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New results and improvements in the study of nonparametric exponential and mixture models are proposed.
In particular, different equivalent characterizations of maximal exponential models, in terms of open expo-
nential arcs and Orlicz spaces, are given. Our theoretical results are supported by several examples and
counterexamples and provide an answer to some open questions in the literature.
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1. Introduction

The geometry of statistical models, called Information Geometry, started with a paper of Rad-
hakrishna Rao [10] and has been described in its modern formulation by Amari [1,2] and Amari
and Nagaoka [3]. Until the nineties, the theory was developed only in the parametric case. The
first rigorous infinite dimensional extension has been formulated by Pistone and Sempi [9]. In
this work, the set of (strictly) positive densities has been endowed with a structure of exponential
Banach manifold, using the Orlicz space associated to an exponentially growing Young function.
The geometry of nonparametric exponential models and its analytical properties in the topol-
ogy of the exponential Orlicz space has been also studied in subsequent works, for example, by
Gibilisco and Pistone [5], Pistone and Rogantin [8], Cena and Pistone [4].

In this paper, we develop some ideas contained in Cena and Pistone [4] and we add several
new results and improvements in the study of nonparametric exponential and mixture models.
In particular, a novelty is represented by the introduction in this context of the time dependence,
which could allow to change the perspective from static to dynamic.

In the exponential framework, the starting point is the notion of maximal exponential model
centered at a given positive density p, introduced by Pistone and Sempi [9]. One of the main
results of Cena and Pistone [4] states that any density belonging to the maximal exponential
model centered at p is connected by an open exponential arc to p and vice versa (by “open,”
we essentially mean that the two densities are not the extremal points of the arc). In this work,
we give a proof of this result, which is at the same time simpler and more rigorous than the
one in Cena and Pistone [4]. Moreover, we additionally prove that the equality of the maximal
exponential models centered at two (connected) densities p and q is equivalent to the equality of
the Orlicz spaces referred to the same densities. Our achievements highlight the role of the Orlicz
spaces in the theory of nonparametric exponential models and its connection with the divergence
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between densities, and thus, with Information Theory. Our theoretical results are supported by
several examples and counterexamples, which provide an answer to some open questions, filling
some gaps in the literature.

A second part of the work is devoted to the study of open mixture arcs and contains results
which are the counterpart of those obtained for open exponential arcs. More specifically, we give
the characterization of open mixture models by establishing the equivalence between the open
mixture connection and the boundedness of the densities ratios q

p
and p

q
.

The paper is organized as follows. In Section 2, some basic notions in the theory of Orlicz
spaces are briefly recalled. The definitions of open mixture and exponential arcs are given in
Section 3. Section 4 contains our main results. More specifically, the characterizations of ex-
ponential and mixture models are dealt with in Section 4.1. Densities time evolution and some
geometric properties of exponential and mixture models, namely the convexity and the L1 clo-
sure, are studied, respectively, in Sections 4.2 and 4.3.

2. Preliminaries on Orlicz spaces

In this section, we recall some known results from the theory of Orlicz spaces, which will be
useful in the sequel. For further details on Orlicz spaces, the reader is referred to Rao and Ren [11,
12].

Let (X ,F,μ) be a fixed measure space. Young functions can be seen as generalizations of
the functions f (x) = |x|a

a
, with a > 1, and consequently, Orlicz spaces are generalizations of the

Lebesgue spaces La(μ). Now, we give the definition of Young function and of the related Orlicz
space.

Definition 2.1. A Young function � is an even, convex function � :R→ [0,+∞] such that

(i) �(0) = 0,
(ii) limx→∞ �(x) = +∞,

(iii) �(x) < +∞ in a neighborhood of 0.

The conjugate function � of �, is defined as �(y) = supx∈R{xy − �(x)}, ∀y ∈ R and it is
itself a Young function. From the definition of � , the Fenchel–Young inequality immediately
follows:

|xy| ≤ �(x) + �(y), x, y ∈ R. (1)

This inequality is a generalization of the classical Young inequality |xy| ≤ |x|a
a

+ |y|b
b

with
a, b > 0, 1

a
+ 1

b
= 1, used in the ordinary La(μ) spaces.

Now, let L0 denote the set of all measurable functions u :X →R defined on (X ,F,μ).

Definition 2.2. The Orlicz space L�(μ) associated to the Young function � is defined as

L�(μ) =
{
u ∈ L0: ∃α > 0 s.t.

∫
X

�(αu)dμ < +∞
}
. (2)
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The Orlicz space L�(μ) is a vector space. Moreover, one can show that it is a Banach space
when endowed with the Luxembourg norm

‖u‖�,μ = inf

{
k > 0:

∫
X

�

(
u

k

)
dμ ≤ 1

}
. (3)

Consider the Orlicz space L�(μ) with the Luxembourg norm ‖ · ‖�,μ and denote by B(0,1)

the open unit ball and by B(0,1) the closed one. Let us observe that

u ∈ B(0,1) ⇐⇒ ∃α > 1 s.t.
∫
X

�(αu)dμ ≤ 1,

u ∈ B(0,1) ⇐⇒
∫
X

�(u)dμ ≤ 1.

Moreover, the Luxembourg norm is equivalent to the Orlicz norm

N�,μ(u) = sup
v∈L�(μ):

∫
X �(v)dμ≤1

{∫
X

|uv|dμ

}
, (4)

where � is the conjugate function of �.
It is worth to recall that the same Orlicz space can be related to different equivalent Young

functions.

Definition 2.3. Two Young functions � and �′ are said to be equivalent if there exists x0 > 0,
and two positive constants c1 < c2 such that, ∀x ≥ x0,

�(c1x) ≤ �′(x) ≤ �(c2x).

In such a case the Orlicz spaces L�(μ) and L�′
(μ) are equal as sets and have equivalent

norms as Banach spaces.
From now on, we consider a probability space (X ,F ,μ) and we denote with P the set of all

densities which are positive μ-a.s. Moreover, we use Ep to denote the integral with respect to
p dμ, for each fixed p ∈ P .

In the sequel, we use the Young function �1(x) = cosh(x)−1, which is equivalent to the more
commonly used �2(x) = e|x| − |x| − 1.

We recall that the conjugate function of �1(x) is �1(y) = ∫ y

0 sinh−1(t)dt , which, in its turn,
is equivalent to �2(y) = (1 + |y|) log(1 + |y|) − |y|.

Finally, in order to stress that we are working with densities p ∈ P , we will denote with
L�1(p) the Orlicz space associated to �1, defined with respect to the measure induced by p,
that is,

L�1(p) = {
u ∈ L0: ∃α > 0 s.t. Ep

(
�1(αu)

)
< +∞}

. (5)

It is worth to note that, in order to prove that a random variable u belongs to L�1(p), it is
sufficient to check that Ep(eαu) < +∞, with α belonging to an open interval containing 0.
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3. Mixture and exponential arcs

In this section, we recall the definitions of mixture and exponential arcs, and some related results.

Definition 3.1. Two densities p,q ∈ P are connected by an open mixture arc if there exists an
open interval I ⊃ [0,1] such that p(θ) = (1 − θ)p + θq belongs to P , for every θ ∈ I .

Definition 3.2. Two densities p,q ∈ P are connected by an open exponential arc if there exists
an open interval I ⊃ [0,1] such that p(θ) ∝ p(1−θ)qθ belongs to P , for every θ ∈ I .

In the following proposition, we give an equivalent definition of exponential connection by
arcs.

Proposition 3.3. p,q ∈ P are connected by an open exponential arc iff there exist an open
interval I ⊃ [0,1] and a random variable u ∈ L�1(p), such that p(θ) ∝ eθup belongs to P , for
every θ ∈ I and p(0) = p,p(1) = q .

Proof. Let us assume that p,q ∈ P are connected by an open exponential arc, that is,∫
X p(1−θ)qθ dμ < +∞, for any θ ∈ I . Since

∫
X

p(1−θ)qθ dμ = Ep

((
q

p

)θ)
= Ep

(
eθu

)
with u = log

q

p
,

then u ∈ L�1(p). Moreover p(θ) ∝ eθup belongs to P , for every θ ∈ I and p(0) = p,p(1) = q .
The converse follows immediately, observing that q = p(1) ∝ eup, that is, u = log q

p
+ c. �

The connections by open mixture arcs and by open exponential arcs are equivalence relations
(see Cena and Pistone [4] for the proofs).

In the following, we recall the definition of the cumulant generating functional and its prop-
erties, in order to introduce the notion of maximal exponential model. In the next section, the
maximal exponential model at p is proved to coincide with the set of all densities q ∈ P which
are connected to p by an open exponential arc.

Let us denote

L
�1
0 (p) = {

u ∈ L�1(p): Ep(u) = 0
}
.

Definition 3.4. The cumulant generating functional is the map

Kp : L
�1
0 (p) −→ [0,+∞],

(6)
u �−→ logEp

(
eu

)
.

Theorem 3.5. The cumulant generating functional Kp satisfies the following properties:

(i) Kp(0) = 0; for each u �= 0, Kp(u) > 0.
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(ii) Kp is convex and lower semicontinuous, moreover its proper domain

domKp = {
u ∈ L

�1
0 (p): Kp(u) < +∞}

is a convex set which contains the open unit ball of L
�1
0 (p). In particular, its interior

◦
domKp is

a nonempty convex set.

For the proof, one can see Pistone and Sempi [9].

Definition 3.6. For every density p ∈ P , the maximal exponential model at p is

E(p) = {
q = eu−Kp(u)p: u ∈ ◦

domKp

} ⊆P .

Remark 3.7. We have defined Kp on the set L
�1
0 (p) because centered random variables guaran-

tee the uniqueness of the representation of q ∈ E(p).

4. Main results on mixture and exponential models

4.1. Characterizations

In the sequel, we use the notation D(q‖p) to indicate the Kullback–Leibler divergence of q · μ
with respect to p · μ and we simply refer to it as the divergence of q from p.

We first state two results related to Orlicz spaces, which will be used in the sequel. Their proofs
can be found in Cena and Pistone [4].

Proposition 4.1. Let p and q belong to P and let � be a Young function.
The Orlicz spaces L�(p) and L�(q) coincide if and only if their norms are equivalent.

Lemma 4.2. Let p,q ∈ P , then D(q‖p) < +∞ ⇐⇒ q
p

∈ L�1(p) ⇐⇒ log q
p

∈ L1(q).

From Lemma 4.2, we can prove the following result.

Theorem 4.3. Let p,q ∈P . If D(q‖p) < +∞ then L�1(p) ⊆ L1(q).

Proof. Let us consider u ∈ L�1(p), i.e. Ep(�1(αu)) < +∞ for some α > 0.
Note that, by Lemma 4.2, the hypothesis D(q‖p) < +∞ is equivalent to q

p
∈ L�1(p), i.e.

Ep(�1(β
q
p
)) < +∞ for some β > 0.

Thus, using the Fenchel–Young inequality (1) and taking the expectation, we deduce that

αβEq

(|u|) = αβEp

(
|u| q

p

)
≤ Ep

(
�1(αu)

) +Ep

(
�1

(
β

q

p

))
< +∞. �
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Remark 4.4. In Theorem 4.3, Ep(�1(β
q
p
)) < +∞ for some β > 0 equals Ep(�1(

q
p
)) < +∞. In

fact, �1 is equivalent to �2 and it is easy to check that �2 satisfies the generalized �2 condition

�2(βy) ≤ max
(
β2,1

)
�2(y).

Assume y > 0 and observe that �2(y) = (1 + |y|) log(1 + |y|) − |y| admits the representation

ψ2(y) =
∫ y

0

y − τ

1 + τ
dτ.

Therefore,

ψ2(βy) = β2
∫ y

0

y − τ

1 + βτ
dτ ≤ max

(
β2,1

)
�2(y).

Figures 1 and 2 show the geometry described in Theorem 4.3.

Figure 1. The case when log q
p ∈ L1(q), i.e. D(q‖p) < +∞.

Figure 2. The case when log q
p ∈ L1(q) ∩ L1(p), i.e. D(q‖p) < +∞ and D(p‖q) < +∞.
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The next two results are technical preliminaries to Theorem 4.7. In particular, Proposition 4.6
gives a sufficient condition on Orlicz norms in order to have log q

p
∈ L1(p).

Lemma 4.5. Let p and q belong to P and let M be any positive constant. Then∥∥∥∥1(q/p>M) log
q

p

∥∥∥∥
�1,p

< +∞.

Proof. Let us denote A = { q
p

> M} and recall that 1A log q
p

∈ L�1(p) if and only if

Ep(eα1A logq/p) < +∞ for any α ∈ (−ε,+ε) with ε sufficiently small. Since

Ep

(
eα1A log(q/p)

) ≤ 1 +Ep

(
1A

(
q

p

)α)
,

when 0 < α < ε < 1, by Jensen inequality

Ep

(
1A

(
q

p

)α)
≤ Ep

((
q

p

)α)
≤ 1,

while, when −ε < α < 0,

Ep

(
1A

(
q

p

)α)
≤ Mα. �

Proposition 4.6. If ‖ · ‖�1,p ≤ c‖ · ‖�1,q , then log q
p

∈ L�1(p).

Proof. First, we write

log
q

p
= 1(q/p>M) log

q

p
+ 1(q/p≤M) log

q

p

= 1(q/p>M) log
q

p
− 1(p/q≥M−1) log

p

q
.

By hypothesis, we have ‖ · ‖�1,p ≤ c‖ · ‖�1,q . Therefore,∥∥∥∥log
q

p

∥∥∥∥
�1,p

≤
∥∥∥∥1(q/p>M) log

q

p

∥∥∥∥
�1,p

+ c

∥∥∥∥1(p/q≥M−1) log
p

q

∥∥∥∥
�1,q

.

Now, the conclusion immediately follows from Lemma 4.5, noting that its result holds also when
the strict inequality q

p
> M is replaced by q

p
≥ M . �

The following theorem is an important improvement of Theorem 21 of Cena and Pistone [4].
In particular, the main point is the equivalence between the equality of the exponential models
E(p) and E(q) and the equality of the Orlicz spaces L�1(p) and L�1(q). Moreover, we show
that if a density belongs to the maximal exponential model at p, there exists an open exponential
arc connecting the two densities and vice versa. This result was first stated in Theorem 21 of
Cena and Pistone [4]. However, the proof is somehow involved and imprecise in some steps.
Here, we give a simpler and rigorous one.
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Theorem 4.7. Let p,q ∈ P . The following statements are equivalent:

(i) q ∈ E(p);
(ii) q is connected to p by an open exponential arc;

(iii) E(p) = E(q);
(iv) L�1(p) = L�1(q);
(v) log q

p
∈ L�1(p) ∩ L�1(q);

(vi) q
p

∈ L1+ε(p) and p
q

∈ L1+ε(q), for some ε > 0.

Proof. We first show the equivalence of the first two statements. If q ∈ E(p), q ∝ eup for some
u ∈ ◦

domKp . Since also 0 ∈ ◦
domKp and

◦
domKp is an open convex set, we deduce that p(θ) ∝

eθup is an open exponential arc containing p and q , for θ in an open interval I ⊃ [0,1].
Vice versa, assume q is connected to p by an open exponential arc p(θ) ∝ eθup with q =

p(1). Since the exponential arc is defined for θ in an open interval I ⊃ [0,1], we can always
choose θu ∈ domKp , with θ > 1. We conclude that q ∈ E(p), by observing that u is a convex

combination of θu and 0 ∈ ◦
domKp, and thus, it belongs to

◦
domKp .

Note that (iii) immediately implies (i). On the other hand, if we assume there exists an
open exponential arc connecting p and q , the equality of the exponential models (iii) fol-
lows from the fact that the connection through open exponential arcs is an equivalence rela-
tion.

The equivalence of the previous statements with (v) is clearly proved in Theorem 21 of [4]. Let
us show the equivalence with (iv). (ii) ⇒ (iv) is proved in Theorem 19 of Cena and Pistone [4].

Conversely, if we assume L�1(p) = L�1(q), by Propositions 4.1 and 4.6, log q
p

∈ L�1(p) =
L�1(q). Denoting u = log q

p
, one can observe that, for any θ ∈ (−ε,+ε) with ε > 0, Ep(eθu) <

+∞ and Eq(eθu) = Ep(e(1+θ)u) < +∞. Therefore, using also Jensen inequality, one concludes
that there exists an open exponential arc connecting p and q .

The equivalence between (v) and (vi) easily follows from the definition of Orlicz spaces. �

The geometry of Theorem 4.7 is shown in Figure 3.

Figure 3. The particular case of Figure 2 when log q
p ∈ L�1 (p) ∩ L�1(q) i.e. q ∈ E(p).
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Corollary 4.8. If q ∈ E(p), then the divergences D(q‖p) < +∞ and D(p‖q) < +∞.

Proof. The thesis follows from (vi) of Theorem 4.7, taking into account that q
p

∈ L1+ε(p) is a
sufficient condition for D(q‖p) < +∞. �

The converse of this corollary does not hold. In the following, we provide a counterexample,
which at the same time, answers to an open question raised by Cena and Pistone [4].

Counterexample 4.9. Let us denote by X = [0,1], F = B([0,1]) and μ the corresponding
Lebesgue measure. We consider the trivial density p(x) = 1 and

q(x) = C

∞∑
n=1

1

n3Cn

(
x −

(
1 − 1

n

))−n/(n+1)

1(1−1/n,1−1/(n+1)](x), (7)

where

Cn =
∫ 1−1/(n+1)

1−1/n

(
x −

(
1 − 1

n

))−n/(n+1)

dx = n + 1
n+1
√

n(n + 1)
, (8)

C =
( ∞∑

n=1

1

n3

)−1

. (9)

Now we prove that, ∀ε > 0,

Eμ

(
q1+ε

) =
∫ 1

0
q(x)1+ε dx =

∞∑
n=1

(
C

n3Cn

)1+ε ∫ 1−1/(n+1)

1−1/n

(
x −

(
1 − 1

n

))−n(1+ε)/(n+1)

dx

= +∞.

In fact, ∫ 1−1/(n+1)

1−1/n

(
x −

(
1 − 1

n

))−n(1+ε)/(n+1)

dx

converges when n(1+ε)
n+1 < 1, that is when nε < 1. Then, for any choice of ε > 0, we can find

infinitely many n > 1
ε

, such that the integral above does not converge and, as a consequence,
Eμ(q1+ε) = +∞. Therefore, by (vi) of Theorem 4.7, we deduce that q /∈ E(1).

On the other hand, it can be proved that both D(q‖p) < +∞ and D(p‖q) < +∞ and this
concludes the counterexample.

We prove the last statements in the Appendix.

Remark 4.10. From a geometric point of view, equality L�1(p) = L�1(q) in Theorem 4.7 is
important. On the one hand, it implies that the exponential transport mapping, or e-transport,
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e
U

q
p :u → u − Eq(u) from L

�1
0 (p) to L

�1
0 (q) is well defined. On the other hand, due to Propo-

sition 22 of Cena and Pistone [4], it also implies that L�1(p) = q
p
L�1(q). As a consequence,

the mixture transport mapping, or m-transport, m
U

q
p :v → p

q
v from L

�1
0 (p) to L

�1
0 (q) is well-

defined. For details on the applications of nonparametric information geometry to statistical
physics, see Pistone [7].

The next theorem is the counterpart of Theorem 4.7 for open mixture arcs. One of the equiv-
alences is an improvement of Proposition 15 in Cena and Pistone [4]. In Cena and Pistone [4],
it is shown that densities connected by open mixture arcs have bounded away from zero ratios.
Here, we additionally show the converse implication, giving a characterization of open mixture
models. Moreover, one can see that the key role for being connected by open mixture either ex-
ponential arcs is played by the ratios q

p
and p

q
which have to be bounded or integrable in some

sense.
Given p ∈ P , we denote by M(p) the set of all densities q ∈ P which are connected to p by

an open mixture arc.

Theorem 4.11. Let p,q ∈P . The following statements are equivalent:

(i) q ∈M(p);
(ii) M(p) =M(q);

(iii) q
p
,

p
q

∈ L∞.

Proof. The equivalence between (i) and (ii) follows since the relation of connection through
open mixture arcs is an equivalence relation.

Now we show that p,q ∈ P are connected by open mixture arcs if and only if

c1 <
q

p
< c2 with 0 < c1 < 1 < c2.

Assume p and q are connected by an open mixture arc that is p(λ) = λq + (1 − λ)p belongs to
P for all λ ∈ (−α,1 + β) ⊃ [−ε,1 + ε] with ε > 0. Since p(−ε) and p(1 + ε) ∈ P , it is easy to
see that ε

1+ε
<

q
p

< 1+ε
ε

.
To check the other implication, one observes that p(λ) = λq + (1 − λ)p belongs to P for any

λ ∈ ( 1
1−c2

, 1
1−c1

). �

Proposition 4.12. Let p,q ∈ P . If p and q are connected by an open mixture arc, then they are
also connected by an open exponential arc.

Proof. The result immediately follows from Theorems 4.7 and 4.11. �

The converse implication does not hold, as the following counterexample shows.

Counterexample 4.13. Consider the family of beta densities p(β) ∝ xβ−1, x ∈ [0,1], with β ∈
(0,+∞).
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It is easy to see that given two densities p = p(β1) and q = p(β2), β1 < β2, they are connected
by an open exponential arc but they are not connected by an open mixture arc. In fact, on the one
hand the open exponential arc p(θ) ∝ p1−θ qθ ∝ x(1−θ)β1+θβ2−1 is still in the family of beta
densities for any θ ∈ (− β1

β2−β1
,+∞) ⊃ [0,1].

On the other hand, by Theorem 4.11, it does not exist an open mixture arc connecting p and q ,
since the ratio q

p
∝ xβ2−β1 is not bounded below by a positive constant.

Remark 4.14. In Proposition 15 of Cena and Pistone [4], by different arguments, it is shown that
if p and q are connected by an open mixture arc, then the Orlicz spaces L�(p) and L�(q) coin-
cide for any Young function �. When � = �1 the result immediately follows from Theorems 4.7
and 4.11.

4.2. Exponential models and densities time evolution

In this paragraph, we introduce the time perspective in the study of exponential models. As far
as we are aware, this is the first attempt in this direction.

Let us consider a filtration F = {Ft : t ∈ [0, T ]} on the probability space (X ,F,μ) such that
F =FT . Let p ∈ P and denote by pt = Eμ(p|Ft ).

The following proposition gives a condition for the exponential connection stability of the
restrictions pt over time. From a geometrical point of view, this result means that divergence
finiteness is preserved.

Proposition 4.15. Let t1, t2 ∈ [0, T ], t1 ≤ t2. If pt2 ∈ E(pt1) then ps ∈ E(pt1), ∀t1 ≤ s < t2.

Proof. Let t1 ≤ s < t2. From condition (vi) of Theorem 4.7, it is enough to prove that
Ept1

((
ps

pt1
)1+ε) < +∞ and Eps ((

pt1
ps

)1+ε) < +∞, starting from the hypothesis that

Ept1
((

pt2
pt1

)1+ε) < +∞ and Ept2
((

pt1
pt2

)1+ε) < +∞.

Since x1+ε is a convex function, by Jensen inequality we get

(
ps

pt1

)1+ε

= (
Eμ(pt2 |Fs)

)1+ε 1

p1+ε
t1

≤ Eμ

(
p1+ε

t2
|Fs

) 1

p1+ε
t1

. (10)

Since t1 ≤ s we have Eμ(·|Fs) = Ept1
(·|Fs). Then, taking the expectation with respect to pt1

in (10), we deduce that

Ept1

((
ps

pt1

)1+ε)
≤ Ept1

(
Ept1

(
p1+ε

t2
|Fs

) 1

p1+ε
t1

)
≤ Ept1

((
pt2

pt1

)1+ε)
< +∞.

Since also x−(1+ε) is a convex function, the other condition follows in a similar way. �

Remark 4.16. As a consequence of the previous proposition, it is straightforward to observe that
if ps0 /∈ E(pt1) for some s0 ≥ t1, then ps /∈ E(pt1) ∀s0 ≤ s ≤ T .
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From the above proposition, we immediately get the following result.

Corollary 4.17. If p ∈ E(1) then ps ∈ E(1), ∀0 ≤ s < T .

As an application of this corollary, we can use the family of beta densities introduced in the
previous paragraph to give a concrete example of a density belonging to E(1), along with its
restrictions.

Example 4.18. Let us denote by X = [0,1], F = B([0,1]) and μ the corresponding Lebesgue
measure. Define the filtration F = {Ft : t ∈ [0, T ]} on X , by choosing Ft = σ([0, s]: 0 ≤ s ≤
t). Let p be any density on (X ,F,μ). Then, due to the particular choice of the filtration, the
restriction pt = Eμ(p|Ft ) can be written as

pt(x) = p(x)1[0,t](x) + 1 − F(t)

1 − t
1(t,1](x), (11)

where F(t) = ∫ t

0 p(x)dx,∀t ∈ [0,1].
It is worth noting that p1 = p and p0 = 1 a.s.
Let us now fix p(x) = βxβ−1, with β > 0. It is easy to find an ε > 0 such that

Eμ

(
p1+ε

) =
∫ 1

0
β1+εx(β−1)(1+ε) dx < +∞,

Eμ

(
p−ε

) =
∫ 1

0
β−εx(β−1)(−ε) dx < +∞.

So, from (vi) of Theorem 4.7, we can conclude that p ∈ E(1).
With this choice of p, by (11),

pt (x) = βxβ−11[0,t](x) + 1 − tβ

1 − t
1(t,1](x) ∀t ∈ [0,1],

and we can prove that pt ∈ E(1), in a similar way.

In general, the converse of Proposition 4.15 does not hold and below we give a counterexample
with t1 = 0 and t2 = 1

2 .
Using the same counterexample, we also define a density q ∈ E(1) (along with its restrictions)

such that, ∀t ≤ t0, pt = Eμ(q|Ft ), for a fixed t0 < 1
2 .

Counterexample 4.19. Using the same filtered probability space as in Example 4.18, we con-
sider the density

p(x) = C

∞∑
n=1

1

n3Cn

[(
x −

(
1

2
− 1

2n

))−n/(n+1)

1(1/2−1/(2n),1/2−1/(2(n+1))](x)

(12)

+
((

1

2
+ 1

2n

)
− x

)−n/(n+1)

1[1/2+1/(2(n+1)),1/2+1/(2n))(x)

]
,
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where

Cn =
∫ 1/2−1/(2(n+1))

1/2−1/(2n)

(
x −

(
1

2
− 1

2n

))−n/(n+1)

dx

(13)

+
∫ 1/2+1/(2n)

1/2+1/(2(n+1))

((
1

2
+ 1

2n

)
− x

)−n/(n+1)

dx,

C =
( ∞∑

n=1

1

n3

)−1

. (14)

This density is quite similar to the one introduced in Counterexample 4.9 and, in the same way
we can prove that p /∈ E(1).

In order to see wether pt belongs to E(1) or not, we remark that the same convergence problem
arises whenever we integrate the function p1+ε over any interval containing 1

2 . As a consequence,
using the explicit formula (11) for the restriction pt , we can prove that pt /∈ E(1), ∀t ≥ 1

2 . On the

other hand, for any t < 1
2 , we can find some ε > 0 (depending on t ), such that Eμ(p1+ε

t ) < +∞.
Moreover, the condition Eμ(p−ε

t ) < +∞ is trivially satisfied, so that pt ∈ E(1).
Finally, let us fix t0 < 1

2 and define the density

q(x) = p(x)1[0,t0](x) + 1 − F(t0)

1 − t
β

0

βxβ−11(t0,1](x),

with β > 0. This function differs from the restriction pt0 only over (t0,1], where pt0 is constant,
while q is proportional to a beta density.

Using the arguments above and those in Example 4.18 on beta densities, we conclude that
q ∈ E(1) (and qt ∈ E(1), ∀0 ≤ t < T ). On the other hand, by construction, pt = Eμ(p|Ft ) =
Eμ(q|Ft ), ∀t ≤ t0.

Remark 4.20. In a similar way, the density defined in Counterexample 4.9 provides also a coun-
terexample of Corollary 4.17.

4.3. Convexity and L1(μ)-closure

Given p ∈ P , we denote by M(p) the set of all densities q ∈ P which are connected to p by an
open mixture arc. Moreover, let us recall that, by Theorem 4.7, E(p) coincides with the set of all
densities q ∈P which are connected to p by an open exponential arc.

Proposition 4.21. Let p ∈P . Then E(p) and M(p) are convex.

Proof. Note that for any q, r ∈ E(p), since E(q) = E(r) = E(p), it is not restrictive to consider
r = p. Suppose q ∈ E(p), and consider p(λ) = λp + (1 − λ)q for any λ ∈ [0,1]. We show that
p(λ) ∈ E(p) by proving that Eμ(p(λ)θp1−θ ) < +∞ for θ ∈ (−ε,1 + ε).
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If θ ∈ (0,1), it follows by Jensen inequality

Eμ

(
p(λ)θp1−θ

) = Ep

((
p(λ)

p

)θ)
≤ 1.

If θ ∈ (−ε,0) ∪ (1,1 + ε), by the convexity of xθ we have

Eμ

(
p(λ)θp1−θ

) = Ep

((
λp + (1 − λ)q

p

)θ)
≤ λ + (1 − λ)Ep

((
q

p

)θ)
< +∞,

where the last inequality is due to q ∈ E(p).
On the other hand, one can easily see that M(p) is convex, since the relation between open

mixture arcs is an equivalence relation and, thus, q ∈ M(p) implies M(p) =M(q). �

In the following theorem we prove that the open mixture model M(p) is L1(μ)-dense in the
set of all densities P≥.

Since from Proposition 4.12 M(p) ⊆ E(p), we deduce that E(p) is L1(μ)-dense in P≥. This
result was proved in Imparato and Trivellato [6], Theorem 19.1.

In the proof we use Scheffé’s theorem and, in particular, that if q, {qn}n≥1 are in P≥ and such
that qn → q , as n → +∞, μ-a.e., then qn → q in L1(μ).

We remark that the L1(μ) convergence when restricted to the set of nonnegative densities P≥,
is equivalent to the convergence in μ-probability.

Theorem 4.22. For any p ∈P the open mixture model M(p) is L1(μ)-dense in the nonnegative
densities P≥, that is M(p) =P≥, where the overline denotes the closure in the L1(μ)-topology.

Proof. We show M(p) =P≥, by checking the double inclusions M(p) ⊆P≥ and M(p) ⊇P≥.
The first is straightforward, since by definition M(p) ⊆ P and, therefore, M(p) ⊆ P = P≥.

With regard to the second implication, we will start by showing that any simple density q ∈ P≥
is the μ-a.e. limit of a sequence of densities qn ∈ M(p).

Let us fix a simple density q ∈ P≥ and denote 
′ = Suppq = {ω: q(ω) > 0} and 
′′ =
(
′)c = {ω: q(ω) = 0}. Moreover, define the sequence pn by

pn = 1

n
1(p<1/n) + p1(1/n≤p≤n) + n1(p>n),

and note that pn → p pointwise. For n ≥ 1, construct the sequence of densities in P

qn =

⎧⎪⎨
⎪⎩

qp

pn

1

cn

, if ω ∈ 
′,
anp

cn

, if ω ∈ 
′′,

where an denotes a positive numerical sequence converging to 0 as n → +∞ and cn =∫

′

qp
pn

dμ + anP(
′′) the normalization constant. As q is a simple density whose support is

′, there exist two positive constants a,A such that a ≤ q(ω) ≤ A if ω ∈ 
′.
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Note that qn ∈ M(p) by Theorem 4.11, since qn

p
is bounded from below and above, respec-

tively, by two positive constants:

min(a/n, an)

cn

≤ qn

p
≤ max(An,an)

cn

.

In order to check that qn → q , as n → +∞, μ-a.e., it is sufficient to prove that cn → 1. In fact,
since p

pn
≤ max(1,p) and the function q max(1,p)1
′ ∈ L1(μ), we can apply the dominated

convergence theorem and find

lim
n→+∞ cn =

∫

′

lim
n→+∞

qp

pn

dμ =
∫


′
q dμ = 1.

Thus, by Scheffé’s theorem the sequence qn → q in L1(μ).
Since any density P≥ can be written as the limit of simple densities in L1(μ), we have proved

that M(p) ⊇P≥. This concludes the proof of the theorem. �

The next corollary shows that the positive densities with finite Kullback–Leibler divergence
with respect to any p ∈ P is L1(μ)-dense in the set of all densities P≥. This corresponds to the
choice ϕ(x) = x(log(x))+ in the following result.

Corollary 4.23. Assume ϕ : (0,+∞) → (0,+∞) is a continuous function. Then the set

Pϕ =
{
q ∈ P : Ep

(
ϕ

(
q

p

))
< +∞

}

is L1(μ)-dense in P≥.

Proof. Let q ∈ P≥. The result immediately follows from Theorem 4.22, since the sequence
qn ∈M(p) converging to q in L1(μ) is in Pϕ , that is it satisfies Ep(ϕ(

qn

p
)) < +∞. �

Appendix

In this appendix we refer to Counterexample 4.9 and we prove that both D(q‖p) < +∞ and
D(p‖q) < +∞.

In fact,

D(q‖p) = Eμ(q logq) =
∫ 1

0
q(x) logq(x)dx

=
∞∑

n=1

∫ 1−1/(n+1)

1−1/n

C

n3Cn

(
x −

(
1 − 1

n

))−n/(n+1)
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× log

(
C

n3Cn

(
x −

(
1 − 1

n

))−n/(n+1))
dx

=
∞∑

n=1

[
C

n3Cn

log

(
C

n3Cn

)∫ 1−1/(n+1)

1−1/n

(
x −

(
1 − 1

n

))−n/(n+1)

dx

+ C

n3Cn

∫ 1−1/(n+1)

1−1/n

(
x −

(
1 − 1

n

))−n/(n+1)

× log

((
x −

(
1 − 1

n

))−n/(n+1))
dx

]

=
∞∑

n=1

[
C

n3
log

(
C

n3Cn

)
− C

n3Cn

∫ 1/(n(n+1))

0

n

n + 1
y−n/(n+1) logy dy

]

=
∞∑

n=1

[
C

n3
log

(
C

n3Cn

)
− C

n3

n

n + 1

(− log
(
n(n + 1)

) − (n + 1)
)]

=
∞∑

n=1

[
C logC

n3
− 3C logn

n3
+ C

n3(n + 1)
log

(
n(n + 1)

) − C

n3
log (n + 1)

+ C

n2(n + 1)
log

(
n(n + 1)

) + C

n2

]
.

Since the general term of the last series defines an infinitesimal sequence of the same order as
1
n2 , when n → ∞, we deduce that D(q‖p) < +∞.

In the same way,

D(p‖q) = Eμ

(
log

1

q

)
=

∫ 1

0
log

1

q(x)
dx

=
∞∑

n=1

∫ 1−1/(n+1)

1−1/n

log

(
C

n3Cn

(
x −

(
1 − 1

n

))−n/(n+1))−1

dx

=
∞∑

n=1

∫ 1−1/(n+1)

1−1/n

log

(
n3Cn

C

(
x −

(
1 − 1

n

))n/(n+1))
dx

=
∞∑

n=1

[
log

(
n3Cn

C

)
1

n(n + 1)
+

∫ 1/(n(n+1))

0

n

n + 1
logy dy

]

=
∞∑

n=1

[
log

(
n3Cn

C

)
1

n(n + 1)
+ 1

(n + 1)2

(− log
(
n(n + 1)

) − 1
)]
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=
∞∑

n=1

[
3 logn

n(n + 1)
− logC

n(n + 1)
+ log(n + 1)

n(n + 1)
− log(n(n + 1))

n(n + 1)2

− log(n(n + 1))

(n + 1)2
− 1

(n + 1)2

]
.

As before, since the general term of the series defines an infinitesimal sequence of the same order
as logn

n2 , when n → ∞, we get that D(p‖q) < +∞.
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