∫
|K|

)2

→ 0,
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when h → 0 as n → ∞. We also have

hdE
[
Z1(θ0, u1, h)Z1(θ0, u2, h)

]
= 4 ·

∫ ∫

(eiu1yM(θ0,−u1)

)
(eiu2yM(θ0,−u2)
) 1

hd
K2

(
x − x0

h

)
g(y,x) dy dx

= 4 ·
∫


(eiu1yM(θ0,−u1)
) · 
(eiu2yM(θ0,−u2)

)
g(y,x0) dy

(∫
K2

)(
1 + o(1)

)
= 4 ·

∫

(eiu1yM(θ0,−u1)

) · 
(eiu2yM(θ0,−u2)
)
gx0(y) dy · �(x0)

(∫
K2

)(
1 + o(1)

)
,

as h → 0. See also that we can write

V (θ0, u1, u2) :=
∫ (

eiu1yM(θ0,−u1) − e−iu1yM(θ0, u1)
)

× (
eiu2yM(θ0,−u2) − e−iu2yM(θ0, u2)

)
gx0(y) dy

= M(θ0, u1 + u2)M(θ0,−u1)M(θ0,−u2)f
∗
x0

(u1 + u2)

− M(θ0, u1 − u2)M(θ0,−u1)M(θ0, u2)f
∗
x0

(u1 − u2)

− M(θ0,−u1 + u2)M(θ0, u1)M(θ0,−u2)f
∗
x0

(−u1 + u2)

+ M(θ0,−u1 − u2)M(θ0, u1)M(θ0, u2)f
∗
x0

(−u1 − u2)

and this is a bounded function with respect to u1 and u2. Therefore

hd Var
(
U1(h)

)→
∫ ∫

J̇ (θ0, u1)J̇
�(θ0, u2)V (θ0, u1, u2)w(u1)w(u2) du1 du2 =: �,

as h → 0. This proves (6.5).
Now, denote by v(k) the kth coordinate of a vector v and use Jensen inequality to see that

E
[∥∥U1(h)

∥∥4] ≤ 3
(
E
[(

U
(1)
1 (h)

)4]+ E
[(

U
(2)
1 (h)

)4]+ E
[(

U
(3)
1 (h)

)4])
≤ 3

3∑
k=1

E

[(∫
J̇ (k)(θ0, u,h)

(
Z1(θ0, u,h) − E

[
Z1(θ0, u,h)

])
w(u)du

)4]

≤ 3
3∑

k=1

∫ ∣∣J̇ (k)(θ0, u,h)
∣∣4E[∣∣Z1(θ0, u,h)

∣∣4]w(u)du.

We have |J̇ (k)(θ0, u,h)| ≤ 4(1 + |u|)(∫ |K|)‖�‖∞ by Lemma 1 and

E
[∣∣Z1(θ0, u,h)

∣∣4] =
∫ ∫

4
∣∣
(eiuyM(θ0,−u)

)∣∣4 1

h4d
K4

(
x − x0

h

)
g(y,x) dy dx

≤ 4

h3d

∫
1

hd
K4

(
x − x0

h

)
�(x) dx ≤ O(1)

h3d

(∫
K4

)
‖�‖∞,
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as h → 0. Therefore,

h2d

n
E
[∥∥U1(h)

∥∥4]≤ O(1)

nhd

∫
|K| ·

∫
K4 ·

∫ (
1 + |u|)4

w(u)du = o(1),

as n → ∞ and h → 0 such that nhd → ∞. This proves (6.6).
To prove (6.7), we notice that An(h) defined in (6.4) can be treated similarly to T1 in (6.2). By

this remark, we easily prove that Var(An) = o((nhd)−1) which insure the wanted result.
Let us prove that

S̈n(θn)−→I(θ0), in probability, as n → ∞,

where I = I(θ0) = − 1
2

∫
J̇ (θ0, u)J̇�(θ0, u)w(u)du, and J̇ (θ0, u) is defined in (3.1). We start by

writing the triangular inequality∥∥S̈n(θn) − I
∥∥≤ ∥∥S̈n(θn) − S̈n(θ0)

∥∥+ ∥∥S̈n(θ0) − E
(
S̈n(θ0)

)∥∥+ ∥∥E(
S̈n(θ0)

)− I
∥∥.

Then using upper bounds similar to (6.3) slighly adapted to S̈n instead of Sn and the convergence
in probability of θ̂n towards θ0 established in Theorem 2, we have that ‖S̈n(θn) − S̈n(θ0)‖ → 0
in probability as n → ∞. By writing

E
(
S̈n(θ0)

) = −1

2

∫ (
J̈ (θ0, u,h)J (θ0, u,h) + J̇ (θ0, u,h)J̇ (θ0, u,h)�

)
w(u)du

and noticing, according to Bochner’s lemma, that J (θ0, u,h) → 0 and J̇ (θ0, u,h) → J̇ (θ0, u)

as h → 0, we have, according to the Lebesgue’s theorem, that E[S̈n(θ0)] tends to I as h → 0.
Finally, we decompose −2n(n − 1)(S̈n(θ0) − E[S̈n(θ0)]) =∑3

l=1(D1,l + D2,l) where

D1,1 =
∑
k �=j

∫ (
Z̈k(θ0, u,h) − J̈ (θ0, u,h)

)(
Zj (θ,u,h) − J (θ0, u,h)

)
w(u)du,

D1,2 = (n − 1)
∑

k

∫ (
Z̈k(θ0, u,h) − J̈ (θ0, u,h)

)
J (θ0, u,h)w(u)du,

D1,3 = (n − 1)
∑
j

∫
J̈ (θ0, u,h)

(
Zj (θ,u,h) − J (θ0, u,h)

)
w(u)du,

and

D2,1 =
∑
k �=j

∫ (
Żk(θ0, u,h) − J̇ (θ0, u,h)

)(
Żj (θ, u,h) − J̇ (θ0, u,h)

)�
w(u)du,

D2,2 = (n − 1)
∑

k

∫ (
Żk(θ0, u,h) − J̇ (θ0, u,h)

)
J (θ0, u,h)�w(u)du,

D2,3 = (n − 1)
∑
j

∫
J̇ (θ0, u,h)

(
Zj (θ,u,h) − J (θ0, u,h)

)�
w(u)du.
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Noticing that terms Di,3, i = 1,2, respectively Di,j,, i = 1,2 and j = 2,3, can be treated as T1
respectively T2 in the proof of Proposition 2, we obtain

Var
(
S̈n(θ0)

)= O

(
1

nhd

)
,

which concludes the proof. �
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