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We present two different approaches to stochastic integration in frictionless model free financial mathemat-
ics. The first one is in the spirit of Itô’s integral and based on a certain topology which is induced by the
outer measure corresponding to the minimal superhedging price. The second one is based on the controlled
rough path integral. We prove that every “typical price path” has a naturally associated Itô rough path, and
justify the application of the controlled rough path integral in finance by showing that it is the limit of
non-anticipating Riemann sums, a new result in itself. Compared to the first approach, rough paths have
the disadvantage of severely restricting the space of integrands, but the advantage of being a Banach space
theory.

Both approaches are based entirely on financial arguments and do not require any probabilistic structure.

Keywords: Föllmer integration; model uncertainty; rough path; stochastic integration; Vovk’s outer
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1. Introduction

In this paper, we use Vovk’s [40] game-theoretic approach to develop two different techniques
of stochastic integration in frictionless model free financial mathematics. A priori the integra-
tion problem is highly non-trivial in the model free context since we do not want to assume
any probabilistic, respectively, semimartingale structure. Therefore, we do not have access to Itô
integration and most known techniques completely break down. There are only two general solu-
tions to the integration problem in a non-probabilistic continuous time setting that we are aware
of. One was proposed by [15], who simply restrict themselves to trading strategies (integrands)
of bounded variation. While this already allows to solve many interesting problems, it is not a
very natural assumption to make in a frictionless market model. Indeed, in [15] a general duality
approach is developed for pricing path-dependent derivatives that are Lipschitz continuous in the
supremum norm, but so far their approach does not allow to treat derivatives depending on the
volatility.

Another interesting solution was proposed by [9] (using an idea which goes back to [31]).
They restrict the set of “possible price paths” to those admitting a quadratic variation. This allows
them to apply Föllmer’s pathwise Itô calculus [17] to define pathwise stochastic integrals of the
form

∫ ∇F(S)dS. In [31], that approach was used to derive prices for American and European
options under volatility uncertainty. In [9], the given data is a finite number of European call and
put prices and the derivative to be priced is a weighted variance swap. The restriction to the set
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of paths with quadratic variation is justified by referring to Vovk [40], who proved that “typical
price paths” (to be defined below) admit a quadratic variation.

In our first approach, we do not restrict the set of paths and work on the space � of d-
dimensional continuous paths (which represent all possible asset price trajectories). We follow
Vovk in introducing an outer measure on � which is defined as the pathwise minimal super-
hedging price (in a suitable sense), and therefore has a purely financial interpretation and does
not come from an artificially imposed probabilistic structure. Our first observation is that Vovk’s
outer measure allows us to define a topology on processes on �, and that the “natural Itô integral”
on step functions is in a certain sense continuous in that topology. This allows us to extend the
integral to càdlàg adapted integrands, and we call the resulting integral “model free Itô integral”.
We stress that the entire construction is based only on financial arguments.

Let us also stress that it is the continuity of our integral which is the most important aspect.
Without reference to any topology, the construction would certainly not be very useful, since
already in the classical probabilistic setting virtually all applications of the Itô integral (SDEs,
stochastic optimization, duality theory, . . . ) are based on the fact that it is a continuous operator.

This also motivates our second approach, which is more in the spirit of [9,15,31]. While in the
first approach we do have a continuous operator, it is only continuous with respect to a sequence
of pseudometrics and it seems impossible to find a Banach space structure that is compatible
with it. This is a pity since Banach space theory is one of the key tools in the classical theory of
financial mathematics, as emphasized, for example, in [13]. However, using the model free Itô
integral we are able to show that every “typical price path” has a natural Itô rough path associated
to it. Since in financial applications we can always restrict ourselves to typical price paths, this
observation opens the door for the application of the controlled rough path integral [21,32] in
model free finance. Controlled rough path integration has the advantage of being an entirely
linear Banach space theory which simultaneously extends:

• the Riemann–Stieltjes integral of S against functions of bounded variation which was used
by [15];

• the Young integral [43]: typical price paths have finite p-variation for every p > 2, and
therefore for every F of finite q-variation for 1 ≤ q < 2 (so that 1/p+1/q > 1), the integral∫

F dS is defined as limit of non-anticipating Riemann sums;
• Föllmer’s [17] pathwise Itô integral, which was used by [9,31]. That this last integral is a

special case of the controlled rough path integral is, to the best of our knowledge, proved
rigorously for the first time in this paper, although also [19] contains some observations in
that direction.

In other words, our second approach covers all previously known techniques of integration in
model free financial mathematics, while the first approach is much more general but at the price
of leaving the Banach space world.

There is only one pitfall: the rough path integral is usually defined as a limit of compensated
Riemann sums which have no obvious financial interpretation. This sabotages our entire philos-
ophy of only using financial arguments. That is why we show that under some weak condition
every rough path integral

∫
F dS is given as limit of non-anticipating Riemann sums that do not

need to be compensated – the first time that such a statement is shown for general rough path
integrals. Of course, this will not change anything in concrete applications, but it is of utmost im-
portance from a philosophical point of view. Indeed, the justification for using the Itô integral in
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classical financial mathematics is crucially based on the fact that it is the limit of non-anticipating
Riemann sums, even if in “every day applications” one never makes reference to that; see, for
example, the discussion in [31].

Plan of the paper. Below we present a very incomplete list of solutions to the stochastic inte-
gration problem under model uncertainty and in a discrete time model free context (both a priori
much simpler problems than the continuous time model free case), and we introduce some no-
tations and conventions that will be used throughout the paper. In Section 2, we briefly recall
Vovk’s game-theoretic approach to mathematical finance and introduce our outer measure. We
also construct a topology on processes which is induced by the outer measure. Section 3 is de-
voted to the construction of the model free Itô integral. Section 4 recalls some basic results from
rough path theory, and continues by constructing rough paths associated to typical price paths.
Here we also prove that the rough path integral is given as a limit of non-anticipating Riemann
sums. Furthermore, we compare Föllmer’s pathwise Itô integral with the rough path integral and
prove that the latter is an extension of the former. Appendix A recalls Vovk’s pathwise Hoeffding
inequality. In Appendix B, we show that a result of Davie which also allows to calculate rough
path integrals as limit of Riemann sums is a special case of our results in Section 4.

Stochastic integration under model uncertainty. The first works which studied the option pric-
ing problem under model uncertainty were [3] and [31], both considering the case of volatility
uncertainty. As described above, [31] is using Föllmer’s pathwise Itô integral. In [3] the problem
is reduced to the classical setting by deriving a “worst case” model for the volatility.

A powerful tool in financial mathematics under model uncertainty is Karandikar’s pathwise
construction of the Itô integral [5,24], which allows to construct the Itô integral of a càdlàg
integrand simultaneously under all semimartingale measures. The crucial point that makes the
construction useful is that the Itô integral is a continuous operator under every semimartingale
measure. While its pathwise definition would allow us to use the same construction also in a
model free setting, it is not even clear what the output should signify in that case (e.g., the
construction depends on a certain sequence of partitions and changing the sequence will change
the output). Certainly it is not obvious whether the Karandikar integral is continuous in any
topology once we dispose of semimartingale measures. A more general pathwise construction
of the Itô integral was given in [34], but it suffers from the same drawbacks with respect to
applications in model free finance.

A general approach to stochastic analysis under model uncertainty was put forward in [14],
and it is based on quasi sure analysis. This approach is extremely helpful when working under
model uncertainty, but it also does not allow us to define stochastic integrals in a model free
context.

In a related but slightly different direction, in [7] non-semimartingale models are studied
(which do not violate arbitrage assumptions if the set of admissible strategies is restricted). While
the authors work under one fixed probability measure, the fact that their price process is not a
semimartingale prevents them from using Itô integrals, a difficulty which is overcome by working
with the Russo–Vallois integral [37].

Of course all these technical problems disappear if we restrict ourselves to discrete time, and
indeed in that case [4] develop an essentially fully satisfactory duality theory for the pricing of
derivatives under model uncertainty.
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Notation and conventions. Throughout the paper, we fix T ∈ (0,∞) and we write � :=
C([0, T ],Rd) for the space of d-dimensional continuous paths. The coordinate process on
� is denoted by St (ω) = ω(t), t ∈ [0, T ]. For i ∈ {1, . . . , d}, we also write Si

t (ω) := ωi(t),
where ω = (ω1, . . . ,ωd). The filtration (Ft )t∈[0,T ] is defined as Ft := σ(Ss : s ≤ t), and we set
F := FT . Stopping times τ and the associated σ -algebras Fτ are defined as usual.

Unless explicitly stated otherwise, inequalities of the type Ft ≥ Gt , where F and G are pro-
cesses on �, are supposed to hold for all ω ∈ �, and not modulo null sets, as it is usually assumed
in stochastic analysis.

The indicator function of a set A is denoted by 1A.
A partition π of [0, T ] is a finite set of time points, π = {0 = t0 < t1 < · · · < tm = T }. Oc-

casionally, we will identify π with the set of intervals {[t0, t1], [t1, t2], . . . , [tm−1, tm]}, and write
expressions like

∑
[s,t]∈π .

For f : [0, T ] →Rn and t1, t2 ∈ [0, T ], denote ft1,t2 := f (t2)−f (t1) and define the p-variation
of f restricted to [s, t] ⊆ [0, T ] as

‖f ‖p-var,[s,t] := sup

{(
m−1∑
k=0

|ftk,tk+1 |p
)1/p

: s = t0 < · · · < tm = t,m ∈ N

}
, p > 0, (1)

(possibly taking the value +∞). We set ‖f ‖p-var := ‖f ‖p-var,[0,T ]. We write �T := {(s, t) : 0 ≤
s ≤ t ≤ T } for the simplex and define the p-variation of a function g:�T → Rn in the same
manner, replacing ftk,tk+1 in (1) by g(tk, tk+1).

For α > 0 and 
α� := max{z ∈ Z : z ≤ α}, the space Cα consists of those functions that are

α� times continuously differentiable, with (α − 
α�)-Hölder continuous partial derivatives of
order 
α� (and with continuous partial derivatives of order α in case α = 
α�). The space Cα

b

consists of those functions in Cα that are bounded, together with their partial derivatives, and we
define the norm ‖ · ‖Cα

b
by setting

‖f ‖Cα
b

:=

α�∑
k=0

∥∥Dkf
∥∥∞ + 1α>
α�

∥∥D
α�f
∥∥

α−
α�,

where ‖ · ‖β denotes the β-Hölder norm for β ∈ (0,1), and ‖ · ‖∞ denotes the supremum norm.
For x, y ∈ Rd , we write xy := ∑d

i=1 xiyi for the usual inner product. However, often we will
encounter terms of the form

∫
S dS or SsSs,t for s, t ∈ [0, T ], where we recall that S denotes the

coordinate process on �. Those expressions are to be understood as the matrix (
∫

Si dSj )1≤i,j≤d ,
and similarly for SsSs,t . The interpretation will be usually clear from the context, otherwise we
will make a remark to clarify things.

We use the notation a � b if there exists a constant c > 0, independent of the variables under
consideration, such that a ≤ c ·b, and we write a � b if a � b and b � a. If we want to emphasize
the dependence of c on the variable x, then we write a(x) �x b(x).

We make the convention that 0/0 := 0 · ∞ := 0, 1 · ∞ := ∞ and inf∅ := ∞.
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2. Superhedging and typical price paths

2.1. The outer measure and its basic properties

In a recent series of papers, Vovk [39–41] has introduced a model free, hedging based approach to
mathematical finance that uses arbitrage considerations to examine which properties are satisfied
by “typical price paths”. This is achieved with the help of an outer measure given by the cheapest
superhedging price.

Recall that T ∈ (0,∞) and � = C([0, T ],Rd) is the space of continuous paths, with coor-
dinate process S, natural filtration (Ft )t∈[0,T ], and F = FT . A process H :� × [0, T ] → Rd

is called a simple strategy if there exist stopping times 0 = τ0 < τ1 < · · · , and Fτn -measurable
bounded functions Fn:� → Rd , such that for every ω ∈ � we have τn(ω) = ∞ for all but finitely
many n, and such that

Ht(ω) =
∞∑

n=0

Fn(ω)1(τn(ω),τn+1(ω)](t).

In that case, the integral

(H · S)t (ω) :=
∞∑

n=0

Fn(ω)
(
Sτn+1∧t (ω) − Sτn∧t (ω)

) =
∞∑

n=0

Fn(ω)Sτn∧t,τn+1∧t (ω)

is well defined for all ω ∈ �, t ∈ [0, T ]. Here Fn(ω)Sτn∧t,τn+1∧t (ω) denotes the usual inner
product on Rd . For λ > 0, a simple strategy H is called λ-admissible if (H · S)t (ω) ≥ −λ for all
ω ∈ �, t ∈ [0, T ]. The set of λ-admissible simple strategies is denoted by Hλ.

Definition 2.1. The outer measure of A ⊆ � is defined as the cheapest superhedging price for
1A, that is

P(A) := inf
{
λ > 0 : ∃(

Hn
)
n∈N ⊆Hλ s.t. lim inf

n→∞
(
λ + (

Hn · S)
T
(ω)

) ≥ 1A(ω) ∀ω ∈ �
}
.

A set of paths A ⊆ � is called a null set if it has outer measure zero.

The term outer measure will be justified by Lemma 2.3 below. Our definition of P is very
similar to the one used by Vovk [40], but not quite the same. For a discussion, see Section 2.3
below.

By definition, every Itô stochastic integral is the limit of stochastic integrals against simple
strategies. Therefore, our definition of the cheapest superhedging price is essentially the same as
in the classical setting, with one important difference: we require superhedging for all ω ∈ �,
and not just almost surely.

Remark 2.2 ([40], page 564). An equivalent definition of P would be

P̃ (A) := inf
{
λ > 0 : ∃(

Hn
)
n∈N ⊆Hλ s.t. lim inf

n→∞ sup
t∈[0,T ]

(
λ + (

Hn · S)
t
(ω)

) ≥ 1A(ω) ∀ω ∈ �
}
.
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Clearly, P̃ ≤ P . To see the opposite inequality, let P̃ (A) < λ. Let (Hn)n∈N ⊂ Hλ be a se-
quence of simple strategies such that lim infn→∞ supt∈[0,T ](λ + (Hn · S)t ) ≥ 1A, and let ε > 0.
Define τn := inf{t ∈ [0, T ] : λ + ε + (Hn · S)t ≥ 1}. Then the stopped strategy Gn

t (ω) :=
Hn

t (ω)1[0,τn(ω))(t) is in Hλ ⊆Hλ+ε and

lim inf
n→∞

(
λ + ε + (

Gn · S)
T
(ω)

) ≥ lim inf
n→∞ 1{λ+ε+supt∈[0,T ](Hn·S)t≥1}(ω) ≥ 1A(ω).

Therefore P (A) ≤ λ + ε, and since ε > 0 was arbitrary P ≤ P̃ , and thus P = P̃ .

Lemma 2.3 ([40], Lemma 4.1). P is in fact an outer measure, that is, a non-negative function
defined on the subsets of � such that

– P(∅) = 0;
– P(A) ≤ P (B) if A ⊆ B;
– if (An)n∈N is a sequence of subsets of �, then P(

⋃
n An) ≤ ∑

n P (An).

Proof. Monotonicity and P(∅) = 0 are obvious. So let (An) be a sequence of subsets of �.
Let ε > 0, n ∈ N, and let (Hn,m)m∈N be a sequence of (P (An) + ε2−n−1)-admissible simple
strategies such that lim infm→∞(P (An) + ε2−n−1 + (Hn,m · S)T ) ≥ 1An . Define for m ∈ N the
(
∑

n P (An) + ε)-admissible simple strategy Gm := ∑m
n=0 Hn,m. Then by Fatou’s lemma

lim inf
m→∞

( ∞∑
n=0

P(An) + ε + (
Gm · S)

T

)
≥

k∑
n=0

(
P(An) + ε2−n−1 + lim inf

m→∞
(
Hn,m · S)

T

)
≥ 1⋃k

n=0 An

for all k ∈ N. Since the left-hand side does not depend on k, we can replace 1⋃k
n=0 An

by 1⋃
n An

and the proof is complete. �

Maybe the most important property of P is that there exists an arbitrage interpretation for sets
with outer measure zero.

Lemma 2.4. A set A ⊆ � is a null set if and only if there exists a sequence of 1-admissible
simple strategies (Hn)n ⊂H1 such that

lim inf
n→∞

(
1 + (

Hn · S)
T
(ω)

) ≥ ∞ · 1A(ω), (2)

where we use the convention 0 · ∞ = 0 and 1 · ∞ := ∞.

Proof. If such a sequence exists, then we can scale it down by an arbitrary factor ε > 0 to obtain
a sequence of strategies in Hε that superhedge 1A, and therefore P(A) = 0.

If conversely P(A) = 0, then for every n ∈ N there exists a sequence of simple strategies
(Hn,m)m∈N ⊂H2−n−1 such that 2−n−1 + lim infm→∞(Hn,m · ω)T ≥ 1A(ω) for all ω ∈ �. Define
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Gm := ∑m
n=0 Hn,m, so that Gm ∈H1. For every k ∈ N, we obtain

lim inf
m→∞

(
1 + (

Gm · S)
T

) ≥
k∑

n=0

(
2−n−1 + lim inf

m→∞
(
Hn,m · S)

T

)
≥ (k + 1)1A.

Since the left-hand side does not depend on k, the sequence (Gm) satisfies (2). �

In other words, if a set A has outer measure 0, then we can make infinite profit by investing in
the paths from A, without ever risking to lose more than the initial capital 1.

This motivates the following definition.

Definition 2.5. We say that a property (P) holds for typical price paths if the set A where (P) is
violated is a null set.

The basic idea of Vovk, which we shall adopt in the following, is that we only need to concen-
trate on typical price paths. Indeed, “non-typical price paths” can be excluded since they are in a
certain sense “too good to be true”: they would allow investors to realize infinite profit while at
the same time taking essentially no risk.

2.2. Arbitrage notions and link to classical mathematical finance

Before we continue, let us discuss different notions of arbitrage and link our outer measure to
classical mathematical finance. We start by observing that P is an outer measure which simulta-
neously dominates all local martingale measures on �.

Propostion 2.6 ([40], Lemma 6.3). Let P be a probability measure on (�,F), such that the
coordinate process S is a P-local martingale, and let A ∈F . Then P(A) ≤ P(A).

Proof. Let λ > 0 and let (Hn)n∈N ⊆Hλ be such that lim infn(λ + (Hn · S)T ) ≥ 1A. Then

P(A) ≤ EP

[
lim inf

n

(
λ + (

Hn · S)
T

)] ≤ lim inf
n

EP

[
λ + (

Hn · S)
T

] ≤ λ,

where in the last step we used that λ + (Hn · S) is a non-negative P-local martingale and thus a
P-supermartingale. �

This already indicates that P -null sets are quite degenerate, in the sense that they are null sets
under all local martingale measures. However, if that was the only reason for our definition of
typical price paths, then a definition based on model free arbitrage opportunities would be equally
valid. A map X:� → [0,∞) is a model free arbitrage opportunity if X is not identically 0 and
if there exists c > 0 and a sequence (Hn) ⊆ Hc such that lim infn→∞(Hn · S)T (ω) = X(ω) for
all ω ∈ �. See [1,10] where (a similar) definition is used in the discrete time setting.

It might then appear more natural to say that a property holds for typical price paths if the indi-
cator function of its complement is a model free arbitrage opportunity, rather than working with
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Definition 2.5. This “arbitrage definition” would also imply that any property which holds for
typical price paths is almost surely satisfied under every local martingale measure. Nonetheless,
we decidedly claim that our definition is “the correct one”. First of all, the arbitrage definition
would make our life much more difficult since it seems not very easy to work with. But of course
this is only a convenience and cannot serve as justification of our approach. Instead, we argue by
relating the two notions to classical mathematical finance.

For that purpose, recall the fundamental theorem of asset pricing [11]: If P is a probability
measure on (�,F) under which S is a semimartingale, then there exists an equivalent measure
Q such that S is a Q-local martingale if and only if S admits no free lunch with vanishing risk
(NFLVR). But (NFLVR) is equivalent to the two conditions no arbitrage (NA) (intuitively: no
profit without risk) and no arbitrage opportunities of the first kind (NA1) (intuitively: no very
large profit with a small risk). The (NA) property holds if for every c > 0 and every sequence
(Hn) ⊆ Hc for which limn→∞(Hn · S)T (ω) exists for all ω we have P(limn→∞(Hn · S)T <

0) > 0 or P(limn→∞(Hn · S)T = 0) = 1. The (NA1) property holds if {1 + (H · S)T : H ∈ H1}
is bounded in P-probability, that is, if

lim
c→∞ sup

H∈H1

P
(
1 + (H · S)T ≥ c

) = 0.

Strictly speaking this is (NA1) with simple strategies, but as observed by [26] (NA1) and (NA1)
with simple strategies are equivalent; see also [2,23].

It turns out that the arbitrage definition of typical price paths corresponds to (NA), while our
definition corresponds to (NA1).

Propostion 2.7. Let A ∈F be a null set, and let P be a probability measure on (�,F) such that
the coordinate process satisfies (NA1). Then P(A) = 0.

Proof. Let (Hn)n∈N ⊆H1 be such that 1 + lim infn(Hn · S)T ≥ ∞ · 1A. Then for every c > 0

P(A) = P

(
A ∩

{
lim inf
n→∞

(
Hn · S)

T
> c

})
≤ sup

H∈H1

P
({

(H · S)T > c
})

.

By assumption, the right-hand side converges to 0 as c → ∞ and thus P(A) = 0. �

Remark 2.8. Proposition 2.7 is actually a consequence of Proposition 2.6, because if S satis-
fies (NA1) under P, then there exists a dominating measure Q � P, such that S is a Q-local
martingale. See [36] for the case of continuous S, and [23] for the general case.

The crucial point is that (NA1) is the essential property which every sensible market model
has to satisfy, whereas (NA) is nice to have but not strictly necessary. Indeed, (NA1) is equivalent
to the existence of an unbounded utility function such that the maximum expected utility is finite
[23,25]. (NA) is what is needed in addition to (NA1) in order to obtain equivalent local martingale
measures [11]. But there are perfectly viable models which violate (NA), for example, the three
dimensional Bessel process [12,25]. By working with the arbitrage definition of typical price
paths, we would in a certain sense ignore these models.
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2.3. Relation to Vovk’s outer measure

Our definition of the outer measure P is not exactly the same as Vovk’s [40]. We find our defini-
tion more intuitive and it also seems to be easier to work with. However, since we rely on some
of the results established by Vovk, let us compare the two notions.

For λ > 0, Vovk defines the set of processes

Sλ :=
{ ∞∑

k=0

Hk : Hk ∈Hλk
, λk > 0,

∞∑
k=0

λk = λ

}
.

For every G = ∑
k≥0 Hk ∈ Sλ, every ω ∈ � and every t ∈ [0, T ], the integral

(G · S)t (ω) :=
∑
k≥0

(
Hk · S)

t
(ω) =

∑
k≥0

(
λk + (

Hk · S)
t
(ω)

) − λ

is well defined and takes values in [−λ,∞]. Vovk then defines for A ⊆ � the cheapest super-
hedging price as

Q(A) := inf
{
λ > 0 : ∃G ∈ Sλ s.t. λ + (G · S)T ≥ 1A

}
.

This definition corresponds to the usual construction of an outer measure from an outer content
(i.e., an outer measure which is only finitely subadditive and not countably subadditive); see [16],
Chapter 1.4, or [38], Chapter 1.7. Here, the outer content is given by the cheapest superhedging
price using only simple strategies. It is easy to see that P is dominated by Q.

Lemma 2.9. Let A ⊆ �. Then P(A) ≤ Q(A).

Proof. Let G = ∑
k Hk , with Hk ∈ Hλk

and
∑

k λk = λ, and assume that λ + (G · S)T ≥ 1A.
Then (

∑n
k=0 Hk)n∈N defines a sequence of simple strategies in Hλ, such that

lim inf
n→∞

(
λ +

((
n∑

k=0

Hk

)
· S

)
T

)
= λ + (G · S)T ≥ 1A.

So if Q(A) < λ, then also P(A) ≤ λ, and therefore P(A) ≤ Q(A). �

Corollary 2.10. For every p > 2, the set Ap := {ω ∈ � : ‖S(ω)‖p-var = ∞} has outer measure
zero, that is P(Ap) = 0.

Proof. Theorem 1 of Vovk [39] states that Q(Ap) = 0, so P(Ap) = 0 by Lemma 2.9. �

It is a remarkable result of [40] that if � = C([0,∞),R) (i.e., if the asset price process is
one-dimensional), and if A ⊆ � is “invariant under time changes” and such that S0(ω) = 0 for
all ω ∈ A, then A ∈ F and Q(A) = P(A), where P denotes the Wiener measure. This can be
interpreted as a pathwise Dambis Dubins–Schwarz theorem.



Pathwise stochastic integrals for model free finance 2495

2.4. A topology on path-dependent functionals

It will be very useful to introduce a topology on functionals on �. For that purpose let us identify
X,Y :� → R if X = Y for typical price paths. Clearly this defines an equivalence relation, and
we write L0 for the space of equivalence classes. We then introduce the analog of convergence
in probability in our context: (Xn) converges in outer measure to X if

lim
n→∞P

(|Xn − X| > ε
) = 0 for all ε > 0.

We follow [40] in defining an expectation operator. If X:� → [0,∞], then

E[X] := inf
{
λ > 0 : ∃(

Hn
)
n∈N ⊆Hλ s.t. lim inf

n→∞
(
λ + (

Hn · S)
T
(ω)

) ≥ X(ω) ∀ω ∈ �
}
.

In particular, P(A) = E[1A]. The expectation E is countably subadditive, monotone, and posi-
tively homogeneous. It is an easy exercise to verify that

d(X,Y ) := E
[|X − Y | ∧ 1

]
defines a metric on L0.

Lemma 2.11. The distance d metrizes the convergence in outer measure. More precisely, a se-
quence (Xn) converges to X in outer measure if and only if limn d(Xn,X) = 0. Moreover, (L0, d)

is a complete metric space.

Proof. The arguments are the same as in the classical setting. Using subadditivity and mono-
tonicity of the expectation operator, we have

εP
(|Xn − X| ≥ ε

) ≤ E
[|Xn − X| ∧ 1

] ≤ P
(|Xn − X| > ε

) + ε

for all ε ∈ (0,1], showing that convergence in outer measure is equivalent to convergence with
respect to d .

As for completeness, let (Xn) be a Cauchy sequence with respect to d . Then there exists a
subsequence (Xnk

) such that d(Xnk
,Xnk+1) ≤ 2−k for all k, so that

E

[∑
k

(|Xnk
− Xnk+1 | ∧ 1

)] ≤
∑

k

E
[|Xnk

− Xnk+1 | ∧ 1
] =

∑
k

d(Xnk
,Xnk+1) < ∞,

which means that (Xnk
) converges for typical price paths. Define X := lim infk Xnk

. Then we
have for all n and k

d(Xn,X) ≤ d(Xn,Xnk
) + d(Xnk

,X) ≤ d(Xn,Xnk
) +

∑
�≥k

d(Xn�
,Xn�+1) ≤ d(Xn,Xnk

) + 2−k.

Choosing n and k large, we see that d(Xn,X) tends to 0. �
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3. Model free Itô integration

The present section is devoted to the construction of a model free Itô integral. The main ingredient
is a (weak) type of model free Itô isometry, which allows us to estimate the integral against a step
function in terms of the amplitude of the step function and the quadratic variation of the price
path. Using the topology introduced in Section 2.4, it is then easy to extend the integral to càdlàg
integrands by a continuity argument.

Since we are in an unusual setting, let us spell out the following standard definitions.

Definition 3.1. A process F :� × [0, T ] → Rd is called adapted if the random variable ω �→
Ft (ω) is Ft -measurable for all t ∈ [0, T ].

The process F is said to be càdlàg if the sample path t �→ Ft (ω) is càdlàg for all ω ∈ �.

To prove our weak Itô isometry, we will need an appropriate sequence of stopping times: Let
n ∈ N. For each i = 1, . . . , d define inductively

σ
n,i
0 := 0, σ

n,i
k+1 := inf

{
t ≥ σ

n,i
k : ∣∣Si

t − Si

σ
n,i
k

∣∣ ≥ 2−n
}
, k ∈ N.

Since we are working with continuous paths and we are considering entrance times into closed
sets, the maps (σ n,i) are indeed stopping times, despite the fact that (Ft ) is neither complete nor
right-continuous. Denote πn,i := {σn,i

k : k ∈ N}. To obtain an increasing sequence of partitions,
we take the union of the (πn,i), that is we define σn

0 := 0 and then

σn
k+1(ω) := min

{
t > σn

k (ω) : t ∈
d⋃

i=1

πn,i(ω)

}
, k ∈N, (3)

and we write πn := {σn
k : k ∈N} for the corresponding partition.

Lemma 3.2 ([41], Theorem 4.1). For typical price paths ω ∈ �, the quadratic variation along
(πn,i(ω))n∈N exists. That is,

V
n,i
t (ω) :=

∞∑
k=0

(
Si

σ
n,i
k+1∧t

(ω) − Si

σ
n,i
k ∧t

(ω)
)2

, t ∈ [0, T ], n ∈ N,

converges uniformly to a function 〈Si〉(ω) ∈ C([0, T ],R) for all i ∈ {1, . . . , d}.

For later reference, let us estimate Nn
t := max{k ∈ N : σn

k ≤ t and σn
k �= 0}, the number of

stopping times σn
k �= 0 in πn with values in [0, t]:

Lemma 3.3. For all ω ∈ �, n ∈N, and t ∈ [0, T ], we have

2−2nNn
t (ω) ≤

d∑
i=1

V
n,i
t (ω) =: V n

t (ω).
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Proof. For i ∈ {1, . . . , d} define N
n,i
t := max{k ∈ N : σn,i

k ≤ t and σ
n,i
k �= 0}. Since Si is contin-

uous, we have |Si

σ
n,i
k+1

− Si

σ
n,i
k

| = 2−n as long as σ
n,i
k+1 ≤ T . Therefore, we obtain

Nn
t (ω) ≤

d∑
i=1

N
n,i
t (ω) =

d∑
i=1

N
n,i
t (ω)−1∑
k=0

1

2−2n

(
S

σ
n,i
k+1

(ω) − S
σ

n,i
k

(ω)
)2 ≤ 22n

d∑
i=1

V
n,i
t (ω).

�

We will start by constructing the integral against step functions, which are defined similarly
as simple strategies, except possibly unbounded: A process F :� × [0, T ] → Rd is called a step
function if there exist stopping times 0 = τ0 < τ1 < · · · , and Fτn -measurable functions Fn:� →
Rd , such that for every ω ∈ � we have τn(ω) = ∞ for all but finitely many n, and such that

Ft(ω) =
∞∑

n=0

Fn(ω)1[τn(ω),τn+1(ω))(t).

For notational convenience, we are now considering the interval [τn(ω), τn+1(ω)) which is closed
on the left-hand side. This allows us define the integral

(F · S)t :=
∞∑

n=0

FnSτn∧t,τn+1∧t =
∞∑

n=0

FτnSτn∧t,τn+1∧t , t ∈ [0, T ].

The following lemma will be the main building block in the construction of our integral.

Lemma 3.4 (Model free version of Itô’s isometry). Let F be a step function. Then for all
a, b, c > 0 we have

P
({∥∥(F · S)

∥∥∞ ≥ ab
√

c
} ∩ {‖F‖∞ ≤ a

} ∩ {〈S〉T ≤ c
}) ≤ 2 exp

(−b2/(2d)
)
,

where the set {〈S〉T ≤ c} should be read as {〈S〉T = limn V n
T exists and satisfies 〈S〉T ≤ c}.

Proof. Assume Ft = ∑∞
n=0 Fn1[τn,τn+1)(t) and set τa := inf{t > 0 : |Ft | ≥ a}. Let n ∈ N and

define ρn
0 := 0 and then for k ∈N

ρn
k+1 := min

{
t > ρn

k : t ∈ πn ∪ {τm : m ∈ N}},
where we recall that πn = {σn

k : k ∈ N} is the nth generation of the dyadic partition generated
by S. For t ∈ [0, T ], we have (F · S)τa∧t = ∑

k Fρn
k
Sτa∧ρn

k ∧t,τa∧ρn
k+1∧t , and by the definition of

πn(ω) and τa we get

sup
t∈[0,T ]

∣∣Fρn
k
Sτa∧ρn

k ∧t,τa∧ρn
k+1∧t

∣∣ ≤ a
√

d2−n.

Hence, the pathwise Hoeffding inequality, Lemma A.1 in Appendix A, yields for every λ ∈ R

the existence of a 1-admissible simple strategy Hλ,n ∈ H1 such that

1 + (
Hλ,n · S)

t
≥ exp

(
λ(F · S)τa∧t − λ2

2

(
N

(ρn)
t + 1

)
2−2na2d

)
=: Eλ,n

τa∧t
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for all t ∈ [0, T ], where

N
(ρn)
t := max

{
k : ρn

k ≤ t
} ≤ Nn

t + N
(τ)
t := Nn

t + max{k : τk ≤ t}.
By Lemma 3.3, we have Nn

t ≤ 22nV n
t , so that

Eλ,n
τa∧t ≥ exp

(
λ(F · S)t − λ2

2
V n

T a2d − λ2

2

(
N

(τ)
T + 1

)
2−2na2d

)
.

If now ‖(F · S)‖∞ ≥ ab
√

c, ‖F(ω)‖∞ ≤ a and 〈S〉T ≤ c, then

lim inf
n→∞ sup

t∈[0,T ]
Eλ,n

t + E−λ,n
t

2
≥ 1

2
exp

(
λab

√
c − λ2

2
ca2d

)
.

The argument inside the exponential is maximized for λ = b/(a
√

cd), in which case we obtain
1/2 exp(b2/(2d)). The statement now follows from Remark 2.2. �

Of course, we did not actually establish an isometry but only an upper bound for the integral.
But this estimate is the key ingredient which allows us to extend the model free Itô integral to
more general integrands, and it is this analogy to the classical setting that the terminology “model
free version of Itô’s isometry” alludes to.

Let us extend the topology of Section 2.4 to processes: we identify X,Y :� × [0, T ] → Rm if
for typical price paths we have Xt = Yt for all t ∈ [0, T ], and we write L0([0, T ],Rm) for the
resulting space of equivalence classes which we equip with the distance

d∞(X,Y ) := E
[‖X − Y‖∞ ∧ 1

]
.

Ideally, we would like the stochastic integral on step functions to be continuous with respect
to d∞. However, using Proposition 2.6 it is easy to see that P(‖((1/n) · S)‖∞ > ε) = 1 for all
n ∈ N and ε > 0. This is why we also introduce for c > 0 the pseudometric

dc(X,Y ) := E
[(‖X − Y‖∞ ∧ 1

)
1〈S〉T ≤c

] ≤ d∞(X,Y ),

and then

dloc(X,Y ) :=
∞∑

n=1

2−nd2n(X,Y ) ≤ d∞(X,Y ).

The distance dloc is somewhat analogous to the distance used to metrize the topology of uniform
convergence on compacts, except that we do not localize in time but instead we control the size
of the quadratic variation. For step functions F and G, we get from Lemma 3.4

dc

(
(F · S), (G · S)

) ≤ P
({∥∥(

(F − G) · S)∥∥∞ ≥ ab
√

c
} ∩ {‖F − G‖∞ ≤ a

} ∩ {〈S〉T ≤ c
})

+ dc(F,G)

a
+ ab

√
c

≤ 2 exp

(
− b2

2d

)
+ dc(F,G)

a
+ ab

√
c
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whenever a, b > 0. Setting a := √
dc(F,G) and b := √

d| loga|, we deduce that

dc

(
(F · S), (G · S)

)
� (1 + √

c)dc(F,G)1/2−ε (4)

for all ε > 0, and in particular

dloc
(
(F · S), (G · S)

)
�

∞∑
n=1

2−n/2d2n(F,G)1/2−ε � d∞(F,G)1/2−ε.

Theorem 3.5. Let F be an adapted, càdlàg process with values in Rd . Then there exists
∫

F dS ∈
L0([0, T ],R) such that for every sequence of step functions (F n) satisfying limn d∞(F n,F ) = 0
we have limn dloc((F

n · S),
∫

F dS) = 0. The integral process
∫

F dS is continuous for typical
price paths, and there exists a representative

∫
F dS which is adapted, although it may take the

values ±∞. We usually write
∫ t

0 Fs dSs := ∫
F dS(t), and we call

∫
F dS the model free Itô

integral of F with respect to S.
The map F �→ ∫

F dS is linear, satisfies

dloc

(∫
F dS,

∫
GdS

)
� d∞(F,G)1/2−ε

for all ε > 0, and the model free version of Itô’s isometry extends to this setting:

P

({∥∥∥∥∫
F dS

∥∥∥∥∞
≥ ab

√
c

}
∩ {‖F‖∞ ≤ a

} ∩ {〈S〉T ≤ c
}) ≤ 2 exp

(−b2/(2d)
)

for all a, b, c > 0.

Proof. Everything follows in a straightforward way from (4) in combination with Lemma 2.11.
We have to use the fact that F is adapted and càdlàg in order to approximate it uniformly by step
functions. �

Another simple consequence of our model free version of Itô’s isometry is a strengthened
version of Karandikar’s [24] pathwise Itô integral which works for all typical price paths and not
just quasi surely under the local martingale measures.

Corollary 3.6. In the setting of Theorem 3.5, let (Fm)m∈N be a sequence of step functions with
‖Fm(ω)−F(ω)‖∞ ≤ cm for all ω ∈ � and all m ∈N. Then for typical price paths ω there exists
a constant C(ω) > 0 such that∥∥∥∥(

Fm · S)
(ω) −

∫
F dS(ω)

∥∥∥∥∞
≤ C(ω)cm

√
logm (5)

for all m ∈ N. So, if cm = o((logm)−1/2), then for typical price paths (Fm · S) converges to∫
F dS.
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Proof. For c > 0 the model free Itô isometry gives

P

({∥∥∥∥(
Fm · S) −

∫
F dS

∥∥∥∥∞
≥ cm

√
4d logm

√
c

}
∩ {〈S〉T ≤ c

}) ≤ 1

m2
.

Since this is summable in m, the claim follows from Borel Cantelli (which only requires count-
able subadditivity and can thus be applied for the outer measure P ). �

Remark 3.7. The speed of convergence (5) is better than the one that can be obtained using the
arguments in [24], where the summability of (cm) is needed.

Remark 3.8. It would be desirable to extend the robust Itô integral obtained in Theorem 3.5
to general locally square integrable integrands, that is adapted processes H with measurable
trajectories and such that

∫ t

0 H 2
s (ω)d〈S〉s(ω) < ∞ for all t and for all ω which have a continuous

quadratic variation 〈S〉(ω) up to time t . The reason why our methods break down in this setting is
that our “model free version of Itô’s isometry” requires as input a uniform bound on the integrand.
However, even with the restriction to càdlàg integrands our robust Itô integral is suitable for all
(financial) applications which use Karandikar’s pathwise stochastic integral [24], with the great
advantage of being a “model free” and not just a “quasi sure” object.

Similarly, it would be nice to have an extension of Theorem 3.5 to càdlàg integrators. Unfor-
tunately, neither the outer measure P nor Vovk’s outer measure Q have an obvious reasonable
extension to the space D([0, T ],Rd) of all càdlàg functions. The problem is that on this space
there are no non-zero admissible strategies. As initiated in [41], it is possible to consider P or
Q on the subspace of all paths in D([0, T ],Rd) whose jump size at time t > 0 is bounded by a
function of their supremum up to time t . However, it would be necessary to develop new tech-
niques to obtain Theorem 3.5 in this setting since, for instance, the pathwise Hoeffding inequality
(Lemma A.1) would not be applicable anymore.

4. Rough path integration for typical price paths

Our second approach to model free stochastic integration is based on the rough path integral,
which has the advantage of being a continuous linear operator between Banach spaces. The
disadvantage is that we have to restrict the set of integrands to those “locally looking like S”,
modulo a smoother remainder. Our two main results in this section are that every typical price
path has a naturally associated Itô rough path, and that the rough path integral can be constructed
as limit of Riemann sums.

Let us start by recalling the basic definitions and results of rough path theory.

4.1. The Lyons–Gubinelli rough path integral

Here we follow more or less the lecture notes [19], to which we refer for a gentle introduction
to rough paths. More advanced monographs are [20,29,33]. The main difference to [19] in the
derivation below is that we use p-variation to describe the regularity, and not Hölder continuity,
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because it is not true that all typical price paths are Hölder continuous. Also, we make an effort to
give reasonably sharp results, whereas in [19] the focus lies more on the pedagogical presentation
of the material. We stress that in this subsection we are merely collecting classical results.

Definition 4.1. A control function is a continuous map c:�T → [0,∞) with c(t, t) = 0 for all
t ∈ [0, T ] and such that c(s, u) + c(u, t) ≤ c(s, t) for all 0 ≤ s ≤ u ≤ t ≤ T .

Observe that if f : [0, T ] → Rd satisfies |fs,t |p ≤ c(s, t) for all (s, t) ∈ �T , then the p-
variation of f is bounded from above by c(0, T )1/p .

Definition 4.2. Let p ∈ (2,3). A p-rough path is a map S = (S,A):�T → Rd ×Rd×d such that
Chen’s relation

Si(s, t) = Si(s, u) + Si(u, t) and Ai,j (s, t) = Ai,j (s, u) + Ai,j (u, t) + Si(s, u)Sj (u, t)

holds for all 1 ≤ i, j ≤ d and 0 ≤ s ≤ u ≤ t ≤ T and such that there exists a control function c

with ∣∣S(s, t)
∣∣p + ∣∣A(s, t)

∣∣p/2 ≤ c(s, t)

(in other words S has finite p-variation and A has finite p/2-variation). In that case, we call A

the area of S.

Remark 4.3. Chen’s relation simply states that S is the increment of a function, that is S(s, t) =
S(0, t)−S(0, s) = Ss,t for St := S(0, t), and that for all i, j there exists a function f i,j : [0, T ] →
R such that Ai,j (s, t) = f i,j (t)−f i,j (s)−Si

sS
j
s,t . Indeed, it suffices to set f i,j (t) := Ai,j (0, t)+

Si
0S

j

0,t .

Remark 4.4. The (strictly speaking incorrect) name “area” stems from the fact that if S: [0, T ] →
R2 is a two-dimensional smooth function and if

Ai,j (s, t) =
∫ t

s

∫ r2

s

dSi
r1

dS
j
r2 =

∫ t

s

Si
s,r2

dS
j
r2,

then the antisymmetric part of A(s, t) corresponds to the algebraic area enclosed by the curve
(Sr)r∈[s,t]. It is a deep insight of Lyons [32], proving a conjecture of Föllmer, that the area
is exactly the additional information which is needed to solve differential equations driven by
S in a pathwise continuous manner, and to construct stochastic integrals as continuous maps.
Actually, [32] solves a much more general problem and proves that if the driving signal is of
finite p-variation for some p > 1, then it has to be equipped with the iterated integrals up to
order 
p�−1 to obtain a continuous integral map. The for us relevant case p ∈ (2,3) was already
treated in [30].

Example 4.5. If S is a continuous semimartingale and if we set S(s, t) := Ss,t as well as

Ai,j (s, t) :=
∫ t

s

∫ r2

s

dSi
r1

dS
j
r2 =

∫ t

s

Si
s,r2

dS
j
r2,
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where the integral can be understood either in the Itô or in the Stratonovich sense, then almost
surely S = (S,A) is a p-rough path for all p ∈ (2,3). This is shown in [6], and we will give a
simplified model free proof below (indeed we will show that every typical price path together
with its model free Itô integral is a p-rough path for all p ∈ (2,3), from where the statement
about continuous semimartingales easily follows).

From now on, we fix p ∈ (2,3) and we assume that S is a p-rough path. Gubinelli [21] ob-
served that for every rough path there is a naturally associated Banach space of integrands, the
space of controlled paths. Heuristically, a path F is controlled by S, if it locally “looks like S”,
modulo a smooth remainder. The precise definition is the following.

Definition 4.6. Let p ∈ (2,3) and q > 0 be such that 2/p+1/q > 1. Let S = (S,A) be a p-rough
path and let F : [0, T ] → Rn and F ′: [0, T ] → Rn×d . We say that the pair (F,F ′) is controlled
by S if the derivative F ′ has finite q-variation, and the remainder RF :�T → Rn, defined by

RF (s, t) := Fs,t − F ′
sSs,t ,

has finite r-variation for 1/r = 1/p + 1/q . In this case, we write (F,F ′) ∈ C
q

S
= C

q

S
(Rn), and

define ∥∥(
F,F ′)∥∥

C q

S

:= ∥∥F ′∥∥
q-var + ‖RF ‖r-var.

Equipped with the norm |F0| + |F ′
0| + ‖(F,F ′)‖C q

S

, the space C
q

S
is a Banach space.

Naturally, the function F ′ should be interpreted as the derivative of F with respect to S. The
reason for considering couples (F,F ′) and not just functions F is that the regularity requirement
on the remainder RF usually does not determine F ′ uniquely for a given path F . For example, if
F and S both have finite r-variation rather than just finite p-variation, then for every F ′ of finite
q-variation we have (F,F ′) ∈ C

q

S
.

Note that we do not require F or F ′ to be continuous. We will point out in Remark 4.10 below
why this does not pose any problem.

To gain a more “quantitative” feeling for the condition on q , let us assume for the moment
that we can choose p > 2 arbitrarily close to 2 (which is the case in the example of a continuous
semimartingale rough path). Then 2/p + 1/q > 1 as long as q > 0, so that the derivative F ′
may essentially be as irregular as we want. The remainder RF has to be of finite r-variation for
1/r = 1/p + 1/q , so in other words it should be of finite r-variation for some r < 2 and thus
slightly more regular than the sample path of a continuous local martingale.

Example 4.7. Let ε ∈ (0,1] be such that (2 + ε)/p > 1. Let ϕ ∈ C1+ε
b and define Fs := ϕ(Ss)

and F ′
s := ϕ′(Ss). Then (F,F ′) ∈ C

p/ε

S
: Clearly F ′ has finite p/ε-variation. For the remainder,

we have ∣∣RF (s, t)
∣∣p/(1+ε) = ∣∣ϕ(St ) − ϕ(Ss) − ϕ′(Ss)Ss,t

∣∣p/(1+ε) ≤ ‖ϕ‖
C1+ε

b
c(s, t),
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where c is a control function for S. As the image of the continuous path S is compact, it is not
actually necessary to assume that ϕ is bounded. We may always consider a C1+ε function ψ of
compact support, such that ψ agrees with ϕ on the image of S.

This example shows that in general RF (s, t) is not a path increment of the form RF (s, t) =
G(t) − G(s) for some function G defined on [0, T ], but really a function of two variables.

Example 4.8. Let G be a path of finite r-variation for some r with 1/p + 1/r > 1. Setting
(F,F ′) = (G,0), we obtain a controlled path in C

q

S
, where 1/q = 1/r − 1/p. In combination

with Theorem 4.9 below, this example shows in particular that the controlled rough path integral
extends the Young integral and the Riemann–Stieltjes integral.

The basic idea of rough path integration is that if we already know how to define
∫

S dS, and
if F looks like S on small scales, then we should be able to define

∫
F dS as well. The precise

result is given by the following theorem.

Theorem 4.9 (Theorem 4.9 in [19], see also [21], Theorem 1). Let p ∈ (2,3) and q > 0 be
such that 2/p + 1/q > 1. Let S = (S,A) be a p-rough path and let (F,F ′) ∈ C

q

S
. Then there

exists a unique function
∫

F dS ∈ C([0, T ],Rn) which satisfies∣∣∣∣∫ t

s

Fu dSu − FsSs,t − F ′
sA(s, t)

∣∣∣∣ � ‖S‖p-var,[s,t]‖RF ‖r-var,[s,t] + ‖A‖p/2-var,[s,t]
∥∥F ′∥∥

q-var,[s,t]

for all (s, t) ∈ �T . The integral is given as limit of the compensated Riemann sums∫ t

0
Fu dSu = lim

m→∞
∑

[s1,s2]∈πm

[
Fs1Ss1,s2 + F ′

s1
A(s1, s2)

]
, (6)

where (πm) is any sequence of partitions of [0, t] with mesh size going to 0.
The map (F,F ′) �→ (G,G′) := (

∫
Fu dSu,F ) is continuous from C

q

S
to C

p

S
and satisfies∥∥(

G,G′)∥∥
C p

S

� ‖F‖p-var + (∥∥F ′∥∥∞ + ∥∥F ′∥∥
q-var

)‖A‖p/2-var + ‖S‖p-var‖RF ‖r-var.

Remark 4.10. To the best of our knowledge, there is no publication in which the controlled
path approach to rough paths is formulated using p-variation regularity. The references on the
subject all work with Hölder continuity. But in the p-variation setting, all the proofs work ex-
actly as in the Hölder setting, and it is a simple exercise to translate the proof of Theorem 4.9
in [19] (which is based on Young’s maximal inequality which we will encounter below) to obtain
Theorem 4.9.

There is only one small pitfall: We did not require F or F ′ to be continuous. The rough path
integral for discontinuous functions is somewhat tricky, see [18,42]. But here we do not run
into any problems, because the integrand S = (S,A) is continuous. The construction based on
Young’s maximal inequality works as long as integrand and integrator have no common discon-
tinuities, see the theorem on page 264 of [43].
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If now ϕ ∈ C1+ε
b for some ε > 0, then using a Taylor expansion one can show that there exist

p > 2 and q > 0 with 2/p + 1/q > 0, such that (F,F ′) �→ (ϕ(F ),ϕ′(F )F ′) is a locally bounded
map from C

p

S
to C

q

S
. Combining this with the fact that the rough path integral is a bounded map

from C
q

S
to C

p

S
, it is not hard to prove the existence of solutions to the rough differential equation

Xt = x0 +
∫ t

0
ϕ(Xs)dSs, (7)

t ∈ [0, T ], where X ∈ C
p

S
,
∫

ϕ(Xs)dSs denotes the rough path integral, and S is a typical price
path. Similarly, if ϕ ∈ C2+ε

b , then the map (F,F ′) �→ (ϕ(F ),ϕ′(F )F ′) is locally Lipschitz con-
tinuous from C

p

S
to C

q

S
, and this yields the uniqueness of the solution to (7) – at least among the

functions in the Banach space C
p

S
. See Section 5.3 of [21] for details.

A remark is in order about the stringent regularity requirements on ϕ. In the classical Itô theory
of SDEs, the function ϕ is only required to be Lipschitz continuous. But to solve a Stratonovich
SDE, we need better regularity of ϕ. This is natural, because the Stratonovich SDE can be rewrit-
ten as an Itô SDE with a Stratonovich correction term: the equations

dXt = ϕ(Xt) ◦ dWt and

dXt = ϕ(Xt)dWt + 1
2ϕ′(Xt )ϕ(Xt )dt

are equivalent (where W is a standard Brownian motion, dWt denotes Itô integration, and ◦dWt

denotes Stratonovich integration). To solve the second equation, we need ϕ′ϕ to be Lipschitz con-
tinuous, which is always satisfied if ϕ ∈ C2

b . But rough path theory cannot distinguish between
Itô and Stratonovich integrals: If we define the area of W using Itô (resp., Stratonovich) integra-
tion, then the rough path solution of the equation will coincide with the Itô (resp., Stratonovich)
solution. So in the rough path setting, the function ϕ should satisfy at least the same conditions
as in the Stratonovich setting. The regularity requirements on ϕ are essentially sharp, see [8], but
the boundedness assumption can be relaxed, see [28]. See also Section 10.5 of [20] for a slight
relaxation of the regularity requirements in the Brownian case.

Of course, the most interesting result of rough path theory is that the solution to a rough
differential equation depends continuously on the driving signal. This is a consequence of the
following observation.

Propostion 4.11 (Proposition 9.1 of [19]). Let p ∈ (2,3) and q > 0 with 2/p + 1/q > 0. Let
S = (S,A) and S̃ = (S̃, Ã) be two p-rough paths, let (F,F ′) ∈ C

q

S
and (F̃ , F̃ ′) ∈ C

q

S̃
. Then for

every M > 0 there exists CM > 0 such that∥∥∥∥∫ ·

0
Fs dSs −

∫ ·

0
F̃s dS̃s

∥∥∥∥
p-var

≤ CM

(|F0 − F̃0| +
∣∣F ′

0 − F̃ ′
0

∣∣ + ∥∥F ′ − F̃ ′∥∥
q-var

+ ‖RF − R
F̃
‖r-var + ‖S − S̃‖p-var + ‖A − Ã‖p/2-var

)
,
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as long as

max
{∣∣F ′

0

∣∣ + ∥∥(
F,F ′)∥∥

C q

S

,
∣∣F̃ ′

0

∣∣ + ∥∥(
F̃ , F̃ ′)∥∥

C q

S̃

,‖S‖p-var,‖A‖p/2-var,‖S̃‖p-var,‖Ã‖p/2-var
}

≤ M.

In other words, the rough path integral depends on integrand and integrator in a locally Lip-
schitz continuous way, and therefore it is no surprise that the solutions to differential equations
driven by rough paths depend continuously on the signal.

4.2. Typical price paths as rough paths

Our second approach to stochastic integration in model free financial mathematics is based on
the rough path integral. Here we show that for every typical price path, the pair (S,A) is a p-
rough path for all p ∈ (2,3), where A corresponds to the model free Itô integral

∫
S dS which

we constructed in Section 3. We also show that many Riemann sum approximations to
∫

S dS

uniformly satisfy a certain coarse grained regularity condition, which we will use in the following
section to prove that in our setting rough path integrals can be calculated as limit of Riemann
sums (and not compensated Riemann sums as in Theorem 4.9). The main ingredient in the proofs
will be our speed of convergence (5).

Theorem 4.12. For (s, t) ∈ �T , ω ∈ �, and i, j ∈ {1, . . . , d} define

A
i,j
s,t (ω) :=

∫ t

s

Si
r dS

j
r (ω) − Si

s(ω)S
j
s,t (ω) :=

∫ t

0
Si

r dS
j
r (ω) −

∫ s

0
Si

r dS
j
r (ω) − Si

s(ω)S
j
s,t (ω),

where
∫

Si dSj is the integral constructed in Theorem 3.5. If p > 2, then for typical price paths
A = (Ai,j )1≤i,j≤d has finite p/2-variation, and in particular S = (S,A) is a p-rough path.

Proof. Define the dyadic stopping times (τn
k )n,k∈N by τn

0 := 0 and

τn
k+1 := inf

{
t ≥ τn

k : |St − Sτn
k
| = 2−n

}
,

and set Sn
t := ∑

k Sτn
k

1[τn
k ,τn

k+1)
(t), so that ‖Sn − S‖∞ ≤ 2−n. Accorcing to (5), for typical price

paths ω there exists C(ω) > 0 such that∥∥∥∥(
Sn · S)

(ω) −
∫

S dS(ω)

∥∥∥∥∞
≤ C(ω)2−n

√
logn.

Fix such a typical price path ω, which is also of finite q-variation for all q > 2 (recall from
Corollary 2.10 that this is satisfied by typical price paths). Let us show that for such ω, the
process A is of finite p/2-variation for all p > 2.
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We have for (s, t) ∈ �T , omitting the argument ω of the processes under consideration,

|As,t | ≤
∣∣∣∣∫ t

s

Sr dSr − (
Sn · S)

s,t

∣∣∣∣ + ∣∣(Sn · S)
s,t

− SsSs,t

∣∣
≤ C2−n

√
logn + ∣∣(Sn · S)

s,t
− SsSs,t

∣∣ �ε C2−n(1−ε) + ∣∣(Sn · S)
s,t

− SsSs,t

∣∣
for every n ∈ N, ε > 0. The second term on the right-hand side can be estimated, using an
argument based on Young’s maximal inequality (see [33], Theorem 1.16), by∣∣(Sn · S)

s,t
− SsSs,t

∣∣ � max
{
2−nc(s, t)1/q ,

(
#
{
k : τn

k ∈ [s, t]})1−2/q
c(s, t)2/q + c(s, t)2/q

}
, (8)

where c(s, t) is a control function with |Ss,t |q ≤ c(s, t) for all (s, t) ∈ �T . Indeed, if there exists
no k with τn

k ∈ [s, t], then |(Sn ·S)s,t −SsSs,t | ≤ 2−nc(s, t)1/q , using that |Ss,t | ≤ c(s, t)1/q . This
corresponds to the first term in the maximum in (8).

Otherwise, note that at the price of adding c(s, t)2/q to the right-hand side, we may suppose
that s = τn

k0
for some k0. Let now τn

k0
, . . . , τ n

k0+N−1 be those (τn
k )k which are in [s, t). Without loss

of generality we may suppose N ≥ 2, because otherwise (Sn · S)s,t = SsSs,t . Abusing notation,
we write τn

k0+N = t . The idea is now to successively delete points (τn
k0+�) from the partition, in

order to pass from (Sn ·S) to SsSs,t . By super-additivity of c, there must exist � ∈ {1, . . . ,N −1},
for which

c
(
τn
k0+�−1, τ

n
k0+�+1

) ≤ 2

N − 1
c(s, t).

Deleting τn
k0+� from the partition and subtracting the resulting integral from (Sn · S)s,t , we get

|Sτn
k0+�−1

Sτn
k0+�−1,τ

n
k0+�

+ Sτn
k0+�

Sτn
k0+�,τ

n
k0+�+1

− Sτn
k0+�−1

Sτn
k0+�−1,τ

n
k0+�+1

|

= |Sτn
k0+�−1,τ

n
k0+�

Sτn
k0+�,τ

n
k0+�+1

| ≤ c
(
τn
k0+�−1, τ

n
k0+�+1

)2/q ≤
(

2

N − 1
c(s, t)

)2/q

.

Successively deleting all the points except τn
k0

= s and τn
k0+N = t from the partition gives

∣∣(Sn · S)
s,t

− SsSs,t

∣∣ ≤
N∑

k=2

(
2

k − 1
c(s, t)

)2/q

� N1−2/qc(s, t)2/q,

and therefore (8). Now it is easy to see that #{k : τn
k ∈ [s, t]} ≤ 2nqc(s, t) (compare also the proof

of Lemma 3.3), and thus

|As,t | �ε C2−n(1−ε) + max
{
2−nc(s, t)1/q ,

(
2nqc(s, t)

)1−2/q
c(s, t)2/q + c(s, t)2/q

}
(9)

= C2−n(1−ε) + max
{
2−nc(s, t)1/q ,2−n(2−q)c(s, t) + c(s, t)2/q

}
.

This holds for all n ∈ N, ε > 0, q > 2. Let us suppose for the moment that c(s, t) ≤ 1 and let
α > 0 to be determined later. Then there exists n ∈ N for which 2−n−1 < c(s, t)1/α(1−ε) ≤ 2−n.
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Using this n in (9), we get

|As,t |α
�ε,ω,α c(s, t) + max

{
c(s, t)1/(1−ε)c(s, t)α/q, c(s, t)(2−q)/(1−ε)+α + c(s, t)2α/q

}
= c(s, t) + max

{
c(s, t)

q+α(1−ε)
q(1−ε) , c(s, t)

2−q+α(1−ε)
1−ε + c(s, t)2α/q

}
.

We would like all the exponents in the maximum on the right-hand side to be larger or equal to 1.
For the first term, this is satisfied as long as ε < 1. For the third term, we need α ≥ q/2. For the
second term, we need α ≥ (q − 1 − ε)/(1 − ε). Since ε > 0 can be chosen arbitrarily close to 0,
it suffices if α > q − 1. Now, since q > 2 can be chosen arbitrarily close to 2, we see that α can
be chosen arbitrarily close to 1. In particular, we may take α = p/2 for any p > 2, and we obtain
|As,t |p/2 �ω,δ c(s, t).

It remains to treat the case c(s, t) > 1, for which we simply estimate

|As,t |p/2 �p

∥∥∥∥∫ ·

0
Sr dSr

∥∥∥∥p/2

∞
+ ‖S‖p∞ ≤

(∥∥∥∥∫ ·

0
Sr dSr

∥∥∥∥p/2

∞
+ ‖S‖p∞

)
c(s, t).

So for every interval [s, t] we can estimate |As,t |p/2 �ω,p c(s, t), and the proof is complete. �

Remark 4.13. To the best of our knowledge, this is one of the first times that a non-geometric
rough path is constructed in a non-probabilistic setting, and certainly we are not aware of any
works where rough paths are constructed using financial arguments.

We also point out that, thanks to Proposition 2.6, we gave a simple, model free, and pathwise
proof for the fact that a local martingale together with its Itô integral defines a rough path. While
this seems intuitively clear, the only other proof that we know of is somewhat involved: it relies on
a strong version of the Burkholder–Davis–Gundy inequality, a time change, and Kolmogorov’s
continuity criterion; see [6] or Chapter 14 of [20].

The following auxiliary result will allow us to obtain the rough path integral as a limit of
Riemann sums, rather than compensated Riemann sums, which are usually used to define it.

Lemma 4.14. Let (cn)n∈N be a sequence of positive numbers such that cn = o((logn)−c) for
all c > 0. For n ∈ N define τn

0 := 0 and τn
k+1 := inf{t ≥ τn

k : |St − Sτn
k
| = cn}, k ∈ N, and set

Sn
t := ∑

k Sτn
k

1[τn
k ,τn

k+1)
(t). Then for typical price paths, ((Sn · S)) converges uniformly to

∫
S dS

defined in Theorem 3.5. Moreover, for p > 2 and for typical price paths there exists a control
function c = c(p,ω) such that

sup
n

sup
k<�

|(Sn · S)τn
k ,τn

�
(ω) − Sτn

k
(ω)Sτn

k ,τn
�
(ω)|p/2

c(τn
k , τn

� )
≤ 1.
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Proof. The uniform convergence of ((Sn · S)) to
∫

S dS follows from Corollary 3.6. For the
second claim, fix n ∈N and k < � such that τn

� ≤ T . Then

∣∣(Sn · S)
τn
k ,τn

�
− Sτn

k
Sτn

k ,τn
�

∣∣ �
∥∥∥∥(

Sn · S) −
∫ ·

0
Ss dSs

∥∥∥∥∞
+ |Aτn

k ,τn
�
|

(10)
�ω cn

√
logn + vp/2

(
τn
k , τn

�

)2/p �ε c1−ε
n + vp/2

(
τn
k , τn

�

)2/p
,

where ε > 0 and the last estimate holds by our assumption on the sequence (cn), and where
vp/2(s, t) := ‖A‖p/2

p/2-var,[s,t] for (s, t) ∈ �T . Of course, this inequality only holds for typical
price paths and not for all ω ∈ �.

On the other side, the same argument as in the proof of Theorem 4.12 (using Young’s maximal
inequality and successively deleting points from the partition) shows that∣∣(Sn · S)

τn
k ,τn

�
− Sτn

k
Sτn

k ,τn
�

∣∣ � c
2−q
n vq

(
τn
k , τn

�

)
, (11)

where vq(s, t) := ‖S‖q
q-var,[s,t] for (s, t) ∈ �T .

Let us define the control function c̃ := vq + vp/2. Take α > 0 to be determined below. If
cn > c̃(s, t)1/α(1−ε), then we use (11) and the fact that 2 − q < 0, to obtain

∣∣(Sn · S)
τn
k ,τn

�
− Sτn

k
Sτn

k ,τn
�

∣∣α �
(
c̃
(
τn
k , τn

�

)) 2−q
(1−ε) vq

(
τn
k , τn

�

)α ≤ c̃
(
τn
k , τn

�

) 2−q+α(1−ε)
(1−ε) .

The exponent is larger or equal to 1 as long as α ≥ (q − 1 − ε)/(1 − ε). Since q and ε can be
chosen arbitrarily close to 2 and 0, respectively, we can take α = p/2, and get∣∣(Sn · S)

τn
k ,τn

�
− Sτn

k
Sτn

k ,τn
�

∣∣p/2 � c̃
(
τn
k , τn

�

)(
1 + c̃(0, T )δ

)
for a suitable δ > 0.

On the other side, if cn ≤ c̃(s, t)1/α(1−ε), then we use (10) to obtain∣∣(Sn · S)
τn
k ,τn

�
− Sτn

k
Sτn

k ,τn
�

∣∣α � c̃
(
τn
k , τn

�

) + c̃
(
τn
k , τn

�

)2α/p
,

so that also in this case we may take α = p/2, and thus we have in both cases∣∣(Sn · S)
τn
k ,τn

�
− Sτn

k
Sτn

k ,τn
�

∣∣p/2 ≤ c
(
τn
k , τn

�

)
,

where c is a suitable (ω-dependent) multiple of c̃. �

4.3. The rough path integral as limit of Riemann sums

Theorem 4.12 shows that we can apply the controlled rough path integral in model free financial
mathematics since every typical price path is a rough path. But there remains a philosophical
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problem: As we have seen in Theorem 4.9, the rough path integral
∫

F dS is given as limit of the
compensated Riemann sums∫ t

0
Fs dSs = lim

m→∞
∑

[r1,r2]∈πm

[
Fr1Sr1,r2 + F ′

r1
A(r1, r2)

]
,

where (πm) is an arbitrary sequence of partitions of [0, t] with mesh size going to 0. The term
Fr1Sr1,r2 has an obvious financial interpretation as profit made by buying Fr1 units of the traded
asset at time r1 and by selling them at time r2. However, for the “compensator” F ′

r1
A(r1, r2)

there seems to be no financial interpretation, and therefore it is not clear whether the rough path
integral can be understood as profit obtained by investing in S.

However, we observed in Section 3 that along suitable stopping times (τn
k )n,k , we have∫ t

0
Ss dSs = lim

n→∞
∑

k

Sτn
k
Sτn

k ∧t,τn
k+1∧t .

By the philosophy of controlled paths, we expect that also for F which looks like S on small
scales we should obtain ∫ t

0
Fs dSs = lim

n→∞
∑

k

Fτn
k
Sτn

k ∧t,τn
k+1∧t ,

without having to introduce the compensator F ′
τn
k
A(τn

k ∧ t, τ n
k+1 ∧ t) in the Riemann sum. With

the results we have at hand, this statement is actually relatively easy to prove. Nonetheless, it
seems not to have been observed before.

For the remainder of this section, we fix S ∈ C([0, T ],Rd), and we work under the following
assumption:

Assumption (RIE). Let πn = {0 = tn0 < tn1 < · · · < tnNn
= T }, n ∈ N, be a given sequence of

partitions such that sup{|Stnk ,tnk+1
| : k = 0, . . . ,Nn − 1} converges to 0, and let p ∈ (2,3). Set

Sn
t :=

Nn−1∑
k=0

Stnk
1[tnk ,tnk+1)

(t).

We assume that the Riemann sums (Sn ·S) converge uniformly to a limit that we denote by
∫

S dS,
and that there exists a control function c for which

sup
(s,t)∈�T

|Ss,t |p
c(s, t)

+ sup
n

sup
0≤k<�≤Nn

|(Sn · S)tnk ,tn�
− Stnk

Stnk ,tn�
|p/2

c(tnk , tn� )
≤ 1. (12)

Remark 4.15. We expect that “coarse-grained” regularity conditions as in (12) have been used
for a long time, but were only able to find quite recent references: condition (12) was previously
used in [35], see also [22], and has also appeared independently in [27]. In our setting this is
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quite a natural relaxation of a uniform p-variation bound since say for s, t ∈ [tnk , tnk+1] with
|t − s| � |tnk+1 − tnk | the increment of the discrete integral (Sn ·S)s,t is not a good approximation

of
∫ t

s
Sr dSr , and therefore we cannot expect it to be close to SsSs,t .

Remark 4.16. Every typical price path satisfies (RIE) if we choose (tnk ) to be a partition of
stopping times such as the (τn

k ) in Lemma 4.14.

It is not hard to see that if S satisfies (RIE) and if we define A(s, t) := ∫ t

s
Sr dSr − SsSs,t ,

then (S,A) is a p-rough path. This means that we can calculate the rough path integral
∫

F dS

whenever (F,F ′) is controlled by S, and the aim of the remainder of this section is to show that
this integral is given as limit of (uncompensated) Riemann sums. Our proof is somewhat indirect.
We translate everything from Itô type integrals to related Stratonovich type integrals, for which
the convergence follows from the continuity of the rough path integral, Proposition 4.11. Then
we translate everything back to our Itô type integrals. To go from Itô to Stratonovich, we need
the quadratic variation.

Lemma 4.17. Under Assumption (RIE), let 1 ≤ i, j ≤ d , and define

〈
Si, Sj

〉
t
:= Si

t S
j
t − Si

0S
j

0 −
∫ t

0
Si

r dS
j
r −

∫ t

0
S

j
r dSi

r .

Then 〈Si, Sj 〉 is a continuous function and

〈
Si, Sj

〉
t
= lim

n→∞
〈
Si, Sj

〉n
t

= lim
n→∞

Nn−1∑
k=0

(
Si

tnk+1∧t
− Si

tnk ∧t

)(
S

j

tn
k+1∧t

− S
j

tnk ∧t

)
. (13)

The sequence (〈Si, Sj 〉n)n is of uniformly bounded total variation, and in particular 〈Si, Sj 〉
is of bounded variation. We write 〈S〉 = 〈S,S〉 = (〈Si, Sj 〉)1≤i,j≤d , and call 〈S〉 the quadratic
variation of S.

Proof. The function 〈Si, Sj 〉 is continuous by definition. The specific form (13) of 〈Si, Sj 〉 fol-
lows from two simple observations:

Si
t S

j
t − Si

0S
j

0 =
Nn−1∑
k=0

(
Si

tnk+1∧t
S

j

tnk+1∧t
− Si

tnk ∧t
S

j

tnk ∧t

)
for every n ∈N, and

Si
tnk+1∧t

S
j

tnk+1∧t
− Si

tnk ∧t
S

j

tnk ∧t
= Si

tnk ∧t
S

j

tnk ∧t,tnk+1∧t
+ S

j

tnk ∧t
Si

tnk ∧t,tnk+1∧t
+ Si

tnk ∧t,tnk+1∧t
S

j

tnk ∧t,tnk+1∧t
,

so that the convergence in (13) is a consequence of the convergence of (Sn · S) to
∫

S dS.
To see that 〈Si, Sj 〉 is of bounded variation, note that

Si
tnk ∧t,tnk+1∧t

S
j

tnk ∧t,tnk+1∧t
= 1

4

(((
Si + Sj

)
tnk ∧t,tnk+1∧t

)2 − ((
Si − Sj

)
tnk ∧t,tnk+1∧t

)2)
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(read 〈Si, Sj 〉 = 1/4(〈Si + Sj 〉 − 〈Si − Sj 〉)). In other words, the nth approximation of 〈Si, Sj 〉
is the difference of two increasing functions, and its total variation is bounded from above by

Nn−1∑
k=0

(((
Si + Sj

)
tnk ,tnk+1

)2 + ((
Si − Sj

)
tnk ,tnk+1

)2) � sup
m

Nm−1∑
k=0

((
Si

tmk ,tmk+1

)2 + (
S

j

tmk ,tmk+1

)2)
.

Since the right-hand side is finite, also the limit 〈Si, Sj 〉 is of bounded variation. �

Given the quadratic variation, the existence of the Stratonovich integral is straightforward:

Lemma 4.18. Under Assumption (RIE), define S̃n|[tnk ,tnk+1] as the linear interpolation of Stnk
and

Stnk+1
for k = 0, . . . ,Nn − 1. Then (

∫
S̃n dS̃n) converges uniformly to

∫ t

s

Sr ◦ dSr :=
∫ t

s

Sr dSr + 1

2
〈S〉s,t . (14)

Moreover, setting Ãn(s, t) := ∫ t

s
S̃n

s,r dS̃n
r for (s, t) ∈ �T , we have supn ‖Ãn‖p/2-var < ∞.

Proof. Let n ∈N and k ∈ {0, . . . ,Nn − 1}. Then for t ∈ [tnk , tnk+1] we have

S̃n
t = Stnk

+ t − tnk

tnk+1 − tnk
Stnk ,tnk+1

,

so that ∫ tnk+1

tnk

S̃n
r dS̃n

r = Stnk
Stnk ,tnk+1

+ 1

2
Stnk ,tnk+1

Stnk ,tnk+1
, (15)

from where the uniform convergence and the representation (14) follow by Lemma 4.17.
To prove that Ãn has uniformly bounded p

2 -variation, consider (s, t) ∈ �T . If there exists k

such that tnk ≤ s < t ≤ tnk+1, then we estimate

∣∣Ãn(s, t)
∣∣p/2 =

∣∣∣∣∫ t

s

S̃n
s,r dS̃n

r

∣∣∣∣p/2

≤
∣∣∣∣∫ t

s

(r − s)
|Stnk ,tnk+1

|2
|tnk+1 − tnk |2 dr

∣∣∣∣p/2

(16)

= 1

2p/2
|t − s|p |Stnk ,tnk+1

|p
|tnk+1 − tnk |p ≤ |t − s|

|tnk+1 − tnk | ‖S‖p

p-var,[tnk ,tnk+1].

Otherwise, let k0 be the smallest k such that tnk ∈ (s, t), and let k1 be the largest such k. We
decompose

Ãn(s, t) = Ãn
(
s, tnk0

) + Ãn
(
tnk0

, tnk1

) + Ãn
(
tnk1

, t
) + S̃n

s,tnk0
S̃n

tnk0
,tnk1

+ S̃n
s,tnk1

S̃n
tnk1

,t
.
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We get from (15) that∣∣Ãn
(
tnk0

, tnk1

)∣∣p/2 �
∣∣(Sn · S)

tnk0
,tnk1

− Stnk0
Stnk0

,tnk1

∣∣p/2 + (〈S〉n
tnk0

,tnk1

)p/2
,

where 〈S〉n denotes the nth approximation of the quadratic variation. By the assumption (RIE)
and Lemma 4.17, there exists a control function c̃ so that the right-hand side is bounded from
above by c̃(tnk0

, tnk1
). Combining this with (16) and a simple estimate for the terms S̃n

s,tnk0
S̃n

tnk0
,tnk1

and S̃n
s,tnk1

S̃n
tnk1

,t
, we deduce that ‖Ãn‖p/2-var � c̃(0, T ) + ‖S‖2

p-var, and the proof is complete. �

We are now ready to prove the main result of this section.

Theorem 4.19. Under Assumption (RIE), let q > 0 be such that 2/p + 1/q > 1. Let (F,F ′) ∈
C

q

S
be a controlled path such that F is continuous. Then the rough path integral

∫
F dS which

was defined in Theorem 4.9 is given by

∫ t

0
Fs dSs = lim

n→∞

Nn−1∑
k=0

Ftnk
Stnk ∧t,tnk+1∧t ,

where the convergence is uniform in t .

Proof. For n ∈ N define F̃ n as the linear interpolation of F between the points in πn. Then
(F̃ n,F ′) is controlled by S̃n: Clearly, ‖F̃ n‖q-var ≤ ‖F‖q-var. The remainder R̃n

F̃ n
of F̃ n with

respect to S̃n is given by R̃n

F̃ n
(s, t) = F̃ n

s,t − F ′
s S̃

n
s,t for (s, t) ∈ �T . We need to show that R̃n

F̃ n

has finite r-variation for 1/r = 1/p + 1/q .
If tnk ≤ s ≤ t ≤ tnk+1, we have

∣∣R̃n

F̃ n
(s, t)

∣∣r =
∣∣∣∣ t − s

tnk+1 − tnk
Ftnk ,tnk+1

− F ′
s

t − s

tnk+1 − tnk
Stnk ,tnk+1

∣∣∣∣r
≤

∣∣∣∣ t − s

tnk+1 − tnk

∣∣∣∣r(‖RF ‖r-var,[tnk ,tnk+1] + ∥∥F ′∥∥r/q

q- var,[tnk ,s]‖S‖r/p

p-var,[tnk ,tnk+1]
)

(17)

≤ |t − s|
|tnk+1 − tnk |

(‖RF ‖r-var,[tnk ,tnk+1] + ∥∥F ′∥∥
q-var,[tnk ,tnk+1] + ‖S‖p-var,[tnk ,tnk+1]

)
,

where in the last step we used that 1/r = 1/p + 1/q , and thus r/q + r/p = 1.
Otherwise, there exists k ∈ {1, . . . ,Nn − 1} with tnk ∈ (s, t). Let k0 and k1 the smallest and

largest such k, respectively. Then∣∣R̃n

F̃ n
(s, t)

∣∣r �r

∣∣R̃n

F̃ n

(
s, tnk0

)∣∣r + ∣∣R̃n

F̃ n

(
tnk0

, tnk1

)∣∣r + ∣∣R̃n

F̃ n

(
tnk1

, t
)∣∣r

+ ∣∣F ′
s,tnk0

Stnk0
,tnk1

∣∣r + ∣∣F ′
s,tnk1

Stnk1
,t

∣∣r .
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Now R̃n

F̃ n
(tnk0

, tnk1
) = RF (tnk0

, tnk1
), and therefore we can use (17), the assumption on RF , and the

fact that 1/r = 1/p + 1/q (which is needed to treat the last two terms on the right-hand side), to
obtain ∥∥R̃n

F̃ n

∥∥
r-var �r ‖RF ‖r-var + ∥∥F ′∥∥

q- var + ‖S‖p-var.

On the other side, since F and RF are continuous, (F̃ n, R̃n

F̃ n
) converges uniformly to (F,RF ).

Now for continuous functions, uniform convergence with uniformly bounded p-variation implies
convergence in p′-variation for every p′ > p. See Exercise 2.8 in [19] for the case of Hölder
continuous functions.

Thus, using Lemma 4.18, we see that if p′ > p and q ′ > q are such that 2/p′ + 1/q ′ > 0, then
((S̃n, Ãn)n) converges in (p′,p′/2)-variation to (S,A◦), where A◦(s, t) = A(s, t) + 1/2〈S〉s,t .
Similarly, ((F̃ n,F ′, R̃n

F̃ n
)) converges in (q ′,p′, r ′)-variation to (F,F ′,RF ), where 1/r ′ =

1/p′ + 1/q ′.
Proposition 4.11 now yields the uniform convergence of

∫
F̃ n dS̃n to

∫
F ◦ dS, by which we

denote the rough path integral of the controlled path (F,F ′) against the rough path (S,A◦). But
for every t ∈ [0, T ], we have

lim
n→∞

∫ t

0
F̃ n

s dS̃n
s = lim

n→∞
∑

k:tnk+1≤t

1

2
(Ftnk

+ Ftnk+1
)Stnk ,tnk+1

= lim
n→∞

( ∑
k:tnk+1≤t

Ftnk
Stnk ,tnk+1

+ 1

2

∑
k:tnk+1≤t

Ftnk ,tnk+1
Stnk ,tnk+1

)
.

Using that F is controlled by S, it is easy to see that the second term on the right-hand side
converges uniformly to 1/2

∫ t

0 F ′
s d〈S〉s , t ∈ [0, T ]. Thus, the Riemann sums

∑
k Ftnk

Stnk ∧·,tnk+1∧·
converge uniformly to

∫
F ◦ dS − 1/2

∫
F ′ d〈S〉, and from the representation of the rough path

integral as limit of compensated Riemann sums (6), it is easy to see that
∫

F ◦ dS = ∫
F dS +

1/2
∫

F ′ d〈S〉, which completes the proof. �

Remark 4.20. Given Theorem 4.19 it is natural to conjecture that if (S,A) is the rough path
which we constructed in Theorem 4.12 and Lemma 4.14, then for typical price paths and for
adapted, controlled, and continuous integrands F the rough path integral agrees with the model
free integral of Section 3. This seems not very easy to show, but what can be verified is that
if F ∈ C1+ε , then for the integrand F(S) both integrals coincide – simply take Riemann sums
along the dyadic stopping times defined in (3).

Theorem 4.19 is reminiscent of Föllmer’s pathwise Itô integral [17]. Föllmer assumes that the
quadratic variation 〈S〉 of S exists along a given sequence of partitions and is continuous, and
uses this to prove an Itô formula for S: if F ∈ C2, then

F(St ) = F(S0) +
∫ t

0
∇F(Ss)dSs + 1

2

∫ t

0
D2F(Ss)d〈S〉s , (18)
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where the integral
∫ ·

0 ∇F(Ss)dSs is given as limit of Riemann sums along that same sequence of
partitions. Friz and Hairer [19] observe that if for p ∈ (2,3) the function S is of finite p-variation
and 〈S〉 is an arbitrary continuous function of finite p/2-variation, then setting

Sym(A)(s, t) := 1
2

(
Si

s,tS
j
s,t + 〈S〉s,t

)
one obtains a “reduced rough path” (S,Sym(A)). They continue to show that if F is controlled
by S with symmetric derivative F ′, then it is possible to define the rough path integral

∫
F dS.

This is not surprising since then we have F ′
sAs,t = F ′

sSym(A)s,t for the compensator term in the
definition of the rough path integral. They also derive an Itô formula for reduced rough paths,
which takes the same form as (18), except that now

∫ ∇F(S)dS is a rough path integral (and
therefore defined as limit of compensated Riemann sums).

So both the assumption and the result of [19] are slightly different from the ones in [17], and
while it seems intuitively clear, it is still not shown rigorously that Föllmer’s pathwise Itô integral
is a special case of the rough path integral. We will now show that Föllmer’s result is a special
case of Theorem 4.19. For that purpose, we only need to prove that Föllmer’s condition on the
convergence of the quadratic variation is a special case of the assumption in Theorem 4.19, at
least as long as we only need the symmetric part of the area.

Definition 4.21. Let f ∈ C([0, T ],R) and let πn = {0 = tn0 < tn1 < · · · < tnNn
= T }, n ∈ N be

such that sup{|ftnk ,tnk+1
| : k = 0, . . . ,Nn − 1} converges to 0. We say that f has quadratic variation

along (πn) in the sense of Föllmer if the sequence of discrete measures (μn) on ([0, T ],B[0, T ]),
defined by

μn :=
Nn−1∑
k=0

|ftnk ,tnk+1
|2δtnk

, (19)

converges weakly to a non-atomic measure μ. We write [f ]t for the “distribution function” of μ

(in general μ will not be a probability measure). The function f = (f 1, . . . , f d) ∈ C([0, T ],Rd)

has quadratic variation along (πn) in the sense of Föllmer if this holds for all f i and f i + f j ,
1 ≤ i, j ≤ d . In this case, we set[

f i, f j
]
t
:= 1

2

([
f i + f j

]
t
− [

f i
]
t
− [

f j
]
t

)
, t ∈ [0, T ].

Lemma 4.22 (see also [41], Proposition 6.1). Let p ∈ (2,3), and let S = (S1, . . . , Sd) ∈
C([0, T ],Rd) have finite p-variation. Let πn = {0 = tn0 < tn1 < · · · < tnNn

= T }, n ∈ N, be a
sequence of partitions such that sup{|Stnk ,tnk+1

| : k = 0, . . . ,Nn − 1} converges to 0. Then the fol-
lowing conditions are equivalent:

(1) The function S has quadratic variation along (πn) in the sense of Föllmer.
(2) For all 1 ≤ i, j ≤ d , the discrete quadratic variation

〈
Si, Sj

〉n
t

:=
Nn−1∑
k=0

Si
tnk ∧t,tnk+1∧t

S
j

tnk ∧t,tnk+1∧t
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converges uniformly in C([0, T ],R) to a limit 〈Si, Sj 〉.
(3) For Sn,i := ∑Nn−1

k=0 Si
tnk

1[tnk ,tnk+1)
, i ∈ {1, . . . , d}, n ∈ N, the Riemann sums (Sn,i · Sj ) +

(Sn,j ·Si) converge uniformly to a limit
∫

Si dSj + ∫
Sj dSi . Moreover, the symmetric part of the

approximate area,

Sym
(
An

)i,j
(s, t) = 1

2

((
Sn,i ·Sj

)
s,t

+(
Sn,j ·Si

)
s,t

−Si
sS

j
s,t −S

j
s Si

s,t

)
, 1 ≤ i, j ≤ d, (s, t) ∈ �T ,

has uniformly bounded p/2-variation along (πn), in the sense of (12).

If these conditions hold, then [Si, Sj ] = 〈Si, Sj 〉 for all 1 ≤ i, j ≤ d .

Proof. Assume (1) and note that

Si
tnk ∧t,tnk+1∧t

S
j

tnk ∧t,tnk+1∧t
= 1

2

(((
Si + Sj

)
tnk ∧t,tnk+1∧t

)2 − (
Si

tnk ∧t,tnk+1∧t

)2 − (
S

j

tnk ∧t,tnk+1∧t

)2)
.

Thus, the uniform convergence of 〈Si, Sj 〉n and the fact that 〈Si, Sj 〉 = [Si, Sj ] follow once we
show that Föllmer’s weak convergence of the measures (19) implies the uniform convergence of
their distribution functions. But since the limiting distribution is continuous by assumption, this
is a standard result.

Next, assume (2). The uniform convergence of the Riemann sums (Sn,i · Sj ) + (Sn,j · Si) is
shown as in Lemma 4.17. To see that Sym(An) has uniformly bounded p/2-variation along (πn),
note that for 0 ≤ k ≤ � ≤ Nn and 1 ≤ i, j ≤ d we have∣∣(Sn,i · Sj

)
tnk ,tn�

+ (
Sn,j · Si

)
tnk ,tn�

− Si
sS

j

tnk ,tn�
− S

j
s Si

tnk ,tn�

∣∣p/2

= ∣∣Si
tnk ,tn�

S
j

tnk ,tn�
− 〈

Si, Sj
〉n
tnk ,tn�

∣∣p/2

≤ ‖S‖p-var,[tnk ,tn� ] + ∥∥〈
Si, Sj

〉n∥∥
1-var,[tnk ,tn� ].

That ‖〈Si, Sj 〉n‖1-var is uniformly bounded in n is shown in Lemma 4.17.
That (3) implies (1) is also shown in Lemma 4.17. �

Remark 4.23. With Theorem 4.19 we can only derive an Itô formula for F ∈ C2+ε , since we
are only able to integrate ∇F(S) if ∇F ∈ C1+ε . But this only seems to be due to the fact that
our analysis is not sharp. We expect that typical price paths have an associated rough path of
finite 2-variation, up to logarithmic corrections. For such rough paths, the integral extends to
integrands F ∈ C1, see Chapter 10.5 of [20]. For typical price paths (but not for the area), it is
shown in [40], Section 4.3, that they are of finite 2-variation up to logarithmic corrections.

Appendix A: Pathwise Hoeffding inequality

In the construction of the pathwise Itô integral for typical price processes, we needed the fol-
lowing result, a pathwise formulation of the Hoeffding inequality which is due to Vovk. Here we
present a slightly adapted version.
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Lemma A.1 ([40], Theorem A.1). Let (τn)n∈N be a strictly increasing sequence of stopping
times with τ0 = 0, such that for every ω ∈ � we have τn(ω) = ∞ for all but finitely many n ∈ N.
Let for n ∈ N the function hn:� → Rd be Fτn -measurable, and suppose that there exists a Fτn -
measurable bounded function bn:� → R, such that

sup
t∈[0,T ]

∣∣hn(ω)Sτn∧t,τn+1∧t (ω)
∣∣ ≤ bn(ω) (20)

for all ω ∈ �. Then for every λ ∈ R there exists a simple strategy Hλ ∈ H1 such that

1 + (
Hλ · S)

t
≥ exp

(
λ

∞∑
n=0

hnSτn∧t,τn+1∧t − λ2

2

Nt∑
n=0

b2
n

)

for all t ∈ [0, T ], where Nt := max{n ∈N : τn ≤ t}.

Proof. Let λ ∈ R. The proof is based on the following deterministic inequality: if (20) is satis-
fied, then for all ω ∈ � and all t ∈ [0, T ] we have that

exp

(
λhn(ω)Sτn∧t,τn+1∧t (ω) − λ2

2
b2
n(ω)

)
− 1

≤ exp

(
−λ2

2
b2
n(ω)

)
eλbn(ω) − e−λbn(ω)

2bn(ω)
hn(ω)Sτn∧t,τn+1∧t (ω) (21)

=: fn(ω)Sτn∧t,τn+1∧t (ω).

This inequality is shown in (A.1) of [40]. We define Hλ
t := ∑

n Fn1(τn,τn+1](t), with Fn that have
to be specified. We choose F0 := f0, which is bounded and Fτ0 -measurable, and on [0, τ1] we
obtain

1 + (
Hλ · S)

t
≥ exp

(
λh0Sτn∧t,τn+1∧t − λ2

2
b2

0

)
.

Observe also that 1 + (Hλ · S)τ1 = 1 + f0Sτ0,τ1 is bounded, because by assumption h0Sτ0,τ1 is
bounded by the bounded random variable b0.

Assume now that Fk has been defined for k = 0, . . . ,m − 1, that

1 + (
Hλ · S)

t
≥ exp

(
λ

∞∑
n=0

hnSτn∧t,τn+1∧t − λ2

2

Nt∑
n=0

b2
n

)

for all t ∈ [0, τm], and that 1 + (Hλ · S)τm is bounded. We define Fm := (1 + (Hλ · S)τm)fm,
which is Fτm -measurable and bounded. From (21), we obtain for t ∈ [τm, τm+1]

1 + (
Hλ · S)

t

= 1 + (
Hλ · S)

τm
+ (

1 + (
Hλ · S)

τm

)
fmSτm∧t,τm+1∧t
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≥ (
1 + (

Hλ · S)
τm

)
exp

(
λhmSτm∧t,τm+1∧t − λ2

2
b2
m

)

≥ exp

(
λ

∞∑
n=0

hnSτn∧t,τn+1∧t − λ2

2

Nt∑
n=0

b2
n

)
,

where in the last step we used the induction hypothesis. From the first line of the previous equa-
tion, we also obtain that 1+ (Hλ ·S)τm+1 is bounded because fmSτm,τm+1 is bounded for the same
reason that f0Sτ0,τ1 is bounded. �

Appendix B: Davie’s criterion

It was already observed by Davie [8] that in certain situations the rough path integral can be
constructed as limit of Riemann sums and not just compensated Riemann sums. Davie shows
that under suitable conditions, the usual Euler scheme (without “area compensation”) converges
to the solution of a given rough differential equation. But from there it is easily deduced that
then also the rough path integral is given as limit of Riemann sums. Here we show that Davie’s
criterion implies our assumption (RIE).

Let p ∈ (2,3) and let S = (S,A) be a 1/p-Hölder continuous rough path, that is |Ss,t | �
|t − s|1/p and |A(s, t)| � |t − s|2/p . Write α := 1/p and let β ∈ (1 − α,2α). Davie assumes that
there exists C > 0 such that the area process A satisfies∣∣∣∣∣

�−1∑
j=k

A
(
jh, (j + 1)h

)∣∣∣∣∣ ≤ C(� − k)βh2α, (B.1)

whenever 0 < k < � are integers and h > 0 such that �h ≤ T . Under these conditions, Theo-
rem 7.1 of [8] implies that for F ∈ Cγ with γ > p and for tnk = kT /n, n, k ∈ N, the Riemann
sums

n−1∑
k=0

F(Stnk
)Stnk ∧t,tnk+1∧t , t ∈ [0, T ],

converge uniformly to the rough path integral. But it can be easily deduced from (B.1) that the
area process A is given as limit of non-anticipating Riemann sums along (tn)n. Indeed, letting
h = T/n, ∣∣∣∣∣

∫ t

0
Ss dSs −

n−1∑
k=0

Stnk
Stnk ∧t,tnk+1∧t

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
k=0

(∫ tnk+1∧t

tnk ∧t

Ss dSs − Stnk ∧t Stnk ∧t,tnk+1∧t

)∣∣∣∣∣
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=
∣∣∣∣∣
n−1∑
k=0

A
(
tnk ∧ t, tnk+1 ∧ t

)∣∣∣∣∣ ≤
∣∣∣∣∣

t/h�−1∑

k=0

Akh,(k+1)h

∣∣∣∣∣ + ∣∣A(
t/h�, t)∣∣
� C
t/h�βh2α + h2α‖A‖2α � Cth2α−β + h2α‖A‖2α.

Since β < 2α, the right-hand side converges to 0 as n goes to ∞ (and thus h goes to 0). Further-
more, (B.1) implies the “uniformly bounded p/2-variation” condition (12):

∣∣(Sn · S)
tnk ,tn�

− Stnk
Stnk ,tn�

∣∣ ≤
∣∣∣∣∫ tn�

tnk

Ss dSs − Stnk
Stnk ,tn�

∣∣∣∣ +
∣∣∣∣∣
�−1∑
j=k

(∫ tnj+1

tnj

Ss dSs − Stnj
Stnj ,tnj+1

)∣∣∣∣∣
≤ ‖A‖2α

∣∣tn� − tnk

∣∣2α +
∣∣∣∣∣
�−1∑
j=k

Atnk ,tnk+1

∣∣∣∣∣
≤ ‖A‖2α

∣∣tn� − tnk

∣∣2α + C(� − k)βh2α

≤ ‖A‖2α

∣∣tn� − tnk

∣∣2α + C
∣∣tn� − tnk

∣∣2α
.
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