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This paper presents a study of the asymptotical behavior of the empirical distribution function (e.d.f.) of
Gaussian vector components, whose correlation matrix �(m) is dimension-dependent. By contrast with the
existing literature, the vector is not assumed to be stationary. Rather, we make a “vanishing second order”
assumption ensuring the covariance matrix �(m) is not too far from the identity matrix, while the behavior

of the e.d.f. is affected by �(m) only through the sequence γm = m−2∑
i �=j �

(m)
i,j

, as m grows to infinity.
This result recovers some of the previous results for stationary long-range dependencies while it also ap-
plies to various, high-dimensional, non-stationary frameworks, for which the most correlated variables are
not necessarily close to each other. Finally, we present an application of this work to the multiple testing
problem, which was the initial statistical motivation for developing such a methodology.

Keywords: empirical distribution function; factor model; false discovery rate; functional central limit
theorem; functional delta method; Gaussian triangular arrays; Hermite polynomials; sample correlation
matrix

1. Introduction

1.1. Motivation and background

Pertaining to the florishing field of statistics for high-dimensional data, the Benjamini–Hochberg
(BH) procedure has become a well accepted and commonly used method when testing a large
number of null hypotheses simultaneously. Its quality is measured via the false discovery pro-
portion (FDP), the proportion of errors among the rejected null hypotheses, whose expectation is
the celebrated false discovery rate (FDR), see Benjamini and Hochberg [4]. The methodology of
Neuvial [26] shows that the FDP of BH procedure is an (Hadamard differentiable) functional of
empirical cumulative distribution functions (e.d.f. in short). Via the functional delta method (see,
e.g., van der Vaart [33]), this rises the problem of obtaining functional central limit theorems for
e.d.f. in a setting which is suitable for high-dimensional data.
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A colossal number of work aimed at extending Donsker’s theorem (Doob [12], Donsker [11]
and Dudley [15]) to a more relaxed setup. Among them, a particularly prospering research field
deals with the introduction of weak dependence between the original variables, mainly by using
mixing conditions. Here, we do not attempt to provide an exhaustive list for such results and we
refer the reader to, for example, Arcones [1], Dedecker and Prieur [7], [14] for reviews. When
restricted to the Gaussian subordinated setting, asymptotics for the e.d.f. are described in the
two well-known papers of Dehling and Taqqu [8] (long-range) and Csörgő and Mielniczuk [6]
(short-range). Both studies make a stationarity assumption: the covariance matrix between the
variables is assumed to be of the form

�
(m)
i,j = r

(|i − j |), 1 ≤ i, j ≤ m,

for some function r(·) vanishing at infinity and not depending on m.
However, in high-dimensional data, while the dimension m can be very large (typically, several

thousands), the matrix �(m) is generally complex and not-necessarily locally structured. This is
typically the case when latent variables (factors) have a simultaneous impact on all the variables
(see, e.g., Friguet, Kloareg and Causeur [20], Sun, Zhang and Owen [32] and Fan, Han and
Gu [17] and references therein), which leads to “spiked” correlation matrices (as referred to
by Johnstone [24]). In a more general view, the larger the dimension, the more stringent the
stationary assumption.

1.2. Presentation of the main result

Let us consider {Y (m),m ≥ 1} a triangular array for which each vector Y (m) = (Y
(m)
1 , . . . , Y

(m)
m )

is a m-dimensional Gaussian vector, defined on some probability space (�m,Fm,Pm), with zero
mean and covariance matrix �(m). For the sake of simplicity, assume that each Y

(m)
i is of vari-

ance 1, that is, �
(m)
i,i = 1 for all i. Denote �̄(z) = P(Z ≥ z), for z ∈ R, Z ∼ N (0,1), the upper

tail distribution function of a standard Gaussian variable, and consider the empirical cumulative
distribution function:

F̂m(t) = m−1
m∑

i=1

1
{
�̄
(
Y

(m)
i

)≤ t
}
, t ∈ [0,1]. (1)

Here, we consider the e.d.f. of the �̄(Y
(m)
i )’s rather than the one of the Y

(m)
i ’s to get uniformly

distributed variables. The variables can therefore be interpreted as p-values, which is convenient
for multiple testing, see Section 4. To study (1), let us introduce the following quantities:

γm = m−2
∑
i �=j

�
(m)
i,j ; (2)

rm = (
m−1 + |γm|)−1/2

. (3)
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In a nutshell, our main result is as follows: by assuming, when m → ∞,

r2
m

m2

∑
i �=j

(
�

(m)
i,j

)2 → 0; (vanish-secondorder)

r
4+ε0
m

m2

∑
i �=j

(
�

(m)
i,j

)4 → 0, for some ε0 > 0; (H1)

mγm → θ, for some θ ∈ [−1,+∞]; (H2)

the following weak convergence holds (in the Skorokhod topology):

rm(̂Fm − I ) � Z, as m → ∞, (4)

where I (t) = t and Z is some continuous Gaussian process on [0,1] with a distribution only
function of θ . Specifically, denoting φ the standard Gaussian density:

(i) if mγm → θ < +∞, we have rm ∝ m1/2 and the process m1/2(̂Fm − I ) converges to a
(continuous Gaussian) process with covariance function given by (t, s) 
→ t ∧ s − ts +
θφ(�̄−1(t))φ(�̄−1(s)). Hence, the limit process is a standard Brownian bridge when θ =
0, but has a covariance function smaller (resp. larger) if θ < 0 (resp. θ > 0).

(ii) if mγm → θ = +∞, we have rm ∼ (γm)−1/2 � m1/2 and (γm)−1/2(̂Fm − I ) converge
to the process φ(�̄−1(·))Z for Z ∼ N (0,1). Hence, the “Brownian” part asymptotically
disappears.

The regimes (i) and (ii) are illustrated in Figure 1: as mγm grows, the influence of the “Brownian”
part decreases while that of the (randomly rescaled) function φ(�̄−1(·)) increases. Also, the scale
of the Y -axis indicates that the m1/2 is not a suitable rate for large values of mγm.

Let us briefly discuss our novel conditions. Condition (vanish-secondorder) is the starting point
of our study: it corresponds to assume that the expansion of the covariance function of rm(̂Fm−I )

asymptotically stops at order 1. This is a crucial L2-type tool to elaborate our proofs in a possibly
non-stationary regime. However, the price to pay is that it does not cover regimes where (some
of) the greater orders matter asymptotically, as in the case of short range dependence (tridiagonal
1/2–1–1/2 for instance). As for condition (H1), it is only used to prove that rm(̂Fm − I ) is C-
tight and we suspect it to be unnecessary, although we did not manage to remove it formally
from our assumption set. Condition (H2) is not restrictive because it holds up to consider a
subsequence.

Finally, in the regime (ii), we show that the convergence (4) is maintained when replacing the
set of assumptions (vanish-secondorder), (H1) and (H2) by the two following conditions:

r
2+ε0
m

m2

∑
i �=j

(
�

(m)
i,j

)2 = o(1), with ε0 > 0; (H3)

mγ 1+ε0
m → θ = +∞, with ε0 > 0. (H4)

Roughly speaking, it shows that, up to add some “safety margin” ε0 in the convergences, as-
sumption (H1) can be removed in regime (ii).
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Figure 1. Plot of t 
→ m1/2(̂Fm(t) − t) for some observed Y (ω). These realizations have been generated

in the equi-correlated model �
(m)
i,j

= ρm, i �= j (see (14)) and for m = 104.

1.3. Relation to existing literature

Compared to previous studies using the stationary paradigm, our assumptions are markedly dif-
ferent: first, the covariance matrix �(m) is allowed to depend on m, that is, the Y (m)’s form a
triangular array of Gaussian variables. Second, �(m) needs not be locally structured, that is, �

(m)
i,j

is not necessarily related to the distance between i and j . Instead, our conditions are permuta-
tion invariant, that is, are unchanged when permuting the columns of the triangular array. This is
quite natural because the e.d.f. is itself permutation invariant. Third, our approach shows that the
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negative correlations can decrease the asymptotic covariance or even increase the convergence
rate.

As a counterpart, when restricted to the stationary setting, our assumptions are admittedly
not optimal: it includes long-range of Dehling and Taqqu [8] (for an Hermite rank equal to
1), but excludes short range of Csörgő and Mielniczuk [6]. As explained above, this restriction
comes from (vanish-secondorder), which implicitly truncates the covariance expansion in the
limit. Nevertheless, our result opens a window for other dependence models as factor models or
sample correlation matrices for instance.

Next, let us mention the interesting studies of Soulier [30] and Bardet and Surgailis [3] in
which the stationarity assumption has also been removed. In the first study, Soulier [30] proves a
central limit theorems (CLT) for variables of the form T (Y

(m)
i ), by assuming that maxi �=j {�(m)

i,j }
becomes sufficiently small as m grows. On the one hand, this work deals with a function T

with arbitrary Hermite rank, while our work is restricted to the function T (y) = 1{y ≤ t} −
t (of Hermite rank 1). On the other hand, we obtain a convergence which is functional w.r.t.
parameter t and our conditions on the �

(m)
i,j involve averages (and not suprema). In the second

work, Bardet and Surgailis [3] establishes CLT’s for Gaussian subordinated arrays. There are two
major differences with our approach: first, they deal with a CLT for the partial-sum process and
not with a functional CLT for the e.d.f. Second, their assumptions are not of the same nature,
because they require that |�(m)

i,j | ≤ r(|i − j |) for all i, j , for some function r(·), independent of

m, and vanishing at infinity. So the latter still relies on a stationary structure.
Finally, Delattre and Roquain [9] studied in a previous work the (non-stationary) equi-

correlated case where �
(m)
i,j = ρm, i �= j , for some correlation ρm tending to zero (at some ar-

bitrary rate). In a nutshell, our approach generalizes this result, by finding general conditions on

�(m) such that, in our general �(m)-dependent framework, the asymptotical distribution of the
e.d.f. is the same as for the ρm-equi-correlated with ρm = (m(m − 1))−1∑

i �=j �
(m)
i,j .

1.4. Organization of the paper

In Section 2, we study the covariance function of F̂m under (vanish-secondorder). The main the-
orem is formally stated in Section 3 together with many illustrative examples. This new method-
ology is then applied to the multiple testing problem in Section 4. The proof of the main result is
presented in Section 5; it mainly relies on central limit theorems for martingale arrays and on a
suitable tightness criterion. To make the proof as clear as possible, some technical and auxiliary
results are deferred to a supplementary file, see Supplementary Material in [10], whose sections
are denoted by adding a “S-” in the reference number (writing, e.g., Section S-1).

2. Covariance of ̂Fm under (vanish-secondorder)

Throughout the paper, to alleviate the notation, we will often denote Pm by P, Y (m) by Y and
�(m) by � when not ambiguous.

Let us consider the sequence of Hermite polynomials H�(x), � ≥ 0, x ∈ R (see Appendix S-4).
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By using Melher’s formula, the covariance function of the process F̂m(·) can be described as a
function of the correlation matrix � of Y .

Proposition 2.1. Consider F̂m(·) the process defined by (1) and the function family {c�(·), � ≥ 1}
defined by

c�(t) = H�−1
(
�̄−1(t)

)
φ
(
�̄−1(t)

)
, t ∈ [0,1], � = 1,2, . . . . (5)

Then for all t, s ∈ [0,1], we have

Cov
(̂
Fm(t), F̂m(s)

)=
∑
�≥1

c�(t)c�(s)

�!
(

m−2
∑
i,j

(�i,j )
�

)
. (6)

This result is well known and can be found, for example, in Theorem 2 of Schwartzman and
Lin [29], see also Lemma 10.1, chapter IV in Rozanov [28] (we provide a proof in Appendix S-4
for completeness). While (6) is an exact expression, we can try to approximate the covariance
Cov(̂Fm(t), F̂m(s)) when m grows to infinity, while making some assumption on the matrix
� = �(m).

First, let us note the following: since m−2∑
i,j (�i,j )

� = (�!)−1 Var(m−1∑m
i=1 H�(Yi)) ≥ 0

(by using (S-31) in Appendix S-4), expression (6) shows that the following conditions are equiv-
alent as m tends to infinity,

∀t ∈ [0,1], Var
(̂
Fm(t)

) = o(1), (7)

∀� ≥ 1, m−2
∑
i,j

(�i,j )
� = o(1), (8)

m−2
∑
i,j

(�i,j )
2 = o(1). (LLN-dep)

Note that in (8), the case � = 1 follows from � = 2 by Cauchy–Schwarz’s inequality. A conse-

quence is that condition (LLN-dep) is required in order to have ∀t ∈ [0,1], F̂m(t)
P→ t . Moreover,

the rate rm defined by (3) satisfies 1 ≤ rm ≤ √
m and (m−2∑

i,j (�i,j )
2)−1/4 ≤ rm, the latter com-

ing from m−1 + |m−2∑
i �=j �i,j | ≤ m−2∑

i,j |�i,j | ≤ (m−2∑
i,j (�i,j )

2)1/2. Hence, rm tends to
infinity under (LLN-dep) but not faster than

√
m.

Second, let us rewrite (6) as follows:

Cov
(̂
Fm(t), F̂m(s)

) = m−1(t ∧ s − ts) + γmc1(t)c1(s)
(9)

+
∑
�≥2

(
m−2

∑
i �=j

(�i,j )
�

)
c�(t)c�(s)(�!)−1,

where γm is defined by (2). The latter holds because, for two independent N (0,1) variables
U and V , we have m−1∑

�≥1 c�(t)c�(s)(�!)−1 = Cov(1{�̄(U) ≤ t},1{�̄(V ) ≤ s}). In expan-

sion (9), the second order term (i.e., the sum over � ≥ 2) is negligible w.r.t. the other terms
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if (vanish-secondorder) holds. Hence, assuming now (vanish-secondorder), we obtain that the
rescaled covariance Cov(rmF̂m(t), rmF̂m(s)) of rmF̂m converges to the following covariance
function

K(t, s) = 1

1 + |θ | (t ∧ s − ts) + θ

1 + |θ |c1(t)c1(s), (10)

where θ is defined in (H2) and where we use the conventions θ/(1+|θ |) = 1 and 1/(1+|θ |) = 0
when θ = +∞. Note that (H2) always holds up to consider a subsequence, because mγm ≥ −1
from the non-negativeness of �(m).

Remark 2.2. In the RHS of expression (10), the second term is not necessarily a covariance
function because θ can be negative. Nevertheless, K can be written as K(t, s) = 1

1+|θ | K̃(t, s) +
1+θ

1+|θ |c1(t)c1(s), where

K̃(t, s) = t ∧ s − ts − c1(t)c1(s) (11)

turns out to be a covariance function; considering a Wiener process (Wt )t∈[0,1], K̃ is the covari-

ance function of the process Wt − tW1 − c1(t)
∫ 1

0 �̄−1(s)dWs , which is the orthogonal projec-

tion in L2 of Wt onto the orthogonal of the linear space spanned by W1 and
∫ 1

0 �̄−1(s)dWs .
Interestingly, the latter also shows that the original covariance K given by (10) can be seen
as the covariance function of Zt = (1 + |θ |)−1/2(Wt − tW1) + (1 + |θ |)−1/2((1 + θ)1/2 −
1)c1(t)

∫ 1
0 �̄−1(s)dWs .

3. Main result

3.1. Statement

Our main result establishes that the convergence of the covariance functions investigated in Sec-
tion 2 can be extended to the case of a weak convergence of process. For this, we should consider
the other technical assumptions described in Section 1.2.

Theorem 3.1. Let us consider the empirical distribution function F̂m defined by (1). Assume that
the covariance matrix �(m) depends on m in such a way that (vanish-secondorder) and (H1) hold
with rm defined by (3) and assume (H2). Consider (Zt )t∈[0,1] the Gaussian continuous process
with covariance function K defined by (10). Then we have the convergence (in the Skorokhod
topology)

rm(̂Fm − I ) � Z, as m → ∞, (12)

where I (t) = t denotes the identity function. Moreover, the result holds by replacing the set of
assumptions {(vanish-secondorder), (H1) and (H2)} by {(H3) and (H4)}.

Theorem 3.1 is illustrated in the next section, which provides several examples.
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3.2. Examples

Let us first note that assumptions (vanish-secondorder) and (H1) always hold under the following
condition

|�(m)
i,j | ≤ am for all i �= j and am satisfies m1+δa2

m → 0 for some δ > 0. (13)

Also remember that, as mentioned in Section 1.2, regime (i) (resp. (ii)) referred to the case where
θ < ∞ (resp. θ = ∞). We now give several types of matrix �m for which Theorem 3.1 can be
applied.

Equi-correlation

Let us start with the following simple example:

�(m) =

⎛⎜⎜⎜⎜⎝
1 ρm . . . ρm

ρm

. . .
. . .

...
...

. . .
. . . ρm

ρm . . . ρm 1

⎞⎟⎟⎟⎟⎠= (1 − ρm)Im + ρm

⎛⎜⎜⎜⎜⎝
1
...
...

1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1
...
...

1

⎞⎟⎟⎟⎟⎠
T

, (14)

where ρm ∈ [−(m − 1)−1,1] is some parameter. We easily check that γm defined by (2) is given
by mγm = (m − 1)ρm and that the assumptions of Theorem 3.1 are all satisfied if ρm → 0 and
mρm converges to some θ ∈ [−1,+∞], which yields convergence (12). This is in accordance
with Lemma 3.3 of Delattre and Roquain [9].

This simple example already shows that, following the choice of the sequence (ρm)m, the
empirical distribution function can have various asymptotic behaviors. For instance, taking ρm =
−(m − 1)−1 gives a process in regime (i) with a minimal asymptotic covariance function (θ =
−1, see (11)), while taking ρm ∼ m−2/3 leads to a rate rm ∼ m1/3 � m1/2 and thus a process
converging in regime (ii).

Alternate equi-correlation

Let us consider the covariance matrix:

�(m) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −ρm ρm . . .

−ρm 1 −ρm

. . .
...

ρm

. . .
. . .

. . . ρm

...
. . . −ρm 1 −ρm

. . . ρm −ρm 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= (1 − ρm)Im + ρm

⎛⎜⎜⎜⎝
1

−1
1
...

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
−1
1
...

⎞⎟⎟⎟⎠
T

, (15)

where ρm ∈ [−(m − 1)−1,1] is a given parameter. Clearly, γm is such that

mγm = 2ρmm−1
m−1∑
i=1

i∑
k=1

(−1)k = −ρm�m/2�/(m/2).



310 S. Delattre and E. Roquain

Hence the rate rm defined by (3) is rm ∼ √
m and assumptions of Theorem 3.1 are fulfilled

(with θ = 0) by assuming that m1+δρ2
m → 0, with δ > 0 (because (13) holds). Hence, under that

assumption,
√

m(̂Fm − I ) converges to a standard Brownian bridge.
Maybe surprisingly, this example shows that, even if the correlations are “strong” (e.g., ρm ∼

m−2/3, to be compared with the equi-correlated case), positive and negative correlations can
exactly compensate each other to provide the same convergence result as under independence.

Long-range stationary correlations

Let us consider the correlation matrix of the following form:

�
(m)
i,j = r

(|j − i|), for r(0) = 1, r(k) = k−DL(k), 0 < D < 1, (16)

where L : (0,+∞) → (0,+∞) is slowly varying at infinity (∀t > 0, L(tx) ∼ L(x) as x → +∞).
This framework is often referred to as “long-range dependence” in literature dealing with a sta-
tionary setup (see, e.g., Dehling and Taqqu [8] and Doukhan, Lang and Surgailis [13]). We can
prove than assumptions (H3) and (H4) are satisfied (see Section S-2.1). Hence, by using Theo-
rem 3.1 under (13), we derive

γ
−1/2
m (̂Fm − I ) � c1(·)Z, as m → ∞,

for Z ∼ N (0,1). This is in accordance with Theorem 1.1 of Dehling and Taqqu [8] (see in
particular Example 1 therein).

Finally, let us note that assumption (vanish-secondorder) of Theorem 3.1 is not satisfied for
a covariance matrix of the type (16) taken with D ≥ 1 (short-range) (the other terms in the
covariance expansion (9) are required in the limit, see Csörgő and Mielniczuk [6]).

“Vanishing” short/long range correlations

Let us modify slightly the matrix (16), by letting:

�
(m)
i,j = ρmr

(|j − i|), for r(0) = 1, r(k) = k−D, D > 0, (17)

where ρm is some non-negative parameter (we removed the slowly varying function for the sake
of simplicity). When ρm varies in function of m, note that the latter is not of the stationary type.
We have

mγm ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2ρm

m1−D

(1 − D)(2 − D)
if D ∈ [0,1),

2ρm logm if D = 1,

2ρm

∑
k≥1

k−D if D > 1,

(18)

see (S-11) in the supplement [10] for a proof. Assuming that the quantity (18) as a limit (denoted
θ ), (vanish-secondorder) and (H1) hold if m1+δρ2

m → 0 with δ > 0 (because (13) holds). The
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Table 1. Rate rm defined by (3) in function of D ≥ 0 and ρm such that
ρm = o(m−(1/2+δ)) for some δ > 0, for the particular covariance (17)

D ∈ [0,1) D ≥ 1

θ < ∞ ρmm1−D = O(1) θ = 0
rm ∼ √

m rm ∼ √
m

θ = ∞ ρmm1−D → ∞
rm ∼ ρ

−1/2
m mD/2 Not possible

resulting rate of convergence rm is given as a function of D and ρm in Table 1. Markedly, weak
short-range correlations (D > 1) always yields rm ∼ m1/2 while weak long-range correlations
(D < 1) can give both regimes. For instance, taking ρm ∼ m−2/3 yields rm ∼ mD/2+1/3 for
D < 1/3 and rm ∼ m1/2 otherwise. Overall, the convergence rate increases with D.

“Vanishing” factor model

This model is also referred to as “spiked” covariance matrix, see Johnstone [24]. It assumes that
the k-first eigenvalues of the covariance matrix are greater than 1 (for some fixed value of k)
while the other are all equal to 1. In our setting where we consider only correlation matrices,
we assume that the sequence of eigenvalues is constant after some fixed rank k. Precisely, let us
consider a matrix �(m) of the following form:

�(m) = (1 − ρm)Im + ρmPHP T , (19)

where H is a k × k diagonal matrix with diagonal entries h
(m)
1 , . . . , h

(m)
k ∈ (1,∞), where P =

(p
(m)
i,r )1≤i≤m,1≤r≤k is an m × k matrix such that P T P = Ik and where ρm ∈ [−1,1] is some

parameter. Importantly, k is taken fixed with m. The k first eigenvalues of �(m) are thus given by
1 − ρm + ρmh

(m)
r , r = 1, . . . , k, while the remaining eigenvalues are all equal to 1 − ρm. Hence,

to ensure that �(m) given by (19) is a well defined correlation matrix, we should additionally
assume that for all r = 1, . . . , k, 1 − ρm + ρmh

(m)
r ≥ 0, and that PHP T has diagonal entries

equal to 1, that is, for all i = 1, . . . ,m,
∑k

r=1 h
(m)
r (p

(m)
i,r )2 = 1. Note that the latter requires

h
(m)
1 + · · · + h

(m)
k = m and thus maxr{h(m)

r } ≥ m/k.
In Section S-2.2, we prove that (vanish-secondorder) and (H1) hold provided that

r2+δ
m ρ2

m → 0 with δ > 0. (20)

Hence, Theorem 3.1 applies (up to consider a subsequence such that the convergence (H2) holds).
In (20), the rate rm can be computed by using the definition, see (3), or the following expression.

mγm = ρm

k∑
r=1

h(m)
r

(
m−1/2

m∑
i=1

p
(m)
i,r

)2

− ρm. (21)
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The rate of convergence thus intrinsically depends on the asymptotic behavior of the coordinate-
wise mean of each eigenvector (p

(m)
i,r )1≤i≤m .

To further illustrate this example, we can focus on the particular case where k = 1. In that case,
the model can be equivalently written as

�(m) = (1 − ρm)Im + ρmξξT , (22)

where ξ = ξ (m) is a m × 1 vector in {−1,1}m and where ρm ∈ [−(m − 1)−1,1]. The model (22)
contains as particular instances the equicorrelated matrix (ξ (m) = (1 1 · · ·1)T ) and the alternate
equicorrelated matrix (ξ (m) = (1 −1 1 · · ·)T ) that we have studied above. We easily check that
condition (20) recovers the conditions that we obtained in each of theses particular cases. In
general, for an arbitrary ξ (m) ∈ {−1,1}m, since the quantity in (21) is equal to

ρm

(
m−1/2

m∑
i=1

ξ
(m)
i

)2

− ρm, (23)

the rate rm is directly related to the number of −1 and +1 into ξ (m). For instance, if ξ (m) =
(U1, . . . ,Um) where U1,U2, . . . are i.i.d. centered random signs, we have by the central limit
theorem that the quantity (23) tends to 0 (in probability) whenever ρm → 0, which gives a rate
rm ∼ √

m (in probability). Hence, we obtain the convergence (12) with the same rate and asymp-
totic variance as in the independent case whenever m1+δρ2

m → 0 with δ > 0.

Sample correlation matrix

We consider the model where the correlation matrix is generated a priori as a Gaussian empirical
correlation matrix. Namely, let us assume that

�(m) = D−1SD−1, for S = n−1
m XT X and D = diag(S1,1, . . . , Sm,m)1/2, (24)

where X is a nm ×m matrix with i.i.d. N (0,1) entries. Assume m/nm → 0 as m tends to infinity,
which, in a statistical setup, corresponds to assume that the number m of variables (columns of
X) is of smaller order than the sample size nm.

A by-product of Theorem 2 in Bai and Yin [2] (adding a number of variables which is a
vanishing small proportion of the sample size) is that,

‖S − Im‖2
P→0,

where ‖ · ‖2 denotes the Euclidian-operator norm, that is, ‖S − Im‖2 = max1≤i≤m |λ(m)
i − 1|

and λ
(m)
1 , . . . , λ

(m)
m denote the eigenvalues of S. Hence, max1≤i≤m |Si,i − 1| P→0, which in turn

implies ‖�(m) − Im‖2
P→0. Next, simple arguments entail the following inequalities:∣∣∣∣m−1

∑
i �=j

�
(m)
i,j

∣∣∣∣ = m−1
∣∣〈(1 · · ·1)T ,

(
�(m) − Im

)
(1 · · ·1)T

〉∣∣≤ ∥∥�(m) − Im

∥∥
2;
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r2
mm−2

∑
i �=j

(
�

(m)
i,j

)2 ≤ m−1
m∑

i=1

(
λ

(m)
i − 1

)2 ≤ ∥∥�(m) − Im

∥∥2
2;

r4+ε0
m m−2

∑
i �=j

(
�

(m)
i,j

)4 ≤
{

min
1≤i≤nm

|Si,i |
}−4

mε0/2
∑
i �=j

(Si,j )
4.

Moreover, we easily check that E(n
1/2
m Si,j )

4 = E(n
−1/2
m

∑nm

k=1 Xk,iXk,j )
4 is upper bounded by

some positive constant. Hence, by assuming that the sequence nm satisfies

m1+δ/nm → 0 for some δ > 0,

the above inequalities implies that the rate is rm ∼ √
m, that (H2) holds with θ = 0 and that

(vanish-secondorder) and (H1) are satisfied (all these convergences holding in probability).
Hence, Theorem 3.1 can be applied and this shows that the asymptotic of the empirical dis-
tribution function is the same as under independence.

4. Application to multiple testing

4.1. Context

The so-called “Benjamini and Hochberg procedure” (BH procedure), widely popularized after
the celebrated paper Benjamini and Hochberg [4], is often given as the default procedure to pro-
vide a false discovery proportion (FDP) close to some pre-specified error level α. More specifi-
cally, the BH procedure provides that the expectation of the FDP, called the false discovery rate
(FDR), is bounded by the nominal level α under independence of the tests (and also for some
other types of dependence, see Benjamini and Yekutieli [5], Farcomeni [18] and Kim and van de
Wiel [25]). The present work shows that, under our assumptions, the distribution of the FDP of
BH procedure is widening around its expectation, as the quantity γm defined by (2) grows.

The formal link between the FDP, the BH procedure and e.d.f.’s has been delineated in Gen-
ovese and Wasserman [21] and Farcomeni [19] (FDP at a fixed threshold) and consolidated later
in Neuvial [26] (FDP at BH threshold). Here, we follow the approach of Neuvial [26], by us-
ing that the FDP of BH procedure is a Hadamard differentiable function of (rescaled) empirical
distribution functions. Convergence results are thus derived from Theorem 3.1 by applying the
(partial) functional delta method, see Proposition S-1.1.

4.2. Multiple testing setting

Let us add to the original vector Y ∼ N (0,�) an unknown vector H = (Hi)1≤i≤m ∈ {0,1}m as
follows: for 1 ≤ i ≤ m,

Xi = δHi + Yi, (25)
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for some positive number δ (assumed to be fixed with m). Hence, X ∼N (δH,�). Now consider
the statistical problem of finding H from the observation of X = (Xi)1≤i≤m. From an intuitive
point of view, H is the “signal” (unknown parameter of interest), Y is the “noise” (unobserved)
while � and δ are “nuisance” parameters. An important remark is that � can be sometimes
known, for instance in genome-wide association study, see Section 2 in Fan, Han and Gu [17]. If
� is unknown, the quantities γm can be often estimated by a standard sample variance estimator,
see Remark 4.1.

Let us define the following e.d.f.’s: for t ∈ [0,1],

F̂0,m(t) = m−1
0

m∑
i=1

(1 − Hi)1
{
�̄(Xi) ≤ t

}; (26)

F̂1,m(t) = m−1
1

m∑
i=1

Hi1
{
�̄(Xi) ≤ t

}; (27)

Ĝm(t) = m−1
m∑

i=1

1
{
�̄(Xi) ≤ t

}= m0

m
F̂0,m(t) + m1

m
F̂1,m(t), (28)

where m0 =∑m
i=1(1−Hi) and m1 =∑m

i=1 Hi . Here, the quality of a procedure that rejects each
null hypothesis “Hi = 0” whenever �̄(Xi) ≤ t is given by

FDPm(t) = (m0/m)̂F0,m(t)

Ĝm(t)
, (29)

where we used the convention 0/0 = 0. Now, define the following functional: for α ∈ (0,1),
T (H) = sup{t ∈ [0,1] : H(t) ≥ t/α}, for H ∈ D(0,1), with the convention sup{∅} = 0. Clas-
sically, the BH procedure (at level α) corresponds the thresholding T (Ĝm), see Genovese and
Wasserman [21]. In the sequel, the random variable FDPm(T (Ĝm)) is denoted by FDPm for
short.

As proved in the supplemental file (see Section S-1 in [10]), in this model, the asymptotic
properties of FDPm generally depends on which null hypotheses are true or not, which can be
considered as a limitation. Nevertheless, this fact is inherent to the multiple testing setting con-
sidered here, because the dependencies accounting in the FDP of the BH procedure are related to
the sub-matrix (�i,j )i,j :Hi=Hj =0 and thus are linked to the location of the true null hypotheses.
A convenient way to circumvent this problem is to add random effects, by assuming that, pre-
viously and independently to the model (25), we have drawn H = (H1, . . . ,Hm) for H1,H2, . . .

i.i.d. Bernoulli variables of parameter π1 = 1 −π0, for some π0 ∈ (0,1). Thus X follows the dis-
tribution N (δH,�) conditionally on H . The corresponding global (unconditional) model, often
referred to as the two-group mixture model has been widely used in the multiple testing literature,
see, for example, Efron et al. [16], Storey [31], Genovese and Wasserman [21] and Roquain and
Villers [27].
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Remark 4.1. It is common that the Xi ’s are obtained via an averaging on several i.i.d. replica-
tions, that is, Xi = n−1/2∑n

j=1 Zi,j where (Zi,1)1≤i≤m, . . . , (Zi,n)1≤i≤m are n i.i.d. Gaussian

vectors N (δn−1/2H,�). In that case, the following holds:

• γm = Var(X̄m) can be estimated by the sample variance γ̂m of Z̄j = m−1∑m
i=1 Zi,j ,

1 ≤ j ≤ n. For instance, a confidence bound can be obtained for γm by noting that
(n − 1)γ̂m/γm ∼ χ2(n − 1).

• To check whether (vanish-secondorder) holds, the quantity (2/m2)
∑m

i,j=1 �2
i,j can be over-

estimated by the empirical variance of Z̄2
j = m−1∑m

i=1 Z2
i,j , 1 ≤ j ≤ n. This holds because

HT �H ≥ 0 and Var(Z̄2
1) = 2m−2∑m

i,i′=1 �2
i,i′ + 4δ2n−1HT �H .

4.3. Result

Denote G(t) = π0F0(t) + π1F1(t), where F0(t) = t , F1(t) = �̄(�̄−1(t) − δ). The following
result is proved in Section S-1.

Corollary 4.2. Consider the two-group mixture model defined above, generated from parameters
δ > 0, π0 ∈ (0,1) and a correlation matrix � = �(m). Assume that � satisfies either {(vanish-
secondorder) and (H1)} or {(H3) and (H4)}. Let α ∈ (0,1) and t� = t�(δ,α) be the unique t ∈
(0,1) such that G(t) = t/α. Let h(t�) = (φ(�̄−1(t�))/t�)2. Then the sequence of r.v. FDPm

defined by (29) enjoys the following convergence:

FDPm − π0α

π0α{(1/t� − π0)/(π0m) + h(t�)γm}1/2
� N (0,1), (30)

where γm is defined by (2).

Corollary 4.2 provides a theoretical support for the following fact: as m grows to infinity, the
concentration of FDPm around π0α deteriorates when γm increases, so when positive correlations
appear between the individual statistical tests. However, notice that, as for the e.d.f. convergence,
negative correlations help to decrease γm and can entail a concentration even better than under
independence when γm is negative (although this phenomenon is necessary of limited amplitude
because γm ≥ −1/m).

To illustrate further Corollary 4.2, Figure 2 displays the true distribution of FDPm, together
with the Gaussian approximation obtained by Corollary 4.2. The two-group mixture model cho-
sen to generate the Xi ’s uses a factor model (19) for � with the following parameters: k = 3,
mρm ∈ {0,10,102,103}, h1/m = 0.4, h2/m = 0.3, h3/m = 0.6, and p1 = (1,1, . . .)/m1/2,
p2 = (1,−1,1, . . .)/m1/2, p3 = (1, . . . ,1,−1, . . . ,−1)/m1/2 (m is assumed to be even). The
parameters of the mixture are π0 = 0.9 and δ = 3. The BH procedure is taken at level α = 0.25.

This experiment shows that, even for a relatively small values for ρm (ρm = 0.002 or ρm =
0.02), the FDP distribution can be largely affected by the dependencies. Also, for m = 5000 (left
picture), while the Gaussian approximation looks accurate for mρm ∈ {0,10,100}, this seems
more questionable when mρm = 1000. This non-Gaussian phenomenon, whose amplitude in-
creases with ρm (for a fixed m), shows the limit of the proposed methodology. As a matter of
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Figure 2. Distribution of FDPm (29) under a 3-factor model, see text; the dotted lines corresponds to the
true distribution computed over 5000 simulations, the solid lines display the Gaussian approximation given
by Corollary 4.2 (whose mean, π0α = 0.225, is displayed by the dashed vertical line).

fact, additional experiments show that the approximation induced by Theorem 3.1 is still valid
for m = 5000 and mρm = 1000. Hence, we suspect that, for this case, the FDP cannot be approx-
imated by a linear function of the e.d.f.’s which results in a poor accuracy when using the delta
method. Finally, the right display in Figure 2 shows that, as one can expect, this phenomenon
disappears by increasing the value of m.

To conclude, this study reinforces the fact that it is desirable to incorporate the dependence
(e.g., γm) in a multiple testing procedure in order to “stabilize” the behavior of the FDP. This is
an exciting direction for a future work.

5. Proof of Theorem 3.1

5.1. A related result and additional notation

Let us define the “modified” empirical distribution function F̃m by the following relation: for
t ∈ [0,1],

rm
(̂
Fm(t) − t

)= rm
(̃
Fm(t) − t

)+ c1(t)rmYm. (31)

The convergence of the two processes rm(̂Fm − I ) and rm(̃Fm − I ) are strongly related by (31).
The main idea of our proof is to deduce the convergence of rm(̂Fm − I ) from the one of rm(̃Fm −
I ). Precisely, the following result will be proved together with Theorem 3.1 in the sequel.

Proposition 5.1. Under one of the two sets of assumptions of Theorem 3.1, let us consider the
corrected empirical distribution function F̃m defined by (31) and a continuous process (Z̃t )t∈[0,1]
with covariance function K̃ defined by (11). Then we have the convergence (in the Skorokhod
topology)

rm(̃Fm − I ) � Z̃/
(
1 + |θ |)1/2

, as m → ∞, (32)
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where I (t) = t denotes the identity function.

Additionally, throughout the section, we use the following notation

ht (x) = 1
{
�̄(x) ≤ t

}− t − c1(t)x, (33)

so that F̃m(t)− t = m−1∑m
i=1 ht (Yi). Finally, we will sometimes use the following assumption:

there exists η > 0 (independent on m)
(eigenvalues-away0)

lower bounding the m eigenvalues of �(m).

5.2. Convergence of finite dimensional laws for ˜Fm

Let us prove the following result.

Proposition 5.2. Assume that the covariance matrix � depends on m in such a way that (vanish-
secondorder) holds with rm defined by (3) and assume (H2). Consider a continuous process
(Z̃t )t∈[0,1] with covariance function K̃ defined by (11). Then, the process (rm(̃Fm − I ), Y

(m)
1 )

(jointly) converges to L(Z̃/(1 + |θ |)1/2) ⊗ N (0,1) in the sense of the finite dimensional con-
vergence. In particular, the convergence (32) holds in the sense of the finite dimensional conver-
gence.

Proof. The proof is based on central limit theorems for martingale arrays as presented, for ex-
ample, in Chapter 3 of Hall and Heyde [22].

First, since we aim at obtaining a convergence jointly with Y
(m)
1 , a (somewhat technical but

useful) task is to define the array of random variables (Y
(m)
i ,1 ≤ i ≤ m,m ≥ 1) is such a way that

Y
(m)
1 is fixed with m. This is possible by first considering some variable Z ∼ N (0,1), by letting

Y
(m)
1 = Z for all m ≥ 1, and then by choosing for each m ≥ 2, the variables Y

(m)
i ,2 ≤ i ≤ m,

such that

- (Z,Y
(m)
i ,2 ≤ i ≤ m) ∼N (0,�(m));

- {(Y (m)
i )2≤i≤m,m ≥ 2} is a family of mutually independent vectors conditionally on Z.

This also define a common underlying space (�,F ,P) for the array of random variables.
Now, define the following nested array of σ -field: for m ≥ 1, Gm,0 = σ(∅) and for 1 ≤ i ≤ m,

Gm,i = σ
(
Y

(�)
j ,1 ≤ j ≤ i ∧ �,1 ≤ � ≤ m

)
.

Next, let us consider for each t ∈ [0,1], the martingale array (Mm,i(t),Gm,i,1 ≤ i ≤ m,m ≥ 1)

defined as follows:

Mm,i(t) =
i∑

j=1

Xm,j (t) for Xm,j (t) = rm

m

(
ht

(
Y

(m)
j

)−E
(
ht

(
Y

(m)
j

)|Gm,j−1
))

. (34)
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Clearly,

rm
(̃
Fm(t) − t

)= Mm,m(t) + rm

m

m∑
i=1

E
(
ht

(
Y

(m)
i

)|Gm,i−1
)
. (35)

Also note that we can replace each Gm,i by Fm,i = σ(Y
(m)
1 , . . . , Y

(m)
i ) (Fm,0 = σ(∅)) in the

above expression, because (Y
(m)
i ,2 ≤ i ≤ m) is independent of (Y

(�)
j ,2 ≤ j ≤ i ∧ �,2 ≤ � < m),

conditionally on Y
(m)
1 .

Case 1: (eigenvalues-away0) is assumed. We show in Lemma S-3.1 expression (S-16) that the
second term in the RHS of (35) has a vanishing variance as m tends to infinity. Therefore, it
remains to show that the conclusion of Proposition 5.2 holds for the process Mm,m, which we
prove by using Lindeberg’s theorem. We use Corollary 3.1 page 58 in Hall and Heyde [22] (or
more precisely its generalization to the multidimensional case). The conditions are as follows:

(i) for all t ∈ [0,1], for all ε > 0,
∑m

i=1 E((Xm,i(t))
21{|Xm,i(t)| > ε}|Fm,i−1)

P→0;

(ii) for all t, s ∈ [0,1], ∑m
i=1 E(Xm,i(t)Xm,i(s)|Fm,i−1)

P→ K̃(t, s).

To check (i), let us fix t ∈ [0,1] and prove
∑m

i=1 E(Xm,i(t))
4 = o(1). By definition, we have

m∑
i=1

E
(
Xm,i(t)

)4 = r4
m

m4

m∑
i=1

E
(
ht

(
Y

(m)
i

)−E
(
ht

(
Y

(m)
i

)|Fm,i−1
))4

≤ 24

(
r4
m

m3
m−1

m∑
i=1

E
(
ht

(
Y

(m)
i

))4 + r4
m

m4

m∑
i=1

E
(
E
(
ht

(
Y

(m)
i

)|Fm,i−1
))4)

≤ 25 r4
m

m3
m−1

m∑
i=1

E
(
ht

(
Y

(m)
i

))4
.

Now, the RHS of the previous display converges to zero because rm ≤ √
m and E(ht (Y

(m)
i ))4 <

∞. This proves condition (i) of Lindeberg’s theorem.
Let us now turn to condition (ii). For t, s ∈ [0,1], we obviously obtain

m∑
i=1

E
(
Xm,i(t)Xm,i(s)|Fm,i−1

)
= r2

m

m2

m∑
i=1

E
(
ht

(
Y

(m)
i

)
hs

(
Y

(m)
i

)|Fm,i−1
)

(36)

− r2
m

m2

m∑
i=1

E
(
ht

(
Y

(m)
i

)|Fm,i−1
)
E
(
hs

(
Y

(m)
i

)|Fm,i−1
)
.
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Next, by using ab ≤ 2(a2 + b2) for all a, b ∈R together with (S-15), the second term in the RHS
of (36) tends to zero in probability. Moreover, we have

Var

(
r2
m

m2

m∑
i=1

(
ht

(
Y

(m)
i

)
hs

(
Y

(m)
i

)−E
(
ht

(
Y

(m)
i

)
hs

(
Y

(m)
i

)|Fm,i−1
)))

= r4
m

m4

m∑
i=1

Var
(
ht

(
Y

(m)
i

)
hs

(
Y

(m)
i

)−E
(
ht

(
Y

(m)
i

)
hs

(
Y

(m)
i

)|Fm,i−1
))

,

because the elements inside the sum are martingale increments. Hence, the quantity inside the
above display tends to zero. Combining the latter with (36) establishes condition (ii) of Linde-
berg’s theorem provided that the following holds:

r2
m

m2

m∑
i=1

ht

(
Y

(m)
i

)
hs

(
Y

(m)
i

) P→(
1 + |θ |)−1

K̃(t, s).

This comes directly from the law of large number stated in Lemma S-5.2, because r2
m/m →

(1 + |θ |)−1 by (3) and (H2).
Applying Lindeberg’s theorem (in the underlying space described above), for any t1, . . . , tk ∈

[0,1], the random vector

Zm = (
Mm,m(t1), . . . ,Mm,m(tk)

)
converges stably in the following sense (see, e.g., Jacod and Shiryaev [23], Definition 5.28): for
all (fixed) bounded random variable U and continuous bounded function f in R

k ,

E
(
Uf (Zm)

)→ E(U)E
(
f (Z)

)
as m → ∞,

where Z is a centered multivariate Gaussian vector with covariance (1+|θ |)−1(K̃(ti , tj ))1≤i,j≤k .
This implies that (Zm,Y1) converges (jointly) in distribution to L(Z) ⊗ N (0,1). This finishes
the proof of Proposition 5.2 in the case where (eigenvalues-away0) is assumed to hold.

Case 2: (eigenvalues-away0) is not assumed. The strategy is to apply Lemma S-5.3 in order to
reduce the study to “Case 1” above. For any ε > 0, let

Y ε
i = Yi + εξi

(1 + ε2)1/2
,

where ξ1, ξ2, . . . are i.i.d. N (0,1) variables, independent of all the Yi ’s. The covariance matrix
of (Y ε

1 , . . . , Y ε
m) is obviously

�ε = ε2

1 + ε2
Im + 1

1 + ε2
�.

Clearly, the corresponding rate (3) is rε
m = (m−1 + (1 + ε2)−1|γm|)−1/2. It is related to rm via

the following inequalities: rm ≤ rε
m ≤ (1 + ε2)1/2rm. Hence, �ε satisfies (vanish-secondorder)

and (H2) with θ replaced by θε = 1
1+ε2 θ . Since it also satisfies (eigenvalues-away0), by using

Proposition 5.2 in the “Case 1” above, it satisfies for any t1, . . . , tk ∈ [0,1],
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(a) (rε
m(̃Fε

m(t1)− t1), . . . , r
ε
m(̃Fε

m(tk)− tk), Y
ε
1 ) � L(

(Z̃(t1),...,Z̃(tk))

(1+|θε |)1/2 )⊗N (0,1), where F̃ε
m(t)−

t = m−1∑m
i=1 ht (Y

ε
i ) for all t . Next, we clearly have,

(b) (Z̃(t1),...,Z̃(tk))

(1+|θε |)1/2 � (Z̃(t1),...,Z̃(tk))

(1+|θ |)1/2 as ε → 0.

Let us now prove that for any t ∈ [0,1],
lim sup

m

{
E
∣∣rm(̃Fm(t) − t

)− rε
m

(̃
F

ε
m(t) − t

)∣∣}→ 0 as ε → 0. (37)

This will conclude the proof by applying Lemma S-5.3. First, we write

E
∣∣rm(̃Fm(t) − t

)− rε
m

(̃
F

ε
m(t) − t

)∣∣
≤ E

∣∣∣∣∣rm/m

m∑
i=1

(
ht (Yi) − ht

(
Y ε

i

))∣∣∣∣∣+ (
rε
m − rm

)
E

∣∣∣∣∣m−1
m∑

i=1

ht

(
Y ε

i

)∣∣∣∣∣
≤
{

(rm/m)2
E

(
m∑

i=1

(
ht (Yi) − ht

(
Y ε

i

)))2}1/2

+ ((
1 + ε2)1/2 − 1

)
E
∣∣rε

m

(̃
F

ε
m(t) − t

)∣∣.
By taking the lim sup in the above display, it only remains to show

lim sup
m

{
(rm/m)2

E

(
m∑

i=1

(
ht (Yi) − ht

(
Y ε

i

)))2}
→ 0 as ε → 0. (38)

This can be proved by using Lemma S-4.3 (S-39) as follows:

(rm/m)2
E

(
m∑

i=1

(
ht (Yi) − ht

(
Y ε

i

)))2

= (rm/m)2
m∑

i,j=1

E
((

ht (Yi) − ht

(
Y ε

i

))(
ht (Yj ) − ht

(
Y ε

j

)))

= (rm/m)2
m∑

i,j=1

(
E
(
ht (Yi)ht (Yj )

)−E
(
ht (Yi)ht

(
Y ε

j

))
−E

(
ht

(
Y ε

i

)
ht (Yj )

)+E
(
ht

(
Y ε

i

)
ht

(
Y ε

j

)))
= (rm/m)2

m∑
i,j=1

∑
�≥2

(c�(t))
2

�! (�i,j )
�
(
1 + (

1 + ε2)−� − 2
(
1 + ε2)−�/2)

because Cov(Yi, Yj ) = �i,j , Cov(Y ε
i , Yj ) = Cov(Yi, Y

ε
j ) = �i,j /(1 + ε2)1/2 and Cov(Y ε

i , Y ε
j ) =

�i,j /(1 + ε2). Next, by separating the case i = j and i �= j , the previous display can be upper
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bounded by∑
�≥2

(c�(t))
2

�!
∣∣1 + (

1 + ε2)−� − 2
(
1 + ε2)−�/2∣∣+ (rm/m)2

∑
i �=j

(�i,j )
2 × 4

∑
�≥2

(c�(t))
2

�! .

While the first term above does not depend on m and converges to zero as ε → 0, the second
term above as a lim supm equal to zero by (vanish-secondorder). This implies (38) and finishes
the proof. �

Remark 5.3. Interestingly, Proposition 5.2 is related to Theorem 3.1 of Soulier [30], in the par-
ticular case where θ < ∞ and supi �=j (�

(m)
i,j )2 = O(m−2∑

i �=j (�
(m)
i,j )2).

5.3. Convergence of finite dimensional laws for ̂Fm

In this section, we aim at proving the following result.

Proposition 5.4. Consider the assumptions of Proposition 5.2. Then, (12) holds in the sense of
the finite dimensional convergence.

Proof. From expression (31), we investigate the (joint) convergence of (rm(̃Fm − I ), rmYm).
Case 1: θ = −1. In that case, r2

m Var(Ym) → 0. Hence, we can directly use Proposition 5.2
to state that (rm(̃Fm − I ), rmYm) converges to L(Z̃/(1 + |θ |)1/2) ⊗ δ0 in the sense of the finite
dimensional convergence. This establishes Proposition 5.4 in that case.

Case 2: θ > −1. Now, r2
m Var(Ym) is converging to some positive real number, namely

(1 + θ)/(1 + |θ |) > 0. In particular, Var(Ym) > 0 for m large enough. Let us define the ran-
dom variable

Y0 = Ym(VarYm)−1/2.

We now consider the (m + 1)-dimensional random vector (Yi)0≤i≤m, which is centered, with a
covariance matrix denoted �(m+1) = (�

(m+1)
i,j )0≤i,j≤m and such that �

(m+1)
0,0 = 1, �(m+1)

i,j = �
(m)
i,j

for 1 ≤ i, j ≤ m. We easily check that �(m+1) satisfies (vanish-secondorder) and (H2) with the
same value of θ and a rate asymptotically equivalent to the original rm, see Lemma S-3.2. Hence,
Proposition 5.2 shows that (by using notation therein),(

rm

(
(m + 1)−1

m∑
i=0

ht (Yi)

)
, Y0

)
� L

(
Z̃/
(
1 + |θ |)1/2)⊗N (0,1),

in the sense of the finite dimensional convergence. Since rmht (Y0)/m tends to zero in probability,
the last display can be rewritten as(

rm(̃Fm − I ), Ym(VarYm)−1/2)� L
(
Z̃/
(
1 + |θ |)1/2)⊗N (0,1).

Finally, since r2
m Var(Ym) → (1 + θ)/(1 + |θ |), we finish the proof by applying (31). �
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5.4. Tightness under (vanish-secondorder), (H1) and (H2)

To complete the proof of Proposition 5.1, we prove that the process Xm = rm(̃Fm − I ) is tight
in the Skorokhod space. This also implies tightness for rm(̂Fm − I ) by (31) because c1 is a
continuous function on [0,1], itself entailing Theorem 3.1.

We consider here the set of assumptions (vanish-secondorder), (H1) and (H2) (the second set
of assumptions is examined in Section 5.5). For proving the tightness of Xm, we use Proposi-
tion S-5.1. This is possible because |c1(t) − c1(s)| ≤ L|t − s|1/2, 0 ≤ s, t ≤ 1 for some constant
L > 1 (see Lemma S-4.4). In Section S-3.3, we finish the proof by showing that for large m,

E
∣∣Xm(t) − Xm(s)

∣∣4 ≤ C
(|t − s|3/2 + (rm)−ε0 |t − s|), for all t, s ∈ [0,1], (39)

for some constant C > 0 and for a constant ε0 > 0 such that (H1) holds.

5.5. Tightness under (H3) and (H4)

Obviously, (H3) and (H4) imply (vanish-secondorder), (H2) with θ = +∞, and rm ∼ γ
−1/2
m .

Hence, Proposition 5.2 entails that the finite dimensional laws of Xm = rm(̃Fm − I ) converge
to 0 and it only remains to prove that Xm is tight. This can be done as in the previous section,
except that we use κ = 2 in Proposition S-5.1. Namely, we prove in Section S-3.3 that, for large
m,

E
∣∣Xm(t) − Xm(s)

∣∣2 ≤ Cγ δ0
m |t − s|, for all t, s ∈ [0,1], (40)

for some constants C > 0, δ0 > 0.
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