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Let X = {X(x): x ∈ S
N } be a real-valued, centered Gaussian random field indexed on the N -dimensional

unit sphere S
N . Approximations to the excursion probability P{supx∈SN X(x) ≥ u}, as u → ∞, are ob-

tained for two cases: (i) X is locally isotropic and its sample functions are non-smooth and; (ii) X is
isotropic and its sample functions are twice differentiable. For case (i), the excursion probability can be
studied by applying the results in Piterbarg (Asymptotic Methods in the Theory of Gaussian Processes and
Fields (1996) Amer. Math. Soc.), Mikhaleva and Piterbarg (Theory Probab. Appl. 41 (1997) 367–379) and
Chan and Lai (Ann. Probab. 34 (2006) 80–121). It is shown that the asymptotics of P{supx∈SN X(x) ≥ u} is
similar to Pickands’ approximation on the Euclidean space which involves Pickands’ constant. For case (ii),
we apply the expected Euler characteristic method to obtain a more precise approximation such that the er-
ror is super-exponentially small.

Keywords: Euler characteristic; excursion probability; Gaussian random fields on sphere; Pickands’
constant

1. Introduction

Even though the characterizations of isotropic covariance functions and variograms on spheres
were given long time ago by Schoenberg [35] and Gangolli [11], respectively, and random fields
on the sphere were studied by Obukhov [28], Yaglom [44] and Jones [19], it is the applications in
atmospherical sciences, geophysics, solar physics, medical imaging and environmental sciences
(see, e.g., Genovese et al. [12], Oh and Li [29], Stein [37], Cabella and Marinucci [6], Tebaldi
and Sansó [42], Hansen et al. [14]) that have stimulated the recent rapid development in statistics
of random fields on the sphere. Various new random field models have been constructed and new
probabilistic and statistical methods have been developed. For example, Jun and Stein [21,22],
Huang, Zhang and Robeson [16], Jun [20], Hitczenko and Stein [15], Ma [24], Du, Ma and Li
[9] and Gneiting [13] have constructed several classes of real or vector-valued random fields on
spheres; Istas [17,18] has constructed spherical fractional Brownian motion (SFBM), which has
fractal sample functions, and studied its Karhunen–Loève expansion and other properties. Lang
and Schwab [23] characterized sample Hölder continuity and sample differentiability of isotropic
Gaussian random fields on the two-dimensional sphere S2 in terms of their angular power spectra.
We refer to the recent book by Marinucci and Peccati [25] for a systematic account on theory
and statistical inferences of random fields on the sphere S

N , with a view towards applications to
cosmology.
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In this paper, we consider a real-valued, centered (locally) isotropic Gaussian random field
X = {X(x): x ∈ S

N }, indexed on the N -dimensional unit sphere S
N , and investigate the asymp-

totic properties of the excursion probability P{supx∈SN X(x) ≥ u} as u → ∞. Such excursion
probabilities are important in probability theory, statistics and their applications. In particular,
we mention that the above excursion probability has appeared in Sun [38], Park and Sun [30]
for determining the P -value in studying exploratory projection pursuit and, as illustrated by Sun
[40], is useful for constructing simultaneous confidence region for a function f :SN → R. In
his studies of projection-based depth functions, Zuo [45] has shown that Gaussian random fields
on sphere appear as scaling limit of sample projection median (see Theorems 3.2 and 3.3 in
Zuo [45]) and the excursion probability of the limiting Gaussian field is useful for constructing
confidence regions for the true projection median (see Remark 3.2 in Zuo [45]). For further in-
formation on extreme value theory of Gaussian random fields on Euclidean spaces or manifolds
and statistical applications, we refer to Adler and Taylor [2], Adler, Taylor and Worsley [3] and
Marinucci and Peccati [25].

For studying the excursion probability of X = {X(x): x ∈ S
N }, we will distinguish two cases:

(i) the sample function of X, denoted as X(·), is non-smooth and, (ii) X(·) ∈ C2 a.s., and to
apply very different methods. In the non-smooth case, the asymptotics of the excursion proba-
bility P{supx∈SN X(x) ≥ u} as u → ∞ can be studied by applying the results in Piterbarg [32],
Mikhaleva and Piterbarg [27] or Chan and Lai [7], which are extensions of the seminal result
of Pickands [31] under various local stationarity conditions. We will make use of Theorem 2.1
in [7] to prove Theorem 2.4 in Section 2, and the method can also be applied to other Gaussian
fields on sphere with more complicated local covariance structures, see Section 2.2 for the ex-
ample of standardized spherical fractional Brownian motion. For the smooth case, we consider
isotropic Gaussian fields on sphere. Thanks to the special representation of covariance function
(Theorem 3.1), we are able to apply the general theory of Adler and Taylor [2] to compute the
Lipschitz–Killing curvatures induced by the field and hence derive the approximation to the ex-
cursion probability, see Theorem 3.7 and Corollary 3.9 below. Such an approximation is more
precise than that in Theorem 2.4 for the non-smooth case and the error is super-exponentially
small.

We should mention that Mikhaleva and Piterbarg [27] have established asymptotic results for
the excursion probability of Gaussian fields on a finite-dimensional smooth manifold in R

N+1.
Their theorems can be applied to obtain results similar to Theorem 2.4 below for a Gaussian field
X on the sphere S

N , provided X is the restriction on S
N of a Gaussian field defined on R

N+1.
This approach is very useful, but may not be able to deal with all locally isotropic Gaussian
random fields on S

N . For instance, Huang, Zhang and Robeson [16] have recently shown that
the restriction of some commonly used stationary isotropic covariance functions on R

N+1 may
not be a valid covariance functions on the sphere (when the Euclidean metric is replaced by the
spherical metric). Similarly, another method proposed by Ma ([24], Theorem 4) to obtain valid
covariance functions on S

N from those on R
N+1 is only able to produce a proper subset of all

covariance functions on S
N (cf. Ma [24], page 775). Their works have motivated us to deal with

Gaussian fields on sphere directly to establish asymptotic results for P{supx∈SN X(x) ≥ u}.
Motivated by Mikhaleva and Piterbarg [27], as well as pointed out by an anonymous referee, it

would be interesting to study the excursion probability for Gaussian fields over Riemannian man-
ifolds (beyond sphere), whose covariance functions satisfy (2.1) with d(x, y) being the geodesic
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distance of x and y. This is beyond the scope of the present paper, but we believe that a Pickands-
type approximation similar to Theorem 2.4 still holds. As pointed out by an anonymous referee,
the problem in the smooth case may be more challenging because there is no analog of the
Gegenbauer polynomials to characterize the covariance functions of Gaussian fields over general
Riemannian manifolds.

We end the Introduction with some notation. Let ‖ · ‖ and 〈·, ·〉 denote, respectively, the Eu-
clidean norm and the inner product in R

N+1 (or in R
N , which will be clear from the context). De-

note by d(·, ·) the spherical distance on S
N , that is, d(x, y) = arccos 〈x, y〉, ∀x, y ∈ S

N . For two
functions f (t) and g(t), we say f (t) ∼ g(t) as t → t0 ∈ [−∞,+∞] if limt→t0 f (t)/g(t) = 1.

2. Non-smooth Gaussian fields on sphere

We start with case (i) where the sample functions of X = {X(x): x ∈ S
N } may be non-

smooth. This case is easier and we show that the asymptotics of the excursion probability
P{supx∈SN X(x) ≥ u}, as u → ∞, can be derived from the results in Piterbarg [32], Mikhaleva
and Piterbarg [27] and Chan and Lai [7].

2.1. Locally isotropic Gaussian fields on sphere

Let X = {X(x): x ∈ S
N } be a centered Gaussian field with covariance function C satisfying

C(x, y) = 1 − cdα(x, y)
(
1 + o(1)

)
as d(x, y) → 0, (2.1)

for some constants c > 0 and α ∈ (0,2]. When X(·) is smooth, we have α = 2.
Covariance functions satisfying (2.1) behave isotropically in a local sense, hence the corre-

sponding random fields fall under the general category of locally isotropic random fields. Simi-
larly to Gaussian fields defined on the Euclidean space (cf. Adler [1]), one can show that, when
α ∈ (0,2), the sample function of X is not differentiable and the fractal dimensions of its trajec-
tories are determined by α. See Andreev and Lang [4], Hansen et al. [14] and Lang and Schwab
[23] for related regularity results.

There are many examples of covariances of isotropic Gaussian fields on S
N that satisfy (2.1).

A well-known example is C(x, y) = e−cdα(x,y), where c > 0 and α ∈ (0,1] (cf. e.g., Huang,
Zhang and Robeson [16], page 725). In their studies on germ-grain (or random ball) models
on the sphere S

N , Estrade and Istas ([10], Remark 2.5 and Lemma 3.1) discovered an isotropic
Gaussian field Wβ on S

N with 0 < β < 1/2, whose covariance function satisfies (2.1) for α =
2β ∈ (0,1]. (From here one can show that, even though Wβ and the spherical fractional Brownian
motion Bβ(x) introduced by Istas [17] are different, they share some local properties (e.g., they
have the same Hölder continuity and fractal dimensions). In Remark 2.5 below, we will compare
the excursion probabilities of Wβ and the standardized SFBM.) Moreover, as in Yadrenko [43]
and Ma [24], one can apply the identity

‖x − y‖ = 2 sin

(
d(x, y)

2

)
∀x, y ∈ S

N
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to construct covariance functions that satisfy (2.1) from isotropic covariance functions K(·) on
R

N which satisfy K(x) = 1 − c1‖x‖α(1 + o(1)) as ‖x‖ → 0. In particular, the following covari-
ance function C given by Soubeyrand, Enjalbert and Sache [36]

C(x, y) = 1 −
(

sin
d(x, y)

c1/α

)α

1{d(x,y)≤πc1/α}, (2.2)

where c > 0 and α ∈ (0,2) are constants, satisfies (2.1). See Huang, Zhang and Robeson [16]
and Gneiting [13] for further comments on (2.2) and more examples.

For x = (x1, . . . , xN+1) ∈ S
N , its corresponding spherical coordinate θ = (θ1, . . . , θN) is de-

fined as follows.

x1 = cos θ1,

x2 = sin θ1 cos θ2,

x3 = sin θ1 sin θ2 cos θ3,
(2.3)

...

xN = sin θ1 sin θ2 · · · sin θN−1 cos θN,

xN+1 = sin θ1 sin θ2 · · · sin θN−1 sin θN,

where 0 ≤ θi ≤ π for 1 ≤ i ≤ N − 1 and 0 ≤ θN < 2π.
We define the Gaussian field X̃ = {X̃(θ): θ ∈ [0,π]N−1 × [0,2π)} by X̃(θ) := X(x) and

denote by C̃ the covariance function of X̃ accordingly. The following elementary lemma charac-
terizes the local behavior of the spherical distance. It provides a useful tool for establishing the
relation between local behaviors of covariance functions C and C̃. Since we cannot find such a
result in the literature, for readers’ convenience, we provide here a short proof.

Lemma 2.1. Let x, y ∈ S
N and let x be fixed. Then as d(y, x) → 0,

d2(y, x) ∼ (ϕ1 − θ1)
2 + (

sin2 θ1
)
(ϕ2 − θ2)

2 + · · · +
(

N−1∏
i=1

sin2 θi

)
(ϕN − θN)2. (2.4)

Here and in the sequel, θ = (θ1, . . . , θN) and ϕ = (ϕ1, . . . , ϕN) are the spherical coordinates of
x and y, respectively.

Proof. For x, y ∈ S
N , we see that d(y, x) ∼ ‖y − x‖ as d(y, x) → 0, and

‖y − x‖2 = 2 − 2 cos(ϕ1 − θ1) + 2(sinϕ1 sin θ1)
[
1 − cos(ϕ2 − θ2)

]
+ · · · + 2

(
N−1∏
i=1

sinϕi sin θi

)[
1 − cos(ϕN − θN)

]
.
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It follows from the spherical coordinates that d(y, x) → 0 is equivalent to ‖ϕ − θ‖ → 0. (There
is an exception for θ with θN = 0, since for those ϕ such that d(y, x) → 0 and ϕN tending to 2π,
‖ϕ − θ‖ does not tend to 0. In such case, we may treat θN as 2π instead of 0 and this does not
affect the result thanks to the periodicity.) Therefore, as d(y, x) → 0, (2.4) follows from Taylor’s
expansion. �

Next, we recall from Chan and Lai [7] some results on the excursion probability of Gaussian
fields over the Euclidean space. Let 0 < α ≤ 2 and let {Wt(s): s ∈ [0,∞)N } (t ∈R

N ) be a family
of Gaussian fields such that

E
(
Wt(s)

) = −‖s‖αrt
(
s/‖s‖),

Cov
(
Wt(s),Wt (v)

) = ‖s‖αrt
(
s/‖s‖) + ‖v‖αrt

(
v/‖v‖) (2.5)

− ‖s − v‖αrt
(
(s − v)/‖s − v‖),

where rt (·) :SN−1 →R+ is a continuous function which satisfies

sup
v∈SN−1

∣∣rt (v) − rs(v)
∣∣ → 0 as s → t. (2.6)

Define

Hr
α(t) = lim

K→∞K−N

∫ ∞

0
eu
P

{
sup

s∈[0,K]N
Wt(s) ≥ u

}
du. (2.7)

Denote by Hα the usual Pickands’ constant, that is

Hα = lim
K→∞K−N

∫ ∞

0
eu
P

{
sup

s∈[0,K]N
Z(s) ≥ u

}
du,

where {Z(s): s ∈ [0,∞)N } is a Gaussian field such that

E
(
Z(s)

) = −‖s‖α, Cov
(
Z(s),Z(v)

) = ‖s‖α + ‖v‖α − ‖s − v‖α.

It is clear that Hr
α(t) becomes Hα when rt ≡ 1.

Let D ⊂ R
N be a bounded N -dimensional Jordan measurable set, that is, the boundary of

D has N -dimensional Lebesgue measure 0. Let Y = {Y(t), t ∈ R
N } be a real-valued, centered

Gaussian field such that its covariance function CY satisfies

CY (t, t + s) = 1 − ‖s‖αrt
(
s/‖s‖)(1 + o(1)

)
as ‖s‖ → 0, (2.8)

for some constant α ∈ (0,2], uniformly over t ∈ D̄, the closure of D.
We will make use of the following theorem of Chan and Lai [7]. One can also apply similar

results in Piterbarg [32], Mikhaleva and Piterbarg [27], which are formulated under somewhat
different local stationarity conditions. Having the functions rt (·) in (2.8) makes the following
theorem slightly easier to apply.
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Theorem 2.2 (Chan and Lai [7], Theorem 2.1). Let D ⊂ R
N be a bounded N -dimensional

Jordan measurable set. Suppose the Gaussian field {Y(t): t ∈ R
N } satisfies condition (2.8), in

which rt (·) :SN−1 → R+ is a continuous function such that the convergence (2.6) is uniform in
D̄ and supt∈D̄,v∈SN−1 rt (v) < ∞. Then as u → ∞,

P

{
sup
t∈D

Y(t) ≥ u
}

∼ u2N/α�(u)

∫
D

Hr
α(t)dt.

Here and in the sequel, �(u) = (
√

2πu)−1e−u2/2.

The lemma below establishes the relation between Hr
α(t) and Hα for a special class of func-

tions rt (·).

Lemma 2.3. Let {Wt(s): s ∈ [0,∞)N } (t ∈ R
N ) be a family of Gaussian fields satisfying (2.5)

with rt (v) = ‖Mtv‖α for all v ∈ S
N−1, where, for every t ∈ R

N , Mt is a non-degenerate N × N

matrix. Then Hr
α(t) = |detMt |Hα for each t ∈ R

N .

Proof. Let t ∈R
N be fixed and consider the centered Gaussian field Wt = {Wt(s), s ∈ [0,∞)N }

defined by Wt(s) = Wt(M
−1
t s). Then by (2.5), Wt satisfies

E
(
Wt(s)

) = −‖s‖α, Cov
(
Wt(s),W t(v)

) = ‖s‖α + ‖v‖α − ‖s − v‖α. (2.9)

Let BK = [0,K]N and MtBK = {s ∈ R
N : ∃v ∈ BK such that s = Mtv}. Then Vol(MtBK) =

|detMt |Vol(BK) and sups∈BK
Wt(s) = sups∈MtBK

Wt(s), it follows from (2.7) that

Hr
α(t) = lim

K→∞
1

Vol(BK)

∫ ∞

0
eu
P

{
sup

s∈BK

Wt(s) ≥ u
}

du

= lim
K→∞

Vol(MtBK)

Vol(BK)

1

Vol(MtBK)

∫ ∞

0
eu
P

{
sup

s∈MtBK

Wt(s) ≥ u
}

du (2.10)

= |detMt | lim
K→∞

1

Vol(MtBK)

∫ ∞

0
eu
P

{
sup

s∈MtBK

Wt(s) ≥ u
}

du.

Because of (2.9), we can modify the proofs in [34] to show that

Hα = lim
K→∞

1

Vol(MtBK)

∫ ∞

0
eu
P

{
sup

s∈MtBK

Wt(s) ≥ u
}

du. (2.11)

Comparing (2.10) and (2.11) gives the result. �

For any T ⊂ S
N , we denote by D ⊂ [0,π]N−1 × [0,2π) the set corresponding to T under the

spherical coordinates (2.3). We say that T is an N -dimensional Jordan measurable set on S
N if

D is an N -dimensional Jordan measurable set in R
N . Now we can prove our main result of this

section.
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Theorem 2.4. Let {X(x): x ∈ S
N } be a centered Gaussian random field satisfying condition

(2.1) and let T ⊂ S
N be an N -dimensional Jordan measurable set on S

N . Then as u → ∞,

P

{
sup
x∈T

X(x) ≥ u
}

∼ cN/α Area(T )Hαu2N/α�(u),

where Area(T ) denotes the spherical area of T and c > 0 is the constant in (2.1).

Proof. For any θ ∈ [0,π]N−1 × [0,2π), let Mθ = c1/α diag(1, sin θ1, . . . ,
∏N−1

i=1 sin θi) be the
N × N diagonal matrix. By Lemma 2.1, condition (2.1) implies

C̃(θ, θ + ξ) = 1 − ‖ξ‖αrθ
(
ξ/‖ξ‖)(1 + o(1)

)
as ‖ξ‖ → 0,

where rθ (τ ) = ‖Mθτ‖α , ∀τ ∈ S
N−1. Then by Theorem 2.2, as u → ∞,

P

{
sup
x∈T

X(x) ≥ u
}

= P

{
sup
θ∈D

X̃(θ) ≥ u
}

∼ u2N/α�(u)

∫
D

Hr
α(θ)dθ. (2.12)

It follows from Lemma 2.3 that for any θ ∈ [0,π]N−1 × [0,2π) such that Mθ is non-degenerate
(i.e.,

∏N−1
i=1 sin θi �= 0),

Hr
α(θ) = cN/α

(
N−1∏
i=1

sinN−i θi

)
Hα.

Note that (
∏N−1

i=1 sinN−i θi)dθ is the spherical area element and Mθ is non-degenerate for almost
every θ ∈ D, we obtain ∫

D

Hr
α(θ)dθ = cN/α Area(T )Hα.

Plugging this into (2.12) gives the desired result. �

2.2. Standardized spherical fractional Brownian motion

Theorem 2.4 provides a nice approximation to the excursion probability for locally isotropic
Gaussian random fields on S

N whose covariance functions satisfy (2.1). When the local behavior
of the covariance function becomes more complicated, Theorem 2.4 may not be applicable any-
more. However, we can still apply Lemma 2.1 to find the corresponding local behavior of covari-
ance function under spherical coordinates and then apply Theorem 2.2 to obtain the asymptotics
for the excursion probability. In the following, we use spherical fractional Brownian motion on
sphere as an illustrating example.

Let o be a fixed point on S
N . The spherical fractional Brownian motion (SFBM) Bβ =

{Bβ(x): x ∈ S
N } is defined by Istas [17] as a centered real-valued Gaussian random field such

that Bβ(o) = 0 and

E
(
Bβ(x) − Bβ(y)

)2 = d2β(x, y) ∀x, y ∈ S
N,
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where β ∈ (0,1/2]. It follows immediately that

Cov
(
Bβ(x),Bβ(y)

) = 1
2

(
d2β(x, o) + d2β(y, o) − d2β(x, y)

)
.

Without loss of generality, we take o = (1,0, . . . ,0) ∈ R
N+1, whose corresponding spherical

coordinate is (0, . . . ,0) ∈ R
N . We consider the standardized SFBM X = {X(x): x ∈ S

N \ {o}}
defined by

X(x) = Bβ(x)

dβ(x, o)
∀x ∈ S

N \ {o}. (2.13)

Then the covariance of X is

C(x, y) = Cov
(
X(x),X(y)

) = d2β(x, o) + d2β(y, o) − d2β(x, y)

2dβ(x, o)dβ(y, o)
.

Note that, under the spherical coordinates, d(x, o) = θ1 and d(y, o) = ϕ1, together with
Lemma 2.1, we obtain that the covariance function of the corresponding Gaussian field X̃ satis-
fies

C̃(θ,ϕ) = Cov
(
X̃(θ), X̃(ϕ)

)
= 1 − (

1 + o(1)
)

× 1

2θ
2β

1

[
(ϕ1 − θ1)

2 + (
sin2 θ1

)
(ϕ2 − θ2)

2 + · · · +
(

N−1∏
i=1

sin2 θi

)
(ϕN − θN)2

]β

as d(x, y) → 0. Let

Mθ = 1

21/(2β)θ1
diag

(
1, sin θ1, . . . ,

N−1∏
i=1

sin θi

)
,

rθ (τ ) = ‖Mθτ‖2β ∀τ ∈ S
N−1,

and ξ = ϕ − θ , then as ‖ξ‖ → 0,

C̃(θ, θ + ξ) = 1 − ‖ξ‖2βrθ
(
ξ/‖ξ‖)(1 + o(1)

)
.

Let T ⊂ S
N be an N -dimensional Jordan measurable set such that o /∈ T̄ , and denote its corre-

sponding domain under the spherical coordinates by D, which implies θ1 �= 0 for any θ ∈ D̄. By
Theorem 2.2, as u → ∞,

P

{
sup
x∈T

X(x) ≥ u
}

= P

{
sup
θ∈D

X̃(θ) ≥ u
}

∼ uN/β�(u)

∫
D

Hr
2β(θ)dθ.
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For any θ such that Mθ is non-degenerate (i.e.,
∏N−1

i=1 sin θi �= 0), Lemma 2.3 gives

Hr
2β(θ) = 1

2N/(2β)θN
1

(
N−1∏
i=1

sinN−i θi

)
H2β.

Therefore, as u → ∞,

P

{
sup
x∈T

X(x) ≥ u
}

∼ uN/β�(u)2−N/(2β)H2β

∫
D

θ−N
1

(
N−1∏
i=1

sinN−i θi

)
dθ. (2.14)

Remark 2.5. Comparing the excursion probabilities in (2.14) for the standardized SFBM X and
in Theorem 2.4 for the isotropic Gaussian field Wβ , which is defined in Estrade and Istas [10],
we see that the constant in (2.14) is more complicated.

3. Smooth isotropic Gaussian fields on sphere

In this section, we study the excursion probability of smooth isotropic Gaussian fields on sphere.
Related to the results in this section, we mention that [8] have determined the height distribu-
tion and overshoot distribution of local maxima of smooth isotropic Gaussian random fields on
sphere.

3.1. Preliminaries

Given λ > 0 and an integer n ≥ 0, the ultraspherical polynomial (or Gegenbauer polynomial) of
degree n, denoted by P λ

n (t), is defined by the expansion

(
1 − 2rt + r2)−λ =

∞∑
n=0

rnP λ
n (t), t ∈ [−1,1].

For λ = 0, we follow Schoenberg [35] and define P 0
n (t) = cos(n arccos t) = Tn(t), where Tn

(n ≥ 0) are the Chebyshev polynomials of the first kind defined by the expansion

1 − rt

1 − 2rt + r2
=

∞∑
n=0

rnTn(t), t ∈ [−1,1].

For reference later on, we recall the following formulae on P λ
n .

(i) For all n ≥ 0, P 0
n (1) = 1, and if λ > 0 (cf. Szegő [41], page 80),

P λ
n (1) =

(
n + 2λ − 1

n

)
. (3.1)
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(ii) For all n ≥ 0,

d

dt
P 0

n (t) = nP 1
n−1(t), (3.2)

and if λ > 0 (cf. Szegő [41], page 81),

d

dt
P λ

n (t) = 2λP λ+1
n−1 (t). (3.3)

The following theorem by Schoenberg [35] characterizes the covariance function of an
isotropic Gaussian field on sphere (see also Gneiting [13]).

Theorem 3.1. Let N ≥ 1, then a continuous function C(·, ·) :SN ×S
N →R is the covariance of

an isotropic Gaussian field on S
N if and only if it has the form

C(x, y) =
∞∑

n=0

anP
λ
n

(〈x, y〉), x, y ∈ S
N,

where λ = (N − 1)/2, an ≥ 0 and
∑∞

n=0 anP
λ
n (1) < ∞.

Remark 3.2. Note that for the case of N = 1 and λ = 0,
∑∞

n=0 anP
0
n (1) < ∞ is equivalent to∑∞

n=0 an < ∞; while for N ≥ 2 and λ = (N − 1)/2, (3.1) implies that
∑∞

n=0 anP
λ
n (1) < ∞ is

equivalent to
∑∞

n=0 nN−2an < ∞.

When N = 2 and λ = 1/2, P λ
n (n ≥ 0) become the Legendre polynomials. For more results

on isotropic Gaussian fields on S
2, we refer to Marinucci and Peccati [25]. Regularity and

smoothness properties of Gaussian field {X(x): x ∈ S
2} have recently been obtained by Lang

and Schwab [23] in terms of the corresponding angular power spectrum.
The following statement (A1) is a smoothness condition for Gaussian fields on sphere. In

Lemma 3.3 below, we show that it implies X(·) ∈ C2(SN) a.s.

(A1). The covariance C(·, ·) of {X(x): x ∈ S
N } satisfies

C(x, y) =
∞∑

n=0

anP
λ
n

(〈x, y〉), x, y ∈ S
N,

where λ = N−1
2 , an ≥ 0 and

∑∞
n=1 nN+8an < ∞ if N ≥ 2;

∑∞
n=1 n10an < ∞ if N = 1.

Lemma 3.3. Let {X(x): x ∈ S
N } be an isotropic Gaussian field such that (A1) is fulfilled. Then

X(·) ∈ C2(SN) a.s.

Proof. We first consider N ≥ 2. By Theorem 3.1, each P λ
n (〈t, s〉) is the covariance of an isotropic

Gaussian field on S
N and hence the Cauchy–Schwarz inequality implies∣∣P λ

n

(〈x, y〉)∣∣ ≤ P λ
n

(〈x, x〉) = P λ
n (1) ∀x, y ∈ S

N. (3.4)
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Combining (A1) with (3.1), (3.3) and (3.4), together with the fact P λ
0 (t) ≡ 1, we obtain that there

exist positive constants M1 and M2 such that

sup
t∈[−1,1]

∞∑
n=0

an

∣∣∣∣( d5

dt5
P λ

n (t)

)∣∣∣∣ ≤ M1

∞∑
n=5

anP
λ+5
n−5 (1) ≤ M2

∞∑
n=1

nN+8an < ∞.

This shows that C(·, ·) ∈ C5(SN × S
N). The proof for N = 1 is similar once we apply both

(3.2) and (3.3). Therefore, by arguments via charts (cf. Auffinger [5]) and the results in Potthoff
[33] (though the results therein are for X(·) ∈ C1, they can be extended easily to the case of
higher-order smoothness), we conclude that X(·) ∈ C2(SN) a.s. �

By Schoenberg [35] or Gneiting [13], C(·, ·) is a covariance function on S
N for every N ≥ 1

if and only if it has the form

C(x, y) =
∞∑

n=0

bn〈x, y〉n, x, y ∈ S
N,

where bn ≥ 0 and
∑∞

n=0 bn < ∞. Then similarly to (A1), we may state the smoothness condi-
tion (A1′) below for this special class of Gaussian fields on sphere.

(A1′). The covariance C(·, ·) of {X(x): x ∈ S
N } satisfies

C(x, y) =
∞∑

n=0

bn〈x, y〉n, x, y ∈ S
N,

where bn ≥ 0 and
∑∞

n=0 n5bn < ∞.

We obtain below an analogue of Lemma 3.3. Since the proof is similar, it is omitted.

Lemma 3.4. Let {X(x): x ∈ S
N } be an isotropic Gaussian field such that (A1′) is fulfilled. Then

X(·) ∈ C2(SN) a.s.

3.2. Excursion probability

Let χ(Au(X,SN)) be the Euler characteristic of excursion set Au(X,SN) = {x ∈ S
N : X(x) ≥ u}

(cf. Adler and Taylor [2]). Denote by Hj(x) the Hermite polynomial of order j , that is,

Hj(x) = (−1)j ex2/2 dj

dxj

(
e−x2/2).

Denote ωj = 2π(j+1)/2

�((j+1)/2)
, the spherical area of the j -dimensional unit sphere S

j .
Before stating our results, we need another regularity condition for the Gaussian field.

(A2). For each x ∈ S
N , the joint distribution of (X(x),∇X(x),∇2X(x)) is non-degenerate.
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Lemma 3.5. Let {X(x): x ∈ S
N } be a centered, unit-variance, isotropic Gaussian field satisfying

(A1) and (A2). Then

E
{
χ

(
Au

(
X,SN

))} =
N∑

j=0

(
C′)j/2Lj

(
S

N
)
ρj (u),

where the constant C′ is defined as

C′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(N − 1)

∞∑
n=1

(
n + N − 1

N

)
an, if N ≥ 2,

∞∑
n=1

n2an, if N = 1,

(3.5)

and where ρ0(u) = (2π)−1/2
∫ ∞
u

e−x2/2 dx, ρj (u) = (2π)−(j+1)/2Hj−1(u)e−u2/2 for j ≥ 1 and

Lj

(
S

N
) =

⎧⎨⎩2

(
N

j

)
ωN

ωN−j

, if N − j is even,

0, otherwise
(3.6)

(for j = 0,1, . . . ,N ) are the Lipschitz–Killing curvatures of SN (cf. (6.3.8) in Adler and Tay-
lor [2]).

Remark 3.6. In Lemma 3.5, if condition (A1) is replaced by (A1′), then it can be seen from the
proof below that the result still holds with C′ being replaced by C′ = ∑∞

n=1 nbn.

Proof of Lemma 3.5. By Theorem 12.4.1 in Adler and Taylor [2], we only need to show that
the Lipschitz–Killing curvatures induced by X on S

N are Lj (X,SN) = (C′)j/2Lj (S
N) for j =

0,1, . . . ,N .
The Riemannian structure induced by X on S

N is defined as

gX,SN

x0
(ξx0 , σx0) := E

{
(ξx0X) · (σx0X)

} = ξx0σx0C(x, y)|x=y=x0 ∀x0 ∈ S
N,

where ξx0 , σx0 ∈ Tx0S
N , the tangent space of SN at x0 (cf. Adler and Taylor [2], page 305). We

may choose two smooth curves on S
N , say γ (t), τ(s), t, s ∈ [0,1], such that γ (0) = τ(0) = x0

and γ ′(0) = ξx0, τ
′(0) = σx0 . We first consider N ≥ 2, then

ξx0σx0C(x, y)|x=y=x0 = ∂

∂t

∂

∂s
C

(
γ (t), τ (s)

)∣∣∣
t=s=0

= ∂

∂t

∂

∂s

∞∑
n=0

anP
λ
n

(〈
γ (t), τ (s)

〉)∣∣∣
t=s=0

= ∂

∂t

∞∑
n=1

an(N − 1)P λ+1
n−1

(〈
γ (t), x0

〉)〈
γ (t), σx0

〉∣∣∣
t=0
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=
∞∑

n=2

an(N − 1)(N + 2)P λ+2
n−2

(〈x0, x0〉
)〈ξx0, x0〉〈x0, σx0〉

+
∞∑

n=1

an(N − 1)P λ+1
n−1

(〈x0, x0〉
)〈ξx0, σx0〉

=
( ∞∑

n=1

an(N − 1)P λ+1
n−1 (1)

)
〈ξx0, σx0〉 = C′〈ξx0, σx0〉,

where the third and fourth equalities follow from (3.3), while the fifth equality is due to the facts
〈x0, x0〉 = 1 and 〈ξx0, x0〉 = 〈σx0, x0〉 = 0, since the vector x0 is always orthogonal to its tangent
space. The case N = 1 can be proved similarly once we apply (3.2) instead of (3.3).

Hence the induced metric is

gX,SN

x0
(ξx0 , σx0) = C′〈ξx0, σx0〉 ∀x0 ∈ S

N.

By the definition of Lipschitz–Killing curvatures, one has Lj (X,SN) = (C′)j/2Lj (S
N), where

Lj (S
N) are the original Lipschitz–Killing curvatures of SN given by (3.6). We have finished the

proof. �

Applying Lemma 3.5 and Theorem 14.3.3 in Adler and Taylor [2], we obtain immediately the
following approximation for the excursion probability.

Theorem 3.7. Suppose the conditions in Lemma 3.5 hold. Then, under the notation therein, there
exists a constant α0 > 0 such that as u → ∞,

P

{
sup
x∈SN

X(x) ≥ u
}

=
N∑

j=0

(
C′)j/2Lj

(
S

N
)
ρj (u) + o

(
e−α0u

2−u2/2). (3.7)

Remark 3.8. The following are some remarks.

• Under the conditions in Theorem 3.7, the covariance function C satisfies (2.1) with α = 2.
Since for α = 2, Pickands’ constant H2 = π−N/2, one can check that the approximation in
Theorem 2.4 only provides the leading term of the approximation in Theorem 3.7. This also
affects the errors in two approximations: the error in the former one is only o(uN−1e−u2/2),
while the error in the latter one is o(e−α0u

2−u2/2).
• By applying the tube method, Sun [39] gave a two-term approximation formula for the ex-

cursion probability of a class of differentiable Gaussian random field {X(x), x ∈ I }, where
I ⊂ R

N is a bounded convex set. Her results can be applied to provide a two-term approxi-
mation for the excursion probability in (3.7) for some special cases. See Park and Sun [30],
page 73.

• Recently Marinucci and Vadlamani [26] have computed the Lipschitz–Killing curvatures of
excursion set and derived a very precise approximation for the excursion probability of a
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class of nonlinear functionals of a smooth Gaussian random field on S
2. In the linear case

(i.e., q = 1) Theorem 21 of Marinucci and Vadlamani [26] is a special case of (3.7) with
N = 2.

If the sphere S
N is replaced by a more general subset T ⊂ S

N , by revising Lemma 3.5 and
applying Theorem 14.3.3 in Adler and Taylor [2] again, we obtain the following corollary.

Corollary 3.9. Suppose the conditions in Lemma 3.5 hold. Let T ⊂ S
N be a k-dimensional,

locally convex, regular stratified manifold (cf. Adler and Taylor [2], page 198), then there exists
α0 > 0 such that as u → ∞,

P

{
sup
x∈T

X(x) ≥ u
}

=
k∑

j=0

(
C′)j/2Lj (T )ρj (u) + o

(
e−α0u

2−u2/2), (3.8)

where Lj (T ) are the Lipschitz–Killing curvatures of T (cf. Adler and Taylor [2], page 175),
C′ and ρj (u) are as in Lemma 3.5.

The parameter set T ⊂ S
N in Corollary 3.9 is assumed to be nice enough. Roughly speaking,

it looks like a convex set and can be decomposed into several smooth manifolds, see Adler
and Taylor [2] for a rigorous definition. Also, the j th Lipschitz–Killing curvature Lj (T ) can
be viewed as the measure of the j -dimensional boundary of T . One may use Steiner’s formula
(Adler and Taylor [2], page 142) to compute the Lipschitz–Killing curvatures of T exactly. In
particular, if T is a semisphere of dimension one, then L0(T ) = 1 and L1(T ) = π. If T is a
semisphere of dimension two, then L0(T ) = 1, L1(T ) = π and L2(T ) = 2π. More generally,
if T is a k-dimensional, locally convex, regular stratified manifold, then L0(T ) is the Euler
characteristic, Lk(T ) is the volume and Lk−1(T ) is half of the surface area. For the other Lj (T ),
1 ≤ j ≤ k − 2, we can apply Steiner’s formula to find their values.

Lastly, to further illustrate the main results of this paper, we give more examples on approxi-
mating the excursion probability of Gaussian fields on spheres, including both smooth and non-
smooth cases.

Example 3.1. The canonical Gaussian field on S
N , denoted by X, has covariance function given

by C(x, y) = 〈x, y〉 (cf. Adler and Taylor [2]). Since C(x, y) = cosd(x, y), it satisfies

C(x, y) = 1 − 1
2d2(x, y)

(
1 + o(1)

)
, as d(x, y) → 0.

Applying Theorem 2.4 with T = S
N , c = 1/2 and α = 2, we obtain an approximation to the

excursion probability:

P

{
sup
x∈SN

X(x) ≥ u
}

∼ 2−N/2 Area
(
S

N
)
H2u

N�(u) = (2π)−(N+1)/2ωNuN−1e−u2/2.
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However, by applying Theorem 3.7 with C′ = 1, we get a more precise approximation:

P

{
sup
x∈SN

X(x) ≥ u
}

=
N∑

j=0

Lj

(
S

N
)
ρj (u) + o

(
e−α0u

2−u2/2).
Example 3.2. Consider the Hamiltonian of the pure p-spin model on S

N−1

HN,p(x) = 1

N(p−1)/2

N∑
i1,...,ip=1

Ji1,...,ipxi1 · · ·xip ∀x = (x1, . . . , xN) ∈ S
N−1,

where Ji1,...,ip are independent standard Gaussian random variables. Then HN,p and HN,p′ are
independent for any p �= p′ and

E
{
HN,p(x)HN,p(y)

} = 1

Np−1
〈x, y〉p.

Let (bp)p≥2 be a sequence of positive numbers such that
∑∞

p=2 2pbp < ∞ and define

X(x) =
∞∑

p=2

bpHN,p(x).

Then X is a smooth Gaussian random field on S
N−1 with covariance

C(x, y) =
∞∑

p=2

b2
p

Np−1
〈x, y〉p.

We can apply Theorem 3.7 or Corollary 3.9 to approximate the excursion probability.

Example 3.3. Consider the Gaussian field {X(x): x ∈ S
N } with covariance structure C(x, y) =

1 − 2
π
d(x, y) (cf. Zuo [45], Remark 3.3). Since d(x, y) = arccos 〈x, y〉, we have

C(x, y) =
∞∑

n=0

(2n)!
4n(n!)2(2n + 1)

〈x, y〉2n+1 :=
∞∑

n=0

bn〈x, y〉n. (3.9)

It is easy to check that
∑∞

n=0 nbn = ∞, (A1′) is not satisfied and hence Theorem 3.7 is not ap-
plicable. Instead, we may use Theorem 2.2 to get an approximation to the excursion probability.
This result allows one to construct confidence regions for the true projection median defined in
Zuo ([45], Section 3) without using the bootstrapping techniques.
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