
Bernoulli 22(3), 2016, 1520–1534
DOI: 10.3150/15-BEJ701

Performance of empirical risk minimization
in linear aggregation
GUILLAUME LECUÉ1 and SHAHAR MENDELSON2

1CNRS, CMAP, Ecole Polytechnique, 91120 Palaiseau, France.
E-mail: guillaume.lecue@cmap.polytechnique.fr
2Department of Mathematics, Technion, I.I.T, Haifa 32000, Israel. E-mail: shahar@tx.technion.ac.il

We study conditions under which, given a dictionary F = {f1, . . . , fM } and an i.i.d. sample (Xi,Yi)
N
i=1,

the empirical minimizer in span(F ) relative to the squared loss, satisfies that with high probability

R
(
f̃ ERM) ≤ inf

f ∈span(F )
R(f ) + rN (M),

where R(·) is the squared risk and rN (M) is of the order of M/N .
Among other results, we prove that a uniform small-ball estimate for functions in span(F ) is enough to

achieve that goal when the noise is independent of the design.
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1. Introduction and main results

Let (X ,μ) be a probability space, set X to be distributed according to μ and put Y to be an
unknown target random variable.

In the usual setup in learning theory, one observes N independent couples (Xi, Yi)
N
i=1 in X ×

R, distributed according to the joint distribution of X and Y . The goal is to construct a real-valued
function f which is a good guess/prediction of Y . A standard way of measuring the prediction
capability of f is via the risk R(f ) = E(Y − f (X))2. The conditional expectation

R(f̂ ) = E
((

Y − f̂ (X)
)2|(Xi, Yi)

N
i=1

)
is the risk of the function f̂ that is chosen by the procedure, using the observations (Xi, Yi)

N
i=1.

There are many different ways in which one may construct learning procedures (see, e.g., the
books [1,5,10,12,29,31] for numerous examples), but in general, there is no ‘universal’ choice of
an optimal learning procedure.

The variety of learning algorithms motivated the introduction of aggregation or ensemble
methods, in which one combines a batch or dictionary, created by learning procedures, in the
hope of obtaining a function with ‘better’ prediction capabilities than individual members of the
dictionary.

Aggregation procedures have been studied extensively (see, e.g., [7,9,13,14,26,30,33–35] and
references therein), and among the more well-known aggregation procedures are boosting [28]
and bagging [5].
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Our aim is to explore the problem of linear aggregation: given a dictionary F = {f1, . . . , fM},
one wishes to construct a procedure f̃ whose risk is almost as small as the risk of the best element
in the linear span of the dictionary, denoted by span(F ); namely, a procedure which ensures that
with high probability

R(f̃ ) ≤ inf
f ∈span(F )

R(f ) + rN(M). (1.1)

This type of inequality is called an oracle inequality and the function f ∗ for which R(f ∗) =
inff ∈span(F ) R(f ) is called the oracle.

Of course, in (1.1) one is looking for the smallest possible residual term rN(M), that holds
uniformly for all choices of couples (X,Y ) and dictionaries F that satisfy certain assumptions.

The linear aggregation problem has been studied in [26] in the Gaussian white noise model;
in [6,30] for the Gaussian model with random design; in [27] for the density estimation problem
and in [3] in the learning theory setup, under moment conditions. And, based on these cases, it
appears that the best possible residual term rN(M) that one may hope for is of the order of M/N .

This rate is usually called the optimal rate of linear aggregation and, in fact, its optimality
holds in some minimax sense, introduced in [30].

The only procedure we will focus on here is empirical risk minimization (ERM) performed in
the span of the dictionary:

f̂ ERM ∈ arg min
f ∈span(F )

RN(f ) where RN(f ) = 1

N

N∑
i=1

(
Yi − f (Xi)

)2
.

We do not claim that ERM is always the best procedure for the linear aggregation problem, but
rather, our aim is to identify conditions under which it achieves the optimal rate of M/N .

The benchmark result on the performance of ERM in linear aggregation is Theorem 2.2 in [3].
To formulate it, let F be a dictionary of cardinality M and set f ∗ to be the oracle in span(F ) (i.e.,
R(f ∗) = inff ∈span(F ) R(f )). We also denote by Lp for 1 ≤ p ≤ ∞ the Banach spaces Lp(X ,μ),
and in particular, ‖f ‖L2 = (Ef (X)2)1/2.

Theorem 1.1 [3]. Assume that E(Y − f ∗(X))4 < ∞ and that for every f ∈ span(F ),

‖f ‖L∞ ≤ √
B‖f ‖L2 . (1.2)

If x > 0 satisfies that 2/N ≤ 2 exp(−x) ≤ 1 and

N ≥ 1280B2
[

3BM + x + 16B2M2

N

]
,

then with probability at least 1 − 2 exp(−x),

R
(
f̂ ERM) − R

(
f ∗) ≤ 1920B

√
E

(
Y − f ∗(X)

)4
[

3BM + x

N
+ 16B2M2

N2

]
.
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It follows from Theorem 1.1 that under an L4 assumption on Y − f ∗(X) and the equivalence
between the L2 and L∞ norms on the span of F , ERM achieves a rate of convergence of order
B2M/N when N ≥ cB3M for an absolute constant c.

However, it should be noted that the best probability estimate one may obtain in Theorem 1.1
is 1 − 2/N ; also, it is possible to show that the constant B defined in (1.2) is necessarily larger
than the dimension M of span(F ). For the sake of completeness, we shall provide a proof of that
fact in the Appendix. Therefore, the rate that Theorem 1.1 guarantees is, at best, of the order of
M3/N , to achieve that rate, at least N ≥ cM4 observations are needed, and even with that sample
size, the probability estimate is, at best, 1 − 2/N . This estimate is far from the anticipated rate
of M/N , which should be achieved when N ≥ cM and preferably, with significantly higher
probability.

Nevertheless, the optimal rate of M/N can be obtained by relaxing assumption (1.2) and using
a different method of proof. Recall that the ψ2 norm of a function f is

‖f ‖ψ2 = inf
{
C > 0: E exp

(
f 2(X)/C2) ≤ 2

}
.

One may show that ‖f ‖ψ2 ≤ c‖f ‖L∞ for a suitable absolute constant c (see, e.g., Section 1
in [8]). Therefore, assuming that the ψ2-norm and the L2-norm are equivalent in span(F ) is a
weaker requirement than the one in (1.2). The assumption that for every f ∈ span(F ),

‖f ‖ψ2 ≤ √
C‖f ‖L2 , (1.3)

means that span(F ) is a sub-Gaussian class, following the definition from [18]. To put this
assumption in some perspective, there are numerous examples of sub-Gaussian classes (the sim-
plest of which are classes of linear functionals on R

M endowed with a sub-Gaussian design) for
which the equivalence constant C is an absolute constant, unlike the constant B in (1.2), which
is at least M .

Naturally, the analysis of ERM under a sub-Gaussian assumption requires a more sophisticated
technical machinery than in situations in which the L2/L∞ equivalence assumption used in
Theorem 1.1 holds. Invoking the main result from [18], one can show that if Y − f ∗(X) is
sub-Gaussian and span(F ) is a sub-Gaussian class, then for every x > 0, ERM achieves a rate
rN(M) = c1xM/N with probability at least 1 − exp(−c2xM).

Although the sub-Gaussian case is interesting, the goal of this note is the study of ERM as a
linear aggregation procedure under much weaker assumptions.

Theorem A. Let F = {f1, . . . , fM} and assume that there are constants κ0 and β0 for which

P
{∣∣f (X)

∣∣ ≥ κ0‖f ‖L2

} ≥ β0 (1.4)

for every f ∈ span(F ). Let N ≥ (400)2M/β2
0 and set ζ = Y − f ∗(X). Assume further that one

of the following two conditions holds:

1. ζ is independent of X and Eζ 2 ≤ σ 2, or
2. |ζ | ≤ σ almost surely.
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Then, for every x > 0, with probability at least 1 − exp(−β2
0N/4) − (1/x),

∥∥f̂ ERM − f ∗∥∥2
L2

= R
(
f̂ ERM) − min

f ∈span(F )
R(f ) ≤

(
16

β0κ
2
0

)2
σ 2Mx

N
.

Since the loss is the squared one, one has to assume that Y and functions in span(F ) have a
second moment. It follows from Theorem A that in some cases, this is (almost) all that is needed
for an optimal rate. Indeed, if ζ = Y − f ∗(X) is independent of the design X – as is the case in
any regression model with independent noise Y = f ∗(X) + ζ , and if (1.4) holds, ERM achieves
the optimal rate M/N .

Corollary 1.2. Consider the regression model Y = f ∗(X)+ ζ where ζ is a mean-zero noise that
is independent of X. Assume that ζ ∈ L2 and that f ∗ ∈ span(F ). If span(F ) satisfies (1.4) and
N ≥ (400)2M/β2

0 , then for every x > 0, with probability at least 1 − exp(−β2
0N/4) − 1/x,

∥∥f̂ ERM − f ∗∥∥2
L2

≤
(

16

β0κ
2
0

)2
σ 2Mx

N
.

From a statistical point of view, (1.4), which is a small-ball assumption on span(F ), is a quan-
tified version of identifiability. Indeed, consider the statistical model M = {Pf : f ∈ span(F )}
where Pf is the probability distribution of the couple (X,Y ), Y = f (X) + ζ and ζ is, for in-
stance, a Gaussian noise that is independent of X. Assuming that M is identifiable is equivalent
to having P(|f (X) − g(X)| > 0) > 0 for every f,g ∈ span(F ), which, by linearity, is equiva-
lent to P(|f (X)| > 0) > 0 for every f ∈ span(F ). Comparing this with the small-ball condition
in (1.4) shows that the latter is just a ‘robust’ version of identifiability.

It is possible to slightly modify the assumptions of Theorem A and still obtain the same type
of estimate. For example, it is straightforward to verify that the small-ball condition (1.4) holds
when the L2 and Lp norms are equivalent on span(F ) for some p > 2. This type of Lp/L2
equivalence assumption on span(F ) is weaker than the equivalence between the Lψ2 and the L2
norms in (1.3) because for every p ≥ 1, ‖f ‖Lp ≤ c

√
p‖f ‖ψ2 for a suitable absolute constant c.

And, it is clearly weaker than the L∞/L2 equivalence assumption (1.2) used in Theorem 1.1.
It turns out that if the L2 and L4 norms are equivalent on span(F ), one may obtain the optimal

rate for an arbitrary target Y , as long as ζ = Y − f ∗(X) has a fourth moment. The difference
between such a result and Theorem A is that ζ need not be independent of X, nor must it be
bounded.

Theorem 1.3. There exist absolute constants c0, c1 and c2 for which the following holds. Assume
that there exists θ0 for which

‖f ‖L4 ≤ θ0‖f ‖L2 (1.5)

for every f ∈ span(F ), and let N ≥ (c0θ
4
0 )2M . Set ζ = Y − f ∗(X) and put σ = (Eζ 4)1/4. Then,

for every x > 0, with probability at least 1 − exp(−N/(c1θ
8
0 )) − (1/x),

∥∥f̂ − f ∗∥∥2
L2

= R(f̂ ) − min
f ∈span(F )

R(f ) ≤ c2θ
12
0 · σ 2Mx

N
.
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Remark 1.4. One may show that a possible choice of constants in Theorem 1.3 is c0 = 1600,
c1 = 64 and c2 = (256)2, but since we have not made any real attempt of optimizing the choice
of constants – because identifying the correct rate is the main focus of this note – we will not
keep track of the values of constants in what follows.

One example in which Theorem 1.3 may be used is the regression problem with a misspecified
model: Y = f0(X) + W where the regression function f0 may not be in the model span(F ) and
ζ = (f0 −f ∗)(X)+W has a fourth moment. If span(F ) satisfies (1.4), then with high probability,

∥∥f̂ − f ∗∥∥2
L2

= ∥∥f̂ − f0
∥∥2

L2
−∥∥f0 − f ∗∥∥2

L2
≤ c(θ0)

(
Eζ 4)1/2 M

N
, (1.6)

for a constant c(θ0) that only depends on θ0. Hence, one may select M as the solution of an
optimal trade-off between the variance term (Eζ 4)1/2M/N and the bias; we refer the reader to
Chapter 1 in [31] for techniques of a similar flavour.

The standard way of analyzing the performance of ERM is via certain trade-offs between
concentration and complexity. However, in the case we study here, the functions involved may
have ‘heavy tails’, and empirical means do not exhibit strong, two-sided concentration around
their true means – which is a crucial component in the standard method of analysis. Therefore, a
completely different path must be taken if one is to obtain the results formulated above.

The method we shall employ here has been introduced in [22,23] for problems in Learning
Theory; in [24] in the context of the geometry of convex bodies; in [25] for applications in
random matrix theory; and in [20] for Compressed Sensing.

Obviously, and regardless of the method of analysis, the (seemingly) unsatisfactory probabil-
ity estimate is the price one pays for the moment assumptions on the ‘noise’ Y − f ∗(X). The
next result shows that without stronger moment assumptions, only weak polynomial probability
estimates are true.

Proposition 1.5. Let x ≥ 1, assume that N ≥ c0M for a suitable absolute constant c0 and that
X is the standard Gaussian vector in R

M . There exists a mean-zero, variance one random vari-
able ζ , that is independent of X and for which the following holds.

Fix t∗ ∈ R
M and consider the model Y = 〈X, t∗〉 + ζ . With probability at least c1/x, ERM

produces t̂ ∈ arg mint∈RM

∑N
i=1(Yi − 〈Xi, t〉)2 that satisfies

∥∥t̂ − t∗
∥∥2

2 = R(t̂) − R
(
t∗

) ≥ c2xM

N
,

where c1 and c2 are absolute constants and R(t) = E(Y − 〈X, t〉)2 is the squared risk of t .

Note that the class of linear functional {〈·, t〉: t ∈ R
M} is a linear space of dimension M and

it satisfies the small-ball condition when X is the standard Gaussian vector (actually, this class is
sub-Gaussian). It follows from Proposition 1.5 that there is no hope of obtaining an exponential
probability bound on the excess risk of ERM under an L2-moment assumption on the noise – only
polynomial bounds are possible. In particular, the probability estimate obtained in Theorem A
under the L2-assumption on the noise cannot be improved.
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Finally, we would like to address the problem of linear aggregation under the classical bound-
edness assumptions: that |Y | ≤ 1 and |f (X)| ≤ 1 almost surely for every f ∈ F .

These are the standard assumptions that have been considered for the three problems of aggre-
gation with a random design. For instance, optimal rates of aggregation have been obtained under
these assumptions for the model selection aggregation problem in [2,16,21] and for the convex
aggregation problem in [15]. And, it has been established that while ERM is suboptimal for the
model selection aggregation problem (see, e.g., Section 3.5 in [7] or [17]), it is optimal for the
convex aggregation problem. However, the optimality of ERM in the linear aggregation problem
under the boundedness assumption was left open. The final result of this article addresses that
problem – and it turns out that the answer is negative in a very strong way.

Proposition 1.6. For every 0 < η < 1 and integers N and M , there exists a couple (X,Y ) and a
dictionary F = {f1, . . . , fM} with the following properties:

1. |Y | ≤ 1 almost surely and |f (X)| ≤ 1 almost surely for every f ∈ F .
2. With probability at least η, for every κ > 0 there is some

f̂ ERM ∈ arg min
f ∈span(F )

1

N

N∑
i=1

(
Yi − f (Xi)

)2

for which
R

(
f̂ ERM) ≥ inf

f ∈span(F )
R(f ) + κ.

Proposition 1.6 shows that even if one assumes that |Y | ≤ 1 and |f (X)| ≤ 1 almost surely
for every function in the dictionary, and despite the convexity of span(F ), the empirical risk
minimization procedure performs poorly. This illustrates the major difference between assuming
that the class is well bounded in L∞ and assuming that the L2 and Lp norms are equivalent on
its span: while the latter suffices for an optimal bound, the former is rather useless.

An obvious outcome of Proposition 1.6 is that ERM should not be used to solve the linear
aggregation problem under the boundedness assumption and one has to look for different proce-
dures in the bounded setup. It should also be noted that since Proposition 1.6 is a non-asymptotic
lower bound and X may depend on N and M , the asymptotic result appearing in Theorem 2.1 in
[3] does not apply here.

Notation. For every function f , let ‖f ‖Lp = (E|f (X)|p)1/p . The excess loss of a function f ∈
span(F ) is defined for every x ∈X and y ∈ R by

Lf (x, y) = (
y − f (x)

)2 − (
y − f ∗(x)

)2;
thus, R(f ) − R(f ∗) = PL(X,Y ) ≥ 0. The empirical measure over the data is denoted by PN

and

PNLf = 1

N

N∑
i=1

(
Yi − f (Xi)

)2 − (
Yi − f ∗(Xi)

)2
.

For every vector x ∈ R
M , let ‖x‖	M

p
= (

∑M
j=1 |xj |p)1/p be its 	M

p -norm.
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Finally, all absolute constants are denoted by c1, c2, etc. Their value may change from line
to line. We write A � B if there is an absolute constant c for which A ≤ cB , and A �α B if
A ≤ c(α)B for a constant c that depends only on α.

2. Proofs of Theorem A and Theorem 1.3

The starting point of the proof of Theorem A is the same as in [18,19,22,23]: a decomposition of
the excess loss function

Lf (x, y) = (
f ∗(x) − f (x)

)2 + 2
(
y − f ∗(x)

)(
f ∗(x) − f (x)

)
(2.1)

to a sum of quadratic and linear terms in (f − f ∗)(X). The idea of the proof is to control the
quadratic term from below using a ‘small-ball’ argument, and the linear term from above using
standard methods from empirical processes theory. A combination of these two bounds suffices
to show that if ‖f − f ∗‖L2 ≥ r∗

N for an appropriate choice of r∗
N , the quadratic term dominates

the linear one, and in particular, for such functions PNLf > 0. Since the empirical excess loss of
the empirical minimizer is non-positive, it follows that ‖f̂ − f ∗‖L2 < r∗

N .

Lemma 2.1. There exists an absolute constant c0 for which the following holds. Assume that
there are κ0 and β0 for which

P
(∣∣f (X)

∣∣ ≥ κ0‖f ‖L2

) ≥ β0

for every f ∈ span(F ). If N ≥ c0M/β2
0 , then with probability at least 1 − exp(−β2

0N/4), for
every f ∈ span(F ),

∣∣{i ∈ {1, . . . ,N}: ∣∣f (Xi)
∣∣ ≥ κ0‖f ‖L2

}∣∣ ≥ β0N

2
.

Proof. Let x > 0 and set

H = sup
f ∈span(F )

∣∣∣∣∣ 1

N

N∑
i=1

1{|f (Xi)|≥κ0‖f ‖L2 } − P
(∣∣f (X)

∣∣ ≥ κ0‖f ‖L2

)∣∣∣∣∣.
Set W = (f1(X), . . . , fM(X)) – a random vector endowed on R

M by the dictionary F and
the random variable X. Note that span(F ) = {∑M

j=1 tj fj : (t1, . . . , tM) ∈ R
M} and set ‖t‖L2 =

‖∑M
j=1 tj fj‖L2 .

Since N independent copies of X, X1, . . . ,XN , endow N independent copies of W , denoted
by W1, . . . ,WN , it follows that

H = sup
t∈RM

∣∣∣∣∣ 1

N

N∑
i=1

1{|〈t,·〉|≥κ0‖t‖L2 }(Wi) − P
(∣∣〈t,W 〉∣∣ ≥ κ0‖t‖L2

)∣∣∣∣∣.
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By the bounded differences inequality (see, e.g., Theorem 6.2 in [4]), with probability at least
1 − exp(−x2/2),

H ≤ EH + 1

2

√
x

N
, (2.2)

and a standard argument based on the VC-dimension of half-spaces in R
M shows that

EH = EH(X1, . . . ,XN) ≤ c1

√
M

N

(one may show the c1 ≤ 100 using a rough estimate on Dudley’s entropy integral combined
with Exercise 2.6.4 in [32]). Therefore, if c1

√
M/N ≤ β0/4 and (1/2)

√
x/N = β0/4, then with

probability at least 1 − exp(−β2
0N/4), H ≤ β0/2.

Finally, since

inf
f ∈span(F )

P
(∣∣f (X)

∣∣ ≥ κ0‖f ‖L2

) ≥ β0

it follows that on the event {H ≤ β0/2},

inf
f ∈span(F )

1

N

N∑
i=1

1{|f (Xi)|≥κ0‖f ‖L2 }(Xi) ≥ β0

2
. (2.3)

Therefore, (2.3) holds with probability at least 1 − exp(−β2
0N/4). �

Lemma 2.2. Let ζ = Y − f ∗(X) and assume that one of the following two conditions hold:

1. ζ is independent of X and Eζ 2 ≤ σ 2, or
2. |ζ | ≤ σ almost surely.

Then, for every x > 0, with probability larger than 1 − (1/x),∣∣∣∣∣ 1

N

N∑
i=1

(
Yi − f ∗(Xi)

)(
f ∗(Xi) − f (Xi)

)∣∣∣∣∣ ≤ 2σ

√
Mx

N

∥∥f ∗ − f
∥∥

L2

for every f ∈ span(F ).

Proof. Recall that f ∗(X) is the best L2-approximation of Y in the linear space span(F ); hence,
E(Y − f ∗(X))(f ∗(X) − f (X)) = 0 for every f ∈ span(F ).

Let ε1, . . . , εN be independent Rademacher variables that are also independent of the couples
(Xi, Yi)

N
i=1. A standard symmetrization argument shows that

E sup
f ∈span(F )\{f ∗}

∣∣∣∣∣ 1

N

N∑
i=1

(
Yi − f ∗(Xi)

)f ∗(Xi) − f (Xi)

‖f ∗ − f ‖L2

∣∣∣∣∣
2

≤ 4E sup
f ∈span(F )\{f ∗}

∣∣∣∣∣ 1

N

N∑
i=1

εi

(
Yi − f ∗(Xi)

)f ∗(Xi) − f (Xi)

‖f ∗ − f ‖L2

∣∣∣∣∣
2

.
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Let T = {t ∈ R
M : ‖∑M

j=1 tj fj‖L2 = 1} and observe that if ζ1, . . . , ζN are independent copies
of ζ , then

E sup
f ∈span(F )\{f ∗}

∣∣∣∣∣ 1

N

N∑
i=1

εi

(
Yi − f ∗(Xi)

)f ∗(Xi) − f (Xi)

‖f ∗ − f ‖L2

∣∣∣∣∣
2

= E sup
t∈T

∣∣∣∣∣ 1

N

N∑
i=1

εiζi

(
M∑

j=1

tj fj (Xi)

)∣∣∣∣∣
2

= (∗).

Recall that W = (f1(X), . . . , fM(X)) and set � to be the covariance matrix associated with W .
Let �−1/2 be the pseudo-inverse of the squared-root of �, set Z = �−1/2W and note that
E‖Z‖2

	M
2

≤ M .

If Z1, . . . ,ZN are independent copies of Z, it follows that

(∗) = E sup
‖t‖

	M2
=1

∣∣∣∣∣
〈
t,

1

N

N∑
i=1

εiζiZi

〉∣∣∣∣∣
2

= E

∥∥∥∥∥ 1

N

N∑
i=1

εiζiZi

∥∥∥∥∥
2

	M
2

= EEε1,...,εN

∥∥∥∥∥ 1

N

N∑
i=1

εiζiZi

∥∥∥∥∥
2

	M
2

= E

(
1

N2

N∑
i=1

ζ 2
i ‖Zi‖2

	M
2

)
=

Eζ 2‖Z‖2
	M

2

N

≤
σ 2

E‖Z‖2
	M

2

N
,

implying that

E sup
f ∈span(F )\{f ∗}

∣∣∣∣∣ 1

N

N∑
i=1

(
Yi − f ∗(Xi)

)f ∗(Xi) − f (Xi)

‖f ∗ − f ‖L2

∣∣∣∣∣
2

≤ 4σ 2M

N
.

The claim now follows from Markov’s inequality. �

Proof of Theorem A. Combining Lemma 2.1 and Lemma 2.2 when N ≥ c0M/β2
0 , it follows

that with probability at least 1 − exp(−β2
0N/4) − (1/x), if f ∈ span(F ) and

∥∥f̂ − f ∗∥∥
L2

>
16σ

β0κ
2
0

√
Mx

N
, (2.4)

one has

1

N

N∑
i=1

(
f ∗(Xi) − f (Xi)

)2

≥ κ2
0

∥∥f − f ∗∥∥2
L2

∣∣{i: ∣∣f ∗(Xi) − f (Xi)
∣∣ ≥ κ0

∥∥f − f ∗∥∥
L2

}∣∣/N



ERM in linear aggregation 1529

≥ β0κ
2
0

2

∥∥f − f ∗∥∥2
L2

> 8σ

√
Mx

N

∥∥f ∗ − f
∥∥

L2

>
2

N

N∑
i=1

(
Yi − f ∗(Xi)

)(
f ∗(Xi) − f (Xi)

)
.

Hence, on the same event, if f ∈ span(F ) and (2.4) is satisfied then PNLf > 0. Since
PNL

f̂ ERM ≤ 0, it follows that

∥∥f̂ ERM − f ∗∥∥2
L2

≤
(

16σ

β0κ
2
0

)2
Mx

N
. �

Proof of Theorem 1.3. The proof of Theorem 1.3 is almost identical to the proof of Theorem A,
and we will only outline the minor differences.

The small-ball condition (1.4) follows from the Paley–Zygmund inequality (see, for instance,
Proposition 3.3.1 in [11]): if V is a real-valued random variable then

P
(|V | ≥ κ0

(
EV 2)1/2) ≥ (1 − κ0)

2 (EV 2)2

E|V |4 .

In particular, if (E|V |4)1/4 ≤ θ0(E|V |2)1/2 then

P
(|V | ≥ (1/2)

(
EV 2)1/2) ≥ (

4θ4
0

)−1

and thus the assertion of Lemma 2.1 holds for κ0 = 1/2 and β0 = (4θ4
0 )−1.

As for the analogous version of Lemma 2.2, the one change in its proof is that

Eζ 2‖Z‖2
	M

2
≤ (

Eζ 4)1/2(
E‖Z‖4

	M
2

)1/2

and

E‖Z‖4
	M

2
= E

(
M∑

j=1

〈ej ,Z〉2

)2

= E

M∑
p,q=1

〈ep,Z〉2〈eq,Z〉2

≤
M∑

p,q=1

(
E〈ep,Z〉4

E〈eq,Z〉4)1/2 ≤ θ4
0

M∑
p,q=1

E〈ep,Z〉2
E〈eq,Z〉2 = θ4

0 M2.
�

3. Proof of Proposition 1.6

Fix Y = 1 as the target and let X = ⋃M
j=0 Xj be some partition of X . Consider a random variable

X which is distributed as follows: fix k ≥ M to be chosen later; for 1 ≤ j ≤ M , set P(X ∈Xj ) =
1
k

and put P(X ∈X0) = 1 − M
k

.
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Finally, set

fj (x) =
{

1, if x ∈ Xj ,

0, otherwise

and put F = {f1, . . . , fM}.
Note that |Y | ≤ 1 almost surely and that for every f ∈ F , |f (X)| ≤ 1 almost surely. It is

straightforward to verify that the oracle in span(F ) is f ∗ = ∑M
j=1 fj (·), and thus

inf
f ∈span(F )

R(f ) = R
(
f ∗) = E

(
Y − f ∗(X)

)2 = P(X ∈ X0) = 1 − M

k
.

Let X1, . . . ,XN be independent copies of X. Given 0 < η < 1 and k large enough (for instance,
k ≥ c(η)N/ logM for a sufficiently large constant c(η) would suffice), there exists an event 
0
of probability at least η on which the following holds: there exists j0 ∈ {1, . . . ,M} for which
Xi /∈Xj0 for every 1 ≤ i ≤ N (this is a slight modification of the coupon-collector problem).

For every j = 1, . . . ,M , let Nj = |{i ∈ {1, . . . ,N}: Xi ∈Xj }|. Hence, for t ∈ R
M , the empiri-

cal risk of
∑M

i=1 tj fj is

RN

(
M∑

j=1

tj fj

)
= 1

N

N∑
i=1

(
Yi −

M∑
j=1

tj fj (Xi)

)2

=
M∑

j=1

Nj

N
(1 − tj )

2.

For ξ > 0 define t̂ (ξ ) ∈ R
M by setting

t̂ (ξ )j =
{

1, if there exists i ∈ {1, . . . ,N} s.t. Xi ∈ Xj ,

ξ, if there is no i ∈ {1, . . . ,N} s.t. Xi ∈ Xj .

Hence, t̂ (ξ ) ∈ arg mint∈RM RN(
∑M

j=1 tj fj ) and ĥξ = ∑M
j=1 t̂ (ξ )j fj is an empirical minimizer

in span(F ).
For every sample in 
0, let j0 ∈ {1, . . . ,N} be the index for which Xi /∈ Xj0 for every 1 ≤

i ≤ N . Therefore,

R(ĥξ ) = E
(
Y − ĥξ (X)

)2 ≥ (ξ − 1)2P(X ∈Xj0) = (ξ − 1)2

k

and the claim follows by selecting ξ large enough.

Appendix

We begin by presenting a proof of the well-known fact that if the L∞ and L2 norms are
√

B-
equivalent on the span of M linearly-independent functions, then B ≥ M .

Let F = {f1, . . . , fM} ⊂ L2 be a dictionary whose span is of dimension M , and recall that

√
B = sup

f ∈span(F )\{0}
‖f ‖L∞
‖f ‖L2

. (A.1)
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For every u ∈R
M set fu = ∑M

j=1 ujfj and define an inner-product on R
M by

〈u,v〉F = Efu(X)fv(X).

Let (v1, . . . , vM) be an orthonormal basis of RM relative to 〈·, ·〉F and for every 1 ≤ j ≤ M , set
φj = fvj

. Observe that (φ1, . . . , φM) is an orthonormal basis of span(F ) in L2.
For μ-almost every x ∈X ,

M∑
j=1

φ2
j (x) ≤ ess sup

z∈X

M∑
j=1

φj (x)φj (z) =
∥∥∥∥∥

M∑
j=1

φj (x)φj

∥∥∥∥∥
L∞

,

and by the definition of B in (A.1),∥∥∥∥∥
M∑

j=1

φj (x)φj

∥∥∥∥∥
L∞

≤ √
B

∥∥∥∥∥
M∑

j=1

φj (x)φj

∥∥∥∥∥
L2

= √
B

(
M∑

j=1

φ2
j (x)

)1/2

.

Hence, for μ-almost every x ∈X ,
M∑

j=1

φ2
j (x) ≤ B,

and by integrating this inequality with respect to μ and recalling that Eφ2
j (X) = 1, it follows that

M ≤ B .

Proof of Proposition 1.5. Consider the model Y = 〈X, t∗〉 + ζ where t∗ ∈ R
M , X is a standard

Gaussian vector in R
M and ζ is a mean-zero noise that is independent of X. To make the presen-

tation simpler, assume that t∗ = 0, and thus one only observes the noise Y = ζ . The aim here is
to estimate the distance between t̂ and t∗ = 0 when the noise ζ is only assumed to be in L2.

Let us begin by showing that, conditionally on ζ1, . . . , ζN , and if σ̂ 2
N = 1

N

∑N
i=1 ζ 2

i , then with
probability at least 1 − 2 exp(−c0N),

R(t̂) − R
(
t∗

) = ‖t̂‖2
2 ≥ cσ̂ 2

NM

N
, (A.2)

for a suitable absolute constant c.
To that end, observe that the excess empirical risk for every v ∈ R

M is

PNLv = RN(v) − RN(0) = 1

N

N∑
i=1

〈Xi, v〉2 − 2

N

N∑
i=1

ζi〈Xi, v〉, (A.3)

and that for every sample, if r1 < r2 and

inf
0≤r<r1

inf‖v‖2=r
PNLv > inf

r≥r2
inf‖v‖2=r

PNLv,

one has ‖t̂‖2 ≥ r1.
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Using a standard ε-net argument together with Gaussian concentration, one may show that if
N ≥ c0M , then with μN -probability at least 1 − 2 exp(−c1N), for every x ∈R

M ,

1

2
‖x‖2

2 ≤ 1

N

N∑
i=1

〈Xi, x〉2 ≤ 3

2
‖x‖2

2. (A.4)

Moreover, on that event, setting

I = sup
{x∈RM : ‖x‖2=1}

∣∣∣∣∣ 1

N

N∑
i=1

ζi〈Xi, x〉
∣∣∣∣∣,

one has that for any ζ1, . . . , ζN

c1σ̂N

√
M

N
≤ I ≤ c2σ̂N

√
M

N

for suitable absolute constants c1 and c2. We refer the reader to Lemma 2.6.4 and Theorem 2.6.5
in [8] for more details on the techniques used to obtain these observations.

Clearly, for every r > 0,

inf
{x∈RM : ‖x‖2=r}

1

N

N∑
i=1

ζi〈Xi, x〉 = −rI. (A.5)

Hence, by (A.3), it follows that for N ≥ c0M and conditioned on ζ1, . . . , ζN , with probability at
least 1 − 2 exp(−c3N),

inf
0≤r<I/6

inf‖v‖2=r
PNLv ≥ inf

0≤r<I/6

(
r2

2
− rI

)

> inf
r≥I/3

(
3r2

2
− rI

)
≥ inf

r≥I/3
inf‖v‖2=r

PNLv.

Therefore, on that event

‖t̂‖2 ≥ I/6 ≥ c4σ̂N

√
M

N
.

Now, all that remains is to show that P(σ̂ 2
N ≥ x) ≥ c5/x. �

Lemma A.1. For every N ≥ 2 and x ≥ 1, there exists a mean-zero, variance one random vari-
able ζ for which

P
(
σ̂ 2

N ≥ x
) ≥ c1

x
.
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Proof. Fix x ≥ 1, let ε be a symmetric, {−1,1}-valued random variable, set δ = 1/(xN) and
put η to be a {0,1}-valued random variable with mean δ that is independent of ε. Finally, let
R = 1/

√
δ and set ζ = Rεη. Thus, Eζ = 0 and ‖ζ‖L2 = Rδ1/2 = 1.

Let ζi = Rεiηi , i = 1, . . . ,N be independent copies of ζ . Recall that NR−2x = 1 and that
δN ≤ 1. Therefore,

P
(
σ̂ 2

N ≥ x
) = P

(
1

N

N∑
i=1

ζ 2
i ≥ x

)
= P

(
N∑

i=1

ηi ≥ 1

)

= P
(∃i ∈ {1, . . . ,N}, ηi = 1

) = 1 − (1 − δ)N ≥ c1Nδ = c1/x,

as claimed. �
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