
Bernoulli 22(1), 2016, 530–562
DOI: 10.3150/14-BEJ667

Approximation of backward stochastic
differential equations using Malliavin
weights and least-squares regression
EMMANUEL GOBET* and PLAMEN TURKEDJIEV**

Centre de Mathématiques Appliquées, Ecole Polytechnique and CNRS, Route de Saclay, 91128 Palaiseau
cedex, France. E-mail: *emmanuel.gobet@polytechnique.edu; **turkedjiev@cmap.polytechnique.fr

We design a numerical scheme for solving a Dynamic Programming equation with Malliavin weights aris-
ing from the time-discretization of backward stochastic differential equations with the integration by parts-
representation of the Z-component by (Ann. Appl. Probab. 12 (2002) 1390–1418). When the sequence of
conditional expectations is computed using empirical least-squares regressions, we establish, under general
conditions, tight error bounds as the time-average of local regression errors only (up to logarithmic factors).
We compute the algorithm complexity by a suitable optimization of the parameters, depending on the di-
mension and the smoothness of value functions, in the limit as the number of grid times goes to infinity.
The estimates take into account the regularity of the terminal function.

Keywords: backward stochastic differential equations; dynamic programming equation; empirical
regressions; Malliavin calculus; non-asymptotic error estimates

1. Introduction

1.1. Setting

Let T > 0 be a fixed terminal time and let (�,F , (Ft )0≤t≤T ,P) be a filtered probability space
whose filtration is augmented with the P-null sets. Let π = {0 =: t0 < t1 < · · · < tN−1 < tN :=
T } be a given time-grid on [0, T ] and �i := ti+1 − ti . Additionally, for a fixed q ∈N\ {0}, we are
given a set {H(i)

j : 0 ≤ i < j ≤ N} of (Rq)�-valued random variables in L2(FT ,P) (i.e., square

integrable and FT -measurable) that we call Malliavin weights. Here � stands for the transpose.
In this paper, we introduce the Malliavin Weights Least Squares algorithm, abbreviated MWLS,

to approximate discrete time stochastic processes (Y,Z) defined by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Yi = Ei

[
ξ +

N−1∑
j=i

fj (Yj+1,Zj )�j

]
, 0 ≤ i ≤ N ,

Zi = Ei

[
ξH

(i)
N +

N−1∑
j=i+1

fj (Yj+1,Zj )H
(i)
j �j

]
, 0 ≤ i ≤ N − 1,

(1.1)
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where Ei[·] := E[· | Fti ], ξ is a R-valued random variable in L2(FT ,P), and (ω, y, z) �→
fj (ω,y, z) is Ftj ⊗ B(R) ⊗ B((Rq)�)-measurable. This system is solved backward in time in
the order YN,ZN−1, YN−1, . . . and it takes the form of a dynamic programming equation with
Malliavin weights. We call it the Malliavin Weights Dynamic Programming equation (MWDP
for short).

The main application of (1.1) is to approximate continuous-time, decoupled Forward–
Backward SDEs (FBSDEs) of the form

Yt = ξ +
∫ T

t

f (s,Xs,Ys,Zs)ds −
∫ T

t

Zs dWs, (1.2)

where (Ws)s≥0 is a Brownian motion in R
q , (Xs)s≥0 is a diffusion in R

d and ξ is of the form
�(XT ). Indeed, the MWDP (1.1) was inspired by [18], Theorem 4.2, which states that there is a
version of the continuous-time process (Zt )0≤t<T given by

Zt = Et

[
ξH

(t)
T +

∫ T

t

f (s,Xs,Ys,Zs)H
(t)
s ds

]
, (1.3)

where the processes (H
(t)
s )0≤t<s≤T are Malliavin weights defined by

H(t)
s = 1

s − t

(∫ s

t

(
σ−1(r,Xr)DtXr

)� dWr

)�
, 0 ≤ t < s ≤ T , (1.4)

for (DtXr)t being the Malliavin derivative of Xr and σ(·) is the diffusion coefficient of X.
The representation (1.3) is obtained via a Malliavin calculus integration by parts formula, see
[19] for a general account on the subject. A discretization procedure to approximate the FBSDE
(1.2)–(1.3) with (1.1), including explicit definitions of the random variables H

(i)
j based on (1.4),

is given in [21,22], where the author also computes the discretization error in terms of N . In hon-
our of the connection between (1.1) and (1.2)–(1.3), we call the random variables H

(i)
j Malliavin

weights, ξ the terminal condition, and (i,ω, y, z) �→ fi(y, z) the driver. We say that the pair
(Y,Z) satisfying (1.1) solves a MWDP with terminal condition ξ and driver fi(y, z).

1.2. Contributions

In this paper, we are not concerned with the discretization procedure, but rather with the analysis
of the MWDP equation (1.1) itself and its numerical resolution via the MWLS algorithm, in
which one uses empirical least-squares regressions (approximations on finite basis of functions
using simulations) to compute conditional expectations. Since the system (1.1) may be relevant
to problems beyond the FBSDE system (1.2)–(1.3), we allow the framework and assumptions to
accomodate as much generality as possible. However, MWLS is, to the best of our knowledge,
the first direct implementation of formula (1.3) in a fully implementable numerical scheme. For
other applications of Malliavin calculus in numerical simulations, with different perspectives and
results to ours, see, for instance, [1,3,4,8,12,16,17].
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We adapt the recent theoretical analysis of the Least Squares Multi-step forward Dynamical
Programming algorithm (LSMDP) of [13] for discrete BSDEs (without Malliavin weights) to
the setting of MWDP. As in the aforementioned reference, we consider a locally Lipschitz driver
fi(y, z) that is locally bounded at (y, z) = (0,0) – see Section 1.4. This allows the algorithm of
the current paper to be applied for the approximation of some quadratic BSDEs and for some
proxy/variance reduction methods. For more details on these applications, see [13], Section 2.2.
Moreover, we make use of analogous stability results and conditioning arguments in the proof
of the main result, Theorem 3.10, as in the proof of [13], Theorem 4.11. However, the Malliavin
weights lead to significantly differences in the main theorem and stability results, both in the
technical elements of the proofs and the results. We develop seemingly novel Gronwall type
inequalities to handle the technical differences; these results are outlined in Section 2.1 and
proved in Appendix A.1. Furthermore, the stability results are more powerful and the complexity
of the MWLS is better than the LSMDP, as will be discussed in what follows.

We would like to mention that the class of quadratic problems we can treat with these assump-
tions is quite different to the recent [5]. Here we are treating the non-degenerate setting where
the terminal condition may be Hölder continuous, whereas the other reference allows degeneracy
at the expense of requiring locally Lipschitz terminal conditions.

We prove stability results on the MWDP in Section 2. Much effort is made to keep the con-
stants explicit. These results are instrumental throughout the paper. The stability estimates on
Z are at the individual time points (coherently with the representation theorem of [18]) rather
than the time-averaged estimates of [13], Proposition 3.2. This allows for finer and more precise
computations. The time-dependency in our estimates also takes better into account the regularity
of the terminal condition, similarly to the continuous-time case [7].

Section 3 is the core of the paper: it is dedicated to the MWLS algorithm in the Markovian
context Yi = yi(Xi) and Zi = zi(Xi) for some Markov chain Xi in R

d and unknown functions
(yi(·), zi(·)). In MWLS, the conditional expectations in (1.1) are replaced by Monte Carlo least-
squares regressions. For each point of the time-grid, we use a cloud of independent paths of the
Markov chain X and the Malliavin weights H , and some approximation spaces for represent-
ing the value functions (yi(·), zi(·)). The algorithm is detailed in Section 3.2, and a full error
analysis in terms of the number of simulations and the approximation spaces is performed in
Sections 3.3 and 3.4. The final error estimates (Theorem 3.10) are similar to [13], Theorem 4.11,
in that they are the time-averaged local regression errors of the discrete BSDE, but the results
are in a stronger norm and the time-dependency is better. The constants are completely explicit.
Although the norms are stronger than in [13], the estimates do not deteriorate; instead, they are
significantly improved. This is intrinsically due to the MWDP representation, which avoids the
usual 1/�i -factor in front of all controls on Z. This improvement can be tracked by inspecting
the a.s. bounds (compare (2.10) and [13], equation (14)) and the statistical error bounds (compare
the KZ,k

Mk
-terms in (3.10) of Theorem 3.10 and the KZ,k

�kMk
-terms of [13], Theorem 4.11). These error

estimates are optimal with respect to the convergence rates (up to logarithmic factors) under high
generality regarding the distribution of the stochastic model for X and H , even if the constants
may be conservative. This is because the local regression errors are optimal under model-free
estimates (Proposition 3.9).

With the error estimates of Theorem 3.10 in hand, we perform a complexity analysis in Sec-
tion 3.5. We propose a choice of basis functions and use it to calibrate the number of simulations
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in order to achieve a specified error level. This then allows us to compute the complexity of the
algorithm for that error level. The methodology for doing this is analogous to [13], Section 4.4,
in that we use the same basis functions – which also enable us to study the benefit of smooth-
ness properties of the underlying Markov functions (yi(·), zi(·)) – and also in that we set the
ensure the global error level by calibrating the local regression errors. However, the conclusion
of this section is that MWLS yields better performance in terms of complexity than LSMDP.
The main reason for this is the improved time-dependancy of the error estimates, which is a sys-
temic improvement that allows one to make generate fewer simulations to obtain certain error
levels. Unfortunately, the complexity reduction does not reduce the dependence on the dimen-
sion compared to the LSMDP. The curse of dimensionality still appears, and the rates depend
on the dimension of the Markov chain X (i.e., d). Nevertheless, the reduction of complexity is
substantial and, since one is able to make fewer simulations to obtain the same error level, will
help alleviate the pressure on memory resources that is typical with least-squares Monte Carlo
algorithms.

This paper is theoretically oriented, and is aimed at paving the way for new such numerical
approaches based on Malliavin calculus. Future works will be devoted to a deeper investigation
about the numerical performance of the MWLS algorithm compared to other known numerical
schemes.

1.3. Notation used throughout the paper

• |x| stands for the Euclidean norm of the vector x, � denotes the transpose operator.
• |U |p := (E[|U |p])1/p stands for the Lp(P)-norm (p ≥ 1) of a random variable U . The

Ftk -conditional version is denoted by |U |p,k := (Ek[|U |p])1/p . To indicate that U is addi-
tionally measurable w.r.t. the σ -algebra Q, we may write U ∈ Lp(Q,P).

• For a multi-dimensional process U = (Ui)0≤i≤N , its lth component is denoted by Ul =
(Ul,i)0≤i≤N .

• For any finite L > 0 and x = (x1, . . . , xn) ∈ R
n, define the truncation function TL(x) :=

(−L ∨ x1 ∧ L, . . . ,−L ∨ xn ∧ L).
• For finite x > 0, log(x) is the natural logarithm of x.

1.4. Assumptions

First set of hypotheses

The following assumptions hold throughout the entirety of the paper. Let Rπ > 0 be a fixed
parameter: this constant determines which time-grid can be used. The larger Rπ , the larger the
class of admissible time-grids. All subsequent error estimates depend on Rπ .

(Aξ ) ξ is in L2(FT ,P).
(AF) (i) (ω, y, z) �→ fi(y, z) is Fti ⊗ B(R) ⊗ B((Rq)�)-measurable for every i < N , and

there exist deterministic parameters θL ∈ (0,1] and Lf ∈ [0,+∞) such that

∣∣fi(y, z) − fi

(
y′, z′)∣∣ ≤ Lf

(T − ti )(1−θL)/2

(∣∣y − y′∣∣+ ∣∣z − z′∣∣),
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for any (y, y′, z, z′) ∈R×R× (Rq)� × (Rq)�.
(ii) There exist deterministic parameters θc ∈ (0,1] and Cf ∈ [0,+∞) such that

∣∣fi(0,0)
∣∣ ≤ Cf

(T − ti )1−θc
, ∀0 ≤ i < N.

(iii) The time-grid π := {0 = t0 < · · · < tN = T } satisfies

max
0≤i≤N−2

�i+1

�i

≤ Rπ.

(AH) For all 0 ≤ i < j ≤ N , the Malliavin weights satisfy

E
[
H

(i)
j |Fti

] = 0,
(
E
[∣∣H(i)

j

∣∣2 | Fti

])1/2 ≤ CM

(tj − ti )1/2

for a finite constant CM ≥ 0.

Comments. We remark that assumptions (Aξ ) and (AF)(i)–(ii) are the same as their equivalents
in [13], Section 2. The usual case of “Lipschitz” BSDE is covered by θL = θc = 1. As explained
in [13], the case of locally Lipschitz driver (θL < 1 and/or θc < 1) is interesting because it allows
a large variety of applications, such as solving BSDEs using proxy methods or variance reduction
methods, and solving quadratic BSDEs. We refer the reader to [13], Section 2.2, for details.

Assumption (AF)(iii) is much simpler compared to [13]. If Rπ ≥ 1, (AF)(iii) is satisfied by
any time grid with non-increasing time-step, such as the grids of [9,11,20]. This may be valuable
for future work on time-grid optimization.

Assumption (AH) is specific to the dynamic programming equation with Malliavin weights.
It is satisfied for the weights derived in [18], and this can remain true after discretization (see
[21] or [12]). It is also satisfied if X takes the form Xt = g(t,Wt ) (like multi-dimensional
geometric Brownian motion), by a simple change of variables one can use the Malliavin weights

H
(t)
s = (Ws−Wt )

�
s−t

(note the process X may be degenerate).

Second set of hypotheses: Markovian assumptions

The following assumptions will mostly be used in Section 3. (AX), (A′
F), and (A′

H) give us a
Markov representation for solutions of the discrete BSDEs (see equation (3.1) later). (A′

ξ ) is used
for obtaining (model free) estimates on regression errors. We also include additional optional
assumptions, (A′′

ξ ), on the terminal condition to obtain tighter estimates on Zi (see Corollary 2.6
and subsequent remarks).

(AX) X is a Markov chain in R
d (1 ≤ d < +∞) adapted to (Fti )i . For every i < N and j > i,

there exist Gi ⊗ B(Rd)-measurable functions V
(i)
j :� × R

d → R
d where Gi ⊂ FT is

independent of Fti , such that Xj = V
(i)
j (Xi).

(A′
ξ ) (i) ξ is a bounded FT -measurable random variable: Cξ := P− ess supω |ξ(ω)| < +∞.

(ii) ξ is of form ξ := �(XN) for a bounded, measurable function �.
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(A′′
ξ ) In addition to (A′

ξ ), for some θ� ∈ [0,1] and a finite constant C� ≥ 0, we have |ξ −
Eiξ |2,i ≤ C�(T − ti )

θ�/2 for any i ∈ {0, . . . ,N}.
(A′

F) For every i < N , the driver is of the form fi(ω, y, z) = fi(Xi(ω), y, z), and (x, y, z) �→
fi(x, y, z) is B(Rd) ⊗B(R) ⊗B((Rq)�)-measurable and (AF) is satisfied.

(A′
H) In addition to (AH), for every i < N and j > i, there is a function h(i)

j :� × R
d →

(Rq)� that is Gi ⊗ B(Rd)-measurable, where Gi ⊂ FT is independent of Fti , such that

H
(i)
j := h(i)

j (Xi).

Comments. (AX) is usually satisfied when X is the solution of SDE or its Euler scheme built on
the time-grid π .

The statement of (A′′
ξ ) is inspired by the fractional smoothness condition of [11], although

somewhat stronger.
It is satisfied, for instance, if the terminal function � is θ�-Hölder continuous and if the

Markov chain satisfies Ei[|XN − Xi |2] ≤ CX(T − ti ). This is a reasonable assumption on the
Markov chain, since it is satisfied by a diffusion process (possibly including bounded jumps)
with bounded coefficients and also by its Euler approximation. Indeed, we have

|ξ −Eiξ |2,i ≤ ∣∣�(XN) − �(Xi)
∣∣
2,i

≤ C�

(
CX(T − ti )

)θ�/2
. (1.5)

(A′
H) is satisfied by the Malliavin weights (1.4) under various conditions. It is valid for the

example Xt = g(t,Wt ) mentioned before. Consider now the more complex case of the SDE
with (deterministic) coefficients b(t, x) for the drift and (σ1(t, x), . . . , σd(t, x)) for the diffusion
(q = d) both having first space-derivatives that are uniformly bounded. Recall the relation for the
Malliavin derivative of a SDE given by

DtXr = ∇Xr∇X−1
t σ (t,Xt )1t≤r = ∇xX

t,x
r |x=Xt σ (t,Xt )1t≤r ,

where Xt,x denotes the SDE solution starting from x at time t , and ∇Xt := ∇xX
0,x
t for ∇xX

0,x
t

solving the (d × d)-dimensional, matrix valued linear SDE

∇xX
t,x
r = Id +

∫ r

t

∇xb
(
u,X(t,x)

u

)∇xX
t,x
u du +

d∑
j=1

∫ r

t

∇xσj

(
u,X(t,x)

u

)∇xX
t,x
u dWj,u.

Then, it is an easy exercise to prove that if σ and its inverse are uniformly bounded, then (A′
H) is

fulfilled.

2. Stability

2.1. Gronwall type inequalities

Here we gather deterministic inequalities frequently used throughout the paper. These inequali-
ties are crucial due to novel technical problems caused by the Malliavin weights. They show how
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linear inequalities with singular coefficients propagate. They take the form of unusual Gronwall
type inequalities. Their proofs are postponed to Appendix A.1. We assume that π is in the class
of time-grids satisfying (AF)(iii).

Lemma 2.1. Let α,β > 0 be finite. There exists a finite constant Bα,β ≥ 0 depending only on
Rπ , α and β (but not on the time-grid) such that, for any 0 ≤ i < k ≤ N ,

k−1∑
j=i

�j

(tk − tj )1−α
≤ Bα,1(tk − ti )

α,

k−1∑
j=i+1

�j

(tk − tj )1−α(tj − ti )1−β
≤ Bα,β(tk − ti )

α+β−1.

Lemma 2.2 (Exponent improvement in recursive equations). Let α ≥ 0, β ∈ (0, 1
2 ] and k ∈

{0, . . . ,N − 1}. Suppose that, for a finite constant Cu ≥ 0, the finite non-negative real-valued
sequences {ul}l≥k and {wl}l≥k satisfy

uj ≤ wj + Cu

N−1∑
l=j+1

ul�l

(T − tl)1/2−β(tl − tj )1/2−α
, k ≤ j ≤ N. (2.1)

Then, for two finite constants C(2.2a) ≥ 0 and C(2.2b) ≥ 0 that depend only on Cu,T ,α,β and Rπ ,

uj ≤ C(2.2a)wj + C(2.2a)

N−1∑
l=j+1

wl�l

(T − tl)1/2−β(tl − tj )1/2−α

(2.2)

+ C(2.2b)

N−1∑
l=j+1

ul�l

(T − tl)1/2−β
, k ≤ j ≤ N.

Lemma 2.3 (Intermediate a priori estimates). Let α ≥ 0, β ∈ (0, 1
2 ] and k ∈ {0, . . . ,N − 1}.

Assume that the finite non-negative real-valued sequences {ul}l≥k and {wl}l≥k satisfy (2.2) for
finite constants C(2.2a) ≥ 0 and C(2.2b) ≥ 0. Then, for any finite γ > 0, there is a finite constant

C(γ )

(2.3)≥ 0 (depending only on C(2.2a), C(2.2b), T , α, β , Rπ and γ ) such that

N−1∑
l=j+1

ul�l

(T − tl)1/2−β(tl − tj )1−γ

(2.3)

≤ C(γ )

(2.3)

N−1∑
l=j+1

wl�l

(T − tl)1/2−β(tl − tj )1−γ
, k ≤ j ≤ N.

Plugging (2.3) with γ = 1
2 + α into (2.1) gives a ready-to-use result.
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Proposition 2.4 (Final a priori estimates). Under the assumptions of Lemma 2.2, (2.1) implies

uj ≤ wj + C(1/2+α)

(2.3) Cu

N−1∑
l=j+1

wl�l

(T − tl)1/2−β(tl − tj )1/2−α
, k ≤ j ≤ N.

2.2. Stability of discrete BSDEs with Malliavin weights

Suppose that (Y1,Z1) (resp., (Y2,Z2)) solves a MWDP with terminal condition/driver (ξ1, f1,i )

(resp., (ξ2, f2,i )). We are interested in obtaining estimates on the differences (Y1 −Y2,Z1 −Z2).
To give a notion of how stability estimates are used, the processes (Y1,Z1) are typically ob-
tained by construction. For example, in Section 2.3, they are (0,0), whereas in the proof of
Theorem 3.10, they are a set of processes determined from a series of arguments based on condi-
tioning w.r.t. the Monte Carlo samples. One then applies the stability estimates based on a priori
knowledge that what stands on the right-hand side is beneficial to the computations. In Corol-
lary 2.6, for example, the right-hand side yields almost sure bounds for the processes (Y,Z). We
note that the assumptions on the drivers in this section are somewhat weaker than the general as-
sumptions of Section 1.4. The driver f1,i (y, z) does not have to be Lipschitz continuous, but we
assume that each f1,i (Y1,i+1,Z1,i ) is in L2(FT ) so that Y1,i and Z1,i are also square integrable
for any i (thanks to (AH)). The driver f2,i (y, z) is locally Lipschitz continuous w.r.t. (y, z) as
in (AF)(i), which is crucial for the validity of the a priori estimates. Additionally, we do not in-
sist that the drivers be adapted, which will be needed in the setting of sample-dependant drivers.
Define

�Y := Y1 − Y2, �Z := Z1 − Z2, �ξ := ξ1 − ξ2,

�fi := f1,i (Y1,i+1,Z1,i ) − f2,i (Y1,i+1,Z1,i ).

Let k ∈ {0, . . . ,N − 1} be fixed: throughout this subsection, Ftk -conditional L2-norms are con-
sidered and we recall the notation |U |2,k := √

Ek[|U |2] for any square integrable random vari-
able U . For j ≥ k, define

|
j |2,k := |�Yj+1|2,k + |�Zj |2,k.

Using (AH), we obtain Ei[�ξH
(i)
N ] = Ei[(�ξ −Ei�ξ)H

(i)
N ] and

∣∣Ei

[
�ξH

(i)
N

]∣∣2 ≤ Ei

[|�ξ −Ei�ξ |2] C2
M

(tN − ti )
,

(2.4)∣∣Eiz
[
�fjH

(i)
j

]∣∣2 ≤ C2
MEi[|�fj |2]

tj − ti
, j ≥ i + 1.

Combining this kind of estimates with (AF)(i) and the triangle inequality, our stability equations
(for k ≤ i) are

|�Yi |2,k ≤ |�ξ |2,k +
N−1∑
j=i

|�fj |2,k�j +
N−1∑
j=i

Lf2 |
j |2,k

(T − tj )(1−θL)/2
�j, (2.5)
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|�Zi |2,k ≤ CM |�ξ −Ei�ξ |2,k√
T − ti

+
N−1∑

j=i+1

CM |�fj |2,k√
tj − ti

�j

(2.6)

+
N−1∑

j=i+1

Lf2CM |
j |2,k

(T − tj )(1−θL)/2√tj − ti
�j .

Proposition 2.5. Taking α = 0, β = θL/2 and Cu = Lf2(CM + √
T ) in Lemmas 2.2 and 2.3,

recall the constant C(γ )

(2.3). Assume that ξj is in L2(FT ). Moreover, for each i ∈ {0, . . . ,N − 1},
assume that f1,i (Y1,i+1,Z1,i ) is in L2(FT ) and f2,i (y, z) is locally Lipschitz continuous w.r.t. y

and z as in (AF)(i), with a constant Lf2 . Then, under (AH), we have

|�Yi |2,k ≤ C(1)
y |�ξ |2,k + C(2)

y

N−1∑
j=i

|�fj |2,k�j , 0 ≤ k ≤ i ≤ N,

|�Zi |2,k ≤ C(1)
z

|�ξ −Ei�ξ |2,k√
T − ti

+ C(2)
z

N−1∑
j=i+1

|�fj |2,k√
tj − ti

�j

+ C(3)
z |�ξ |2,k(T − ti )

θL/2, 0 ≤ k ≤ i < N,

where the above constants can be written explicitly:

C(1)
y := 1 + Lf2C

(1)
(2.3)

(
CMBθL/2,1 + B1/2+θL/2,1

√
T

)
T θL/2,

C(2)
y := 1 + Lf2C

(1)
(2.3)(CM + √

T )BθL/2,1T
θL/2,

C(1)
z := CM

(
1 + Lf2C

(1/2)

(2.3)
CMBθL/2,1/2T

θL/2
)

,

C(2)
z := CM

(
1 + Lf2C

(1/2)

(2.3) (CM + √
T )BθL/2,1/2T

θL/2
)

,

C(3)
z := CMLf2C

(1/2)

(2.3) B1/2+θL/2,1/2.

Proof. Using (2.5) and (2.6), we obtain

|
j |2,k ≤ CM

|�ξ−Ej�ξ |2,k√
T − tj

+ |�ξ |2,k + (CM + √
T )

N−1∑
l=j+1

|�fl |2,k�l√
tl − tj

(2.7)

+ (CM + √
T )

N−1∑
l=j+1

Lf2 |
l |2,k�l

(T − tl)(1−θL)/2√tl − tj
, j ≥ k.
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Upper bound for (2.7). We apply Lemmas 2.2 and 2.3 under the setting uj = |
j |2,k , wj =
CM

|�ξ−Ej �ξ |2,k√
T −tj

+ |�ξ |2,k + (CM + √
T )

∑N−1
l=j+1

|�fl |2,k�l√
tl−tj

, α = 0, β = θL

2 , Cu = Lf2(CM +
√

T ). To make results fully explicit, we first need to upper bound quantities of the form (γ > 0)

I(γ )

j+1 :=
N−1∑

l=j+1

wl�l

(T − tl)1/2−θL/2(tl − tj )1−γ
.

Using that |�ξ −El�ξ |2,k is non-increasing in l and Lemma 2.1, we obtain

I(γ )

j+1 =
N−1∑

l=j+1

(
CM

|�ξ −El�ξ |2,k√
T − tl

+ |�ξ |2,k + (CM + √
T )

N−1∑
r=l+1

|�fr |2,k�r√
tr − tl

)
�l

/(
(T − tl)

1/2−θL/2(tl − tj )
1−γ

)
(2.8)

≤ CMBθL/2,γ

|�ξ −Ej+1�ξ |2,k

(T − tj )1−θL/2−γ
+ B1/2+θL/2,γ

|�ξ |2,k

(T − tj )1/2−θL/2−γ

+ (CM + √
T )BθL/2,γ

N−1∑
l=j+2

|�fl |2,k�l

(tl − tj )1−θL/2−γ
.

Upper bound for |�Yi |2,k . Starting from (2.5) and applying Lemma 2.3, we get

|�Yi |2,k ≤ |�ξ |2,k +
N−1∑
j=i

|�fj |2,k�j + Lf2C
(1)
(2.3)I

(1)
i ;

then using the estimate (2.8) and |�ξ −Ei�ξ |2,k ≤ |�ξ |2,k , we obtain the announced inequality.
Upper bound of |�Zi |2,k . Starting from (2.6) and applying Lemma 2.3, we have

|�Zi |2,k ≤ CM |�ξ −Ei�ξ |2,k√
T − ti

+
N−1∑

j=i+1

CM |�fj |2,k√
tj − ti

�j

+ Lf2CMC(1/2)

(2.3) I
(1/2)

i+1 ;
therefore using the estimate (2.8), we derive the advertised upper bound on |�Zi |2,k . �

2.3. Almost sure bounds

In order to obtain error estimates for the Monte Carlo scheme, we use the model-free estimates
of Proposition 3.9. Typically, these estimates require that the object one is trying to approximate
is bounded. Therefore, the following almost sure bounds are crucial.
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Corollary 2.6. Assume (A′
ξ )(i), (AF) and (AH) and recall the constants C

(·)
y and C

(·)
z from

Proposition 2.5 where Lf2 is replaced by Lf . Then, we have

|Yi | ≤ Cy,i := C(1)
y Cξ + C(2)

y Cf Bθc,1(T − ti )
θc , (2.9)

|Zi | ≤ Cz,i := C(1)
z

ess supω |ξ −Eiξ |2,i√
T − ti

+ C
(2)
z Cf Bθc,1/2

(T − ti )1/2−θc
+ C(3)

z Cξ (T − ti )
θL/2. (2.10)

The above upper bounds a valid for terminal values ξ admitted by (A′
ξ )(i), which is quite

general. Without any further information on ξ , we can derive the simple bounds

|Yi | +
√

T − ti |Zi | ≤ Cy,z (2.11)

for an explicit, time uniform constant Cy,z. It may, however, be useful to take advantage of
additional information on ξ , to obtain finer estimates on Cy,i and Cz,i with the aim of better
tuning the parameters of the MWLS method (see Section 3.5). Two situations are of particular
interest.

• For zero terminal condition, Y and Z get smaller and smaller as ti goes to T as expected:
|Yi | + √

T − ti |Zi | ≤ C(T − ti )
θc for a constant C depending only on C

(2)
y , C

(2)
z , Cf , θc

and Rπ . This result is useful for variance reduction methods like the proxy method of [13],
Section 2.2, the method of Martingale basis [2], and the multilevel method of [21].

• Under (A′′
ξ ), we have |ξ − Eiξ |2,i ≤ C�(T − ti )

θ�/2, which leads to an improved estimate

for Z: |Zi | ≤ C(T − ti )
−1/2+θc∧(θ�/2) for some constant C depending only on C

(1)
z , C

(2)
z ,

C
(3)
z , Cf , θc, Rπ , T , Cξ and C�.

This is why in the subsequent analysis, we keep track on the general dependence on i of the
constants Cy,i and Cz,i .

Proof of Corollary 2.6. (0,0) is the solution of the MWDP with data (ξ1 ≡ 0, f1,i ≡ 0). Apply-
ing Proposition 2.5 with (Y1,Z1) = (0,0) and (Y2,Z2) = (Y,Z) yields

|Yi |2,k ≤ C(1)
y |ξ |2,k + C(2)

y

N−1∑
j=i

∣∣fj (0,0)
∣∣
2,k

�j ,

|Zi |2,k ≤ C
(1)
z |ξ −Eiξ |2,k√

T − ti
+ C(2)

z

N−1∑
j=i+1

|fj (0,0)|2,k√
tj − ti

�j + C(3)
z |ξ |2,k(T − ti )

θL/2,

for i = 0, . . . ,N − 1. Taking k = i, plugging in the almost sure bounds on |ξ | from (A′
ξ )(i) and

|fj (0,0)| from (AF)(ii), and using Lemma 2.1 then yields the result. �
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3. Monte Carlo regression scheme

Throughout this section, the Markovian assumptions (AX), (A′
ξ ), (A′

F) and (A′
H) are in force.

The notation and preliminary results used in this section overlap with [13], Section 4, and we
recall and adapt them to the setting of MWLS in Section 3.1 for completeness.

3.1. Preliminaries

An elegant property of the Markovian assumptions is there are measurable, deterministic (but
unknown) functions yi(·) :Rd → R and zi(·) :Rd → (Rq)� for each i ∈ {0, . . . ,N − 1} such that
the solution (Yi,Zi)0≤i≤N−1 of the discrete BSDE (1.1) is given by

(Yi,Zi) := (
yi(Xi), zi(Xi)

)
. (3.1)

In this section, we estimate these functions. One needs to apply Lemma 3.1 below combined
with G = Gi – defined in the assumptions (AX) and (A′

H) – U = Xi , and

F(x) := �
(
V

(i)
N (x)

)+
N−1∑
k=i

fk

(
V

(i)
k (x), yk+1

(
V

(i)
k+1(x)

)
, zk

(
V

(i)
k (x)

))
�k for yi(·),

and

F(x) := �
(
V

(i)
N (x)

)
h(i)
N (x)

+
N−1∑

k=i+1

fk

(
V

(i)
k (x), yk+1

(
V

(i)
k+1(x)

)
, zk

(
V

(i)
k (x)

))
h(i)
k (x)�k for zi(·).

Lemma 3.1 ([13], Lemma 4.1). Suppose that G and H are independent sub-σ -algebras of F .
For l ≥ 1, let F :� × R

d → R
l be bounded and G ⊗ B(Rd)-measurable, and U :� → R

d be
H-measurable. Then, E[F(U) |H] = j (U) where j (h) = E[F(h)] for all h ∈ R

d .

Least-squares regression has its traditional implementation in nonparametric statistics and sig-
nal processing [15]. In the traditional setting, the random object is a pair of random variables
(O,R) termed the “observation” O and the “response” R. R is considered to be some function
of O , with the possible addition of noise, and one needs recover this function. There are three
important differences in the use of least-squares regression methods in our setting, and for this
reason we give a definition of (ordinary) least-squares regression (OLS) that enables us to ap-
proach our problems. First, the response we consider is a nonlinear transformation of the paths
of the Markov chain X and the Malliavin weights H . We are able to simulate observations and
responses (active learning) and we know the nonlinear function; what is unknown is the regres-
sion function, that is, the conditional expectation. Therefore, OLS is defined in a way that easily
enables path-dependence and joint laws by defining the path of the Markov chain and Malli-
avin weights as a single random variable, X , with law ν. Secondly, since we are in a dynamical
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setting, least-squares regressions will be computed using independent clouds of simulations on
each point of the time-grid. This causes a dependence on an additional source of randomness in
the observations, namely the cloud of simulations from the preceding computations. Therefore,
OLS is defined to depend on two probability spaces: one for the preceding clouds (�̃, F̃ , P̃), and
one for the current cloud distribution (Rl ,B(Rl), ν). Finally, we will make use of both general
probability measures (associated to the joint-law of the Markov chain and Malliavin weights)
and empirical measures. The use of simulations to generate the empirical measure creates de-
pendency issues that are avoided when using laws, whence we make two distinct definitions
depending on which measure is in use. We recall the general notation of [13], Section 4.1, for
ordinary least-squares regression problems.

Definition 3.2 (Ordinary least-squares regression). For l, l′ ≥ 1 and for probability spaces
(�̃, F̃ , P̃) and (Rl ,B(Rl), ν), let S be a F̃ ⊗ B(Rl)-measurable R

l′ -valued function such that
S(ω, ·) ∈ L2(B(Rl), ν) for P̃-a.e. ω ∈ �̃, and K a linear vector subspace of L2(B(Rl), ν)

spanned by deterministic R
l′ -valued functions {pk(·), k ≥ 1}. The least-squares approximation

of S in the space K with respect to ν is the (P̃× ν-a.e.) unique, F̃ ⊗B(Rl )-measurable function
S� given by

S�(ω, ·) := arg inf
φ∈K

∫ ∣∣φ(x) − S(ω,x)
∣∣2ν(dx). (3.2)

We say that S� solves OLS(S,K, ν).
On the other hand, suppose that νM = 1

M

∑M
m=1 δX (m) is a discrete probability measure on

(Rl ,B(Rl)), where δx is the Dirac measure on x and X (1), . . . ,X (M) : �̃ →R
l are i.i.d. random

variables. For an F̃ ⊗B(Rl)-measurable R
l′ -valued function S such that |S(ω,X (m)(ω))| < ∞

for any m and P̃-a.e. ω ∈ �̃, the least-squares approximation of S in the space K with respect to
νM is the (P̃-a.e.) unique, F̃ ⊗B(Rl )-measurable function S� given by

S�(ω, ·) := arg inf
φ∈K

1

M

M∑
m=1

∣∣φ(X (m)(ω)
)− S

(
ω,X (m)(ω)

)∣∣2. (3.3)

We say that S� solves OLS(S,K, νM).

From (3.1), the MWDP (1.1) can be reformulated in terms of Definition 3.2: taking for K(l′)
i

any dense subset in the R
l′ -valued functions belonging to L2(B(Rd),P ◦ (Xi)

−1), for each i ∈
{0, . . . ,N − 1},⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi(·) solves OLS
(
SY,i

(
x(i)

)
,K(1)

i , νi

)
,

for SY,i

(
x(i)

) := �(xN) +
N−1∑
k=i

fk

(
xk, yk+1(xk+1), zk(xk)

)
�k,

zi(·) solves OLS
(
SZ,i

(
h(i),x(i)

)
,K(q)

i , νi

)
,

for SZ,i

(
h(i),x(i)

) := �(xN)hN +
N−1∑

k=i+1

fk

(
xk, yk+1(xk+1), zk(xk)

)
hk�k,

(3.4)
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νi := P ◦ (
H

(i)
i+1, . . . ,H

(i)
N ,Xi, . . . ,XN

)−1
,

(3.5)
h(i) := (hi+1, . . . , hN) ∈ ((

R
q
)�)N−i

, x(i) := (xi, . . . , xN) ∈ (
R

d
)N−i+1

.

However, the above least-squares regressions encounter two computational problems:

(CP1) L2(B(Rd),P ◦ (Xi)
−1) is usually infinite dimensional;

(CP2) the integrals of the OLS in (3.4) are presumably computed using the untractable law of(
H

(i)
i+1, . . . ,H

(i)
N ,Xi, . . . ,XN

)
.

Therefore, the functions yi(·) and zi(·) are to be approximated on finite-dimensional function
spaces with the sample-based empirical version of the law, as described in the next subsection.

3.2. Algorithm

The first computational problem (CP1) is handled using a pre-selected finite-dimensional vector
spaces.

Definition 3.3 (Finite-dimensional approximation spaces). For i ∈ {0, . . . ,N −1}, we are given
two finite functional linear spaces of dimension KY,i and KZ,i⎧⎨

⎩
KY,i := span

{
p

(1)
Y,i , . . . , p

(KY,i )

Y,i

}
, for p

(k)
Y,i :Rd →R s.t. E

[∣∣p(k)
Y,i (Xi)

∣∣2] < +∞,

KZ,i := span
{
p

(1)
Z,i , . . . , p

(KZ,i )

Z,i

}
, for p

(k)
Z,i :Rd → (

R
q
)�

s.t. E
[∣∣p(k)

Z,i(Xi)
∣∣2] < +∞.

The function yi(·) (resp., zi(·)) will be approximated in the linear space KY,i (resp., KZ,i ). The
best approximation errors are defined by

EY
App.,i :=

√
inf

φ∈KY,i

E
[∣∣φ(Xi) − yi(Xi)

∣∣2], EZ
App.,i :=

√
inf

φ∈KZ,i

E
[∣∣φ(Xi) − zi(Xi)

∣∣2].
The second computational problem (CP2) is solved using the empirical measure built from

independent simulations with distribution νi . The number of simulations is large enough to avoid
having under-determined systems of equations to solve.

Definition 3.4 (Simulations and empirical measures). For i ∈ {0, . . . ,N − 1}, generate Mi ≥
KY,i ∨ KZ,i independent copies Ci := {(H (i,m),X(i,m)): m = 1, . . . ,Mi} of (H (i),X(i)) :=
(H

(i)
i+1, . . . ,H

(i)
N ,Xi, . . . ,XN): Ci forms a cloud of simulations used for the regression at time i.

Denote by νi,M the empirical probability measure of the Ci -simulations, that is,

νi,M := 1

Mi

Mi∑
m=1

δ
(H

(i,m)
i+1 ,...,H

(i,m)
N ,X

(i,m)
i ,...,X

(i,m)
N )

. (3.6)

Furthermore, we assume that the clouds of simulations (Ci : 0 ≤ i < N) are independently gen-
erated. All these random variables are defined on a probability space (�(M),F (M),P(M)).



544 E. Gobet and P. Turkedjiev

Observe that allowing time-dependency in the number of simulations Mi and in the vector
spaces KY,i and KZ,i is coherent with our setting of time-dependent local Lipschitz driver.

Denoting by (�,F,P) the probability space supporting (H (0), . . . ,H (N−1),X), which serves
as a generic element for the clouds of simulations, the full probability space used to analyze our
algorithm is the product space (�̄, F̄ , P̄) = (�,F ,P) ⊗ (�(M),F (M),P(M)). By a slight abuse
of notation, we write P (resp., E) to mean P̄ (resp., Ē) from now on.

In what follows, extensive use will be made of conditioning on the clouds of simulations. This
is much in the spirit of the proof of [13], Theorem 4.11, and the arguments are based on the
following definition of σ -algebras.

Definition 3.5. Define the σ -algebras

F (∗)
i := σ(Ci+1, . . . ,CN−1), F (M)

i := F (∗)
i ∨ σ

(
X

(i,m)
i : 1 ≤ m ≤ Mi

)
.

For every i ∈ {0, . . . ,N − 1}, let EM
i [·] (resp., PM

i ) with respect to F (M)
i .

We now come to the definition of the MWLS algorithm: this is merely the finite-dimensional
version of (3.4) plus a soft truncation of the solutions using the truncation function T·(·) (defined
in Section 1.3).

Definition 3.6 (MWLS algorithm). Set y
(M)
N (·) := �(·). For each i = N − 1,N − 2, . . . ,0, set

the random functions y
(M)
i (·) and z

(M)
i (·) recursively as follows.

1. First, define z
(M)
i (·) := TCz,i

(ψ
(M)
Z,i (·)) where Cz,i is the almost sure bound of Corollary 2.6

and where⎧⎪⎪⎨
⎪⎪⎩

ψ
(M)
Z,i (·) solves OLS

(
S

(M)
Z,i

(
h(i),x(i)

)
,KZ,i, νi,M

)
for S

(M)
Z,i

(
h(i),x(i)

) := �(xN)hN +
N−1∑

k=i+1

fk

(
xk, y

(M)
k+1(xk+1), z

(M)
k (xk)

)
hk�k,

(3.7)

where h(i),x(i), νi,M are defined in (3.5) and (3.6).
2. Second and similarly, define y

(M)
i (·) := TCy,i

(ψ
(M)
Y,i (·)) where

⎧⎪⎪⎨
⎪⎪⎩

ψ
(M)
Y,i (·) solves OLS

(
S

(M)
Y,i

(
x(i)

)
,KY,i , νi,M

)
for S

(M)
Y,i

(
x(i)

) := �(xN) +
N−1∑
k=i

fk

(
xk, y

(M)
k+1(xk+1), z

(M)
k (xk)

)
�k.

(3.8)

Before performing the error analysis, we state the following uniform (resp., conditional vari-
ance) bounds on the functions S

(M)
Y,i (·) (resp., the lth coordinate of S

(M)
Z,i (H (i,m),X(i,m)) for each

m and l). These bounds are used repeatedly in Section 3.3 in conjunction with Proposition 3.11 in
order to obtain estimates on the conditional variance of the regressions. The proof is postponed
to Appendix A.2.
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Lemma 3.7. For all i ∈ {0, . . . ,N − 1}, there are finite constants C̄y,i ≥ 0 and C̄z,i ≥ 0 such
that ∣∣S(M)

Y,i

(
x(i)

)∣∣ ≤ C̄y,i , ∀x(i),

q∑
l=1

Var
[
S

(M)
l,Z,i

(
H(i,m),X(i,m)

) | F (M)
i

] ≤ C̄2
z,i , ∀m ∈ {1, . . . ,Mi}.

We can write a precise time-dependency of the constants C̄y,i and C̄z,i :

C̄y,i := c1Cξ + c2Cf (T − ti )
θ
c ,

(3.9)
C̄z,i := c3Cξ (T − ti )

−1/2 + c4Cf (T − ti )
θc−1/2,

where (cj )1≤j≤4 depend only on (Lf ,CM,q,C
(1)
y ,C

(2)
y ,C

(1)
z ,C

(2)
z ,C

(3)
z , T ,Rπ , θL, θc) (com-

puted explicitely in the proof).

The above time-dependency is to be used to derive convergence rates for the complexity anal-
ysis.

3.3. Main result: Error analysis

We precise the random norms used to quantify the error of MWLS.

Definition 3.8. Let ϕ :�(M) × R
d → R or (Rq)� be F (M) ⊗ B(Rd)-measurable. For each i ∈

{0, . . . ,N − 1}, define the random norms

‖ϕ‖2
i,∞ :=

∫
Rd

∣∣ϕ(x)
∣∣2P ◦ X−1

i (dx), ‖ϕ‖2
i,M := 1

Mi

Mi∑
m=1

∣∣ϕ(X(i,m)
i

)∣∣2.
The accuracy of the MWLS algorithm is measured as follows:

Ē(Y,M, i) :=
√
E
[∥∥y

(M)
i (·) − yi(·)

∥∥2
i,∞

]
, Ē(Z,M, i) :=

√
E
[∥∥z

(M)
i (·) − zi(·)

∥∥2
i,∞

]
,

E(Y,M, i) :=
√
E
[∥∥y

(M)
i (·) − yi(·)

∥∥2
i,M

]
, E(Z,M, i) :=

√
E
[∥∥z

(M)
i (·) − zi(·)

∥∥2
i,M

]
.

In our analysis, we will have to switch from errors in true measure Ē(· · ·) to errors in empirical
measure E(· · ·), and vice-versa: this is not trivial since (y

(M)
i (·), z(M)

i (·)) and the empirical norm
‖ · ‖i,M depend on the same sample. However, the switch can be performed using concentration-
of-measure estimates uniformly on a class of functions [15], Chapter 9. We directly state the
ready-to-use result, which is a straightforward adaptation of [13], Proposition 4.10, to our con-
text.
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Proposition 3.9. Recall Definition 3.3 and the constants Cy,i (resp., Cz,i ) from Corollary 2.6,
and define the interdependence errors

EY
Dep.,i := Cy,i

√
2028(KY,i + 1) log(3Mi)

Mi

,

EZ
Dep.,i := Cz,i

√
2028(KZ,i + 1)q log(3Mi)

Mi

.

For each i ∈ {0, . . . ,N − 1}, we have

Ē(Y,M, i) ≤ √
2E(Y,M, i) + EY

Dep.,i , Ē(Z,M, i) ≤ √
2E(Z,M, i) + EZ

Dep.,i .

The aim is to determine a rate of convergence for E(Y,M,k) := (E[‖yk − yM
k ‖2

k,M ])1/2 and

E(Z,M,k) := (E[‖zk − zM
k ‖2

k,M ])1/2 using the local error terms (E(k))k defined below.

Theorem 3.10 (Global error of the MWLS algorithm). For 0 ≤ k ≤ N − 1, define

E(k) := EY
App.,k+1 + C̄y,k+1

√
KY,k+1

Mk+1
+ EZ

App.,k

(3.10)

+ C̄z,k

√
KZ,k

Mk

+ Lf

(
EY

Dep.,k+1 + EZ
Dep.,k

)
.

For every k ∈ {0, . . . ,N − 1},

(
E
[∥∥yk − yM

k

∥∥2
k,M

])1/2 ≤ EY
App.,k + C̄y,k

√
KY,k

Mk

+ C(M)
y

N−1∑
j=k

E(j)�j

(T − tj )(1−θL)/2
, (3.11)

(
E
[∥∥zk − zM

k

∥∥2
k,M

])1/2 ≤ EZ
App.,k + C̄z,k

√
KZ,k

Mk

(3.12)

+ C(M)
z

N−1∑
j=k+1

E(j)�j

(T − tj )(1−θL)/2√tj − tk
,

where, recalling the constant C(γ )

(2.3) from Lemma 2.3 (with α = 0, β = θL

2 , γ ∈ { 1
2 ,1} and Cu =

Lf (
√

2CM + 4
√

T )),

C(M)
y := 2 + 4Lf C(1)

(2.3)

(
1 + BθL/2,1T

θL/2(CM + 2
√

T )
)
,

C(M)
z := CM + √

2CMLf C(1/2)

(2.3)

(
1 + BθL/2,1/2T

θL/2(CM + 2
√

T )
)
.
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Discussion. Observe that owing to Proposition 3.9, similar estimates (with modified constants)
are valid for Ē(Y,M,k) = (E[‖yk − yM

k ‖2
k,∞])1/2 and Ē(Z,M,k) = (E[‖zk − zM

k ‖2
k,∞])1/2. The

global error (3.11)–(3.12) is a weighted time-average of three different errors.

(1) The contributions E ·
App.,· are the best approximation errors using the vector spaces of

functions: this accuracy is achieved asymptotically with an infinite number of simulations (take
Mk → +∞ in our estimates).

(2) The contributions
√

K·,·
M· are the usual statistical error terms: the larger the number of sim-

ulations or the smaller the dimensions of the vector spaces, the better the estimation error.
(3) The contributions E ·

Dep.,· are related to the interdependencies between regressions at dif-
ferent times. This is intrinsic to the dynamic programming equation with N nested empirical
regressions.

However, due to Proposition 3.9, the latter contributions are of same magnitude as the statistical
error terms (up to logarithmic factors). Therefore roughly speaking, the global error is of order
of the best approximation errors plus the statistical errors, as if there were a single regression
problem [15], Theorem 11.1. In this sense, these error bounds are optimal: it is not possible to
improve the above estimates with respect to the convergence rates (but only possibly with respect
to the constants). An optimal tuning of parameters is proposed in Section 3.5.

In comparison to [13], where a different Monte Carlo regression scheme is analyzed, the upper
bound for the global error has a similar shape, but with two important differences.

• Norm on Z. In [13], one uses the time averaged squared L2-norm
∑

i E[‖ · ‖2
i,M ]�i to esti-

mate the error in Z, whereas here the norm used is time-wise. This leads to more informative
error bounds. This is an advantage of the discrete BSDE with Malliavin weights against the
MDP of [13].

• Time-dependency. The MWDP yields better estimates on y(·) and z(·) w.r.t. time in the local
error estimates, which allows better parameters tuning and therefore better convergence
rates (see Section 3.5).

3.4. Proof of Theorem 3.10

3.4.1. Preliminary results

The following proposition lists standard tools from the theory of regression. They will be used
repeatedly in the proof of Theorem 3.10. This proposition was also used in [13], and we refer the
reader to that paper for the proof. The two first properties are of deterministic nature, the two last
are probabilistic. Item (iv) is stated in high generality; this readily allows its further use in other
regression-based Monte Carlo algorithms.

Proposition 3.11 ([13], Proposition 4.12). With the notation of Definition 3.2, suppose that K
is finite-dimensional and spanned by the functions {p1(·), . . . , pK(·)}. Let S� solve OLS(S,K, ν)

(resp., OLS(S,K, νM)), according to (3.2) (resp., (3.3)). The following properties are satisfied:

(i) Linearity: the mapping S �→ S� is linear.
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(ii) Stability property: ‖S�‖L2(B(Rl ),μ) ≤ ‖S‖L2(B(Rl ),μ), where μ = ν (resp., μ = νM ).
(iii) Conditional expectation solution: in the case of the discrete probability measure νM ,

assume additionally that the sub-σ -algebra Q ⊂ F̃ is such that (pj (X (1)), . . . , pj (X (M))) is
Q-measurable for every j ∈ {1, . . . ,K}. Setting SQ(X (m)) := Ẽ[S(X (m)) | Q] for each m ∈
{1, . . . ,M}, then Ẽ[S� | Q] solves OLS(SQ,K, νM).

(iv) Bounded conditional variance: in the case of the discrete probability measure νM , sup-
pose that S(ω,x) is G ⊗B(Rl)-measurable, for G ⊂ F̃ independent of σ(X (1), . . . ,X (M)), there
exists a Borel measurable function g :Rl → E , for some Euclidean space E , such that the ran-
dom variables {pj (X (m)): m = 1, . . . ,M, j = 1, . . . ,K} are H := σ(g(X (m)): m = 1, . . . ,M)-
measurable, and there is a finite constant σ 2 ≥ 0 that uniformly bounds the conditional variances
Ẽ[|S(X (m)) − Ẽ(S(X (m)) | G ∨H)|2 | G ∨H] ≤ σ 2

P̃-a.s. and for all m ∈ {1, . . . ,M}. Then

Ẽ
[∥∥S�(·) − Ẽ

[
S�(·) | G ∨H

]∥∥2
L2(B(Rl ),νM)

| G ∨H
] ≤ σ 2 K

M
.

Intermediate processes and local error terms. Another technique we borrow from [13] is to
introduce intermediate, fictional regressions based on the true solutions: one replaces the full L2

space for the approximation space and the true measure for the empirical measure in (3.4).
For each k ∈ {0, . . . ,N − 1}, recall the functions SY,k(x(i)) and SZ,k(h(i),x(i)) from (3.4), the

linear spaces KY,k and KZ,k from Definition 3.3, and the empirical measure νk,M from (3.6), and
set

ψY,k(·) solves OLS
(
SY,k

(
x(i)

)
,KY,k, νk,M

)
,

ψZ,k(·) solves OLS
(
SZ,k

(
h(i),x(i)

)
,KZ,k, νk,M

)
.

Note that these regressions are not numerically accessible, because they require knowledge of
the true solution to be applied. After a series of conditioning arguments, based on Lemma 3.12
below, the fictional regressions will eventually allow the use of the stability estimates of Sec-
tion 2.2, and (after a somewhat complex application of the Gronwall inequalities of Section 2.1)
this will yield final result.

From Lemma 3.1 and our Markovian assumptions, observe that

(
E

M
k

[
SY,k

(
X(k,m)

)]
,EM

k

[
SZ,k

(
H(k,m),X(k,m)

)]) = (
yk

(
X

(k,m)
k

)
, zk

(
X

(k,m)
k

))
for each m ∈ {1, . . . ,Mk} where (yk(·), zk(·)) are the unknown functions defined in (3.1). Propo-
sition 3.11(iii) implies the first statement of the following lemma. The second statement results
from a direct interchange of inf and E, and from the identical distribution of (X

(k,m)
k ) for all m.

Lemma 3.12. For each k ∈ {0, . . . ,N − 1},

E
M
k

[
ψY,k(·)

]
solves OLS

(
yk(·),KY,k, νk,M

)
,

E
M
k

[
ψZ,k(·)

]
solves OLS

(
zk(·),KZ,k, νk,M

)
.
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In addition, recalling the local error terms EY
App.,k and EZ

App.,k from Definition 3.3,

E
[∥∥EM

k

[
ψY,k(·)

]− yk(·)
∥∥2

k,M

] = E

[
inf

φ∈KY,k

∥∥φ(·) − yk(·)
∥∥2

k,M

]
≤ (

EY
App.,k

)2
,

E
[∥∥EM

k

[
ψZ,k(·)

]− zk(·)
∥∥2

k,M

] = E

[
inf

φ∈KZ,k

∥∥φ(·) − zk(·)
∥∥2

k,M

]
≤ (

EZ
App.,k

)2
.

3.4.2. Proof of Theorem 3.10

Step 1: decomposition of the error on Y . Recall the soft truncation function TL(x) := (−L ∨
x1 ∧L, . . . ,−L∨xn ∧L) for x ∈R

n. From the almost sure bounds of Corollary 2.6, TCy,k
(yk) =

yk . Then, the Lipschitz continuity of TCy,k
yields ‖yk(·) − y

(M)
k (·)‖k,M is less than or equal to

‖yk(·) − ψ
(M)
Y,k (·)‖k,M . Using the triangle inequality for the ‖ · ‖k,M -norm, it follows that

∥∥yk(·) − y
(M)
k (·)∥∥

k,M
(3.13)

≤ ∥∥yk(·) −E
M
k

[
ψY,k(·)

]∥∥
k,M

+ ∥∥EM
k

[
ψY,k(·)

]− ψ
(M)
Y,k (·)∥∥

k,M
.

Because S
(M)
Y,k (·) depends on z

(M)
k (·) computed with the same cloud of simulations Ck as that

used to define the OLS solution ψ
(M)
Y,k (·), it raises some interdependency issues that we solve

by making a small perturbation to the intermediate processes as follows (compare with (3.4)
and (3.8)): for x(k) = (xk, . . . , xN), define

S̃
(M)
Y,k

(
x(k)

) := �(xN) + fk

(
xk, y

(M)
k+1(xk+1), zk(xk)

)
�k +

N−1∑
i=k+1

fi

(
xi, y

(M)
i+1 (xi+1), z

(M)
i (xi)

)
�i,

ψ̃
(M)
Y,k (·) solves OLS

(
S̃

(M)
Y,k

(
x(k)

)
,KY,k, νk,M

)
.

This perturbation is not needed for the Z-component, because S
(M)
Z,k (h(k),x(k)) depends only on

the subsequent clouds of simulations {Cj , j ≥ k + 1}. Applying the L2-norm | · |2, the triangle
inequality in (3.13), and the first part of Lemma 3.12 yields

E(Y,M,k) ≤ EY
App.,k + ∣∣∥∥EM

k

[
ψ̃

(M)
Y,k (·) − ψY,k(·)

]∥∥
k,M

∣∣
2

+ ∣∣∥∥ψ̃
(M)
Y,k (·) −E

M
k

[
ψ̃

(M)
Y,k (·)]∥∥

k,M

∣∣
2 (3.14)

+ ∣∣∥∥ψ̃
(M)
Y,k (·) − ψ

(M)
Y,k (·)∥∥

k,M

∣∣
2.

Let us handle each term in the above inequality separately.

� Term |‖EM
k [ψ̃(M)

Y,k (·) − ψY,k(·)]‖k,M |2. Set

ξ̃∗
Y,k(x) := E

(
S̃

(M)
Y,k

(
X(k)

)− SY,k

(
X(k)

) | X(k)
k = x,F (M)

)
.
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Recalling that S̃
(M)
Y,k (x(k)) − SY,k(x(k)) is built only using the clouds {Cj , j ≥ k + 1}, it fol-

lows from Lemma 3.1 that EM
k [S̃(M)

Y,k (X(k,m)) − SY,k(X
(k,m))] is equal to ξ̃∗

Y,k(X
(k,m)
k ) for ev-

ery m ∈ {1, . . . ,Mk}. Then, using Proposition 3.11(i) and (iii), EM
k [ψ̃(M)

Y,k (·) − ψY,k(·)] solves

OLS(ξ̃∗
Y,k(·),KY,k, νk,M). By Proposition 3.11(ii),

E
[∥∥EM

k

[
ψ̃

(M)
Y,k (·) − ψY,k(·)

]∥∥2
k,M

] ≤ E
[∥∥ξ̃∗

Y,k(·)
∥∥2

k,M

] = E
[(

ξ̃∗
Y,k(Xk)

)2]
,

where the final equality follows from the fact that ξ̃∗
Y,k(·) is generated only using the simulations

in the clouds {Cj : j > k} and {Xk,X
(k,1)
k , . . . ,X

(k,Mk)
k } are identically distributed. Defining

ξ∗
Y,k(x) := E

[
S

(M)
Y,k

(
X(k)

)− SY,k

(
X(k)

) | X(k)
k = x,F (M)

]
, (3.15)

the triangle inequality yields∣∣ξ̃∗
Y,k(Xk)

∣∣
2 ≤ ∣∣S̃(M)

Y,k

(
X(k)

)− S
(M)
Y,k

(
X(k)

)∣∣
2 + ∣∣ξ∗

Y,k(Xk)
∣∣
2

≤ ∣∣fk

(
Xk,y

(M)
k+1(Xk+1), z

(M)
k (Xk)

)− fk

(
Xk,y

(M)
k+1(Xk+1), zk(Xk)

)∣∣
2�k

+ ∣∣ξ∗
Y,k(Xk)

∣∣
2

≤ Lf �k

(T − tk)1/2−θL/2
Ē(Z,M,k) + ∣∣ξ∗

Y,k(Xk)
∣∣
2.

� Term |‖ψ̃(M)
Y,k (·) −E

M
k [ψ̃(M)

Y,k (·)]‖k,M |2. Since S̃
(M)
Y,k (·) depends only on the clouds {Cj , j ≥

k + 1} and is bounded from above by C̄y,k (like S
(M)
Y,k (·), see Lemma 3.7), it follows from Propo-

sition 3.11(iv) that |‖ψ̃(M)
Y,k (·) − E

M
k [ψ̃(M)

Y,k (·)]‖k,M |2 is bounded from above by C̄y,k

√
KY,k/Mk .

This is similar to the statistical error term in usual regression theory.
� Term |‖ψ̃(M)

Y,k (·) − ψ
(M)
Y,k (·)‖k,M |2. Owing to Proposition 3.11(i) and (ii), ‖ψ̃(M)

Y,k (·) −
ψ

(M)
Y,k (·)‖2

k,M is bounded from above by ‖S̃(M)
Y,k (·) − S

(M)
Y,k (·)‖2

k,M , which equals

�2
k

Mk

Mk∑
m=1

∣∣fk

(
X

(k,m)
k , y

(M)
k+1

(
X

(k,m)
k+1

)
, z

(M)
k

(
X

(k,m)
k

))− fk

(
X

(k,m)
k , y

(M)
k+1

(
X

(k,m)
k+1

)
, zk

(
X

(k,m)
k

))∣∣2

≤ L2
f �2

k‖zk(·) − z
(M)
k (·)‖2

k,M

(T − tk)1−θL
.

Collecting the bounds on the three terms, substituting them into (3.14) and applying Proposi-
tion 3.9 yields

E(Y,M,k) ≤ EY
App.,k + ∣∣ξ∗

Y,k(Xk)
∣∣
2 + C̄y,k

√
KY,k

Mk

(3.16)

+ Lf �k

(T − tk)1/2−θL/2

{
(1 + √

2)E(Z,M,k) + EZ
Dep.,k

}
.
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Step 2: decomposition of the error on Z. Analogously to (3.14), one obtains the upper bound

E(Z,M,k) ≤ EZ
App.,k + ∣∣∥∥EM

k

[
ψ

(M)
Z,k (·) − ψZ,k(·)

]∥∥
k,M

∣∣
2 + ∣∣∥∥ψ

(M)
Z,k (·) −E

M
k

[
ψ

(M)
Z,k (·)]∥∥

k,M

∣∣
2.

Since S
(M)
Z,k (·) depends only on the clouds {Cj , j ≥ k + 1} and the F (M)

k -conditional variance

of S
(M)
Z,k (H (k,m),X(k,m)) is bounded from above by C̄2

z,k for all m (see Lemma 3.7), it fol-

lows from Proposition 3.11(iv) that |‖ψ(M)
Z,k (·) − E

M
k [ψ(M)

Z,k (·)]‖k,M |2 is bounded from above by

C̄z,k

√
KZ,k/Mk . Defining

ξ∗
Z,k(x) := E

[
S

(M)
Z,k

(
H(k),X(k)

)− SZ,k

(
H(k),X(k)

) | X(k)
k = x,F (M)

]
, (3.17)

it follows that EM
k [ψ(M)

Z,k (·) − ψZ,k(·)] solves OLS(ξ∗
Z,k(·),KZ,k, νk,M). Therefore,

E(Z,M,k) ≤ EZ
App.,k + ∣∣ξ∗

Z,k(Xk)
∣∣
2 + C̄z,k

√
KZ,k

Mk

. (3.18)

Step 3: error propagation and a priori estimates. Observe that (ξ∗
Y,k(Xk), ξ

∗
Z,k(Xk)) defined

in (3.15), (3.17) solves a MWDP with terminal condition 0 and driver fξ∗,k(y, z) :=
fk(Xk, y

(M)
k+1(Xk+1), z

(M)
k (Xk)) − fk(Xk, yk+1(Xk+1), zk(Xk)). Applying Proposition 2.5 with

(Y2,Z2) ≡ 0 (so that Lf2 = 0) and using the Lipschitz continuity of fj (·) yields

∣∣ξ∗
Y,k(Xk)

∣∣
2 ≤ Lf

N−1∑
j=k

Ē(Y,M, j + 1) + Ē(Z,M,j)

(T − tj )1/2−θL/2
�j,

∣∣ξ∗
Z,k(Xk)

∣∣
2 ≤ CMLf

N−1∑
j=k+1

Ē(Y,M, j + 1) + Ē(Z,M,j)

(T − tj )1/2−θL/2√tj − tk
�j .

Next, introducing the notation 
j := E(Y,M, j +1)+E(Z,M,j) and applying Proposition 3.9,
it follows that

∣∣ξ∗
Y,k(Xk)

∣∣
2 ≤ √

2Lf

N−1∑
j=k


j�j

(T − tj )1/2−θL/2
+ Lf

N−1∑
j=k

(EY
Dep.,j+1 + EZ

Dep.,j )�j

(T − tj )1/2−θL/2
,

∣∣ξ∗
Z,k(Xk)

∣∣
2 ≤ √

2CMLf

N−1∑
j=k+1


j�j

(T − tj )1/2−θL/2√tj − tk

+ CMLf

N−1∑
j=k+1

(EY
Dep.,j+1 + EZ

Dep.,j )�j

(T − tj )1/2−θL/2√tj − tk
.
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Substituting the above into (3.16) and (3.18), and merging together the terms in Z, it follows that

E(Y,M,k) ≤ EY
App.,k + C̄y,k

√
KY,k

Mk

+ 2Lf

N−1∑
j=k

(EY
Dep.,j+1 + EZ

Dep.,j )�j

(T − tj )1/2−θL/2

+ 4Lf

N−1∑
j=k


j�j

(T − tj )1/2−θL/2

(3.19)

≤ EY
App.,k + C̄y,k

√
KY,k

Mk

+ 2
N−1∑
j=k

E(j)�j

(T − tj )1/2−θL/2

+ 4Lf

N−1∑
j=k


j�j

(T − tj )1/2−θL/2
,

E(Z,M,k) ≤ EZ
App.,k + C̄z,k

√
KZ,k

Mk

+ CM

N−1∑
j=k+1

E(j)�j

(T − tj )1/2−θL/2√tj − tk

(3.20)

+ √
2CMLf

N−1∑
j=k+1


j�j

(T − tj )1/2−θL/2√tj − tk
.

Step 4: final estimates. Now, summing (3.20) and (3.19), one obtains an estimate for 
k :


k ≤ E(k) + (CM + 2
√

T )

N−1∑
j=k+1

E(j)�j

(T − tj )1/2−θL/2√tj − tk

+ Lf (
√

2CM + 4
√

T )

N−1∑
j=k+1


j�j

(T − tj )1/2−θL/2√tj − tk
.

Thus, using Lemmas 2.2 and 2.3 with α = 0, β = θL

2 , Cu = Lf (
√

2CM + 4
√

T ), wk := E(k) +
(CM +2

√
T )

∑N−1
j=k+1

E(j)�j

(T −tj )1/2−θL/2√tj −tk
, we can control weighted sums involving (
k)k using

weighted sums of (wk)k , which is exactly what we need to complete the upper bounds (3.19)–
(3.20) for E(Y,M,k) and E(Z,M,k). Namely, let γ > 0:

N−1∑
j=k+1

wj�j

(T − tj )1/2−θL/2(tj − tk)1−γ

≤
N−1∑

j=k+1

E(j)�j

(T − tj )1/2−θL/2(tj − tk)1−γ
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+ (CM + 2
√

T )

N−1∑
l=k+2

E(l)�l

(T − tl)1/2−θL/2

l−1∑
j=k+1

�j

(tl − tj )1−θL/2(tj − tk)1−γ

≤ (
1 + BθL/2,γ T θL/2(CM + 2

√
T )

) N−1∑
l=k+1

E(l)�l

(T − tl)1/2−θL/2(tl − tk)1−γ
,

where we have applied Lemma 2.1. Thus,

N−1∑
j=k+1


j�j

(T − tj )1/2−θL/2(tj − tk)1−γ

≤ C(γ )

(2.3)

(
1 + BθL/2,γ T θL/2(CM + 2

√
T )

) N−1∑
l=k+1

E(l)�l

(T − tl)1/2−θL/2(tl − tk)1−γ

and plugging the above inequality into (3.19) and (3.20) yields (3.11) and (3.12).

3.5. Complexity analysis

As usual in empirical regression theory, appropriately tuning numerical paramaters is crucial
for finding the right trade-off between statistical errors and estimation errors. This analysis al-
lows to express the error magnitude as a function of computational work (complexity analysis).
We discuss the complexity in different cases according to the regularity of the value functions
(yi(·), zi(·)) and the choice of the grid π . In order to have a fair comparison with other numerical
schemes, we revisit the setting of [13], Section 4.4, which we partly recall for completeness, and
extend the analysis to include more general settings.

• We perform an asymptotic complexity analysis as the number N of grid times goes to +∞.
We are concerned with time-dependent bounds: thus in the following, the order convention,
O(·) or o(·), is uniform in ti .

• The grids under consideration are of the form π(θπ ) := {ti = T − T (1 − i
N

)1/θπ } for θπ ∈
(0,1] (inspired by [9,11]). Observe that their time-step �i is not-increasing in i, hence they
all satisfy (AF)(iii) with the same parameter Rπ = 1.

• The magnitude of the final accuracy is denoted by N−θconv for some parameter θconv > 0.
This is usually related to time-discretization errors between the continuous-time BSDE and
the discrete-time one, θconv may range from 0+ (for non-smooth data [11], Theorem 1.1)
to 1 (in the case of smooth data [10], Theorems 7 and 8).

• The approximation spaces are given by local polynomials of degree n (n ≥ 0) defined on hy-

percubes with edge length δ > 0, covering the set [−R,R]d (R > 0): we denote it by Pn,δ,R
loc. .

The functions in Pn,δ,R
loc. take values in R for the y-component and in (Rq)� for z (using lo-

cal polynomials component-wise), but we omit this in the notation. The best-approximation
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errors are easily controlled (using the Taylor formula):

inf
ϕ∈Pn,δ,R

loc.

∣∣ϕ(Xi) − u(Xi)
∣∣
2 ≤ |u|∞

(
P
(|Xi |∞ > R

))1/2 + cn

∣∣Dn+1u
∣∣∞δn+1 (3.21)

for any function u that is bounded, n + 1-times continuously differentiable with bounded
derivatives, and where the constant cn does not depend on (R,u, δ). The dimension of the
vector space Pn,δ,R

loc. is bounded by c̃n(2R/δ)d where c̃n is the number of polynomials on
each hypercube (it depends on d and n).

A significant computational advantage of local polynomial basis is that the cost of com-
puting the regression coefficients associated to a sample of size M ≥ dim(Pn,δ,R

loc. ) is O(M)

flops. The cost of the regression in the lth hypercube is of order M(l) × c̃2
n using SVD least

squares minimization [14], Chapter 5, where M(l) is the number of simulations that land
in the hypercube. Therefore, the total cost of the regressions at any time-point is of order
c̃2
n

∑
l M

(l) = c̃2
nM = O(M).

On the other hand, the cost of generating the clouds of simulations and computing the
simulated functionals (S

(M)
Y,i (X(i,m)), S

(M)
Z,i (H (i,m),X(i,m)))i,m is O(

∑N−1
i=0 NMi), which is

clearly dominant in the computational cost C of the MWLS algorithm. To summarize, the
computational cost is

C = O

(
N−1∑
i=0

NMi

)
.

Another advantage of the local polynomial basis is that there is substantial potential for
parallel computing.

• To make the tail contributions (outside [−R,R]d ) small enough, we assume that Xi has
exponential moments (uniformly in i), that is, supN≥1 sup0≤i≤N E(eλ|Xi |∞) < +∞ for some
λ > 0, so that the choice R := 2θconvλ

−1 log(N + 1) is sufficient to ensure (P(|Xi |∞ >

R))1/2 = O(N−θconv).

To simplify the discussion, we assume θL = θc = 1.

Smooth functions

Assume that yi(·), zi(·) are, respectively, of class Cl+1
b (Rd ,R) and Cl

b(R
d , (Rq)�) (bounded with

bounded derivatives) for some l ∈N \ {0}: this is similar to the discussion of [13], Section 4.4. In
fact, this is usually valid for the continuous-time limit (a priori estimates on the semi-linear PDE,
see [6,7]) provided that the data are smooth enough. In particular, we may assume (A′′

ξ ) with

θ� = 1. This leads to time-uniform bounds on the quantities Cy,i,Cz,i , C̄y,i ,
√

T − ti C̄z,i .
Set

δy,i := N−θconv/(l+1), δz,i := N−θconv/l, Mi := (
log(N + 1)

)d+1
Nθconv(2+d/l),
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take KY,i := P l,δy,i ,R

loc. and KZ,i := P l−1,δz,i ,R

loc. . From Proposition 3.9, Theorem 3.10 and the in-
equality (3.21), it is easy to check that

EY
App.,i = O

(
N−θconv

)
, EY

Dep.,i = o
(
N−θconv

)
,

C̄y,i

√
KY,i

Mi

= o
(
N−θconv/

√
log(N + 1)

)
,

EZ
App.,i = O

(
N−θconv

)
, EZ

Dep.,i = O
(
N−θconv

)
,

C̄z,i

√
KZ,i

Mi

= (T − ti )
−1/2O

(
N−θconv/

√
log(N + 1)

)
.

Consequently, using Lemma 2.1, we finally obtain

(
E
[∥∥yi − yM

i

∥∥2
i,M

])1/2 = O
(
N−θconv

)
,

(
E
[∥∥zi − zM

i

∥∥2
i,M

])1/2 = O
(
N−θconv

)(
1 + (T − ti )

−1/2√
log(N + 1)

)
.

For any time-grid π = π(θπ ), we get sup0≤i≤N E[‖yi − yM
i ‖2

i,M ]+∑N−1
i=0 �iE[‖zi − zM

i ‖2
i,M ] =

O(N−2θconv). The computational cost is C = O(log(N + 1)d+1Nθconv(2+d/l)+2). Ignoring the log-
arithmic factors, we obtain a final accuracy in terms of the computational cost:

C−1/((2+d/l)+2/θconv).

It should be compared with the rate C−1/((2+d/l)+3/θconv) which is valid for the Least Squares
Multi-step forward Dynamical Programming algorithm (LSMDP) [13]. This shows an improve-
ment on the rate, although there is no change in the dependence on dimension. The ratio d/l

is the usual balance between dimension and smoothness, arising when approximating a multi-
dimensional function. The controls of MWLS are stated in stronger norms than the controls of
LSMDP, and despite that, the estimates improve. The convergence improvement is due to better
MWDP-intrinsic estimates on Z, which avoid the 1/�i -factor of the LSMDP. This results in
better local error bounds, whence better global estimates. The reader can easily check that this
happens already in the simple case with null driver.

Hölder terminal condition

We investigate the case of non-smooth terminal condition, where nevertheless there is a smooth-
ing effect of the conditional expectation yielding smooth value functions (yi(·), zi(·)). Namely,
assume that � is bounded and θ�-Hölder continuous (in particular with (A′′

ξ )), and that, for all i,

the function yi(·) (resp., zi(·)) is (l + 1)-times (resp., l-times) continuously differentiable with
highest derivatives bounded by∣∣Dl+1

x yi

∣∣∞ ≤ C(T − ti )
(θ�−l)/2,

∣∣Dl
xzi

∣∣∞ ≤ C(T − ti )
(θ�−(l+1))/2. (3.22)
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These qualitative assumptions are related to the works of [6,7], who have determined similar
estimates for the gradients of quasi-linear PDEs under quite general conditions on the driver, ter-
minal condition and differential operator. Their estimates cover the case l = 0 ([7], Theorem 2.1)
or θ� = 0 and l ≥ 1 ([6], Theorem 1.4), but the Hölder continuous setting with high order deriva-
tives is not investigated. We therefore extrapolate these results in the assumptions (3.22) for the
purposes of this discussion.

In this setting, we have time-uniform bounds on the quantities Cy,i , (T − ti )
(1−θ�)/2Cz,i , C̄y,i ,√

T − ti C̄z,i . Set

δy,i := √
T − tiN

−θconv/(l+1), δz,i := √
T − tiN

−θconv/l,

Mi := (
log(N + 1)

)d+1
Nθconv(2+d/l)(T − ti )

−d/2,

take KY,i := P l,δy,i ,R

loc. and KZ,i := P l−1,δz,i ,R

loc. . Similarly to before, using in particular (3.21), we
eventually obtain

EY
App.,i = O

(
N−θconv

)
, EY

Dep.,i = o
(
N−θconv

)
,

C̄y,i

√
KY,i

Mi

= o
(
N−θconv/

√
log(N + 1)

)
,

EZ
App.,i = (T − ti )

(θ�−1)/2O
(
N−θconv

)
, EZ

Dep.,i = (T − ti )
(θ�−1)/2O

(
N−θconv

)
,

C̄z,i

√
KZ,i

Mi

= (T − ti )
−1/2O

(
N−θconv/

√
log(N + 1)

)
.

Consequently, using Lemma 2.1, we finally obtain(
E
[∥∥yi − yM

i

∥∥2
i,M

])1/2 = O
(
N−θconv

)
,

(
E
[∥∥zi − zM

i

∥∥2
i,M

])1/2 = O
(
N−θconv

)(
(T − ti )

(θ�−1)/2 + (T − ti )
−1/2√

log(N + 1)

)
.

The computation cost is given by (under the assumption π = π(θπ ))

C = O

(
N−1∑
i=0

NMi

)
= O

((
log(N + 1)

)d+1
N1+θconv(2+d/l)

)N−1∑
i=0

(
1 − i

N

)−d/(2θπ )

.

Up to possibly a log(N)-factor, the last sum is O(Nd/(2θπ )∨1). Ignoring the logarithmic factors,
we obtain C = O(N1+d/(2θπ )∨1+θconv(2+d/l)). Equivalently, as a function of the computational
cost, the convergence rate of the final accuracy equals

C−1/((2+d/l)+1/θconv(1+d/(2θπ )∨1)).

Following [11] (under suitable assumptions), two time-grid choices are possible for solving the
same BSDE.
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• The uniform grid π = π(1) gives θconv = θ�/2 (at least). The convergence order becomes
(2 + d

l
+ 2

θ�
(1 + d

2 ∨ 1))−1.

• The grid π = π(θ) (for θ < θ�) gives θconv = 1/2. Taking θ ↑ θ�, the convergence order is
(2 + d

l
+ 2

θ�
(θ� + d

2 ∨ θ�))−1.

The grid π(θ) exhibits a better convergence rate compared to the uniform grid. This corroborates
the interest in time grids that are well adapted to the regularity of the data. These features will be
investigated in subsequent more experimental works.

Appendix

A.1. Proof of Lemmas 2.1, 2.2 and 2.3

A.1.1. Proof of Lemma 2.1

The first inequality, for α ≤ 1, follows by bounding the sum by
∫ tk
ti

(tk − t)α−1 dt , whence Bα,1 =
1/α. The case α > 1 is obvious with Bα,1 = 1. For the second inequality, there are two main
cases:

� If α ≥ 1 and β ≥ 1, the advertised inequality is obvious with Bα,β = 1.
� Now, assume the complementary case, that is, α < 1 and/or β < 1, and first consider

the case ti = 0 and tk = 1. We set ϕ(s) = (1 − s)α−1sβ−1 and we use the integral
∫ 1

0 ϕ(s)ds

(equivalent to the usual beta function with parameters (α,β)) to bound the sum. A simple but
useful property (due to α < 1 and/or β < 1) is that ϕ is either monotone or has a unique minimum
on (0,1), whence

(1 − tj )
α−1t

β−1
j �j ≤ Rπ

∫ tj

tj−1

ϕ(s)ds +
∫ tj+1

tj

ϕ(s)ds.

Summing up over j and defining Bα,β = (1 + Rπ)
∫ 1

0 ϕ(s)ds concludes the proof for the simple
case. For general ti and tk one can use the bounds on the simple case by rearranging the j -sum
which is equal to

(tk − ti )
α+β−1

k−1∑
j=i+1

(
1 − tj − ti

tk − ti

)α−1( tj − ti

tk − ti

)β−1 �j

tk − ti
≤ Bα,β(tk − ti )

α+β−1.

A.1.2. Proof of Lemma 2.2

If α ≥ 1
2 , the result trivially holds with C(2.2a) = 1 and C(2.2b) = CuT

α−1/2.
Now, assume α < 1

2 : if (2.1) holds, of course we also have

uj ≤ wj +
N−1∑

l=j+1

wl�l

(T − tl)1/2−β(tl − tj )1/2−α
+ Cu

N−1∑
l=j+1

ul�l

(T − tl)1/2−β(tl − tj )1/2−α
. (A.1)
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By substituting (A.1) into the last sum, and using Lemma 2.1 we observe

N−1∑
l=j+1

ul�l

(T − tl)1/2−β(tl − tj )1/2−α

≤
N−1∑

l=j+1

wl�l

(T − tl)1/2−β(tl − tj )1/2−α

+
N−1∑

l=j+1

∑N−1
r=l+1 wr�r�l/((T − tr )

1/2−β(tr − tl)
1/2−α)

(T − tl)1/2−β(tl − tj )1/2−α

+ Cu

N−1∑
l=j+1

∑N−1
r=l+1 ur�r�l/((T − tr )

1/2−β(tr − tl)
1/2−α)

(T − tl)1/2−β(tl − tj )1/2−α

≤
N−1∑

l=j+1

wl�l

(T − tl)1/2−β(tl − tj )1/2−α

+ Bα+β,1/2+α

N−1∑
r=j+2

wr�r

(T − tr )1/2−β(tr − tj )1/2−2α−β

+ CuBα+β,1/2+α

N−1∑
r=j+2

ur�r

(T − tr )1/2−β(tr − tj )1/2−2α−β
.

Substituting into (A.1), we observe that we have an equation of similar form to (A.1), except
that, in the sum involving u, α �→ 2α + β and Cu �→ C2

uBα+β,1/2+α , and, in the sum involving
w, w �→ (1 + Cu(1 + T α+βBα+β,1/2+α))w.

After κ iterations of the previous step, we obtain α �→ 2κ(α + β) − β =: ακ . Hence, for κ

sufficiently large so that ακ ≥ 1
2 , that is, κ ≥ log2(

1/2+β
α+β

), we obtain the bound advertised in the
lemma statement.

A.1.3. Proof of Lemma 2.3

W.l.o.g. we can assume that C(2.2a) = 1 in (2.2); if it is not, one can redefine w as C(2.2a)w. We
first prove the case γ = 1. Define

ζs := 2C(2.2b)

∫ s

0

dr

(T − r)1/2−β
≤ 2

1 + 2β
2C(2.2b)T

(1+2β)/2, (A.2)

and write ζj = ζtj for brevity. We first multiply (2.2) by
eζ
j �j

(T −tj )1/2−β , then sum the outcome

equation over j ∈ {i + 1, . . . ,N − 1}, and finally switch the order of summation on the right-
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hand side as follows:

N−1∑
j=i+1

uj eζj �j

(T − tj )1/2−β

≤
N−1∑

j=i+1

wj eζj �j

(T − tj )1/2−β

+
N−1∑

j=i+1

∑N−1
l=j+1 wl�leζj �j/((T − tl)

1/2−β(tl − tj )
1/2−α)

(T − tj )1/2−β

+ C(2.2b)

N−1∑
j=i+1

∑N−1
l=j+1 ul�leζj �j/((T − tl)

1/2−β)

(T − tj )1/2−β

≤ eζT

N−1∑
j=i+1

wj�j

(T − tj )1/2−β
+ eζT Bα+β,1

N−1∑
l=i+2

wl�l

(T − tl)1/2−β(tl − ti )−α−β

+ C(2.2b)

N−1∑
l=i+2

ul�l

(T − tl)1/2−β

l−1∑
j=i+1

eζj �j

(T − tj )1/2−β

≤ eζT
(
1 + Bα+β,1T

α+β
) N−1∑

l=i+1

wl�l

(T − tl)1/2−β
+ 1

2

N−1∑
l=i+1

uleζl�l

(T − tl)1/2−β
,

where we have used (because ζ is non-decreasing and β ≤ 1
2 )

C(2.2b)

l−1∑
j=i+1

eζj �j

(T − tj )1/2−β
≤

∫ tl

ti+1

C(2.2b)eζs

(T − s)1/2−β
ds ≤ eζl

2
.

By subtracting the term with factor 1
2 , the result for γ = 1 follows. Moreover, plugging the result

into (2.2), and returning to general C(2.2a), gives

uj ≤ C(A.3)wj + C(A.3)

N−1∑
l=j+1

wl�l

(T − tl)1/2−β(tl − tj )1/2−α

(A.3)

+ C(A.3)

N−1∑
l=j+1

wl�l

(T − tl)1/2−β
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for a constant C(A.3) := 2C(2.2a)eζT (1 + Bα+β,1T
α+β). Now for the general case γ > 0, observe

that, for any δ ≥ 0, one obtains by change of the order of summation that

N−1∑
j=i+1

∑N−1
l=j+1 wl�l�j/((T − tl)

1/2−β(tl − tj )
1/2−δ)

(T − tj )1/2−β(tj − ti )1−γ

(A.4)

≤ Bβ+δ,γ

N−1∑
l=i+2

wl�l

(T − tl)1/2−β(tl − ti )1−β−δ−γ
.

Thus, (A.3) yields

N−1∑
j=i+1

uj�j

(T − tj )1/2−β(tj − ti )1−γ

≤ C(A.3)

N−1∑
j=i+1

wj�j

(T − tj )1/2−β(tj − ti )1−γ

+ C(A.3)Bβ+α,γ

N−1∑
l=i+2

wl�l

(T − tl)1/2−β(tl − ti )1−β−α−γ

+ C(A.3)Bβ+1/2,γ

N−1∑
l=i+2

wl�l

(T − tl)1/2−β(tl − ti )1/2−β−γ

≤ C(A.3)

(
1 + Bβ+α,γ T α+β + Bβ+1/2,γ T 1/2+β

) N−1∑
j=i+1

wj�j

(T − tj )1/2−β(tj − ti )1−γ
.

A.2. Proof of Lemma 3.7

Using the bounds Cy,i and Cz,i on y
(M)
i (·) and z

(M)
i (·), respectively, one applies the local Lips-

chitz continuity and boundedness properties of fj given in (AF) to obtain the bound

∣∣fj

(
xj , y

(M)
j+1(xj+1), z

(M)
j (xj )

)∣∣ ≤ Lf (Cy,j+1 + Cz,j )

(T − tj )1/2−θL/2
+ Cf

(T − tj )1−θc
. (A.5)

Substituting this into the definition S
(M)
Y,i (x(i)) (see (3.8)), it follows from (AF) that

∣∣S(M)
Y,i

(
x(i)

)∣∣ ≤ Cξ +
N−1∑
j=i

(
Lf (Cy,j+1 + Cz,j )

(T − tj )1/2−θL/2
+ Cf

(T − tj )1−θc

)
�j .
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Substituting the value of Cy,j and Cz,j given in equations (2.9) and (2.10), respectively, using the
crude bound |ξ −Eiξ |2,i ≤ Cξ and Lemma 2.1, we obtain the bound C̄y,i , with the form (3.9).

To obtain the bound C̄z,i , apply first the triangle inequality on the conditional standard devia-
tion of S

(M)
l,Z,i(H

(i,m),X(i,m)); second use the bound (A.5) on the driver, and the bound (AH) to
obtain √

Var
[
S

(M)
l,Z,i

(
H(i,m),X(i,m)

) |F (M)
i

]

≤ CξCM√
T − ti

+
N−1∑

j=i+1

(
Lf (Cy,j+1 + Cz,j )

(T − tj )1/2−θL/2
+ Cf

(T − tj )1−θc

)
CM√
tj − ti

�j .

Then, the computation of C̄z,i follows again from equations (2.9) and (2.10), and Lemma 2.1.
The form (3.9) is also derived. We skip details.
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