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This paper considers extensions of minimum-disparity estimators to the problem of estimating parameters in
a regression model that is conditionally specified; that is where a parametric model describes the distribution
of a response y conditional on covariates x but does not specify the distribution of x. We define these
estimators by estimating a non-parametric conditional density estimates and minimizing a disparity between
this estimate and the parametric model averaged over values of x. The consistency and asymptotic normality
of such estimators is demonstrated for a broad class of models in which response and covariate vectors can
take both discrete and continuous values and incorportates a wide set of choices for kernel-based conditional
density estimation. It also establishes the robustness of these estimators for a broad class of disparities. As
has been observed in Tamura and Boos (J. Amer. Statist. Assoc. 81 (1986) 223–229), minimum disparity
estimators incorporating kernel density estimates of more than one dimension can result in an asymptotic
bias that is larger that n−1/2 and we characterize a similar bias in our results and show that in specialized
cases it can be eliminated by appropriately centering the kernel density estimate. We also demonstrate
empirically that bootstrap methods can be employed to reduce this bias and to provide robust confidence
intervals. In order to demonstrate these results, we establish a set of L1-consistency results for kernel-based
estimates of centered conditional densities.

Keywords: bootstrap; density estimation; disparity; regression; robust inference

1. Introduction

Minimum disparity estimators (MDEs) are based on minimizing a measure of distance between
a non-parametric density estimate f̂n(y) and a parametric family of densities φθ (y). Disparities
can be written in the general form Lindsay [11]:

D(f̂n, θ) =
∫

C

(
f̂n(y) − φθ (y)

φθ (y)

)
φθ (y)dν(y),

where C is a convex function with a minimum at 0 and ν is a reference measure over the space
of y. The minimum disparity estimator is defined to be

θ̂n = arg min
θ

D(f̂n, θ).

When f̂n is a kernel density estimate based on univariate i.i.d. data and C(δ) behaves appro-
priately at 0, these estimators can be shown to be asymptotically normal and efficient in the
sense of having asymptotic variance given by the inverse of the Fisher information. When C
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behaves appropriately at ∞, they are also robust to outliers. This was first observed in the case
of Hellinger distance (C(δ) = [√δ + 1 − 1]2) by Beran [3] and generalized to the broader class
of disparities in Lindsay [11] for discrete data and for continuous data in Basu and Lindsay [1]
and Park and Basu [13]. The particular case of C(δ) = e−δ was studied in Basu, Sahadeb and
Vidyashankar [2]; a choice that that is both robust to outliers and to “inliers” – regions where
δ(·) = [f̂n(x·) − φθ ]/φθ is near it’s negative limit of −1 and where Hellinger distance performs
poorly. Tamura and Boos [16] observed that when f̂n(x·) is a multivariate kernel density esti-
mate, the MDE has an asymptotic bias that is larger than n−1/2 and hence appears in the central
limit theorem for θ̂n, potentially necessitating a bias correction.

Despite the potential for both robust and efficient estimation, minimum disparity estimation
has seen few extensions beyond i.i.d. data. Within this context, the use of disparity methods to
estimate parameters in linear regression was treated in Pak and Basu [12] by placing a disparity
on the score equations and for discrete covariates in Cheng and Vidyashankar [4], but little at-
tention has been given to more general regression problems and we take a more direct approach
here. In this paper, we consider data (X1, Y1), (X2, Y2), . . . for which we have a parameterized
family of densities φθ (y|x) which describe the distribution of y conditional on the value of x.
We construct a non-parametric conditional density estimate f̆n(y|x) based on kernel densities
and define two extensions of disparities:

Dn(f̆n, θ) = 1

n

n∑
i=1

D
(
f̆n(·|Xi),φθ (·|Xi)

)
,

D̃n(f̆n, θ) =
∫

D
(
f̆n(·|x),φθ (·|x)

)
ĥn(x)dx,

where ĥn(x) is a kernel density estimate of the density of x. We show that the parameters min-
imizing these disparities are consistent and asymptotically normal. Furthermore, when the data
are generated from a process that corresponds to some member of the parametric model, the
limiting variance is given by the information matrix. Our framework is intentionally general and
designed to cover a broad range of cases in which both Yi and Xi can be vector valued and incor-
porate a mix of continuous- and discrete-valued components and are designed to be as general
as possible. We also consider various estimates of f̆n(y|x) in which some components of y are
centered by a Nadaraya–Watson estimator based on some components of x. When the parametric
model is incorrect, these yield different bias and variance expressions in our central limit theorem
which we interpret and describe.

To achieve these results, we first demonstrate the L1 consistency of f̆n(·|x) which holds uni-
formly over x. We also demonstrate the robustness of these estimators to outlying values in y.
The effectiveness of these techniques are then examined in simulation and with real-world data.

We will introduce the specific distributional framework and assumptions in the next subsec-
tion and our conditional density estimators in Section 1.2. Because of the notational complexity
involved with working with both continuous and discrete random variables as well as a division
of the components of x, Section 1.3 will detail notational shorthand that will be used in various
places throughout the remainder of the paper. Section 2 will develop results on the L1 consis-
tency of kernel-based conditional density estimators, Section 3 will then apply these results to
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demonstrate the consistency of minimum-disparity estimators in conditionally specified models.
We will demonstrate the asymptotic normality of these estimators in Section 4 and their robust-
ness will be examined in Section 5. Computational details on selecting bandwidths and using
the bootstrap for bias correction and inference are given in Section 6. Simulation results and real
data analysis are given in Sections 7 and 8.

We have included proofs of our results in the text where they are either enlightening or short,
but have reserved many for a Supplemental Appendix (Hooker [8]) and noted where these may
be found.

1.1. Framework and assumptions

Throughout the following, we assume a probability space (�,F ,P ) from which we observe i.i.d.
random variables {Xn1(ω),Xn2(ω),Yn1(ω),Yn2(ω),n ≥ 1} where we have separated discrete
and continuous random variables so that Xn1(ω) ∈ R

dx , Xn2(ω) ∈ Sx , Yn1(ω) ∈ R
dy , Yn2(ω) ∈ Sy

for countable sets Sx and Sy with joint distribution

g(x1, x2, y1, y2) = P(X2 = x2, Y2 = y2)P (X1 ∈ dx1, Y1 ∈ dy1|X2 = x2, Y2 = y2)

and define the marginal and conditional densities

h(x1, x2) =
∑

y2∈Sy

∫
g(x1, x2, y1, y2)dy1, (1.1)

f (y1, y2|x1, x2) = g(x1, x2, y1, y2)

h(x1, x2)
(1.2)

on the support of (x1, x2).
An important aspect of this paper is to study an approach of centering y1 by a Nadaraya–

Watson estimator before estimating g. We define this generally, so that y1 can be centered based
on some components (Xm̄

1 ,Xm̄
2 ) of (X1,X2) and a density for the residuals can be estimated

based on a different possibly-overlapping set of components (X
ḡ

1 ,X
ḡ

2 ). Formally, we define

(xm̄
1 , xm̄

2 ) and (x
ḡ

1 , x
ḡ

2 ) with densities hm̄(xm̄
1 , xm̄

2 ) and hḡ(x
ḡ

1 , x
ḡ

2 ), respectively, where xm̄
1 ∈ R

dxm̄

and x
ḡ

1 ∈ R
dxḡ and xm̄

2 ∈ Sxm̄ , x
ḡ

2 ∈ Sxḡ . We now define the possibly vector-valued expectation
of y1 conditional on xm̄:

m
(
xm̄

1 , xm̄
2

) =
∑

y2∈Sy

∑
x

ḡ
2 ∈S

xḡ

∫ ∫
y1

g(x1, x2, y1, y2)

hm̄(xm̄
1 , xm̄

2 )
dy1 dx

ḡ

1

along with the residuals

ε = y1 − m
(
xm̄

1 , xm̄
2

)
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and define the joint density of these residuals, y2, and xḡ by

gc
(
x

ḡ

1 , x
ḡ

2 , ε, y2
) =

∑
xm̄

2 ∈S
xm̄

∫
g
(
x1, x2, ε + m

(
xm̄

1 , xm̄
2

)
, y2

)
dxm̄

1

and similarly write the conditional density

f c
(
ε, y2|xḡ

1 , x
ḡ

2

) = gc(x
ḡ

1 , x
ḡ

2 , ε, y2)

hḡ(x
ḡ

1 , x
ḡ

2 )
,

where throughout this paper we will assume that the distribution of (y1, y2) is such that

f (y1, y2|x1, x2) = f c
(
ε + m

(
xm̄

1 , xm̄
2

)
, y2|xḡ

1 , x
ḡ

2

)
for some function f c(ε, y2|xḡ

1 , x
ḡ

2 ) that does not depend on those components of X that are not
also components of Xḡ .

A useful example to keep in mind is the conditionally heteroscedastic linear regression model

yi = (
xm̄
i

)T
β + σ

((
x

ḡ
i

)T
γ
)
ε

for ε ∼ f (·) in which the residual variance depends on covariates xḡ while the mean depends
on xm̄ and these may or may not be the same variables. However, our framework is consider-
ably more general than this model and includes all of ANOVA, multiple regression, ANCOVA,
multivariate regression, tabular data and generalized linear models as well as allowing for more
complex models in which dependence is assumed between categorical and continuous response
variables.

To appreciate the generality of class of conditional density estimates, we observe that this
covers the case (1.2) by setting the collection of variables in (xm̄

1 , xm̄
2 ) to be empty and (x

ḡ

1 , x
ḡ

2 ) =
(x1, x2); in this case we understand m(xm̄

1 , xm̄
2 ) ≡ 0. It also covers the “homoscedastic” in which

there is no y2 and we assume there is a density a density f ∗(e) such that

f (y1|x1, x2) = f ∗(y1 − m
(
xm̄

1 , xm̄
2

))
(1.3)

that is, the residuals all have the same distribution. In this case, we can set (xm̄
1 , xm̄

2 ) to be all

the variables and remove (x
ḡ

1 , x
ḡ

2 ). If we set both xḡ and xm̄ to be the entire set x we arrive at a
centered conditional density estimate

f c(ε, y2|x1, x2) = f
(
ε + m(x1, x2), y2|x1, x2

)
.

This centering can improve the finite sample performance of our estimator at or near the ho-
moscedastic case in which f c is close to constant in x1 and hence incurs lower bias than the
uncentered version.
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Here we will formalize the partition of the covariate space into components associated with
centering y1 and with conditioning. To do this, we divide x = (x1, x2) into (xm, xs, xg) where xs

are the components common to both xm̄ = (xm, xs) and xḡ = (xs, xg) with xm and xg containing
those components only appearing one or other of the centering and conditioning variables. We
define these variables to take values on spaces X a =R

dxa ⊗Sxa for a ∈ (m, s, g) with X =Xm⊗
X s ⊗X g and X m̄ =Xm ⊗X s and X ḡ =X s ⊗X g , similarly the distribution of observations on
these spaces will be given by ha(xa

1 , xa
2 ) for a replaced by any of (m, s, g, m̄, ḡ).

We note that when y1 is vector valued, it is not necessary to center all of its components. The
results below also encompass the case where only some components are centered by interpreting
m(xm̄

1 , xm̄
2 ) = 0 for the non-centered components. It is also possible to include y2 within xm

2 (but

not within x
ḡ

2 ) without affecting these results.
The following regularity structures may be assumed in the theorems below:

(D1) g is bounded and continuous in x1 and y1.
(D2)

∫
y2

1g(x1, x2, y1, y2)dy1 < ∞ for all x ∈ X .
(D3) All third derivatives of g with respect to x1 and y1 exist, are continuous and bounded.
(D4) The support of x, X is compact and h(x1, x2) is bounded away from zero with infimum

h− = inf
(x1,x2)∈X

h(x1, x2) > 0.

(D5) The expected value function m(x1, x2) is bounded, as is its gradient ∇x1m(x1, x2).

We note that under these conditions, continuity of h and f in x1 and y1 is inherited from g. We
also have that X a is compact for a ∈ (m, s, g, m̄, ḡ) and similarly ha(xa

1 , xa
2 ) > h−. Assump-

tion (D4) is generally employed for models involving non-parametric smoothing and is required
for the uniform convergence results that we establish; in practice it is often possible to bound
the range of values that a covariate can take. This assumption is, however, more restrictive than
required for general regression problems and can, in fact, be removed in special cases of the
methods studied here. We have noted where this is possible below, with results provided in Sup-
plemental Appendix E (Hooker [8]).

In the case of centered densities (i.e., xm̄ is not trivial), we also assume that f is differentiable
in y1 and has a finite second moment, uniformly over x:

(E1) sup(x1,x2)∈X
∑

y2∈Sy

∫ |∇y1f (y1, y2|x1, x2)|dy1 < ∞,

(E2) sup(xm
1 ,xm

2 )∈Xm

∑
y2∈Sy

∫ |y2
1f (y1, y2|x1, x2)|dy1 < ∞

and note that these conditions need only apply to those components of y1 which are centered.

1.2. Kernel estimators

In order to apply the disparity methods described above, we will need estimates of
f c(ε, y2|xḡ

1 , x
ḡ

2 ) which we will obtain through kernel density and Nadaraya–Watson estimators.
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Specifically, we first estimate the density of the centering variables (Xm̄
1 ,Xm̄

2 ):

ĥm
n

(
xm̄

1 , xm̄
2 ,ω

) = 1

nc
dxm̄

nxm̄
2

n∑
i=1

Km
x

(
xm̄

1 − Xm̄
i1(ω)

cnxm̄
2

)
Ixm̄

2

(
Xm̄

i2(ω)
)

(1.4)

and define a Nadaraya–Watson estimator for the continuous response variables y1 based on them:

m̂n

(
xm̄

1 , xm̄
2 ,ω

) =
(1/nc

dxm̄

nxm̄
2
)
∑n

i=1 Yi1(ω)Km
x ((xm̄

1 − Xm̄
i1(ω))/cnxm̄

2
)Ixm̄

2
(Xm̄

i2(ω))

ĥm
n (xm̄

1 , xm̄
2 )

. (1.5)

We then obtain residuals from this estimator

Ẽi(m̃,ω) = Yi(ω) − m̃
(
Xm̄

i1(ω),Xm̄
i2(ω)

)
, i = 1, . . . , n (1.6)

and use these with the Yi2 to obtain a joint density estimate with the (X
ḡ

i1,X
ḡ

i2):

ĝn

(
x

ḡ

1 , x
ḡ

2 , e, y2, m̃,ω
)

(1.7)

= 1

nc
dxḡ

nx
ḡ
2

c
dy
ny2

n∑
i=1

Kx

(
xḡ − X

ḡ

i1(ω)

c
nx

ḡ
2

)
Ky

(
e − Ẽi(m̃,ω)

cny2

)
I
x

ḡ
2

(
X

ḡ

i2(ω)
)
Iy2

(
Yi2(ω)

)
.

We then estimate the density of the (X
ḡ

i1,X
ḡ

i2) alone

ĥn

(
x

ḡ

1 , x
ḡ

2 ,ω
) = 1

nc
dxḡ

nx
ḡ
2

n∑
i=1

Kx

(
x

ḡ

1 − X
ḡ

i1(ω)

c
nx

ḡ
2

)
I
x

ḡ
2

(
X

ḡ

i2(ω)
)

(1.8)

and use these to obtain an estimate of the conditional distribution of the centered responses:

f̂n(e, y2|x1, x2,ω) = ĝn(x
ḡ

1 , x
ḡ

2 , e, y2, m̂n,ω)

ĥn(x
ḡ

1 , x
ḡ

2 ,ω)
. (1.9)

Finally, we shift f̂n by m̂n to remove the centering:

f̆n(y1, y2|x1, x2,ω) = f̂n

(
y1 − m̂n

(
xm̄

1 , xm̄
2 ,ω

)
, y2|xḡ

1 , x
ḡ

2 ,ω
)
. (1.10)

Throughout the above, Ix(X) is the indicator function of X = x and Kx , Km
x and Ky are densities

on the spaces Rdxḡ , Rdxm̄ and R
dy , respectively. We have used cnxm̄

2
, c

nx
ḡ
2

and cny2 to distinguish

the different rates which these bandwidths will need to follow. Further conditions on these are
detailed below.

Here we have employed the errors Ẽi(m̃,ω) for the sake of notational compactness. We have
defined centering by a generic m̃ in (1.6)–(1.7), which we will employ in developing its L1
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convergence below, but have replaced this with m̂n in (1.9) and (1.10) to indicate real-world
practice.

In the case of uncentered conditional density estimates (xm̄ trivial), these reduce to

ĝ∗
n(x1, x2, y1, y2,ω) = 1

nc
dx
nx2c

dy
ny2

n∑
i=1

Kx

(
x1 − Xi1(ω)

cnx2

)
Ky

(
y1 − Yi1(ω)

cny2

)
(1.11)

× Ix2

(
Xi2(ω)

)
Iy2

(
Yi2(ω)

)
,

ĥ∗
n(x1, x2,ω) = 1

nc
dx
nx2

n∑
i=1

Kx

(
x − Xi1(ω)

cnx2

)
Ix2

(
Xi2(ω)

)
(1.12)

=
∑

y2∈Sy

∫
R

dy

ĝ∗
n(x1, x2, y1, y2,ω)dy1,

f̂ ∗
n (y1, y2|x1, x2,ω) = ĝ∗

n(x1, x2, y1, y2,ω)

ĥ∗
n(x1, x2,ω)

. (1.13)

And for homoscedastic regression estimators (xḡ and y2 empty), we have

m̂n(x1, x2,ω) =
∑n

i=1 Yi1(ω)Kx((x1 − Xi1(ω))/cnx2)Ix2(Xi2(ω))∑n
i=1 Kx((x1 − Xi1(ω))/cnx2)Ix2(Xi2(ω))

, (1.14)

f̂ c
n (e,ω) = 1

nc
dy
ny2

n∑
i=1

Ky

(
e − (Yi(ω) − m̂n(Xi1(ω),Xi2(ω)))

cny2

)
, (1.15)

f̃n(y1|x1, x2,ω) = f̂ c
n

(
y1 − m̂n(x1, x2,ω),ω

)
(1.16)

with notation cny2 maintained as a bandwidth for the sake of consistency.
We note that while these estimates do require some extra computational work, they are not,

in fact, more computationally burdensome than the methods proposed for independent, univari-
ate data in Beran [3]. The evaluation cost of each of the density estimates and non-parametric
smooths above is O(n) operations and f̆n(y1, y2|x1, x2) can be evaluated in a few lines of code in
the R programming language. In simulations reported in Section 7 the computing time required
of our methods exceeds that of maximum likelihood methods by a factor of 10, and alternative
robust methods by a factor of 5, rendering them very feasible in practical situations.

Throughout we make the following assumptions on the kernels Kx , Km
x , and Ky . These will

all conform to conditions on a general kernel K(z) over a Euclidean space of appropriate dimen-
sion R

dz :

(K1) K(z), is a density on R
dz .

(K2) For some finite K+, supz∈Rdz K(z) < K+.
(K3) lim‖z‖2dzK(z) → 0 as ‖z‖ → ∞.
(K4) K(z) = K(−z).
(K5)

∫ ‖z‖2K(z)dz < ∞.
(K6) K has bounded variation and finite modulus of continuity.
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We also assume that following properties of the bandwidths. These will be given in terms of the
number of observations falling at each combination values of the discrete variables.

n
(
xa

2

) =
n∑

i=1

Ixa
2

(
Xa

2i (ω)
)
, n(y2) =

n∑
i=1

Iy2

(
Y2i (ω)

)
,

n
(
xa

2 , y2
) =

n∑
i=1

Ixa
2

(
Xa

2i (ω)
)
Iy2

(
Y2i (ω)

)
,

where these rates are defined for a covering any of (m, s, g, m̄, ḡ) or the whole space. As
n → ∞:

(B1) cnx2 → 0, cny2 → 0.

(B2) n(xa
2 )c

dxa

nxa
2

→ ∞ for all x2 ∈ Sx and n(xa
2 , y2)c

dxa

nxa
2
c
dy
ny2 → ∞ for all (xa

2 , y2) ∈ Sxa ⊗ Sy .

(B3) n(xa
2 )c

2dxa

nxa
2

→ ∞.

(B4) n(xa
2 , y2)c

2dxa

nxa
2

c
2dy
ny2 → ∞.

(B5)
∑∞

n(xa
2 )=1 c

−dxa

nxa
2

e
−γ n(xa

2 )c
dx
nxa

2 ≤ ∞ for all γ > 0.

(B6) n(y2)c
4
ny2

→ 0 if dy = 1 and n(xa
2 )c4

nxa
2

→ 0 if dxa = 1,

where the sum is taken to be over all observations in the case that Xa
2 or Y2 are singletons.

1.3. Notational conventions

Because of the complexity involved in dealing with two partitions, x = (xm, xs, xg) and x =
(x1, x2), along with kernel estimators and integrals, this paper will take some notational short-
cuts; which ones we take will differ between sections. These will allow us to ignore notational
complexities that do not affect the particular results being discussed. Here we will forecast these.

Section 2 demonstrates the consistency of kernel-based conditional density estimates. This
section will require the distinction between continuous-valued and discrete-valued components
of x and y and we will emphasize the division x = (x1, x2). However the particular division
between centering and conditioning variables will not be important in our calculations and we
will thus suppress this notation. Formally, our results will apply to the case where both xm̄ and
xḡ contain all the components of x. However, they extend to any partition following modification
of the bandwidth scaling to reflect the dimension of the real-valued components (xm, xs, xg). We
have kept the notation of Xi1(ω) depending on ω throughout this section facilitate the precise
description of convergence results.

In Sections 3 and 4, the opposite case will be true. We will suppress the distinction between dis-
crete and continuous random variables but the partition of the covariates into centering and con-
ditioning components will have a substantial effect on our results. Here, for the sake of notational
compactness we define a measure ν over Rdy ⊗Sy and μ over Rdx ⊗Sx given by the product of
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counting and Lebesgue measure. Where needed, we will write for any function F(x1, x2, y1, y2),∑
x∈Sx,y∈Sy

∫ ∫
F(x1, x2, y1, y2)dx1 dy1 =

∫ ∫
F(x, y)dν(y)dμ(x). (1.17)

We will similarly define measures μg , μm, μḡ and μm̄ over X g , Xm, X ḡ and X m̄, respectively.
In some places, we will refer to the centered ε = y − m(xm̄) where we will understand m(xm̄)

to be zero on the discrete-valued components of y as well as those components of y1 which are
not being centered. In this context, we will subsume the indicator functions used above within
the kernel and understand

Kx

(
xḡ − X

ḡ
i

c
nx

ḡ
2

)
= Kx

(
x

ḡ

1 − X
ḡ

i1

cnḡ

)
I
x

ḡ
2

(
X

ḡ

i2

)
.

Here we have changed bandwidth notation to cnḡ in favor of c
nx

ḡ
2

and understand that cna can

depend on xa
2 , but we have maintained the distinction as to which of m̄ or ḡ a belongs to. We

will also encounter a change of variables written as∫
F

(
xḡ, y

) 1

c
dxḡ

nḡ

Kx

(
xḡ − X

ḡ
i

cnḡ

)
dμḡ

(
xḡ

) =
∫

F
(
X

ḡ
i + cnḡu, y

)
Kx(u)du

in which we will interpret u as being a vector which is non-zero only on the continuous com-
ponents of xḡ . Similar conventions will be employed for all other components of x and of y. In
these sections, we will drop ω from our notation for the sake of compactness and because it will
be less relevant to defining our results.

2. Consistency results for conditional densities over spaces of
mixed types

In this section, we will provide a number of L1 consistency results for kernel estimates of den-
sities and conditional densities of multivariate random variables in which some coordinates take
values in Euclidean space while others take values on a discrete set. Pointwise consistency of
conditional density estimates of this form can be found in, for example, Li and Racine [10] and
Hansen [7]. However, we are unaware of equivalent L1 results which will be necessary for our
development of conditional disparity-based inference. Throughout, we have assumed that both
the conditioning variable x and the response y are multivariate with both types of coordinates.
The specification to univariate models, or models with only discrete or only continuous variables
in either x or y (and to unconditional densities) is readily seen to be covered by our results as
well.

As a further generalization of the results in Li and Racine [10], we include the centered version
of conditional density estimates defined by (1.7)–(1.10). We will demonstrate the consistency
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of results for these estimates, from which consistency for uncentered conditional densities and
results for homoscedastic conditional densities (1.3) are special cases.

Supplemental Appendix B (Hooker [8]) provides a set of intermediate results on the uniform
and L1 convergence of non-parametric regression and centered density estimates of missed types.
Following these, we are able to establish the uniform (in x) L1 (in y) convergence of multivariate
densities:

Theorem 2.1. Let {(Xn1,Xn2, Yn1, Yn2), n ≥ 1} be given as in Section 1.1 under assumptions
(D1)–(D4), (K1)–(K6) and (B1)–(B5) then there exists a set B with P(B) = 1 such that for all
ω ∈ B

sup
(x1,x2)∈X

∑
y2∈Sy

∫ ∣∣ĝn(x1, x2, y1, y2, m̂n,ω) − g(x1, x2, y1, y2,m)
∣∣dy1 → 0. (2.1)

The proof of this theorem is given in Supplemental Appendix C.2 (Hooker [8]). The results
above can now be readily extended to equivalent L1 results for conditional densities. We begin
by considering centered densities and then proceed to uncenter them.

Theorem 2.2. Let {(Xn1,Xn2, Yn1, Yn2), n ≥ 1} be given as in Section 1.1 under assumptions
(D1)–(D4), (K1)–(K6) and (B1)–(B5):

1. There exists a set BI with P(BI ) = 1 such that for all ω ∈ BI ,

∑
x2∈Sx

∑
y2∈Sy

∫
h(x1, x2)

∣∣f̂n(ε, y2|x1, x2,ω) − f c(ε, y2|x1, x2)
∣∣dε dx1 → 0. (2.2)

2. If further, assumptions (D4) and (B5) hold, there exists a set BS with P(BS) = 1 such that
for all ω ∈ BS :

sup
(x1,x2)∈X

∑
y2∈Sy

∫ ∣∣f̂n(ε, y2|x1, x2,ω) − f c(ε, y2|x1, x2)
∣∣dε → 0. (2.3)

The proof of this theorem is given in Supplemental Appendix C.2 (Hooker [8]). From here,
we can examine the behavior of f̆n.

Theorem 2.3. Let {(Xn1,Xn2, Yn1, Yn2), n ≥ 1} be given as in Section 1.1 under assumptions
(E1)–(E2), (D1)–(D4), (K1)–(K6) and (B1)–(B5):

1. There exists a set BI with P(BI ) = 1 such that for all ω ∈ BI ,

∑
x2∈Sx

∑
y2∈Sy

∫
h(x1, x2)

∣∣f̆n(y1, y2|x1, x2,ω) − f (y1, y2|x1, x2)
∣∣dy1 dx1 → 0. (2.4)
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2. If further, assumptions (D4) and (B5) hold, there exists a set BS with P(BS) = 1 such that
for all ω ∈ BS :

sup
(x1,x2)∈X

∑
y2∈Sy

∫ ∣∣f̆n(y1, y2|x1, x2,ω) − f (y1, y2|x1, x2)
∣∣dy1 → 0. (2.5)

Proof. We begin by writing∑
y2∈Sy

∫ ∣∣f̆n(y1, y2|x1, x2,ω) − f (y1, y2|x1, x2)
∣∣dy1

≤
∑

y2∈Sy

∫ ∣∣f̆n(y1, y2|x1, x2,ω) − f c
(
y1 − m̂n(x1, x2), y2|x1, x2

)∣∣dy1

+
∑

y2∈Sy

∫ ∣∣f c
(
y1 − m̂n(x1, x2), y2|x1, x2

) − f c
(
y1 − m(x1, x2), y2|x1, x2

)∣∣dy1

≤
∑

y2∈Sy

∫ ∣∣f̆n(y1, y2|x1, x2,ω) − f c
(
y1 − m̂n(x1, x2), y2|x1, x2

)∣∣dy1

+ sup
(x1,x2)∈X

∣∣m̂n(x1, x2) − m(x1, x2)
∣∣ ∑
y2∈Sy

∫ ∣∣∇y1f
c(y1, y2|x1, x2)

∣∣dy1.

The first term of the last line converges almost surely from Theorem 2.2 applied either marginal-
ized over (x1, x2) to obtain (2.4) or after taking a supremum to obtain (2.5). The second term fol-
lows from Theorem B.2 in the Supplemental Appendix (Hooker [8]) and assumption (E1). �

These results can now be applied to the more regular conditional density estimates
(1.11)–(1.13) and homoscedastic conditional density estimates (1.14–1.16). For the sake of com-
pleteness, we state these directly as corollaries without proof.

Corollary 2.1. Let {(Xn1,Xn2, Yn1, Yn2), n ≥ 1} be given as in Section 1.1 under assumptions
(D1)–(D3), (K1)–(K6) and (B1)–(B2) then:

1. For almost all x = (x1, x2) ∈ R
dx ⊗Sx there exists a set Bx with P(Bx) = 1 such that for

all ω ∈ Bx ∑
y2∈Sy

∫ ∣∣f̂ ∗
n (y1, y2|x1, x2,ω) − f (y1, y2|x1, x2)

∣∣dy1 → 0. (2.6)

2. There exists a set BI with P(BI ) = 1 such that for all ω ∈ BI ,∑
x2∈Sx

∑
y2∈Sy

∫
h(x1, x2)

∣∣f̂ ∗
n (y1, y2|x1, x2,ω) − f (y1, y2|x1, x2)

∣∣dy1 dx1 → 0. (2.7)
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3. If further, assumptions (D4) and (B5) hold, there exists a set BS with P(BS) = 1 such that
for all ω ∈ BS

sup
(x1,x2)∈X

∑
y2∈Sy

∫ ∣∣ĝ∗
n(x1, x2, y1, y2,ω) − g(x1, x2, y1, y2)

∣∣dy1 → 0 (2.8)

and

sup
(x1,x2)∈X

∑
y2∈Sy

∫ ∣∣f̂ ∗
n (y1, y2|x1, x2,ω) − f (y1, y2|x1, x2)

∣∣dy1 → 0. (2.9)

Corollary 2.2. Let {(Xn1,Xn2, Yn1), n ≥ 1} be given as in Section 1.1 with the restriction (1.3),
under assumptions (D1)–(D4), (E1)–(E2), (K1)–(K6), (B1)–(B2) and (B5) there exists a set B

with P(B) = 1 such that for all ω ∈ B∫ ∣∣f̂ c
n (e,ω) − f c(e)

∣∣de → 0 (2.10)

and

sup
(x1,x2)∈X

∫ ∣∣f̃n(y1|x1, x2,ω) − f c
(
y1 − m(x1, x2)

)∣∣dy1 → 0. (2.11)

The above theorems rely on the compactness of X (assumption (D4)), this is necessary due
to the estimate m̂n(x

m̄
1 , xm̄

2 ), and is necessary for uniform convergence in X . However, a weaker
version can be given for non-centered densities which does not require a compact support:

Theorem 2.4. Let {(Xn1, Yn1), n ≥ 1} be given as in Section 1.1 under assumptions (D1)–(D3),
(K1)–(K6) and (B1)–(B2) then for almost all x = (x1, x2) there exists a set Bx with P(Bx) = 1
such that for all ω ∈ Bx∑

y2∈Sy

∫ ∣∣ĝn(x1, x2, y1, y2,ω) − g(x1, x2, y1, y2)
∣∣dy1 → 0. (2.12)

Proof. For (2.12), we observe that∑
x2∈Sx

∑
y2∈Sy

∫ ∫ ∣∣ĝn(x1, x2, y1, y2,ω) − g(x1, x2, y1, y2)
∣∣dy1 dx1 =

∑
x2∈Sx

∫
Tn(x1, x2)dx1

→ 0

almost surely with Tn(x1, x2) > 0, see [5], Chapter 3, Theorem 1. Thus Tn(x1, x2) → 0 for almost
all (x1, x2). �

In particular, we can rely on this theorem to remove assumption (D4) from the minimum
disparity methods studied below in special cases that employ ĝn as a density estimate. Relevant
further results are given in Supplemental Appendix E (Hooker [8]).
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3. Consistency of minimum disparity estimators for conditional
models

In this section, we define minimum disparity estimators for the conditionally specified models
based on distributions and data defined in Section 1.1. For the purposes of notational simplicity,
we will ignore the distinction between continuous and discrete random variables X1,X2 and
Y1, Y2, but we will make use of the division x = (xm, xs, xg) into those covariates xm used to
center the estimated density, those used to condition, xg , and those in both, xs . We assume that
a parametric model has been proposed for these data of the form

f (y|x) = φ(y|x, θ),

where we assume that the Xi are independently drawn from a distribution h(x) which is not para-
metrically specified. For this model, the maximum likelihood estimator for θ given observations
(Yi,Xi), i = 1, . . . , n is

θ̂MLE = arg max
n∑

i=1

logφ(Yi |Xi, θ)

with attendant asymptotic variance

I (θ0) = n

∫ ∫
∇2

θ

[
logφ(y|x, θ0)

]
φ(y|x, θ0)h(x)dν(y)dμ(x)

when the specified parametric model is correct at θ = θ0.
In the context of disparity estimation, for every value x we define the conditional disparity

between f and φ as

D(f,φ|x, θ) =
∫

C

(
f (y|x)

φ(y|x, θ)
− 1

)
φ(y|x, θ)dν(y)

in which C is a strictly convex function from R to [−1 ∞) with a unique minimum at 0. Clas-
sical choices of C include e−x − 1, resulting in the negative exponential disparity (NED) and
[√x + 1 − 1]2 − 1, which corresponds to Hellinger distance (HD).

These disparities are combined over observed Xi by averaging the disparity between f and φ

evaluated at each Xi

Dn(f, θ) = 1

n

n∑
i=1

D(f,φ|Xi, θ)

(note that the Yi only appear here when f is replaced by an estimate f̆n) or by integrating over
the estimated density of xḡ :

D̃n(f, θ) = 1

n

n∑
i=1

∫
D

(
f,φ|Xm

i , xḡ, θ
)
ĥn

(
xḡ

)
dμḡ

(
xḡ

)
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with limiting cases

D∞(f, θ) =
∫

D(f,φ|x, θ)h(x1, x2)dμ(x)

and

D̃∞(f, θ) =
∫ ∫

D
(
f,φ|xm,xḡ, θ

)
hm

(
xm

)
hḡ

(
xḡ

)
dμm

(
xm

)
dμḡ

(
xḡ

)
.

We now define the corresponding conditional minimum disparity estimators:

θ̂D
n = arg min

θ∈�

Dn(f̆n, θ), θ̃D
n = arg min

θ∈�

D̃n(f̆n, θ).

Here we note that when the model is correct – that is f (y|x) = φ(y|x, θ0) – we have that θ0
minimizes both D∞(f, θ) and D̃∞(f, θ).

Under this definition, we first establish the existence and consistency of θ̂D
n . To do so, we note

that disparity results all rely on the boundedness of D(f,φ|Xi, θ) over θ and f and a condition
of the form that for any conditional densities f1 and f2,

sup
θ∈�

∣∣D(f1, φ|x, θ) − Dn(f2, φ|x, θ)
∣∣ ≤ K

∫ ∣∣f1(y|x) − f2(y|x)
∣∣dν(y) (3.1)

for some K > 0. In the case of Hellinger distance (Beran [3]), D(g, θ) < 2 and (3.1) follows
from Minkowski’s inequality. For the alternate class of divergences studied in Park and Basu
[13], boundedness of D is established from assuming that supt∈[−1,∞) |C′(t)| ≤ C∗ < ∞ which
also provides ∣∣∣∣∫ [

C

(
f1(y|x)

φ(y|x, θ)
− 1

)
− C

(
f2(y|x)

φ(y|x, θ)
− 1

)]
φ(y|x, θ)dν(y)

∣∣∣∣
≤ C∗

∫ ∣∣∣∣ f1(y|x)

φ(y|x, θ)
− f2(y|x)

φ(y|x, θ)

∣∣∣∣φ(y|x, θ)dν(y)

= C∗
∫ ∣∣f1(y|x) − f2(y|x)

∣∣dν(y).

For simplicity, we therefore use (3.1) as a condition below.
In general, we will require the following assumptions:

(P1) There exists N such that maxi∈1,...,n |∑n
i=1 φ(y|Xi, θ1) − φ(yi |Xi, θ2)| > 0 with proba-

bility 1 on a nonzero set of dominating measure in y whenever n > N and θ1 �= θ2.
(P2) φ(y|x, θ) is continuous in θ for almost every (x, y).
(P3) Dn(f,φ|x, θ) is uniformly bounded over f in the space of conditional densities,

(x1, x2) ∈ X and θ ∈ � and (3.1) holds.
(P4) For every f , there exists a compact set Sf ⊂ � and N such that for n ≥ N ,

inf
θ∈Sc

f

Dn(f, θ) > inf
θ∈Sf

Dn(f, θ).
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These assumptions combine those of Park and Basu [13] for a general class of disparities
with the identifiability condition (P4) which appears in [15], equation (3.3), which relaxes the
assumption of compactness of �; see also Cheng and Vidyashankar [4]. Together, these provide
the following results.

Theorem 3.1. Under assumptions (P1)–(P4), define

Tn(f ) = arg min
θ∈�

Dn(f, θ), (3.2)

for n = 1, . . . ,∞ inclusive, then:

(i) For any f ∈F there exists θ ∈ � such that Tn(f ) = θ .
(ii) For n ≥ N , for any θ , θ = Tn(φ(·|·, θ)) is unique.

(iii) If Tn(f ) is unique and fm → f in L1 for each x, then Tn(fm) → Tn(f ).

The same results hold for

T̃n(f ) = arg min
θ∈�

D̃n(f, θ).

Proof. (i) Existence. We first observe that it is sufficient to restrict the infimum in (3.2) to Sf .
Let {θm: θm ∈ Sf } be a sequence such that θm → θ as m → ∞. Since

C

(
f (y|x)

φ(y|x, θm)
− 1

)
φ(y|x, θm) → C

(
f (y|x)

φ(y|x, θ)
− 1

)
φ(y|x, θ)

by assumption (P2), using the bound on D(f,φ, θ) from assumption (P3) we have Dn(f, θm) →
Dn(f, θ) by the dominated convergence theorem. Hence Dn(f, t) is continuous in t and achieves
its minimum for t ∈ Sf since Sf is compact.

(ii) Uniqueness. This is a consequence of assumption (P1) and the unique minimum of C at 0.
(iii) Continuity in f . For any sequence fm(·|x) → f (·|x) in L1 for every x as m → ∞, we

have

sup
θ∈�

∣∣Dn(fm, θ) − Dn(f, θ)
∣∣ → 0 (3.3)

from assumption (P3).
Now consider θm = Tn(fm). We first observe that there exists M such that for m ≥ M , θm ∈ Sf

otherwise from (3.3) and assumption (P4)

Dn(fm, θm) > inf
θ∈Sf

Dn(fm, θ)

contradicting the definition of θm.
Now suppose that θm does not converge to θ0. By the compactness of Sf we can find a sub-

sequence θm′ → θ∗ �= θ0 implying Dn(f, θm′) → Dn(f, θ∗) from assumption (P2). Combining
this with (3.3) implies Dn(f, θ∗) = Dn(f, θ0), contradicting the assumption of the uniqueness
of Tn(f ). �
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Theorem 3.2. Let {(Xn1,Xn2, Yn1, Yn2), n ≥ 1} be given as in Section 1.1 and define

θ0
n = arg min

θ∈�

Dn(f, θ)

for every n including ∞. Further, assume that θ0∞ is unique in the sense that for every ε there
exists δ such that ∥∥θ − θ0∞

∥∥ > ε ⇒ D∞(f, θ) > D∞
(
f, θ0∞

) + δ

then under assumptions (D1)–(D4), (K1)–(K6), (B1)–(B2) and (P1)–(P4):

θ̂n = Tn(f̆n) → θ0∞ as n → ∞ almost surely.

Similarly,

T̃n(f̆n) = arg min
θ∈�

D̃n(f̆n, θ) → θ̃0∞ as n → ∞ almost surely.

Proof. First, we observe that for every f , it is sufficient to restrict attention to Sf and that

sup
θ∈Sf

∣∣Dn(f, θ) − D∞(f, θ)
∣∣ → 0 almost surely (3.4)

from the strong law of large numbers, the compactness of Sf and the assumed continuity of C

and of φ with respect to θ .
Further,

sup
m∈N,θ∈�

∣∣Dm(f̆n, θ) − Dm(f, θ)
∣∣ ≤ C∗ sup

x∈X

∫ ∣∣f̆n(y|x) − f (y|x)
∣∣dν(y)

(3.5)
→ 0 almost surely,

where the convergence is obtained from Theorem 2.3.
Suppose that θ̂n does not converge to θ0∞, then we can find ε > 0 and a subsequence θ̂n′ such

that ‖θ̂n′ − θ0∞‖ > ε for all n′. However, on this subsequence

Dn′(f̆n′ , θ̂n′) = Dn′(f̆n′ , θ0) + (
Dn′(f, θ0) − Dn′(f̆n′ , θ0)

) + (
D∞(f, θ0) − Dn′(f, θ0)

)
+ (

D∞(f, θ̂n′) − D∞(f, θ0)
)

+ (
Dn′(f, θ̂n′) − D∞(f, θ̂n′)

) + (
Dn′(f̆n′ , θ̂n′) − Dn′(f, θ̂n′)

)
≤ Dn′(f̆n′ , θ0) + δ

− 2 sup
θ∈�

∣∣Dn′(f, θ) − D(f, θ)
∣∣ − 2 sup

θ∈�

∣∣Dn′(f̆n′ , θ) − Dn′(f, θ)
∣∣

but from (3.4) and (3.5) we can find N so that for n′ ≥ N

sup
θ∈�

∣∣Dn′(f, θ) − D(f, θ)
∣∣ ≤ δ

6
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and

sup
θ∈�

∣∣Dn′(f̆n′ , θ) − Dn′(f, θ)
∣∣ ≤ δ

6

contradicting the optimality of θ̂n′ . The proof for T̃n(f̆n) follows analogously. �

The compactness assumption (D4) used above can be removed for the special case of an un-
centered density employed with our second estimator: T̃ (f̂ ∗

n ). This is stated in Theorem E.1 in
Supplemental Appendix E (Hooker [8]).

4. Asymptotic normality and efficiency of minimum disparity
estimators for conditional models

In this section, we demonstrate the asymptotic normality and efficiency of minimum conditional
disparity estimators. In order to simplify some of our expressions, we introduce the following
notation, that for a column vector A we define the matrix

AT T = AAT .

This will be particularly useful in defining information matrices.
We will also frequently use the notation y = (y1, y2) and x = (x1, x2), ignoring the distinction

between real and discrete valued variables. It will be particularly relevant to distinguish xḡ and
xm̄ along with their subsets xg and xm that are solely in xḡ or xm̄, respectively, along with the
shared dimensions xs . Because our notation would otherwise become unwieldy, we will subsume
indicator functions within kernels, and, for example, understand

Kx

(
xḡ − X

ḡ
i

cnḡ

)
= Kx

(
x

ḡ

1 − X
ḡ

i1

c
nx

ḡ
2

)
I
x

ḡ
2

(
X

ḡ

i2

)
,

where we have also suppressed the x2 indicator in the bandwidth cnḡ . Within this context, we
will also occasionally abuse notation when changing variables and write xḡ + cnḡv in which we
understand that the additive term only corresponds to the continuous-valued entries in xḡ . We
will also express integration with respect to the distribution μ(x) and ν(y) and denote μg , μm,
μs , μḡ and μm̄ the measures marginalized to the corresponding dimensions of X .

The proof techniques employed here are an extension of those developed in i.i.d. settings in
Beran [3]; Tamura and Boos [16]; Lindsay [11]; Park and Basu [13]. In particular we will require
the following assumptions:

(N1) Define

θ(x, y) = ∇θφ(y|x, θ)

φ(y|x, θ)

then

sup
x∈X

∫
θ(x, y)θ (x, y)T f (y|x)dν(y) < ∞
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elementwise. Further, there exists ay > 0 such that

sup
x∈X

sup
‖t‖≤ay

sup
‖s‖≤ay

∫
θ(x1 + s, x2, y1 + t, y2)

2f (y|x)dν(y) < ∞

and

sup
x∈X

sup
‖t‖≤ay

sup
‖s‖≤ay

∫ (∇y1θ(x1 + t, x2, y1 + s, y2)
)2

f (y|x)dν(y) < ∞,

and

sup
x∈X

sup
‖t‖≤ay

sup
‖s‖≤ay

∫ (∇xθ (x1 + t, x2, y1 + s, y2)
)2

f (y|x)dν(y) < ∞.

(N2) There exists sequences bn and αn diverging to infinity along with a constant c > 0 such
that:

(i) nKx(bn/cnx) → 0, nKy(bn/cny) → 0 and

n sup
x∈X

sup
‖u‖>bn

∫ ∫
‖v‖>bn

2
θ (x + cnxu, y + cnyv)K2

y (u)K2
x (v)g(x, y)dv dν(y) → 0

elementwise.
(ii) supx∈X nP (‖Y1 − cnybn‖ > αn − c) → 0.

(iii)

sup
x∈X

1
√

nc
dx
nxc

dy
ny

∫
‖y1‖≤αn+c

∣∣θ(x, y)
∣∣dν(y) → 0.

(iv)

sup
x∈X

sup
‖t‖≤bn

sup
‖s‖≤bn

sup
‖y1‖<αn

g(x + cnxs, y + cnyt)

g(x, y)
= O(1).

(N3) supy,x

√
φ(y|x, θ)∇θθ (y, x) = S < ∞.

(N4) C is either given by Hellinger distance C(x) = [√x + 1 − 1]2 − 1 or

A1(r) = −C′′(r − 1)r, A2(r) = C(r − 1) − C′(r − 1)r,

A3(r) = C′′(r − 1)r2

are all bounded in absolute value as is r2C(3)(r).

Assumption (N1) ensures that the likelihood score function is well controlled including for
small location changes of x1 and y1. Assumption (N2) requires θ and y1 to have well-behaved
tails relative to Ky . In particular, assumption (N2)(i) allows us to truncate the kernels at bn
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which will prove mathematically convenient throughout the remainder of the section. Assump-
tion (N3) concerns the regularity of the parametric model and in particular ensures that the sec-
ond derivative of Hellinger distance with respect to parameters is well behaved. Assumption
(N4) is a restatement of conditions on the residual adjustment function in Lindsay [11] and Park
and Basu [13]; a wide class of disparities satisfy these conditions including NED, we refer the
reader to Lindsay [11] for a more complete discussion. As was the case for assumption (P3),
we treat Hellinger distance separately in assumption (N4) as it does not conform to the general
assumptions on C, but the relevant bounds can be demonstrated by other means in the proof of
Theorem 4.1 below.

The demonstration of a central limit theorem involves bounding the score function for a gen-
eral disparity in terms of that for Hellinger distance and then taking Taylor expansion of this
score. For this we need two lemmas. The first is that the weighted Hellinger distance between
f̂n and its expectation is smaller than

√
n. This is used in Theorem 4.1 to remove terms involv-

ing
√

f̂n.

Lemma 4.1. Let {(Xn,Yn), n ≥ 1} be given as in Section 1.1, under assumptions (D1)–(D4),
(K1)–(K6), (B1)–(B4), and (N1)–(N2)(iv) for any function J (y, x) satisfying the conditions
on  in assumptions (N1)–(N2)(iv)

√
n sup

x∈X

∫ ∫
J
(
e + m̂n

(
xm̄

)
, x

)(√
f̂n(e|x) −

√
Eĝn(x, e, m̂n)|m̂n

Eĥn(x)

)2

dν(e) → 0 (4.1)

in probability and

1√
n

n∑
i=1

∫ ∫ (√
f̂n

(
e|Xm

i , xg
) −

√
Eĝn(X

m
i , xg, e, m̂n)|m̂n

Eĥn(xg)

)2

(4.2)
× J

(
e + m̂n

(
Xm

i

)
,Xm

i , xg
)
ĥn

(
xg

)
dν(e)dμg

(
xg

) → 0

and

1√
n

n∑
i=1

∫ ∫
J
(
e + m̂n

(
Xm

i

)
,Xi

)(√
f̂n(e|Xi) −

√
Eĝn(Xi, e, m̂n)|m̂n

ĥn(Xi)

)2

dν(e) → 0. (4.3)

The proof of this lemma is given in Supplemental Appendix D.2 (Hooker [8]).
A second lemma states that integrating a function J (y, x) with respect to f̂n yields a central

limit theorem. In the below, we have used a subscript x∗ to help differentiate which components
are being integrated with respect to which measure.

Lemma 4.2. Let {(Xn,Yn), n ≥ 1} be given as in Section 1.1, under assumptions (D1)–(D4),
(E1)–(E2), (K1)–(K6), (B1)–(B2) and (P1)–(P4) for any for any function J (y, x) satisfying the
conditions on  in assumptions (N1)–(N2)(iv) and

VJ =
∫ ∫

UT T
J (ε, x)gc(x, ε)dν(ε)dμ(x) < ∞,
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where

UJ (ε, x) =
∫

J
(
ε + m

(
xm∗ , xs

)
, xm∗ , xḡ

)
hm

(
xm∗

)
dμm

(
xm∗

)
+

∫ ∫
J
(
e∗ + m

(
xm,xs∗

)
, xm, x

ḡ∗
)
gc(x∗, e∗)dν(e∗)dμ(x∗)

+ ε

∫ ∫
∇yJ

(
e∗ + m

(
xm̄

)
, xm̄, x

g∗
)

× gc(xm∗ , xs, x
g∗ , e∗)hm(xm)

hm̄(xm̄)
dν(e∗)dμg

(
x

g∗
)

dμm
(
xm∗

)
− ε

∫ ∫
∇yJ

(
e∗ + m

(
xm∗ , xs

)
, xm∗ , xs, x

g∗
)

× gc(xm̄, x
g∗ , e∗)hm(xm∗ )

hm̄(xm̄)
dν(e∗)dμg

(
x

g∗
)

dμm
(
xm∗

)
elementwise, then

√
n

[
1

n

n∑
i=1

∫ ∫
J
(
y,Xm

i , xḡ
)
ĝn(y, x)dν(y)dμ(x) − Bn

]
→ N(0,VJ ) (4.4)

in distribution where

Bn = 2
∫ ∫

J
(
e + m

(
xm∗ , xḡ

)
, xs∗, xg

)
Eĝn

(
xg, e,m

)
hm

(
xm∗

)
dν(e)dμ(x).

Similarly, if

ṼJ =
∫ ∫

ŨT T
J (ε, x)gc(x, ε)dν(ε)dμ(x) < ∞,

where

ŨJ (ε, x) =
∫ ∫

J
(
e∗ + m

(
xm∗ , xs

)
, x

)g(xm∗ , xḡ, e∗)
hḡ(xḡ)

dμm
(
xm∗

)
dν(e)

+
∫ ∫

J
(
ε + m

(
xm∗ , xs

)
, xm∗ , xḡ

)h(xm∗ , xḡ)

hḡ(xḡ)
dμm

(
xm∗

)
+ ε

∫ ∫
∇yJ

(
e∗ + m

(
xm̄

)
, xm̄, x

g∗
)g(xm∗ , xs, x

g∗ , e∗)h(xm,x
ḡ∗ )

hḡ(xs, x
g∗ )hm̄(xm̄)

dν(e∗)dμ(x∗)

− ε

∫ ∫ ∫
∇yJ

(
e∗ + m

(
xm∗ , xs

)
, xm∗ , xs, x

g∗
)

× gc(xm̄, x
g∗ , e∗)h(xm∗ , xs, x

g∗ )

hḡ(xs, x
g∗ )hm(xm̄)

dν(e∗)dμm
(
xm∗

)
dμg

(
x

g∗
)

+
∫ ∫

J
(
e∗ + m

(
xm∗ , xs

)
, xm∗ , xg

)gc(xm∗ , xḡ, e∗)
hḡ(xḡ)

dν(e∗)dμm
(
xm∗

)
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elementwise, then

√
n

[
1

n

n∑
i=1

∫
J (y,Xi)f̆n(y|Xi)dν(y) − B̃n

]
→ N(0, ṼJ ) (4.5)

in distribution with

B̃n = 2
∫ ∫

J
(
e + m

(
xm̄

)
, x

)Eĝn(x
g, e,m)

Eĥn(xḡ)
h(x)dν(e)dμ(x).

The proof of this lemma is reserved to Supplemental Appendix D.1 (Hooker [8]).
The bias and variance terms found in this lemma are rather complex due to their generality

and it will be helpful here to note the resulting expressions for four simplifying cases and the
consequence of these. Further, in Theorem 4.1 we will investigate

θ(y|x) = ∇θφθ (y|x)

φθ (y|x)
, (4.6)

where if φθ (y|x) has the form φ(y − m(xm̄; θ)|xḡ; θ) we have that

θ(y|x) = −∂θm(xm̄, θ) ∂yφ(y − m(xm̄; θ1)|xḡ; θ)

φ(y − m(xm̄; θ)|xḡ; θ)
+ ∂θφ(y − m(xm̄; θ)|xḡ; θ)

φ(y − m(xm̄; θ)|xḡ; θ)
,

where ∂ is used to represent a partial gradient and ∇ the total gradient. We also have that

∇yJ (y|x) = −∂θm(xm̄, θ)D2
yφ(y − m(xm̄; θ1)|xḡ; θ)

φ(y − m(xm̄; θ)|xḡ; θ)

+ D2
θyφ(y − m(xm̄; θ)|xḡ; θ)

φ(y − m(xm̄; θ)|xḡ; θ)

+ ∂θm(xm̄, θ) ∂yφ(y − m(xm̄; θ1)|xḡ; θ)

φ(y − m(xm̄; θ)|xḡ; θ)

∂yφ(y − m(xm̄; θ1)|xḡ; θ)T

φ(y − m(xm̄; θ)|xḡ; θ)

− ∂θφ(y − m(xm̄; θ)|xḡ; θ)

φ(y − m(xm̄; θ)|xḡ; θ)

∂yφ(y − m(xm̄; θ1)|xḡ; θ)T

φ(y − m(xm̄; θ)|xḡ; θ)
,

where we take ∂2
yφ to be the Hessian with respect to y and ∂2

θyφ to be the corresponding matrix
of cross derivatives. In each of these cases, we demonstrate that substituting in f (y|x) = φθ (y|x)

results in variance terms given by the Fisher information

I (θ) =
∫ ∫ ∇θφθ (e|x)∇θφθ (e|x)T

φθ (e|x)
h(x)dν(e)dμ(x)

or the equivalent based on centering by m(x, θ) above.
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Non-centered: xm̄ = φ. This corresponds to the simplest case of a conditional density estimate.
Here we have

UJ (y, x) = J (y, x),

Bn = 2
∫ ∫

J (y, x)Eĝn(x, y)dν(y)dμ(x).

We remark here that the bias Bn corresponds to the bias found in Tamura and Boos [16] for
multivariate observations. As observed there, the bias in the estimate ĝn is O(c2

nḡ + c2
ny) and

that of ĥn is O(c2
nḡ), regardless of the dimension of x

ḡ

1 and y1. However the variance is of order

n−1c
dxḡ

nḡ c
dy
ny (corresponding to assumption (B2)), meaning that for dx + dy > 3, the asymptotic

bias in the Central Limit theorem is
√

nc2
nḡc

2
ny → ∞ and will not become zero when the vari-

ance is controlled. We will further need to restrict to nc
2dxḡ

nḡ c
2dy
ny → ∞, effectively reducing the

unbiased central limit theorem to the cases where there is only one continuous variable, although
it can be either in y or x. As in Tamura and Boos [16] we also note that this bias is often small in
practice; Section 6 demonstrates that a bootstrap method can remove it. We also note that in this
case, the assumption of a compact domain for the covariates x can be relaxed.

In the case of (4.5), we have

ŨJ (y, x) = J (y, x) + 2
∫

J (y∗, x)f (y∗|x)dν(y∗),

B̃n = 2
∫ ∫

J (y, x)
Eĝn(y, x)

Eĥn(x)
h(x)dν(y)dμ(x),

where we note the additional variance due to the summation over Xi values. In this case, the
assignment (4.6) with f (y|x) = φθ (y|x) gives us that the variance is the information matrix
directly. For ŨJ , we observe that∫

J (y∗, x)f (y∗|x)dν(y∗) =
∫

∇θφθ (y|x)dν(y∗) = 0

since φθ (y|x) integrates to 1 for each x and each θ , yielding the same variance term as above.
The bias here is of the same order as above.

Homoscedastic: xḡ = φ. Here the density estimate assumes that y has a location-scale family
with y − m(x) independent of x. In this case,

UJ (ε, x) =
∫

J
(
ε + m(x), x∗

)
h(x∗)dμ(x∗)

+
∫ ∫

J
(
e∗ + m(x), x

)
gc(x∗, e∗)dμ(x∗)dν(e∗)

+ ε

∫ ∫
∇yJ

(
e∗ + m(x), x

)
gc(x∗, e∗)dμ(x∗)dν(e∗)
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− ε

∫ ∫
∇yJ

(
e∗ + m(x∗), x∗

)
gc(x∗, e∗)dν(e)dμ(x∗),

Bn = 2
∫ ∫

J
(
e + m(x), x

)
Eĝn(x, e,m)h(x)dν(e)dμ(x).

Here we observe that the bias is again of order c2
nx . However, for e and xm both univariate it is

possible to make
√

nBn → 0 while retaining consistency of ĝn(e,m) and m̂n(x
m).

We also have

ŨJ (ε, x) = UJ (ε, x), B̃n = Bn

since in this case, both estimators are equal.
When we make the replacement (4.6), we assume that the assumed residual density φ(e; θ) is

parameterized so that

φ(e; θ) = φ∗(Sθ e; θ)

with ∫
eeT φ∗(e, θ)dν(e) =

∫ ∇eφ
∗(e, θ)T T

φ∗(e; θ)
de = I and

∫
eφ∗(e; θ) = 0

for all θ where I is the dy × dy identity matrix. The second equality can always be achieved by
re-parameterizing so that φ∗(e; θ) = φ(I (θ)1/2e; θ) along with appropriate centering. The first
equality requires that the variance in φ∗(e; θ) be equal to the Fisher information for the location
family φ∗(e + μ; θ); this condition is satisfied, for example, for the multivariate normal density.
We now have that the total gradient is

∇eφ
∗(Sθ e; θ) = Sθ∂eφ

∗(Sθ e; θ)

and hence

UJ (ε, x) = ∂θmSθ

∂yφ
∗(Sθε; θ)

φ∗(Sθε; θ)
+ ∂θφ(ε; θ)

φ(ε; θ)
+ ε

(
∂θm(x, θ) − ∂θm

)
SθS

T
θ ,

where we have used the shorthand

∂θm =
∫
X

∂θm(x, θ)h(x)dμ(x)

along with the observation that∫
∂yφ(e; θ)dν(e) =

∫
∂θφ(e; θ)dν(e) =

∫
∂2
yφ(e; θ)dν(e) =

∫
∂2
yθφ(e; θ)dν(e) = 0

and some cancelation. We have retained φ instead of φ∗ in terms involving ∂θ for the sake of
notational compactness.
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We now have that∫
UJ (e, x)T T φ(e; θ)h(x)dν(e)dμ(x)

= (∂θmSθ )
T T +

∫
∂θφ(e; θ)T T

φ(e; θ)
dν(e)

− ∂θmSθ

∫
∂yφ(e; θ) ∂θφ(e; θ)T

φ(e; θ)
dν(e) −

∫
∂θφ(e; θ) ∂yφ(e; θ)T

φ(e; θ)
dν(e)ST

θ ∂θm
T

+
∫ ∫ (

∂θm(x; θ) − ∂θm
)
eSθS

T
θ SθS

T
θ εT

(
∂θm(x; θ) − ∂θm

)
φ(e; θ)h(x)dν(e)dμ(x)

by making a change of variables ε = S−1
θ e in the last line and some cancelation we have that∫

UJ (e, x)T T φ(e; θ)h(x)dν(e)dμ(x)

=
∫ ∫

∂θm(x; θ)
∂yφ(e; θ)T T

φ(e; θ)
∂θm(x; θ)T dμ(x)dν(y) +

∫
∂θφ(e; θ)T T

φ(e; θ)
dν(e)

− ∂θm

∫
∂yφ(e; θ) ∂θφ(e; θ)T

φ(e; θ)
dν(e) −

∫
∂θφ(e; θ) ∂yφ(e; θ)T

φ(e; θ)
dν(e)∂θm

T

which is readily verified to be the Fisher information for this model.
Where θ = (θ1, θ2) can be partitioned into parameters θ1 that appear only in m(x; θ1) and

parameters θ2 that appear only in φ(e; θ2) the terms on the second line above are zero and the
resulting information matrix is diagonal. In the classical case of nonlinear regression with ho-
moscedastic normal errors, we have

yi = m(xi, θ) + εi, εi ∼ N
(
0, σ 2)

the score covariance for (θ, σ ) reduces to

∫
UJ (e, x)T T φ(e; θ)h(x)dν(e)dμ(x) =

⎡⎢⎣
1

σ 2

∫
∇θm(x; θ)T T h(x)dx 0

0
1

2σ 4

⎤⎥⎦ .

Joint centering and conditioning: xs = x. Here we center and condition on the entire set of x.
In this case our results are those of the uncentered case:

UJ (e, x) = J
(
e + m(x), x

)
,

Bn = 2
∫ ∫

J
(
e + m(x), x

)
Eĝn(x, e,m)dν(e)dμ(x).
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For (4.5):

ŨJ (e, x) = UJ (e, x) + 2
∫

J
(
e∗ + m(x), x

)
f (e∗|x)dν(e∗),

B̃n = 2
∫ ∫

J
(
e + m(x), x

)Eĝn(x, e)

Eĥn(x)
h(x)dν(e)dμ(x).

In this case, UJ (x, y) and ŨJ (x, y) are exactly the same as the non-centered case, yielding the
information matrix with the replacement (4.6).

We note that while the non-centered and the jointly centered and conditioned cases always
yield the Fisher information under the substitution (4.6), the case of centering by some variables
and conditioning on others need not. Even in the homoscedastic case, efficiency is only gained
when the variance of the model for the residuals is equal to the Fisher information for its mean.
However, under these conditions, we can gain efficiency while reducing the bias in the central
limit theorem above.

Employing these lemmas, we can demonstrate a central limit theorem for minimum condi-
tional disparity estimates:

Theorem 4.1. Let {(Xn1,Xn2, Yn1, Yn2), n ≥ 1} be given as in Section 1.1, under assumptions
(D1)–(D4), (E1)–(E2), (K1)–(K6), (B1)–(B4), (P1)–(P4) and (N1)–(N4) define

θf = arg min
θ∈�

D∞(f, θ)

and

HD(θ) = ∇2
θ D∞(f, θ)

=
∫

A2

(
f (y|x)

φ(y|x, θ)

)
∇2

θ φ(y|x, θ)h(x)dμ(x)dν(y)

+
∫

A3

(
f (y|x)

φ(y|x, θ)

)∇θφ(y|x, θ)T T

φ(y|x, θ)
h(x)dμ(x)dν(y),

ID(θ) = HD(θ)V D(θ)−1HD(θ),

ĨD(θ) = HD(θ)Ṽ D(θ)−1HD(θ)

then
√

n
[
Tn(f̆n) − θf − Bn

] → N
(
0, ID(θf )−1)

and
√

n
[
T̃n(f̆n) − θf − B̃n

] → N
(
0, ĨD(θf )−1)

in distribution where Bn, B̃n, V D(θ) and Ṽ D(θ) are obtained by substituting

J (y, x) = A1

(
f (y|x)

φ(y|x, θf )

)∇θφ(y|x, θf )

φ(y|x, θf )
(4.7)
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into the expressions for Bn, B̃n, VJ and ṼJ in Lemma 4.2.

Here we note that in the case that f = φθ0 for some θ0, that θf = θ0 and further since A1(1) =
A2(1) = A3(1) = 1 we have that HD(θf ) is given by the Fisher information for φθ0 . Since we
have demonstrated above that V D(θf ) and Ṽ D(θf ) also correspond to the Fisher information in

particular cases above, when this holds ID(θf ) and I D̃(θf ) also give us the Fisher information
and hence efficiency.

Proof of Theorem 4.1. We will define T̄n, and fK(y|x) to be either the pair (Tn, E[ĝn(x, y)]/
ĥn(x)) or (T̃n, Eĝn(x, y)/Eĥn(x)). Our arguments now follow those in Tamura and Boos [16]
and Park and Basu [13].

Since T̄n(f ) satisfies

∇θDn

(
f, T̄n(f )

) = 0

we can write
√

n
(
T̄n(f̆n) − θ0

) = −[∇2
θ Dn

(
f̆n, θ

+)]−1√
n∇θDn(f̆n, θ0)

for some θ+ between T̄n(f̆n) and θf . It is therefore sufficient to demonstrate:

(i) ∇2
θ Dn(f̆n, θ

+) → HD(θf ) in probability.
(ii)

√
n[∇θDn(f̆n, θf ) − B̄n] → N(0,V D(θf )−1) in distribution

with B̄n given by Bn or B̃n as appropriate.
We begin with (i) where we observe that by assumption (N4), A2(r) and A3(r) are bounded

and the result follows from Theorems 2.3 and 3.2 and the dominated convergence theorem. In
the case of Hellinger distance

∇2
θ D(f̆n,φ|x, θ) =

∫ [∇2
θ φ(y, x, θ)√
φ(y, x, θ)

− ∇θφ(y, x, θ)T T

φ(y, x, θ)3/2

]√
f̆n(y|x)dν(y)

=
∫ √

φ(y, x, θ)∇θθ (y, x, θ)

√
f̆n(y|x)dν(y)

so that |∇2
θ Dn(f̆n,φ|x, θ+) − HD(θf )| can be expressed as∫ ∫ √

φ(y, x, θ)∇θψ(y, x, θ)
(√

f̆n(y|x) − √
f (y|x)

)
dν(y)h(x)dμ(x)

+
∫ (∇2

θ φ(y, x, θ+)√
φ(y, x, θ+)

− ∇2
θ φ(y, x, θf )√
φ(y, x, θf )

)√
f (y|x)dν(y)h(x)dμ(x)

≤ sup
x∈X

S

(∫ ∣∣f̆n(y|x) − f (y|x)
∣∣dν(y)

)1/2

+ op(1)

= op(1).



Conditional disparity methods 883

Where the calculations above follow from assumption (N3), bounding (squared) Hellinger dis-
tance by L1 distance, the uniform L1 convergence of f̆n (Theorem 2.1) and the consistency of θ

(Theorem 3.2).
Turning to (ii) where we observe that by the boundedness of C and the dominated convergence

theorem, we can write ∇θDn(f̆n,φ|x, θ) − B̄n as

∫
A2

(
f̆n(y|x)

φ(y|x, θ)

)
∇θφ(y|x, θ)dν(y) − B̄n

=
∫

A1

(
fK(y|x)

φ(y|x, θ)

)∇θφ(y|x, θ)

φ(y|x, θ)

[
f̆n(y|x) − fK(y|x)

]
dν(y)

+
∫ [

A2

(
f̆n(y|x)

φ(y|x, θ)

)
− A2

(
fK(y|x)

φ(y|x, θ)

)]
∇θφ(y|x, θ)dν(y)

−
∫

A1

(
fK(y|x)

φ(y|x, θ)

)(
f̆n(y|x)

φ(y|x, θ)
− fK(y|x)

φ(y|x, θ)

)
∇θφ(y|x, θ)dν(y)

from a minor modification Lemma 25 of Lindsay [11] we have that by the boundedness of A1

and A2 there is a constant B such that∣∣A2
(
r2) − A2

(
s2) − (

r2 − s2)A1
(
s2)∣∣ ≤ (

r2 − s2)B
substituting

r =
√

f̆n(y|x)

φ(y|x, θ)
, s =

√
fK(y|x)

φ(y|x, θ)

we obtain ∫
A2

(
f̆n(y|x)

φ(y|x, θ)

)
∇θφ(y|x, θ)dν(y) − B̄n

=
∫

A1

(
fK(y|x)

φ(y|x, θ)

)∇θφ(y|x, θ)

φ(y|x, θ)

[
f̆n(y|x) − fK(y|x)

]
dν(y)

+ B

∫ ∇θφ(y|x, θ)

φ(y|x, θ)

(√
f̆n(y|x) − √

fK(y|x)
)2 dν(y).

The result now follows from Lemmas 4.1 and 4.2.
For the special case of Hellinger distance, we observe that

∇θDn(f̆n,φ|x, θ) =
∫ ∇θφ(y, x, θ)√

φ(y, x, θ)

√
f̆n(y|x)dν(y)
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and applying the identity
√

a − √
b = (a − b)/2

√
a + (

√
b − √

a)2/2
√

a with a = fK(y|x) and
b = f̆n(y|x), we obtain

√
n

∫ ∇θφ(y, x, θ)√
φ(y, x, θ)

(√
f̆n(y|x) − √

fK(y|x)
)

dν(y)

= √
n

∫ ∇θφ(y, x, θ)

2
√

φ(y, x, θ)fK(y|x)

(
f̆n(y|x) − fK(y|x)

)
dν(y)

− √
n

∫ ∇θφ(y, x, θ)

2
√

φ(y, x, θ)fK(y|x)

(√
f̆n(y|x) − √

fK(y|x)
)2 dν(y)

= √
n

(∫ ∇θφ(y, x, θ)

2
√

φ(y, x, θ)fK(y|x)
f̆n(y|x) − Bn

)
+ op(1),

where we have applied Lemma 4.1 to the second term in the expression above, and can now
obtain the result from Lemma 4.2 and the convergence of fK(y|x) to f (y|x). �

We note here that Theorem 4.1 relies on assumption (D4) only through the consistency of
T̄n(f̆n) and Lemmas 4.1 and 4.2. In the case of T̃n(f̂

∗
n ) (uncentered densities with the integral

form of the disparity), we can remove this condition by employing Theorem E.1, and Lem-
mas E.1 and E.2 from Supplemental Appendix E (Hooker [8]).

5. Robustness properties

An important motivator for the study of disparity methods is that in addition to providing statis-
tical efficiency as demonstrated above, they are also robust to contamination from outlying ob-
servations. Here we investigate the robustness of our estimates through their breakdown points.
These have been studied for i.i.d. data in Beran [3]; Park and Basu [13]; Lindsay [11] and the
extension to conditional models follows similar lines.

In particular, we examine two models for contamination:

1. To mimic the “homoscedastic” case, we contaminate g(x1, x2, y1, y2) with outliers inde-
pendent of (x1, x2). That is, we define the contaminating density

gε,z(x1, x2, y1, y2) = (1 − ε)g(x1, x2, y1, y2) + εδz(y1, y2)h(x1, x2), (5.1)

where δz is a contamination density parameterized by z such that δz becomes “outlying” as
z → ∞. Typically, we think of δz as having small support centered around z. This results
in the conditional density

fε,z(y1, y2|x1, x2) = (1 − ε)f (y1, y2|x1, x2) + εδz(y1, y2)

which we think of as the result of smoothing a contaminated residual density. We note
that we have not changed the marginal distribution of (x1, x2) via this contamination. This
particularly applies to the case where only y1 is present and the estimate (1.14)–(1.16) is
employed.
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2. In the more general setting, we set

gε,z(x1, x2, y1, y2) = (1 − ε)g(x1, x2, y1, y2) + εδz(y1, y2)JU (x1, x2)h(x1, x2), (5.2)

where JU(x1, x2) is the indicator of (x1, x2) ∈ U scaled so that h(x1, x2)JU (x1, x2) is a
distribution. This translates to the conditional density

fε,z(y1, y2|x1, x2) =
{

f (y1, y2|x1, x2), (x1, x2) /∈ U ,
(1 − ε)f (y1, y2|x1, x2) + εδz(y1, y2), (x1, x2) ∈ U

which localizes contamination in covariate space. Note that the marginal distribution is now
scaled differently in U .

Naturally, this characterization (5.1) does not account for the effect of outliers on the Nadaraya–
Watson estimator (1.14). If these are localized in covariate space, however, we can think of (1.16)
as being approximately a mixture of the two cases above. As we will see the distinction between
these two will not affect the basic properties below. Throughout we will write δz(y1, y2|x1, x2) in
place of δz(y1, y2) or δz(y1, y2)JU (x1, x2) as appropriate. h(x1, x2) will be taken to be modified
according to (5.2) if appropriate.

We must first place some conditions on δz:

C1. δz is orthogonal in the limit to f . That is

lim
z→∞

∑
y2∈Sy

∫
δz(y1, y2|x1, x2)f (y1, y2|x1, x2)dy1 = 0 ∀(x1, x2).

C2. δz is orthogonal in the limit to φ:

lim
z→∞

∑
y2∈Sy

∫
δz(y1, y2|x1, x2)φ(y1, y2|x1, x2, θ)dy1 = 0 ∀(x1, x2).

C3. φ becomes orthogonal to f for large θ :

lim‖θ‖→∞
∑

y2∈Sy

∫
f (y1, y2|x1, x2)φ(y1, y2|x1, x2, θ) = 0 ∀(x1, x2).

C4. C(−1) and C′(∞) are both finite or the disparity is Hellinger distance.

In the following result with use T [f ] = arg minD∞(f, θ) for any f in place of our estimate θ̂ .

Theorem 5.1. Under assumptions C1–C4 under both contamination models (5.1) and (5.2) de-
fine ε∗ to satisfy(

1 − 2ε∗)C′(∞) = inf
θ∈�

D
((

1 − ε∗)f, θ
) − lim

z→∞ inf
θ∈�

D
(
ε∗δz, θ

)
(5.3)

with C′(∞) replaced by 1 in the case of Hellinger distance then for ε < ε∗

lim
z→∞T [fε,z] = T

[
(1 − ε)f

]
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and in particular the breakdown point is at least ε∗: for ε < ε∗,

sup
z

∥∥T [fε,z] − T
[
(1 − ε)f

]∥∥ < ∞.

Proof. We begin by observing that by assumption C1, for any fixed θ ,

D(fε,z, θ) =
∫ ∫

Az(x)

C

(
fε,z(y|x)

φ(y|x, θ)
− 1

)
φ(y|x, θ)h(x)dν(y)dμ(x)

+
∫ ∫

Ac
z(x)

C

(
fε,z(y|x)

φ(y|x, θ)
− 1

)
φ(y|x, θ)h(x)dν(y)dμ(x)

= DAz(fε,z, θ) + DAc
z
(fε,z, θ),

where Az(x) = {y: max(f (y|x),φ(y|x, θ)) > δz(y|x)}. We note that for any η with z sufficiently
large that

sup
x∈X

sup
y∈Az(x)

δz(y|x) < η and sup
(x)∈X

sup
y∈Ac

z(x)

f (y|x) < η

and thus for sufficiently large z,∣∣D(fε,z, θ) − (
DAz

(
(1 − ε)f, θ

) + DAc
z
(εδz, θ)

)∣∣
≤

∫ ∫
C

(
η

φ(y|x, θ)
− 1

)
φ(y|x, θ)h(x)dν(y)dμ(x)

≤ η sup
t

∣∣C′(t)
∣∣

hence

sup
θ

∣∣D(fε,z, θ) − (
DAz

(
(1 − ε)f, θ

) + DAc
z
(εδz, θ)

)∣∣ → 0. (5.4)

We also observe that for any fixed θ ,

DAc
z
(εδz, θ) =

∫ ∫
Ac

z(x)

C

(
2εδz(y)

φ(y|x, θ)
− 1

)
φ(y|x, θ)h(x)dν(y)dμ(x)

+
∫ ∫

Ac
z(x)

εδz(y|x)C′(t (y, x)
)

dν(y)dμ(x)

→ εC′(∞)

for t (y, x) between εδz(y|x)/φ(y|x, θ) and 2εδz(y|x)/φ(y|x, θ) since t (y, x) → ∞, C(·) and
C′(·) are bounded and

∫
Ac

z(x)
φ(y|x, θ)dν(y) → 0.

Similarly,

DAc
z

(
(1 − ε)f, θ

) → D
(
(1 − ε)f, θ

)
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and thus

D(fε,z, θ) → D
(
(1 − ε)f, θ

) + εC′(∞)

which is minimized at θ = T [fε,z].
It remains to rule out divergent sequences ‖θz‖ → ∞. In this case, we define Bz(x) =

{y: f (y|x) > max(εδz(y|x),φ(y|x, θz))} and note that from the arguments above

DBz

(
(1 − ε)f, θz

) → (1 − ε)C′(∞)

and

DBc
z
(εδ, θz) → D(εδ, θz)

and hence

lim
z→∞D(fε,z, θz) > lim

z→∞ inf
θ∈�

D(εδz, θ) + (1 − ε)C′(∞) > D
(
fε,z, T

[
(1 − ε)f

])
from (5.3), yielding a contradiction.

In the case of Hellinger distance, we observe∣∣D(fε,z, θ) − (
D

(
(1 − ε)f, θ

) + D(εδz, θ)
)∣∣

=
∫ ∫ √

φ(y|x, θ)
(√

fε,z(y|x) − √
(1 − ε)f (y|x) − √

εδz(y|x)
)
h(x)dν(y)dμ(x)

≤
∫ ∫ (√

fε,z(y|x) − √
(1 − ε)f (y|x) − √

εδz(y|x)
)2

h(x)dν(y)dμ(x)

=
∫ ∫ [

2(1 − ε)f (y|x) + 2εδ(y|x)
]
h(x)dν(y)dμ(x)

− 2
∫ ∫ (√

fε,z(y|x)
(√

(1 − ε)f (y|x) + √
εδz(y|x)

))
h(x)dν(y)dμ(x),

where, by dividing the range of y into Az(x) and Ac
z(x) as above, we find that on Az(x), for any

η > 0 and z sufficiently large,∣∣(1 − ε)f (y|x) − √
fε,z(y|x)

(√
(1 − ε)f (y|x) + √

εδz(y|x)
)∣∣ ≤ √

εηfε,z(y|x) + εη

which with the corresponding arguments on Ac
z(x) yields (5.4). We further observe that for

fixed θ

D(εδz, θ) = 1 + ε − √
ε

∫ √
δz(y|x)φ(y|x, θ)h(x)dν(y)dμ(x) → 1 + ε

and for ‖θz‖ → ∞,

D
(
(1 − ε)f, θz

) = 2 − ε − √
1 − ε

∫ √
f (y|x)φ(y|x, θz)h(x)dν(y)dμ(x) → 2 − ε

from which the result follows from the same arguments as above. �
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These results extend on Park and Basu [13] and Beran [3] and a number of ways and a few
remarks are warranted:

1. In Beran [3], � is assumed to be compact, allowing θz to converge at least on a subse-
quence. This removes the ‖θz‖ → ∞ case and the result can be shown for ε ∈ [0,1).

2. We have not assumed that the uncontaminated density f is a member of the parametric
class φθ . If f = φθ0 for some θ0, then we observe that by Jensen’s inequality

D
(
(1 − ε)φθ0 , θ

)
> C(−ε) = D

(
(1 − ε)φθ0 , θ0

)
hence T [(1 − ε)φθ0 ] = θ0. We can further bound D(εδz, θ) > C(ε − 1) in which case (5.3)
can be bounded by

(1 − 2ε)C′(∞) ≥ C(−ε) − C(ε − 1)

which is satisfied for ε = 1/2. We note that in the more general condition, if (1 − ε)f is
closer to the family φθ than εδz at ε = 1/2, the breakdown point will be greater than 1/2;
in the reverse situation it will be smaller.

We emphasize here that we consider robustness here in the sense of having outliers in the re-
sponse variables Yi . Outliers in the Xi result in points of high leverage, to which our methods are
not robust. Robustness in this sense would require a weighted combination of the Dn(f,φ|x, θ)

as an objective and the resulting efficiency properties of the model are not clear.

6. Bandwidth selection, bootstrapping, bias correction and
inference

The results in the previous sections indicate that minimum disparity estimates based on non-
parametric conditional density estimates are efficient in the sense that their asymptotic variance
is identical to the Fisher information when the model is correct. They are also robust to outliers.
This comes at a price, however, of a bias that is asymptotically non-negligible. Here, we propose
to correct this bias with a bootstrap based on the estimated conditional densities. This will also
provide a means of inference that does not assume the parametric model. We also provide details
of the bandwidth selection methods used in our empirical studies. The details in this section are
heuristic choices applied to the simulation studies in Section 7 and real data analysis in Section 8.

6.1. Bandwidth selection

Bandwidth selection is not particularly well studied for multivariate or conditional density esti-
mates and software implementing existing methods is not readily available. Here, we employed a
naïve cross-validation approach designed to be methodologically straightforward. In particular:

1. We chose bandwidths cnm̄ for m̂n by cross-validating squared error.
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2. We chose bandwidths cnḡ associated with xḡ in ĥn by cross-validating the non-parametric
log likelihood:

cnḡ = arg max
n∑

i=1

log ĥ−i
n

(
X

ḡ
i

)
,

where ĥ−i
n is the estimate ĥn based on the data set with X

ḡ
i removed.

3. We fixed m̂n and ĥn and their bandwidths and chose cny based on cross-validating the
non-parametric conditional log likelihood:

cny = arg max
n∑

i=1

log ĝ−i
n

(
Yi − m̂n

(
Xm̄

i

)
,X

ḡ
i

)
.

Noting that the denominator in the conditional density becomes an additive term after tak-
ing logs and does not change with cny .

Where we also used discrete values X2, these bandwidths were estimated for each value of X2

separately at each step. The resulting bandwidths were then averaged in order to improve the
stability of bandwidth selection.

6.2. Bootstrapping

We have two aims in bootstrapping: bias correction and inference. Nominally, we can base in-
ference on the asymptotic normality results established in Theorem 4.1 using the inverse of the
Fisher information as the variance for the estimated parameters. However, the coverage proba-
bilities of confidence intervals based on these results will be poor due to the non-negligible bias
in the theorem; it will also not provide correct coverage when the assumed parametric model is
incorrect.

As an alternative, we propose a bootstrap based on the estimated non-parametric condi-
tional densities. That is, to create each bootstrap sample, we simulate a new response Y ∗

i from
f̆n(·|Xi1,Xi2) for i = 1, . . . , n and use these to re-estimate parameters θ̂ . For continuous Yi1,
simulating from this density can be achieved by choosing Yj1 with weights K([Xi − Xj ]/cnḡ)

and then simulating from the density c
−dy
ny K((y −Yi)/cny). For discrete Yi2, simulating from the

non-parametric multinomial model is straightforward.
In the simulation experiments below, we examine a number of different choices of xm̄ and

xḡ and each is bootstrapped separately. For maximum likelihood and other robust estimators,
we employ a residual bootstrap for continuous responses and a parametric bootstrap for discrete
responses.

We also examine a hybrid method proposed in Hooker and Vidyashankar [9] in which we re-
place m̂n with a parametric regression model m(x, θ). We then minimize the disparity between
the estimated density of residuals (which varies with parameters) and a parametric residual den-
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sity. Specifically, we set

Ei(θ) = Yi − m(Xi, θ),

f̃n(e, θ) = 1

ncn

n∑
i=1

K

(
e − Ei(θ)

cn

)
,

θ̃n = arg min
θ∈�

∫
C

(
f̃n(e, θ)

φ(e)
− 1

)
φ(e)de.

This formulation avoids conditional density estimation (and hence asymptotic bias) at the ex-
pense of a parameter-dependent kernel density estimate for the residuals. In this formulation
φ(e) is a reference residual density in which a scale parameter has been robustly estimated. In
the simulations below, the scale parameter is re-estimated via a disparity method with the remain-
ing θ held fixed. For this case, we employ a parametric bootstrap at the estimated parameters, but
sample from the estimated non-parametric residual density. Throughout, we keep the estimated
bandwidths fixed.

6.3. Inference

Given a bootstrap sample θ∗
b , b = 1, . . . ,B along with our original estimate θ̂ , we conduct infer-

ence along well established lines:

• Obtain a bias corrected estimate

θ̂ c = 2θ̂ − 1

B

B∑
b=1

θ∗
b .

• Estimate a bootstrap standard error, ŝe(θ), from the sample standard deviation of θb.
• Construct confidence intervals [θ̂ c − 1.96ŝe(θ), θ̂ c + 1.96ŝe(θ)].

The performance of these confidence intervals will be examined in the simulation studies below,
but we make a couple of remarks on this:

1. Our bootstrap scheme amounts to simulation under the model f̆n. Given the convergence of
f̆n to f in Theorem 2.1 and the continuity of ID(θ) and ĨD(θ) in f , the bootstrap standard
error can be readily shown to be consistent for the sampling standard error of θ̂ . Similarly,
since density estimates with bandwidths cny and 2cny converge, the bias correction incurs
no additional variance.

2. The bias correction for the proposed bootstrap approximates considering the difference be-
tween estimating f̆n with bandwidths cny and 2cny ; this is exactly true when employing a
Gaussian kernel. The bias terms in Lemma 4.2 are readily shown to be O(c2

ny) which would

suggest a corrected estimate of the form (4θ̂ − 1/B
∑

θ∗
b )/3 instead of the linear correc-

tion proposed above. However the estimate is also biassed due to the nonlinear dependence
of θ̂ on f̆n regardless of the value of cny . This bias is asymptotically negligible, but we
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have found the proposed correction to provide better performance at realistic sample sizes.
A combined bias correction associated with explicitly obtaining an estimate at 2cny to cor-
rect for smoothing bias with a bootstrap estimate to correct for intrinsic bias may improve
performance further, but this is beyond the scope of this paper.

7. Simulation studies

Here we report simulation experiments designed to evaluate the methods analyzed above. Our
examples are all based on conditionally-specified regression models. In all of these, we generate
a three-dimensional set of covariates in the following manner:

1. Generate n × 3 matrix X from a Uniform random variable on [−1,1].
2. Post-multiply this matrix by a

√
8/3 times a matrix with unit diagonal and 0.25 in all off-

diagonal entries to create correlation.
3. Replace the third column of X with the indicator of the corresponding entry being greater

than zero.

This gives us two continuous valued covariates and a categorical covariate all of which are cor-
related. The values of these covariates were regenerated in each simulation.

Using these covariates, we simulated data from two models:

• A linear regression with Gaussian errors and all coefficients equal to 1:

Yi = 1 +
3∑

j=1

Xij + εi (7.1)

with εi ∼ N(0,1), This yields a signal to noise ratio of 1.62. In this model, we estimate the
intercept and all regression parameters as well as the noise variance, yielding true values of
(β0, β1, β2, β3, σ ) = (1,1,1,1,1). We optimize over logσ to avoid boundary problems and
have reported estimate and standard errors for logσ below.

• A logistic regression with zero intercept and all other coefficients 0.5:

P(Xi = 1|Xi) = e
∑3

j=1 0.5Xij

1 + e
∑3

j=1 0.5Xij

(7.2)

in order to evaluate a categorical response model. Here only the four regression parameters
were estimated.

In each model we also examined the addition of outliers. In (7.1), we changed either 1, 3, 5 or 10
of the εi to take values 3, 5, 10 and 15. These covariate values Xi corresponding the modified εi

where held constant within each simulation study, but were selected in two different ways:

1. At random from among all the data.
2. Based on the points with Xi1 closest to −0.5.

These mimic the contamination scenarios above.
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In binary response data in (7.2), we require a model in which an “outlier” distribution can
become orthogonal to the model distribution. For binary data this can occur only if the parametric
model has P(Y = 1|X) ≈ 0 or P(Y = 1|X) ≈ 1 which for logistic regression can occur only at
values of X that have high leverage; a robustness problem not considered in this paper. Instead,
we examine a logistic binomial model based on successes out of 8 trials. For this, we have
employed an exact distribution which is contaminated with α% of a distribution in which points
take the value 8, either uniformly as in scenario (5.1) or at the single Xi with Xi1 closest to −0.5
as in scenario (5.2). In this case, reasonable estimates of conditional distributions would require
very large sample sizes and we have based all our estimates on exact distributions.

7.1. Linear regression

For the linear regression simulations, we employed 31 points generated as above. We consid-
ered three types of density estimates corresponding to no centering (labeled HD and NED for
Hellinger distance and negative exponential disparity), jointly centering and conditioning on all
variables (HD.c and NED.c) and the homoscedastic model: centering by all variables but as-
suming a constant residual density (HD.h and NED.h). We also included the marginal method
of Hooker and Vidyashankar [9] which involves only fitting a kernel density estimate to the
residuals of a linear regression. Bandwidths where chosen by cross-validated log likelihood for
uncontaminated data. We conducted all estimates by minimizing Dn(f̆ , θ) with D(f̆ ,φ|Xi, θ)

approximated a Monte Carlo integral based on 101 points drawn from f̆ (· · · |Xi).
We also included a standard linear regression (Lik) and Gervini and Yohai’s estimates (Gervini

and Yohai [6]) based on a Huberized estimate with an adaptively-chosen threshold (G–Y). Table 1

Table 1. Simulation results for a linear regression simulation. Lik are the maximum likelihood esti-
mates, G-Y correspond to Gervini and Yohai’s adaptive truncation estimator, HD is minimum Hellinger
distance, NED is minimum negative exponential disparity based on uncentered kernel density estimates,
HD.c and NED.c are centered by a Nadaraya–Watson estimator, HD.h and NED.h are based on ho-
moscedastic conditional density estimates and HD.m and NED.m are the marginal estimators in Hooker
and Vidyashankar [9]. We report the mean value over 5000 simulations as well as the standard deviation
(sd) between simulations

logσ sd β0 sd β1 sd β2 sd β3 sd Time

Lik −0.10 0.14 1.00 0.28 1.00 0.40 0.99 0.40 0.99 0.43 0.0049
G–Y −0.10 0.19 1.00 0.30 1.00 0.43 0.99 0.42 0.99 0.46 0.0144
HD.c 0.13 0.44 0.97 0.34 0.94 0.60 0.94 0.50 1.05 0.60 0.0588
NED.c 0.12 0.23 0.98 0.30 0.95 0.40 0.94 0.40 1.04 0.45 0.0751
HD 0.26 0.37 0.94 0.40 0.87 0.39 0.86 0.51 1.11 0.58 0.0604
NED 0.25 0.16 0.94 0.30 0.87 0.35 0.87 0.36 1.11 0.45 0.0776
HD.h −0.18 0.32 0.95 0.50 0.88 0.34 0.88 0.34 1.10 0.75 0.0616
NED.h −0.17 0.21 0.95 0.34 0.88 0.34 0.88 0.34 1.09 0.50 0.0764
HD.m 0.05 0.17 1.00 0.29 1.00 0.43 1.00 0.42 1.00 0.45 0.0328
NED.m 0.06 0.16 1.00 0.30 1.00 0.44 1.00 0.44 1.00 0.47 0.0292
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reports the means and standard deviations of the parameters in this model calculated from 5000
simulations before bootstrap methods are applied. We present computation times here as well;
bootstrapping results in multiplying these times by 100 for all estimators.

As can be observed from these results, the use of multivariate density estimation creates signifi-
cant biases, particularly in β2 and β3. This is mitigated in the centered density estimates, although
not for the homoscedastic estimators. We speculate that this is because the conditional density
estimate can correct for biasses from the Nadaraya–Watson estimator which the homoscedastic
restriction does not allow for. The marginal methods perform considerably better and achieve
similar performance to those of Gervini and Yohai [6]. We also observe that Hellinger distance
estimators have large variances in some cases, mostly due to occasional outlying parameter esti-
mates. By contrast, negative exponential disparity estimators were much more stable.

In addition to the simulations above, for each simulated data set we performed 100 bootstrap
replicates as described in Section 6 and used this to both provide a bias correction and confidence
intervals. The resulting point estimates and coverage probabilities are reported in Table 2. Here
we see that much of the bias has been removed for all estimators except for the homoscedastic
models. Coverage probabilities are at least as close to nominal values as minimum squared error
estimators.

To examine results when the data are contaminated, we plot the mean estimate for β0 un-
der the contamination model 1 in Figure 1 as the position of the contamination increases; this
mimics the bias plots of Lindsay [11], Figures 1 and 2. We have reported plots at each level
of the number of contaminated observations. Here, we observe that the least squares estimator
is strongly affected although most robust estimators are not. At 10 (30%) contaminated obser-
vations, the Gervini–Yohai estimator exhibits greater distortion of all except the homoscedastic
and maximum likelihood estimators, although it remains robust and the tendency to ignore large
outliers is evident. We speculate that the breakdown in the homoscedastic methods is because
the underlying Nadaraya–Watson estimator is locally influenced strongly by these values and the

Table 2. Statistical properties (estimate, standard deviation (sd) and coverage (cov)) of inference following
bootstrap bias correction and using bootstrap confidence intervals. Labels for estimators are the same as in
Table 1

βc
0 sd cov βc

1 sd cov βc
2 sd cov βc

3 sd cov

Lik 1.00 0.28 0.92 1.00 0.4 0.92 1.00 0.4 0.91 0.99 0.41 0.92
Hub 1.00 0.29 0.91 1.00 0.41 0.91 1.00 0.41 0.91 0.99 0.43 0.91
G–Y 1.01 0.31 0.91 1.00 0.43 0.92 1.00 0.43 0.91 0.99 0.45 0.92
HD.c 1.00 0.31 0.95 0.99 0.43 0.93 0.99 0.43 0.93 1.00 0.46 0.95
NED.c 1.00 0.31 0.96 0.99 0.42 0.94 0.99 0.43 0.94 1.00 0.46 0.95
HD 0.99 0.42 0.98 0.98 0.59 0.95 0.97 0.48 0.94 1.02 0.62 0.98
NED 0.99 0.3 0.98 0.97 0.4 0.96 0.97 0.4 0.96 1.02 0.44 0.98
HD.h 0.99 0.58 0.81 0.97 0.38 0.86 0.98 0.39 0.84 1.02 0.76 0.81
NED.h 1.00 0.36 0.86 0.97 0.39 0.86 0.98 0.4 0.86 1.01 0.52 0.87
HD.m 1.00 0.31 0.9 0.99 0.44 0.95 1.00 0.46 0.95 1.00 0.47 0.95
NED.m 1.00 0.32 0.9 0.99 0.46 0.94 1.00 0.47 0.94 1.00 0.48 0.95
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Figure 1. Mean estimates β̂0 with different levels of contamination uniformly distributed over covariate
values. Each line corresponds do a different estimation method as given in the key.

homoscedastic restriction does not allow it to compensate for this. Estimates for the variance σ

were similarly affected but the other regression parameters were not influenced by outliers since
they were uniformly distributed over the range of covariates. A complete set of graphs is given
in Figure 1 in Supplemental Appendix A (Hooker [8]).

By contrast, under contamination model 5.2, all least-squares parameter estimates were af-
fected by outliers. We have plotted the average estimates for each parameter for 10 outliers in
Figure 2 using the same key as in Figure 1. Here we observe that most estimators were robust,
although the Gervini–Yohai as well as the homoscedastic models were affected. Investigating
this more closely, at this level of contamination, sampling distribution the Gervini–Yohai estima-
tor appears multi-modal which we speculate is associated with the adaptive choice of the Huber
threshold failing to reject some of the outliers. It should be noted that this behavior was not ev-
ident at smaller contamination percentages. Examining Figure 2 in Supplemental Appendix A
(Hooker [8]), we observe that this breakdown in robustness occurs most dramatically only at 10
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Figure 2. Mean parameter estimates with 10 outliers with values x1 close to −0.5.

outliers, although the homoscedastic estimators (but not Gervini–Yohai) show some evidence for
this at 5 outliers as well.

7.2. Logistic regression

For logistic regression there is no option to center the response before producing a conditional
density estimate. We therefore examine only the logistic regression (Lik), Hellinger distance
(HD) and negative exponential disparity (NED) estimators. Because logistic regression estimates
are less stable than linear regression, we used 121 points generated as described above. We also
note that Monte Carlo estimates are not required to evaluate the disparity in this case since it is
defined as a sum over a discrete set of points. Simulation results are reported in Table 3.

There is again a noticeable bias in these estimates and we employed the bootstrapping meth-
ods outlined above both to remove the bias in the estimates and to estimate confidence intervals.
For each data set, we simulated 100 bootstrap samples and used these to estimate the bias and

Table 3. Simulation results for logistic regression using maximum likelihood (LR), Hellinger distance (HD)
and negative exponential disparity (NED) estimates

β0 sd β1 sd β2 sd β3 sd Time

LR 0.00 0.29 0.53 0.42 0.52 0.42 0.52 0.44 0.01
HD −0.01 0.33 0.57 0.44 0.56 0.44 0.58 0.49 0.01
NED −0.01 0.29 0.51 0.39 0.5 0.39 0.54 0.44 0.01
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Table 4. Simulation results for logistic regression following a bootstrap to correct for bias and construct
confidence intervals using maximum likelihood LR, Hellinger distance HD and negative exponential dis-
parity (NED) estimates with mean estimate, standard deviation across simulations (sd) and coverage of
bootstrap confidence intervals (cov)

βc
0 sd cov βc

1 sd cov βc
2 sd cov βc

3 sd cov

LR −0.01 0.28 0.97 0.51 0.4 0.97 0.49 0.4 0.97 0.5 0.42 0.97
HD 0.00 0.31 0.96 0.55 0.43 0.95 0.53 0.44 0.94 0.52 0.46 0.96
NED −0.01 0.28 0.95 0.5 0.4 0.94 0.49 0.4 0.94 0.5 0.42 0.95

standard deviation of the estimators. In addition to removing bias, we examined the coverage
of a parametric bootstrap interval based on the bias corrected estimate plus or minus 1.96 the
bootstrap standard deviation. The results of these experiments are reported in Table 4 where we
observe that the bias has effectively been removed, the standard deviations between the corrected
estimators are very similar between the disparity methods and standard logistic regression esti-
mates and we retain appropriate coverage levels.

The robustness of these estimates for binomial data from 8 trials at each Xi is examined
in Figure 3. Here we observe that adding outliers at a single point generate classical robust
behavior – the maximum likelihood estimate (calculating by minimizing the Kullback–Leibler
divergence) is highly non-robust while Hellinger distance and negative exponential disparity
are largely unchanged. When outliers are added uniformly, we observe more distortion of our
estimates, particularly NED. This is both due to the large over-all amount of contamination (at
all points rather than just one) and because we cannot achieve exact orthogonality between the
generating and contaminating distributions. At α = 0.5, there is, as expected, a significant change
and both NED and HD exhibit increased distortion.

8. Real data

We demonstrate these methods with the analysis of the phosphorus content data in [14] in which
plant phosphorus in corn is related to organic and non-organic phosphorus in the soil in which it
is grown. In these data there is a distinct outlier that significantly affects least squares estimates.
However robust procedures all produced estimates of approximately the same magnitude. We
also conducted a bootstrap analysis, as described in Section 7 based on 100 bootstrap samples.
The results of these are reported in Table 5.

9. Discussion

Conditionally specified models make up a large subset of the models most commonly used in
applied statistics, including regression, generalized linear models and tabular data. In this paper,
we investigate the use of disparity methods to perform parameter estimation across a range of
such models. Our treatment is general in covering multivariate response and covariate variables
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Figure 3. Mean estimates of parameters in a logistic regression as the outlier percentage increases. Top row: outliers occur uniformly over X.
Bottom: outliers at a single value of X.
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Table 5. Results on phosphorous data. Estimates with superscripts (βc) incorporate a bootstrap bias cor-
rection, standard deviations are also estimated via a bootstrap

logσ logσc sd β0 βc
0 sd β1 βc

1 sd β2 βc
2 sd

LR 20.68 17.01 7.89 56.25 35.98 19.52 1.79 1.8 0.65 0.09 0.08 0.5
Hub 2.14 2.14 0.57 59.08 59.99 10.87 1.36 1.4 0.39 0.09 0.06 0.28
G–Y 2.51 2.8 0.38 66.47 63.02 8.86 1.29 1.28 0.33 −0.11 −0.05 0.23
HD.c 2.26 2.23 0.12 54.27 53.84 5.39 1.3 1.22 0.33 0.24 0.25 0.12
NED.c 2.16 2.14 0.12 53.19 53.08 6.78 1.23 1.15 0.32 0.27 0.27 0.15
HD 2.44 2.39 0.13 61.39 59.57 10.95 1.01 1.12 0.27 0.09 0.1 0.21
NED 2.4 2.4 0.16 56.78 52.45 14.08 1.03 1.15 0.3 0.19 0.25 0.26
HD.h 2.42 2.45 0.2 50.8 44.02 10.33 1.47 1.53 0.32 0.2 0.22 0.25
NED.h 2.33 2.32 0.18 52.77 49.08 10.29 1.35 1.31 0.3 0.21 0.24 0.26
HD.m 2.35 2.17 0.33 74.71 70.99 13.69 1.58 1.08 1.09 −0.42 −0.22 0.45
NED.m 2.36 2.28 0.32 60.33 57.2 11.46 1.21 1.08 0.71 0.1 0.22 0.35

and allowing for both discrete and continuous elements of each and almost any probabilistic rela-
tionship between them. We have also investigated the use of centering continuous responses by a
Nadaraya–Watson estimator based on a subset of the covariates and presented a complete theory
covering all ways to divide covariates into centering and conditioning variables. Along the way
we have established uniform L1 convergence results for a class of non-parametric conditional
density estimates as well as the consistency and a central limit theorem for disparity-based mod-
els. These theoretical results highlight the consequences of different choices of density estimate
and disparity when the model is incorrectly specified and demonstrate the limitations of centering
densities within this methodology unless the same covariates are used within both the centering
estimate and to condition. We have also established a bootstrap bias correction and inference
methodology that has sound theoretical backing.

There are many direction for future study, starting from these methods. As is the case for
disparity estimators for multivariate data, the use of conditional kernel densities results in a bias
in parameter estimates that cannot be ignored in our central limit theorem, except in special
cases. Empirically, our bootstrap methods reduce this bias, but more sophisticated alternatives
are possible. We have not investigated using alternatives to Nadaraya–Watson estimators, but
conjecture that doing so may also reduce bias. In a linear regression model, for example, the use
of a local linear smoother should completely remove the bias from m̂n when the model is true.
More generally, centering based on a localized version of the assumed parametric model may be
helpful. An alternative method of removing the bias follows the marginal approaches explored
in Hooker and Vidyashankar [9]. In this approach, the non-parametric density estimate becomes
dependent on a parametric transformation of the data that is chosen in such a way that at the
true parameters the transformed data have independent dimensions. This would allow the use of
univariate density estimates, thereby removing the asymptotic bias.

In our examples, we have employed cross-validated log likelihood to choose bandwidths and
the robustness of this choice has not been investigated. We speculate that a form of weighted
cross-validation may produce more robust bandwidth selection. We have also focussed solely on
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kernel-based methods; little is known about the use of alternative density estimates in dispar-
ity measures, although see Wu and Hooker [17] for an exploration of non-parametric Bayesian
methods combined with disparities.

Empirically, our methods perform very well in both the precision and robustness of our esti-
mators. Within our experiments, NED generally improved upon HD methods; we speculate this
is due to Hellinger distance’s sensitivity to inliers (see Lindsay [11]) and hence added variability
if the non-parametric estimate is sometimes multi-modal. Moreover, in distinction to alternatives,
our methods provide a generic means of obtaining both robustness and efficiency across a very
wide range of applicable regression models.

The need for kernel density estimates for responses and covariates at each level of the com-
bined categorical variables limits the set of situations in which our estimates are feasible at realis-
tic sample sizes. They are nonetheless relevant for non-trivial practical problems in data analysis;
the marginal approaches in Hooker and Vidyashankar [9] also represent a means of approaching
higher-dimensional covariate spaces. These results open the way for the application of minimum
disparity estimates to a wide range of real-world data analysis problems.

Supplementary Material

Proofs and simulations for consistency, efficiency and robustness of conditional disparity
methods (DOI: 10.3150/14-BEJ678SUPP; .pdf). We provide additional supporting simulations
of the efficiency and robustness of the conditional disparity methods along with proofs of the
results stated above.
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