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Quenched limit theorems for Fourier
transforms and periodogram
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In this paper, we study the quenched central limit theorem for the discrete Fourier transform. We show
that the Fourier transform of a stationary ergodic process, suitable centered and normalized, satisfies the
quenched CLT conditioned by the past sigma algebra. For functions of Markov chains with stationary tran-
sitions, this means that the CLT holds with respect to the law of the chain started at a point for almost all
starting points. It is necessary to emphasize that no assumption of irreducibility with respect to a measure or
other regularity conditions are imposed for this result. We also discuss necessary and sufficient conditions
for the validity of quenched CLT without centering. The results are highly relevant for the study of the peri-
odogram of a Markov process with stationary transitions which does not start from equilibrium. The proofs
are based of a nice blend of harmonic analysis, theory of stationary processes, martingale approximation
and ergodic theory.

Keywords: central limit theorem; discrete Fourier transform; martingale approximation; periodogram;
spectral analysis

1. Introduction

The finite Fourier transform, defined as

Sn(t) =
n∑

k=1

eiktXk, (1)

where i = √−1 is the imaginary unit, plays an essential role for the study of stationary time
series (Xj )j∈Z of centered random variables with finite second moment, defined on a probability
space (�,K,P).

The periodogram, introduced as a tool by Schuster [35] in 1898, is essential in the estimation
of the spectral density of the stationary processes. It is defined by

In(t) = 1

2πn

∣∣Sn(t)
∣∣2

, t ∈ [0,2π]. (2)

Wiener and Wintner [39] showed that for any stationary sequence (Xj )j∈Z in L
1 (namely

E|X0| < ∞) there is a set �′ ⊂ � of probability one such that for any t ∈ [0,2π] and any
ω ∈ �′, Sn(t)/n converges. The speed of this convergence (see Peligrad and Wu [26] and the
references therein) is usually given by a central limit theorem for the real and imaginary parts
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of Sn(t)/
√

n under various dependence restrictions. Peligrad and Wu [26] showed that, under
a very mild regularity condition and finite second moment, [Re(Sn(t))/

√
n, Im(Sn(t))/

√
n] are

asymptotically independent normal random variables with mean 0 and variance πf (t), for almost
all t . Here f is the spectral density of (Xj )j∈Z. This result implies that for almost all t , the
periodogram In(t) converges in distribution to f (t)χ2 where χ2 has a chi-square distribution
with 2 degrees of freedom. Sufficient conditions for the validity of the law of iterated logarithm
were recently pointed out in Cuny et al. [8].

An interesting problem with practical applications, is to study the validity of the central limit
theorem for Fourier transform and the periodogram for a Markov chain with stationary transitions
which is not started from equilibrium but rather started from a point for almost all starting points.
This is often the case for simulated data and also for evolutions in random media or particle
systems. The problem is difficult, since the Markov chain started at a point is no longer stationary.
This type of central limit theorem, started at a point, is known under the name of quenched
central limit theorem (CLT) and it is a consequence of a more general result, the almost sure
conditional CLT for stationary processes. This means that on a set of measure one the central limit
theorem holds when, in the definition of weak convergence, we replace the usual expectation by
the conditional expectation with respect to the past σ -algebra. The almost sure conditional CLT
implies CLT. Some examples of stationary processes satisfying the CLT but not the almost sure
conditional CLT can be found in Volný and Woodroofe [37].

The problem of the quenched CLT for stationary Markov chains or for stationary processes is a
subject of intense research. We mention the papers [7,9,10,12,13,27,28,37], among many others.
Several of these results were surveyed in [25].

As far as we know, this type of convergence was not yet investigated for the Fourier trans-
forms or the periodograms. In this paper, we show that the quenched CLT holds for almost all
frequencies of the properly centered and normalized discrete Fourier transform of any stationary
and ergodic sequence. We also provide necessary and sufficient conditions for the validity of
quenched CLT without centering and specify a sufficient condition for the validity of quenched
CLT for fixed frequencies.

All these results shed additional light on the speed of convergence of the periodogram in
approximating the spectral density f (t) of a stationary process. The techniques are a nice blend
of martingale approximation, rooted in Gordin [19] and Rootzén [30] and developed by Gordin
and Lifšic [20] and Woodroofe [40], and tools from ergodic theory and harmonic analysis.

To allow for flexibility in applications, we introduce a stationary sequence and a filtration in
two different ways. First by using a measure preserving transformation, and then, in Section 3,
as a function of a Markov chain. We formulate the main results for measure preserving transfor-
mations in terms of almost sure conditional CLT. However, in Section 3 we show that, only by
a change of language, the results can be formulated for stationary and ergodic Markov chains,
where the terminology of a process started at a point becomes natural.

A variety of applications to functions of linear processes, functions of Markov chains, iterated
random functions, mixing sequences, are also pointed out. It is remarkable that for the case of a
stationary ergodic reversible Markov chain the quenched CLT without centering holds without
any other additional assumptions.

Our paper is organized as follows. Section 2 contains the presentation of the results. Several
applications are given in Section 3. Section 4 is devoted to the proofs. Section 5 contains several
auxiliary results needed for the main proofs.
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2. Definitions, background and results

A strictly stationary sequence can be introduced in many equivalent ways. It can be viewed, for
instance, as a function of a stationary Markov chain with general state space. This definition will
be given in Section 3. For more flexibility in the selection of filtration, in this section, we shall
introduce a stationary sequence and a filtration by using a measure preserving transformation.

Let (�,K,P) be a probability space where, without restricting the generality, we shall assume
that K is countably generated, and let T :� �→ � be a bijective bi-measurable transformation
preserving the probability P. An element A is said to be invariant if T (A) = A. We denote by
I the σ -algebra of all invariant sets. The transformation T is ergodic with respect to P if each
element of I has probability 0 or 1. Let F0 be a σ -algebra of K satisfying F0 ⊆ T −1(F0). Define
the nondecreasing filtration (Fi )i∈Z by Fi = T −i (F0) and let F−∞ = ⋂

k∈ZFk . Let X0 be a F0-
measurable, square integrable and centered random variable. Define the sequence X = (Xi)i∈Z
by

Xi = X0 ◦ T i. (3)

For p ≥ 1, we denote by ‖ · ‖p the norm in L
p(�,F ,P) and for an integrable random variable

Y we denote by E0(Y ) = E(Y |F0).
Since K is countably generated, there is a regular conditional probability measure P

ω(·) with
respect to F0, such that for all ω ∈ �, Pω(·) is a measure on K and for each A ∈ K we have
P

ω(A) = P(A|F0)(ω), P a.s. For integrable X, the corresponding conditional expectation is de-
noted by E

ω(X) and it is a regular version of E(X|F0)(ω).
Relevant to our results is the notion of spectral distribution function induced by the covari-

ances. By Herglotz’s theorem (see, e.g., Brockwell and Davis [4]), there exists a nondecreasing
function G (the spectral distribution function) on [0,2π] such that, for all j ∈ Z,

cov(X0,Xj ) =
∫ 2π

0
eijθ dG(θ), j ∈ Z.

If G is absolutely continuous with respect to the normalized Lebesgue measure λ on [0,2π],
then the Radon–Nikodym derivative f of G with respect to the Lebesgue measure is called the
spectral density and we have

cov(X0,Xj ) =
∫ 2π

0
eijθf (θ)dθ, j ∈ Z.

We shall introduce the notations

Vn(t) = 1√
n

[
Re

(
Sn(t)

)
, Im

(
Sn(t)

)]
.

We also denote

Wn(t) = 1√
n

[
Re

(
Sn(t) −E0Sn(t)

)
, Im

(
Sn(t) −E0Sn(t)

)]
.
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The central limit theorem for Vn(t) has a long history. We mention, among many others, Rosen-
blatt (Theorem 5.3, page 131, [34]) who considered mixing processes; Brockwell and Davis
(Theorem 10.3.2, page 347, [4]), Walker [38] and Terrin–Hurvich [36] discussed linear pro-
cesses; Wu [41] treated mixingales.

Peligrad and Wu [26] established the following result, where, besides a mild regularity as-
sumption (4), no other restriction of dependence is imposed to the stochastic process. Below,
by ⇒ we denote convergence in distribution.

Theorem A (Peligrad and Wu). Let (Xk)k∈Z be a stationary ergodic process, centered, with
finite second moments, such that the following regularity assumption is satisfied,

E(X0|F−∞) = 0 P-a.s. (4)

Then, for almost all t ∈ (0,2π), the following convergence holds:

lim
n→∞

E|Sn(t)|2
n

= 2πf (t), (5)

where f (t) is the spectral density of (Xk)k∈Z. Furthermore

1√
n

Vn(t) ⇒ N(t) under P, (6)

where N(t) = [N1(t),N2(t)], with N1(t) and N2(t) independent identically distributed normal
random variables mean 0 and variance πf (t).

The proof of Theorem A is based on the celebrated Carleson’s [5] theorem on almost sure con-
vergence of Fourier transforms. A different proof, without using Carleson’s result, was recently
given in Cohen and Conze [6]. This suggests that the power of Carleson’s theorem might lead to
a stronger type of limiting distribution, in the almost sure sense.

The goal of this paper is to study a more general form of (6) known under the name of
quenched CLT.

By the quenched CLT we shall understand the following almost sure conditional limit theorem:
For almost all t ∈ [0,2π], there is �′ with P(�′) = 1 such that for all ω ∈ �′ we have

E
ω
[
g
(
Vn(t)

)] → E
[
g
(
N(t)

)]
as n → ∞, (7)

for any function g which is continuous and bounded. We shall say in this case that the quenched
CLT holds for almost all frequencies. In other notation, for almost all t ∈ [0,2π], there is �′ with
P(�′) = 1 such that for all ω ∈ �′ we have

Vn(t) ⇒ N(t) as n → ∞ under Pω.

Clearly (7) implies (6) by integration with respect to P.
Our first result gives a quenched CLT under a certain centralization. Note that the next theorem

applies to any stationary and ergodic sequence.
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Theorem 1. Let (Xk)k∈Z be a stationary ergodic process, Xk defined by (3) and let Sn(t) be
defined by (1). Then, for almost all t ∈ [0,2π]

lim
n→∞

E0|Sn(t) −E0Sn(t)|2
n

= σ 2
t P-a.s.

and the quenched CLT holds for Wn(t), where N1(t) and N2(t) are independent identically
distributed normal random variables with mean 0 and variance σ 2

t /2.

Our second theorem provides a characterization of quenched convergence without centering.

Theorem 2. Let (Xk)k∈Z be as in Theorem 1. Then the following statements are equivalent:

(a) For almost all t ∈ [0,2π] the quenched CLT in (7) holds, where N1(t) and N2(t) are as in
Theorem 1.

(b) For almost all t ∈ [0,2π] we have 1√
n
E0(Sn(t)) → 0, P-a.s.

Discussion

An interesting problem is to specify σ 2
t . Note first that if E0(Sn(t))/

√
n converges in L

2 to 0,
our proofs show that in this case σ 2

t can be identified as

lim
n→∞

E|Sn(t)|2
n

= σ 2
t . (8)

Note also that in both Theorems 1 and 2 we do not require the sequence to be regular, that is, it
may happen that E(X0|F−n) does not converge to 0 in L

2. The spectral density might not exist.
If we assume condition (4) then, as shown in Peligrad and Wu [26], the spectral density f (t) of
(Xk)k∈Z exists and σ 2

t = 2πf (t). Furthermore, we have

1√
n
E0

(
Sn(t)

) → 0 in L
2,

and then σ 2
t can also be identified as

lim
n→∞

E|Sn(t)|2
n

= σ 2
t = 2πf (t). (9)

By the mapping theorem (see Theorem 29.2 in [1]), all our results imply corresponding results
for the periodogram. As a consequence of Theorem 2 and the discussion above we obtain the
following corollary:

Corollary 3. Assume that the sequence (Xk)k∈Z is as in Theorem 1 and in addition satisfies (4)
and item (b) of Theorem 2. Then, for almost all t ∈ [0,2π] the periodogram In = (2πn)−1|Sn(t)|2
satisfies a quenched limit theorem with the limit f (t)χ2(2), where χ2(2) is a chi-square random
variable with 2 degrees of freedom, and f (t) the spectral density.
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The next corollary provides sufficient conditions for the validity of item (b) of Theorem 2.

Corollary 4. Assume that (Xk)k∈Z is as in Theorem 1 and in addition that∑
k≥1

|E0(Xk+1 − Xk)|2
k

< ∞ P-a.s. (10)

Then (7) holds, where N1(t) and N2(t) are as in Theorem 1.

Clearly (10) is satisfied if

∑
k≥1

|E0(Xk)|2
k

< ∞ P-a.s., (11)

which is further implied by ∑
k≥1

‖E0(Xk)‖2
2

k
< ∞. (12)

Moreover, since ‖E0(Xk)‖2 is decreasing, condition (12) implies condition (4). These remarks
justify the following corollary:

Corollary 5. Condition (12) is sufficient for the quenched CLT in (7) with N1(t) and N2(t) i.i.d.
normal random variables with mean 0 and variance πf (t), f (t) being the spectral density of
the process.

The above results hold for almost all frequencies. Actually it is possible that on a set of mea-
sure 0 the behavior be quite different. For the case when t = 0, there are a variety of exam-
ples where the partial sums of a stationary sequence do not satisfy a nondegenerate CLT. One
important example of this kind is provided by filters of Gaussian processes with long range
dependence, when the covariances are not summable. For example, Rosenblatt [32] proved
that for a stationary Gaussian sequence (Xk)k∈Z of standard normal random variables with
cov(X0,Xk) = (1 + k2)−α/2,0 < α < 1/2, the sequence n−1+α

∑n
k=1(X

2
k − 1) has a nonnor-

mal limiting distribution as n → ∞. Another interesting example, also for t = 0, is provided by
Herrndorf [22] who constructed a stationary sequence of centered uncorrelated random variables
with finite second moment, which is strongly mixing with arbitrary mixing rate and the partial
sums do not satisfy a nondegenerate CLT under any normalization converging to infinite. This ex-
ample satisfies condition (4). Furthermore, Bradley [3] (see Theorem 34.14, Vol. 3) constructed
a stationary sequence of centered random variables with finite second moment, satisfying our
condition (12) and such that its partial sums normalized by its standard deviation is attracted
to a non-Gaussian nondegenerate distribution. Rosenblatt [33] studied the Fourier transform of
nonlinear functions of Gaussian processes and established for certain frequencies, on a set of
measure 0, non-Gaussian attraction for the Fourier transform properly normalized.

In the spirit of Maxwell and Woodroofe [24] and Cuny and Merlevède [7], we give below a
result allowing us to identify frequencies for which the quenched CLT holds.
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Theorem 6. Let t ∈ (0,2π) be such that e−2it is not an eigenvalue of T . Assume that the se-
quence (Xk)k∈Z is as in Theorem 1 and in addition that we have

∑
k≥1

1

k3/2

∥∥E0
(
Sk(t)

)∥∥
2 < ∞. (13)

Then (7) holds with N1(t) and N2(t) independent identically distributed normal random vari-
ables mean 0 and variance σ 2

t /2 where σ 2
t is identified by (8).

3. Applications

3.1. Functions of Markov chains

Let (ξn)n∈Z be a stationary and ergodic Markov chain defined on a probability space (�,F ,P)

with values in a measurable space (S,A). The marginal distribution is denoted by π(A) = P(ξ0 ∈
A) and we assume that there is a regular conditional distribution for ξ1 given ξ0 denoted by
Q(x,A) = P(ξ1 ∈ A|ξ0 = x). In addition Q denotes the Markov operator acting via (Qh)(x) =∫
S
h(s)Q(x,ds). Next, let L2

0(π) be the set of measurable functions on S such that
∫

h2 dπ < ∞
and

∫
hdπ = 0. For a function h ∈ L

2
0(π) let

Xi = h(ξi). (14)

Denote by Fk the σ -field generated by ξi with i ≤ k. For any integrable random variable X

we denote Ek(X) = E(X|Fk) and Pk(A) = P(A|Fk). In our notation E0(X1) = (Qh)(ξ0) =
E(X1|ξ0).

To guarantee that the regular transitions exist, we shall assume that A is countably generated.
The Markov chain is usually constructed in a canonical way on � = S∞ endowed with sigma

algebra A∞, and ξn is the nth projection on S. The shift T :� → � is defined by ξn(T ω) =
ξn+1(ω) for every n ≥ 0.

For any probability measure υ on A the law of (ξn)n∈Z with transition operator Q and initial
distribution υ is the probability measure P

υ on (S∞,A∞) such that

P
υ(ξn+1 ∈ A|ξn = x) = Q(x,A) and P

υ(ξ0 ∈ A) = υ(A).

For υ = π , we denote P = P
π . For υ = δx , the Dirac measure, denote by P

x and E
x the regular

probability and conditional expectation for the process started at x. Note that for each x fixed
P

x(·) is a measure on F∞, the sigma algebra generated by
⋃

k Fk . Furthermore Px(·) is a version
of the conditional probability on F∞ given ξ0 and, by Markov property, Px(·) is also the regular
measure on F∞ given F0.

We mention that any stationary sequence (Yk)k∈Z can be viewed as a function of a Markov pro-
cess ξk = (Yj ; j ≤ k) with the function g(ξk) = Yk . Therefore the theory of stationary processes
can be embedded in the theory of Markov chains.
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For a Markov chain, by the quenched CLT for the Fourier transform we shall understand the
following convergence: for almost all t ∈ [0,2π] there is a set S ′ ⊂ S with π(S′) = 1 such that
for x ∈ S′

Vn(t) ⇒ N(t) under Px. (15)

In other words for almost all t ∈ [0,2π], there is a set S′ ⊂ S with π(S′) = 1 such that for x ∈ S′

E
x
[
g
(
Vn(t)

)] → E
[
g
(
N(t)

)]
as n → ∞,

for any function g continuous and bounded. When the stationary process is viewed as a function
of Markov chain, then ξ0 = (Yj ; j ≤ 0), and therefore a fixed value of ξ0 means a fixed past
trajectory up to the moment of time 0.

All our results hold in the setting of Markov chains. In this case, the transformation T is the
shift. The Markov property allows for the formulation (15).

It is remarkable that for ergodic reversible Markov chains the quenched CLT holds without
centering and without any additional assumptions.

Corollary 7. Assume that (Xk)k∈Z is defined by (14) and in addition that the Markov chain
(ξk)k∈Z is reversible (i.e. Q = Q∗). Let t ∈ (0,2π) \ {π,π/2,3π/2}. Then, (15) holds where
N1(t) and N2(t) are as in Theorem 6.

Proof. We shall verify the conditions of Theorem 6. Since the spectrum of Q is contained in
[−1,1] and for t ∈ (0,2π) \ {π} we have that eit is not real, the operator I − eitQ is invertible,
and therefore there exists g ∈ L

2(S,A,π) such that h = g − eitQg. We obtain

E0
(
Sn(t)

) =
n∑

k=1

E0
(
eitkg(ξk) − eit (k+1)g(ξk+1)

) = eit
E0

(
g(ξ1)

) − eit (n+1)
E0

(
g(ξn+1)

)
.

Then clearly ∥∥E0
(
Sn(t)

)∥∥
2 ≤ 2‖g‖2 < ∞,

and therefore condition (13) is satisfied. Furthermore, since T is the shift operator, under our
hypotheses, cannot have eigenvalues other than ±1 (see page 15 in Cuny et al. [8]). �

3.2. Iterated random functions

Let (
, d) be a complete and separable metric space and let ξn = Fεn(ξn−1), where Fε(·) =
F(·, ε) is the ε-section of a jointly measurable function F :
 × ϒ → 
 and ε, εn, n ∈ Z

are i.i.d. random variables taking values in a second measurable space ϒ . Define Lε =
supx �=x′ d(Fε(x);Fε(x

′))/d(x, x′). Diaconis and Freedman [15] proved that (ξn) admits a unique
stationary distribution π provided that for some α > 0 and x0 ∈ 
,

E
(
Lα

ε

)
< ∞, E(logLε) < 0 and E

(
dα

(
x0,Fε(x)

))
< ∞. (16)
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Let h be a function and let Xk = h(ξk). Assume E(X1) = 0 and E|X1|2 < ∞. To analyze this
example, we shall use the coupling function introduced by Wu [41]:

�h(t) = sup
∥∥(

h(ξ) − h
(
ξ ′))I(

d
(
ξ, ξ ′) < t

)∥∥
2,

where the supremum is taken over all ξ, ξ ′ independent distributed as π . We shall establish the
following:

Corollary 8. Assume condition (16) is satisfied and∫ 1/2

0

�2
h(t)

t | log t | dt < ∞. (17)

Then, for almost all frequencies, the quenched CLT (15) holds with N1(t) and N2(t) i.i.d. normal
random variables with mean 0 and variance πf (t), f (t) being the spectral density of the process.

Proof. We shall verify condition (11). By Lemma 3 in Wu and Woodroofe [42], condition (16)
implies that there is β > 0, C > 0 and 0 < r < 1 such that

E
(
dβ

(
ξn, ξ

′
n

)) ≤ Crn, (18)

where ξn, ξ
′
n are i.i.d. Since E(h(ξ ′

n)|ξ0) = 0 a.s.∣∣E(
h(ξn)|ξ0

)∣∣ ≤ ∣∣E([
h(ξn) − h

(
ξ ′
n

)]
I
(
d
(
ξn, ξ

′
n

) ≤ δn

)|ξ0
)∣∣

+ ∣∣E([
h(ξn) − h

(
ξ ′
n

)]
I
(
d
(
ξn, ξ

′
n

)
> δn

)|ξ0
)∣∣

= In + IIn.

To establish (11), it is enough to prove that∑
n≥1

E(I 2
n )

n
< ∞ (19)

and ∑
n≥1

II2
n

n
< ∞ a.s. (20)

By Cauchy–Schwartz inequality and Markov inequality

E(IIn) ≤ 21/2‖X0‖2P
1/2(d(

ξn, ξ
′
n

)
> δn

) ≤ ‖X0‖2
[
2E

(
dβ

(
ξn, ξ

′
n

))
/δβ

n

]1/2
.

By selecting now δn = rn/2β we obtain E(IIn) ≤ rn/4. Therefore P(IIn > rn/8) ≤ rn/4, and (20)
follows by the Borel–Cantelli lemma.

Next, note that I 2
n ≤ �2

h(δn) and for the selection of δn = rn/2β , the convergence of the series
in (19) holds under the integral condition (17).

Furthermore, the above computations also show that E|E(h(ξn)|ξ0)| → 0 as n → ∞ which
proves (4). �
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3.3. Linear processes

Next, we give an application to linear processes.

Corollary 9. Let (ξk)k∈Z be a sequence of stationary and ergodic square integrable martingale
differences. Define

Xk =
∞∑

j=0

aj ξk−j , where
∞∑

j=0

a2
j < ∞. (21)

Then, under the condition ∑
j≥3

(aj − aj+1)
2 log j < ∞,

the conclusion of Corollary 4 holds.

Proof. We shall verify the conditions of Corollary 4.
Clearly for k ≥ 1, by the orthogonality of the martingale differences

∥∥E0(Xk+1 − Xk)
∥∥2

2 =
∥∥∥∥E0

( ∑
j≥−1

aj+1ξk−j −
∑
j≥0

aj ξk−j

)∥∥∥∥2

2

=
∥∥∥∥∑

j≥k

aj+1ξk−j −
∑
j≥k

aj ξk−j

∥∥∥∥2

2
=

∑
j≥k

(aj+1 − aj )
2‖ξ0‖2

2.

Now ∑
k≥1

1

k

∑
j≥k

(aj+1 − aj )
2 ≤

∑
j≥1

(aj+1 − aj )
2 log j,

and the conclusion follows by Corollary 4. �

Remark 10. In the case when the sequence aj is positive and decreasing, then the natural con-
dition

∑∞
j=0 a2

j < ∞ is necessary and sufficient for the conclusion of Corollary 9.

3.4. Functions of linear processes

In this section, we shall focus on functions of real-valued linear processes. Let (ai)i∈Z be a se-
quence of square summable real numbers and (ξi)i∈Z is a sequence of i.i.d. random variables in
L

2 with mean 0 and variance σ 2. Define Xk by (21) and let h be a real valued function and define

Yk = h(Xk) −Eh(Xk). (22)
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As in [8] we shall give sufficient conditions for the validity of (7) in terms of the modulus of
continuity of the function h on the interval [−M,M], defined by

wh(u,M) = sup
{∣∣h(x) − h(y)

∣∣, |x − y| ≤ u, |x| ≤ M, |y| ≤ M
}
. (23)

Corollary 11. Assume that h is γ -Hölder on any compact set, with wh(u,M) ≤ Cuγ Mβ , for
some C > 0, γ ∈ (0,1] and β ≥ 0. Assume that E(h2(Xk)) < ∞ and∑

k≥3

a2
k logk < ∞ and E|ξ0|2∨2γ∨2β < ∞. (24)

Then (7) holds with N1(t) and N2(t) i.i.d. normal random variables, mean 0 and variance πf (t),
f (t) being the spectral density of the process.

Proof. We shall apply Corollary 5. Define Fk = σ(ξl, l ≤ k). Since F−∞ is trivial, (4) holds. We
write

Y0 =
∑
l≥0

P−l (Y0),

where P−l denotes the projector operator

P−l (·) = E−l (·) −E−l−1(·). (25)

By the orthogonality of the projections,∥∥E0(Yk)
∥∥2

2 =
∑
l≥0

∥∥P−l (Yk)
∥∥2

2 =
∑
j≥k

∥∥P0(Yj )
∥∥2

2 < ∞.

Therefore, condition (12) follows from∑
j≥2

∥∥P0(Yj )
∥∥2

2 log j < ∞. (26)

So it remains to verify (26). We estimate ‖P0(Yj )‖2
2 as in [8]. We give here the argument for com-

pleteness. Let ξ ′ be an independent copy of ξ , and denote by Eξ (·) the conditional expectation
with respect to ξ . Clearly

P0(Yk) = Eξ

[
h

(
k−1∑
j=0

aj ξ
′
k−j + akξ0 +

∑
j>k

aj ξk−j

)
− h

(
k−1∑
j=0

aj ξ
′
k−j + akξ

′
0 +

∑
j>k

aj ξk−j

)]
.

By using definition (23),∣∣P0(Yk)
∣∣ ≤ CEξ

∣∣ak

(
ξ0 − ξ ′

0

)∣∣γ (∣∣X′
k

∣∣ ∨ ∣∣X′′
k

∣∣)β
,

where X′
k = ∑k−1

j=0 aj ξ
′
k−j + akξ0 + ∑

j>k aj ξk−j and X′′
k = ∑k−1

j=0 aj ξ
′
k−j + akξ

′
0 + ∑

j>k aj ×
ξk−j . Therefore, by taking the expected value, noticing that X′

k and X′′
k are identically distributed
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as Xk = ∑∞
j=0 aj ξk−j , and then applying the Cauchy–Schwarz inequality, for a positive con-

stant C′, we obtain ∥∥P0(Xk)
∥∥2

2 ≤ C′a2
kE

(|ξ0|2γ
)
E

(|X0|2β
)
.

We estimate now E(|X0|2β). If β < 1 then E(|X0|2β) ≤ (E|X0|2)β ≤ (
∑

l≥0 a2
l )

βσ 2β . In case
β ≥ 1, by the Rosenthal inequality (see Theorem 1.5.9 in [14]), for some positive constant Cβ ,

E(|X0|2β) ≤ Cβ((
∑

l≥0 a2
l )

βσ 2β + ∑
l≥0 a

2β
l E(|ξ0|2β)). Since we assume that

∑
l≥0 a2

l < ∞, it
follows that we can find a constant K such that∥∥P0(Yk)

∥∥2
2 ≤ Ka2

kE
(|ξ0|2γ

)(
E|ξ0|2β ∨ σ 2β

)
.

The result follows by (26) and by taking into account condition (24). �

3.5. Application to mixing stationary sequences

Mixing coefficients are important for quantifying the strength of dependence in a stochastic pro-
cess. They have proven essential for analyzing Markov chains, Gaussian processes, dynamical
systems and other dependent structures.

We shall introduce the following strong mixing coefficient: For a σ -algebra A and a random
variable X the strong mixing coefficient is defined as

α̃(A,X) = sup
{∣∣P(

A ∩ {X > x}) − P(A)P(X > x)
∣∣;x ∈ R

}
.

This coefficient was introduced by Rosenblatt [31] and also analyzed by Rio [29]. It is weaker
than those involving all the future of the process which are usually used in the literature and they
are estimable for a variety of examples from dynamical systems.

For a stationary sequence of random variables (Xk)k∈Z, we denote by Fm the σ -field generated
by Xl with indices l ≤ m. Notice that (Fk)k∈Z defined in this way is a minimal filtration such
that (Xk)k∈Z is adapted to (Fk)k∈Z. The sequences of coefficients α̃(n) are then defined by

α̃(n) = α̃(F0,Xn).

We refer to the book by Bradley [3] for classical mixing coefficients and to Dedecker et al.
[11] for specific estimates of coefficients of type α̃ for certain dynamical systems generated by
intermittent maps.

For integrable random variable X0, define the “upper tail” quantile function Q by

Q(u) = inf
{
t ≥ 0 :P

(|X0| > t
) ≤ u

}
.

By relation (1.11c) in Rio [29] notice that

∥∥E0(Xk)
∥∥2

2 = E
(
XkE0(Xk)

) ≤ 2
∫ α̃(k)

0
Q2(u)du. (27)
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By using this inequality, condition (10) is verified provided

∞∑
k=1

1

k

∫ α̃(k)

0
Q2(u)du < ∞. (28)

Denoting α̃−1(x) = min{k ∈ N : α̃(k) ≤ x} we can write relation (28) in the equivalent formula-
tion ∫ 1

0
log

(
1 + α̃−1(u)

)
Q2(u)du < ∞.

In particular, if E(|X0|2+δ) < ∞ for some positive δ > 0, by decoupling the above integral via
the Cauchy–Schwarz inequality, we obtain that a sufficient condition for (10) is∫ 1

0

[
log

(
1 + α̃−1(u)

)](2+δ)/δ du < ∞,

which requires a logarithmic rate of decay of the coefficients α̃(k). If ‖X0‖∞ < ∞, condition
(28) is implied by

∞∑
k=1

1

k
α̃(k) < ∞.

Since (α̃(k))k≥1 is decreasing, by (27), condition (28) implies the regularity condition (4). There-
fore it is a sufficient condition for (7) which holds with N1(t) and N2(t) i.i.d. normal random
variables, mean 0 and variance πf (t), f (t) being the spectral density of the process.

It is worth mentioning that some more restrictive mixing conditions make possible to obtain (7)
directly from (6). One of these conditions is called φ-mixing. A stationary sequence of random
variables (Xk)k∈Z is called φ-mixing if

φ(n) = sup
{∣∣P(B|A) − P(B)

∣∣;A ∈ F0,B ∈Fn
} → 0.

Here Fn is the σ -field generated by Xl with indices l ≥ n. It is equivalent to saying that (see [3],
Vol. 1)

φ(n) = sup
{∣∣P(B|F0) − P(B)

∣∣;B ∈ Fn
} → 0 a.s.

If we fix now m > 0, we have Sm(t)/
√

n → 0 P-a.s. and it is enough to study the asymptotic
behavior of

Vn,m(t) = (
Re

[
Sn(t) − Sm(t)

]
/
√

n, Im
[
Sn(t) − Sm(t)

]
/
√

n
)
.

By the definition of φ-mixing coefficients, for h continuous and bounded (see again [3], Vol. 1)∣∣E(
h
(
Vn,m(t)

)|F0
) −E

(
h
(
Vn,m(t)

))∣∣ ≤ φ(m) a.s.,

and the claim follows easily by Theorem 3.2 in [2].
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4. Proofs

Proof of Theorem 1. The proof of Theorem 1 is based on the following approximation lemma
for Fourier transforms. Recall the definition of projection operator (25).

Lemma 12. Under the conditions of Theorem 1, for almost all t ∈ [0,2π], the martingale dif-
ference

Dk(t,ω) =
∑
j>k

eij tPkXj (ω) = eikt
∑
j≥1

eij tP0Xj(ω) ◦ T k

is well defined in the almost sure sense and in L
2(�,K,P). Denote by Mn(t)(ω) = ∑n

k=1 Dk(t,

ω). Then, for almost all t ∈ [0,2π],
1

n
E0

∣∣Sn(t) −E0
(
Sn(t)

) − Mn(t)
∣∣2 → 0 P-a.s. and in L1.

Proof. The convergence in L1 was established in Peligrad and Wu [26]. We shall prove here the
almost sure convergence. It is convenient to work on the product space, (�̃, F̃, P̃) = ([0,2π] ×
�,B ⊗ A, λ ⊗ P) where λ is the normalized Lebesgue measure on [0,2π], and B is the Borel
σ -algebra on [0,2π], P̃ = λ ⊗ P. Consider also the filtration (F̃n)n∈Z given by F̃n := B ⊗ Fn.
Denote by Ẽ, the integral with respect to P̃, by Ẽ0 the conditional expectation with respect to F̃0,
P̃k(·) = Ẽk(·) − Ẽk−1(·).

Let t ∈ [0,2π) be a real number, fixed for the moment. Clearly, the transformation T̃t from �̃

to �̃ given by

T̃t : (u,ω) �→ (
u + t modulo 2π, T (ω)

)
,

is invertible, bi-measurable and preserves P̃. For every (u,ω) ∈ �̃ define the variable X̃0 on �̃

by X̃0(u,ω) = eiuX0(ω) and for any n ∈ Z, X̃n(t;u,ω) = X̃0(u,ω) ◦ T̃ n
t . For simplicity, in

the sequel, we shall drop from the notation the variables u and ω in X̃k(t;u,ω) and we
shall write instead X̃k(t) and S̃n(t) = ∑n

k=1 X̃k(t). Notice that (X̃n(t))n∈Z is a stationary se-
quence of complex random variables adapted to the nondecreasing filtration (F̃n). Moreover
eiueiktXk(ω) = X̃k(t;u,ω). We shall construct a martingale M̃n(t), adapted to (F̃n), with sta-
tionary differences, such that for almost all t ∈ [0,2π]

1

n
Ẽ0

[
S̃n(t) − Ẽ0

(
S̃n(t)

) − M̃n(t)
]2 → 0 P̃-a.s.

With this aim we shall apply Proposition 15, given in the Section 5. In order to verify the condi-
tions of this proposition, we have to show that for almost all t in [0,2π]

P̃0
(
S̃n(t)

) → D̃0(t) P̃-a.s. (29)

and

Ẽ

[
sup
n

∣∣P̃0
(
S̃n(t)

)∣∣2
]

< ∞. (30)
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In order to prove (29), note that by the orthogonality of the projections and the fact that the
sequence ‖E−nX0‖2 is decreasing, it follows that

∑
k≥0

‖P−kX0‖2
2 = lim

n→∞

n∑
k=0

‖P−kX0‖2
2 = lim

n→∞

∥∥∥∥ n∑
k=0

P−kX0

∥∥∥∥2

2

= lim
n→∞‖X0 − E−nX0‖2

2 = ‖X0‖2
2 − ‖E−∞X0‖2

2 ≤ ‖X0‖2
2 < ∞.

Clearly this implies ∑
k≥0

|P0Xk|2 < ∞ P-a.s.

Now for ω such that
∑

k≥0 |P0Xk|2(ω) < ∞, by Carleson’s [5] theorem, P0Sn(t) =∑
1≤k≤n eikt (P0Xk)(ω) converges λ-almost surely. Denote the limit by D0 = D0(t). We now

consider the set

A = {
(t,ω) ⊂ [0,2π] × �, where

[
P0Sn(t)

]
n

does not converge
}

and note that almost all sections for ω fixed have Lebesgue measure 0. So by Fubini’s theorem
the set A has measure 0 in the product space and therefore, again by Fubini’s theorem, almost
all sections for t fixed have probability 0. It follows that for almost all t in [0,2π], P0(Sn(t)) →
D0(t) almost surely under P. This shows that, after multiplying by eiu, we get, for almost all t ,
that condition (29) is verified with

D̃0(t) = eiu
∑
j≥1

eij tP0Xj(ω).

Note that

D̃k(t) = D̃0(t) ◦ T̃ k
t = eiu

∑
j>k

eij tPkXj (ω).

Next, we prove (30). By the maximal inequality in Hunt and Young [23], there is a constant C

such that ∫ 2π

0

[
sup
n

∣∣P0
(
Sn(t)

)∣∣2
]
λ(dt) ≤ C

∑
k≥1

|P0Xk|22.

Then we integrate with respect to P and use Fubini theorem to obtain

∫ 2π

0
E

[
sup
n≥0

∣∣P0
(
Sn(t)

)∣∣2
]
λ(dt) ≤ C‖X0‖2

2 < ∞.
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It follows that

E

[
sup
n≥1

∣∣P0
(
Sn(t)

)∣∣2
]

< ∞ for almost all t.

Therefore, we obtain that condition (30) is satisfied. We apply now Proposition 15 to obtain for
almost all t in [0,2π]

1

n
Ẽ0

∣∣S̃n(t) − Ẽ0
(
S̃n(t)

) − M̃n(t)
∣∣2 → 0 P̃-a.s., (31)

where

M̃n(t) =
n∑

k=1

D̃k(t).

Now fix t in [0,2π] such that (31) holds. Clearly

1

n
E0

∣∣Sn(t) −E0
(
Sn(t)

) − Mn(t)
∣∣2 → 0 P-a.s.

The result follows. �

We study next the behavior of Mn(t)/
√

n. We shall do it in general in the context of stationary
and ergodic complex valued martingale differences. Below, the martingale difference D may
depend on t .

Proposition 13. Let T and F0 be as in Section 2. Assume that t ∈ (0,2π) be such that e−2it is
not an eigenvalue of T . Let D = D0 be a random variable defined on (�,F ,P), F0 measurable
and such that E(D ◦ T |F0) = 0 a.s. For any k ∈ Z, let

Dk(t) = (
Re

(
eiktD ◦ T k

)
, Im

(
eiktD ◦ T k

))
.

Let Mn(t) = ∑n
k=1 Dk(t). Then, there is a set �′ with P(�′) = 1 such that for all ω ∈ �′

1√
n

Mn(t) ⇒ N under Pω, (32)

where N = (N1,N2), with N1,N2 are two independent centered normal random variables with
variance E|D|2/2.

Proof. Fix t ∈ (0,2π) such that e−2it is not an eigenvalue of T . Denote Rk(t) = Re(eiktD ◦ T k)

and Ik(t) = Im(eiktD ◦ T k).
The proof is based on Theorem 16 and the following two convergence results: for any real

constants a and b

1√
n
E0

(
max

1≤k≤n

∣∣aRk(t) + bIk(t)
∣∣) → 0 P-a.s. (33)
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and

P0

(∣∣∣∣∣1

n

n∑
k=1

∣∣aRk(t) + bIk(t)
∣∣2 − 1

2

(
a2 + b2)

E|D|2
∣∣∣∣ > ε

)
→ 0 P-a.s. (34)

Before proving (33) and (34) let us show how they lead to the result.
Let a and b be two rational numbers and let �a,b be the set of probability 1 where (33)

and (34) hold. Construct �1 = ⋂
�a,b , where the intersection is taken over all the rationals a

and b. Clearly P(�1) = 1. Then, by Theorem 16 in Section 5, we get via (33) and (34) that for
all ω ∈ �1

n∑
k=1

(
aRk(t) + bIk(t)

)/√
n ⇒ N(a,b, t) under Pω, (35)

where N(a,b, t) is a centered normal random variable with variance (a2 + b2)E|D|2/2.
Because E0 is regular, by Hopf ergodic theorem

1

n
E0

∣∣Mn(t)
∣∣2 = 1

n

n∑
k=1

E0
∣∣Dk(t)

∣∣2 → E
∣∣D0(t)

∣∣2 as n → ∞ P-a.s.

By Markov inequality it follows that there is a set �2 such that for all ω ∈ �2 the sequence
(Mn(t)/

√
n)n≥1 is tight under Pω.

Now construct �′ = �1 ∩ �2. For ω ∈ �′, we apply Lemma 17 in Section 5 and obtain (32).
It remains to prove (33) and (34). To prove the convergence in (34) we shall use relation (16)

in Cuny–Merlevède–Peligrad [8], with u = 0, which gives

1

n

n∑
k=1

∣∣aRk(t) + bIk(t)
∣∣2 → 1

2

(
a2 + b2)

E|D|2 P-a.s.

This convergence was obtained by trigonometric computations along with Dunford–Schwartz
ergodic theorem from Sections VIII.5 and VIII.6 of [16], which requires that t ∈ (0,2π) be such
that e−2it is not an eigenvalue of T (see Proposition 30 in [8]).

This last convergence implies that, for every ε > 0

I

(∣∣∣∣∣1

n

n∑
k=1

∣∣aRk(t) + bIk(t)
∣∣2 − 1

2

(
a2 + b2)

E|D|2
∣∣∣∣∣ > ε

)
→ 0 P-a.s.,

whence (34) follows by Theorem 34.2(v) in Billingsley [1].
We verify now relation (33). Note that∣∣aRk(t) + bIk(t)

∣∣ ≤ (|a| + |b|)|D| ◦ T k = (|a| + |b|)|Dk|.
It is enough to verify that

1

n
E0

(
max

1≤k≤n
|Dk|2

)
→ 0 P-a.s.
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We shall use a truncation argument. Let ε > 0 and c > 0 be fixed for the moment. Let n be
sufficiently large such that ε

√
n ≥ c. For this selection of n, we have

1

n
E0

(
max

1≤k≤n
|Dk|2

)
≤ 1

n
E0

(
max

1≤k≤n
|Dk|2I

(|Dk| ≤ ε
√

n
))

+ 1

n
E0

(
max

1≤k≤n
|Dk|2I

(|Dk| > ε
√

n
))

≤ ε2 + 1

n

n∑
k=1

E0
(|Dk|2I

(|Dk| > c
))

.

Now, by the Hopf theorem for Dunford–Schwartz operators (see [16] or [17]),

1

n

n∑
k=1

E0
(|Dk|2I

(|Dk| > c
)) → E

(|D0|2I
(|D0| > c

))
as n → ∞ P-a.s.

Then we have

lim sup
n→∞

1

n
E0

(
max

1≤k≤n
|Dk|2

)
≤ ε2 +E

(|D0|2I
(|D0| > c

))
.

The result follows by letting ε → 0 and c → ∞. �

Remark 14. Note that because K is countably generated then L
2(�,K,P) is separable and by

Lemma 32 in Cuny et al. [8], T can admit only a countable number of eigenvalues. Therefore
the quenched CLT in Proposition 13 holds for almost all t ∈ [0,2π].

End of the Proof of Theorem 1. By using Theorem 3.1 in Billingsley [2], Lemma 12 shows
that for almost all t ∈ [0,2π], there is a set �′ ⊂ � with P(�′) = 1 such that for all ω ∈ �′, the
limiting behavior Sn(t) − E0(Sn(t)) is the same as of the martingale Mn(t) under Pω. Then, by
Proposition 13 and Remark 14, for almost all t ∈ [0,2π] the quenched CLT holds for Wn(t),
with the limit N(t) = (N1(t),N2(t)), where N1(t),N2(t) are two independent centered normal
random variables with variance E|D(t)|2/2. For an alternative characterization of E|D(t)|2, it
remains to note that by Lemma 12, for almost all t ∈ [0,2π](

1

n
E0

∣∣Sn(t) −E0
(
Sn(t)

)∣∣2
)1/2

−
(

1

n
E0

∣∣Mn(t)
∣∣2

)1/2

→ 0 P-a.s.

Furthermore, by the Hopf ergodic theorem

1

n
E0

∣∣Mn(t)
∣∣2 = 1

n

n∑
k=1

E0
∣∣Dk(t)

∣∣2 → E
∣∣D(t)

∣∣2
P-a.s.

�

Proof of Theorem 2. Clearly (b) implies (a) via Theorem 1. To prove that (a) implies (b), we
shall use again Theorem 1 along with the Theorem of types. This latter theorem states that if
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Vn = anUn + bn and Vn ⇒ V and Un ⇒ U with U nondegenerate then an → a, bn → b and
V = aU + b.

Under conditions of Theorem 2, for λ-almost all t ∈ [0,2π] there is a set �′ ⊂ � with
P(�′) = 1 such that for all ω ∈ �′

1√
n

Re
[
Sn(t) −E0

(
Sn(t)

)] ⇒ N1(t) under Pω.

By the properties of conditional expectations and measure theoretical arguments (see Lemma 18),
we know that for every function g continuous and bounded and random variables X and Y , such
that Y is F0-measurable,

E
ω
(
g(X,Y )|F0

) = E
ω
(
g
(
X,Y(ω)

)|F0
)

for ω in a set of probability 1. By this observation along with the definition of convergence in
distribution, we derive that for λ-almost all t ∈ [0,2π] there is a set �′ ⊂ � with P(�′) = 1, such
that for all ω ∈ �′

1√
n

Re
[
Sn(t) −E0

(
Sn(t)

)
(ω)

] ⇒ N1(t) under Pω,

and by (a) there is a set �′′ ⊂ � with P(�′′) = 1, such that for all ω ∈ �′′

1√
n

Re
(
Sn(t)

) ⇒ N1(t) under Pω.

Now assume that N1(t) is nondegenerate. For ω ∈ �′ ∩ �′′, by the Theorem of types we have
ReE0(Sn(t))(ω)/

√
n → 0. A similar argument gives ImE0(Sn(t))(ω)/

√
n → 0 and (b) follows

for this case. If N1(t) is degenerate, then both Re[Sn(t)]/√n → 0 under P
ω and Re[Sn(t) −

E0(Sn(t))(ω)]/√n → 0 under Pω , and the result follows. �

Proof of Corollary 4. In order to prove this result, we shall verify the item (b) of Theorem 2.
We have then to show that for almost all t

E0(Sn(t))√
n

→ 0 P-a.s. (36)

Note that it is enough to show instead that for almost all t ∈ [0,2π]
(1 − eit )E0(Sn(t))√

n
→ 0 P-a.s.

With this aim note that

(1 − eit )E0(Sn(t))√
n

= E0(Sn(t)) − eit
E0(Sn(t))√

n

= 1√
n

eit
E0(X1) − eit (n+1) 1√

n
E0(Xn) + 1√

n

n−1∑
k=1

eit (k+1)
E0(Xk+1 − Xk).
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We shall analyze each term in the last sum separately. The first term, eit
E0(X1)/

√
n in the above

expression is trivially convergent to 0, P-a.s. By Jensen’s inequality the second one is dominated
as follows: ∣∣∣∣eit (n+1) 1√

n
E0(Xn)

∣∣∣∣2

≤ 1

n
E0

(
X2

n

)
.

We write

1

n
E0

(
X2

n

) = 1

n

n∑
j=1

E0
(
X2

j

) − 1

n

n−1∑
j=1

E0
(
X2

j

)
,

which convergence to 0, P-a.s., by the Hopf ergodic theorem for Dunford–Schwartz operators
(see again [17]).

To prove the convergence of the third term, since we assumed (10), it follows that∑
k≥1

|E0(Xk+1 − Xk)|2
k

< ∞ P-a.s.

By Carleson theorem (see [5]) it follows that for almost all t∑
k≥1

eitk
E0(Xk+1 − Xk)

k1/2
converges P-a.s.

which implies by Kronecker lemma

1√
n

n−1∑
k=1

eit (k+1)
E0(Xk+1 − Xk) → 0 P-a.s.

which completes the proof of (36) and of this corollary. �

Proof of Theorem 6. With the notations from the proof of Lemma 12, we note that under con-
dition (13) we also have ∑

k≥1

1

k3/2

(
Ẽ

∣∣Ẽ0
(
S̃k(t)

)∣∣2)1/2
< ∞. (37)

Then, we can apply directly the martingale approximation in Theorem 2.7 in Cuny and Merlevède
[7] which also remains valid for complex valued variables. It follows that

1√
n
Ẽ0

∣∣S̃n(t) − M̃n(t)
∣∣ → 0 P̃-a.s. and in L̃

2,

where M̃n has stationary complex martingale differences defined by

D̃j (t) =
∑
n≥0

∑
k≥n

P̃0(X̃k(t)) ◦ T j

k + 1
.
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Whence we obtain

1√
n
E0

∣∣(Sn(t)
) − Mn(t))

∣∣ → 0 P-a.s. and in L
2, (38)

where the differences of the martingale Mn(t) are

Dj(t) =
∑
n≥0

∑
k≥n

eitkP0(Xk) ◦ T j

k + 1
.

It follows that for P-almost all ω, under Pω, the behavior of Sn(t)/
√

n is equivalent to Mn(t)/
√

n.
We have just to apply Proposition 13 to obtain the quenched CLT, where the limiting independent
normal variables have the variance ‖D0(t)‖2

2/2. It remains to note that by (38) we can identify
‖D0(t)‖2

2 as

lim
n→∞

1

n
E

∣∣Sn(t)
∣∣2 = ∥∥D0(t)

∥∥2
2.

�

5. Technical results

First, we prove the following martingale approximation for complex valued random variables.
It is similar to Proposition 7 in Cuny and Peligrad [9] but we do not assume ergodicity and the
variables are complex valued. Because there are various changes in the proof we give the proof
for completeness.

Proposition 15. Assume that (Xk)k∈Z is a stationary sequence of complex valued random vari-
ables and let Sn = ∑n

k=1 Xk . Assume

P0(Sn) → D0 converges a.s. and E

[
sup
m

∣∣P0(Sm)
∣∣2

]
< ∞ (39)

(where P0 is defined by (25)). Then, D0 is a martingale difference and

1

n
E0

(∣∣Sn −E0(Sn) − Mn

∣∣2) → 0 P-a.s.,

where Mn = ∑n
k=1 Dk with Dk = D0 ◦ T k .

Proof. Starting from condition (39), we notice that this condition implies P0(Sn) → D0 in
L

2(P). Since E−1[P0(Sn)] = 0 a.s. we conclude that E−1[D0] = 0 a.s. and therefore (Dk)k≥1 is
a sequence of martingale differences adapted to Fk . We shall approximate Sn by Mn + E0(Sn).
We use now a traditional decomposition of Sn in martingale differences by using the projections
on consecutive sigma algebras:

Sn −E0(Sn) = [
Sn −En−1(Sn)

] + [
En−1(Sn) −En−2(Sn)

] + · · · + [
E1(Sn) −E0(Sn)

]
.
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So, we have the martingale decomposition

Sn −E0(Sn) − Mn =
n∑

k=1

[
Pk(Sn − Sk−1) − Dk

]
.

We write now

Pk(Sn − Sk−1) − Dk = [
P0(Sn−k)

] ◦ T k − D0 ◦ T k,

and so

n∑
k=1

[
Pk(Sn − Sk−1) − Dk

] =
n∑

k=1

(
P0(Sn−k) − D0

) ◦ T k =
n−1∑
k=0

(
P0(Sk) − D0

) ◦ T n−k.

With the notation

P0(Sk) − D0 = Gk,

we have

Sn −E0(Sn) − Mn =
n−1∑
j=0

Gj ◦ T n−j =
n∑

j=1

Gn−j ◦ T j .

By the orthogonality of Gj ◦ T n−j , we have

E0
∣∣Sn −E0(Sn) − Mn

∣∣2 =
n−1∑
j=0

E0
(|Gj |2 ◦ T n−j

)
.

Let N be fixed. For n sufficiently large, we decompose the last sum into a sum from 1 to N and
one from N + 1 to n. Then

E0
∣∣Sn −E0(Sn) − Mn

∣∣2 =
N∑

j=0

E0
(|Gj |2 ◦ T n−j

) +
n−1∑

j=N+1

E0
(|Gj |2 ◦ T n−j

)
(40)

= An(N) + Bn(N).

It is then well known that we have for all j fixed

1

n − j

n−j∑
u=0

E0
(|Gj |2 ◦ T u

)
converges as n → ∞ almost surely and in L1.

By writing for all j fixed, 0 ≤ j ≤ N ,

E0
(|Gj |2 ◦ T n−j

) =
n−j∑
j=0

E0
(|Gj |2 ◦ T j

) −
n−j−1∑
j=0

E0
(|Gj |2 ◦ T j

)
,
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it follows easily that

An(N)

n
→ 0 as n → ∞ P-a.s. and in L1. (41)

Now we treat Bn(N). We bound this term in the following way,

Bn(N)

n
≤ 1

n

n∑
j=1

E0

[
sup
m>N

|Gm|2 ◦ T j
]
.

By the Hopf ergodic theorem and the specification in Section (7) in Dedecker et al. [12] we have

lim
n→∞

1

n

n∑
j=1

[
sup
m>N

|Gm|2 ◦ T j
]

= E

[
sup
m>N

|Gm|2|I
]

P-a.s. and in L1,

where I is the invariant sigma field. Since by (39) supm>N |Gm|2 → 0 a.s. as N → ∞ and
supm>N |Gm|2 ≤ supm |Gm|2 ∈ L1, by Billingsley [2], Theorem 34.2(v) we also have

lim
N→∞E

[
sup
m>N

|Gm|2|I
]

= 0, P-a.s. and in L1,

and therefore

lim
N→∞ lim

n→∞
1

n

n∑
j=1

[
sup
m>N

|Gm|2 ◦ T j
]

= 0, P-a.s. and in L1.

It follows that

lim
N→∞ lim sup

n→∞
Bn(N)

n
= 0, P-a.s. and in L1. (42)

�

We give below a well-known Raikov type central limit theorem for nonstationary martingales.
The following theorem is a variant of Theorem 3.2 in Hall and Heyde [21] (see also Gänssler

and Häusler [18]).

Theorem 16. Assume (Dn,i)1≤i≤n is an array of square integrable martingale differences
adapted to an array (Fn,i)1≤i≤n of nested sigma fields. Suppose

E

(
max

1≤j≤n
|Dn,j |

)
→ 0 as n → ∞ (43)

and
n∑

j=1

D2
n,j →P σ 2 as n → ∞. (44)

Then Sn = ∑n
j=1 Dn,j converges in distribution to a centered normal variable with variance σ 2.
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We give now a result on weak convergence needed for the proof of Proposition 13.

Lemma 17. Assume that the sequence of random variables (Yn,Zn)n≥1 is tight and for every
rational numbers a and b we have

aYn + bZn ⇒ aN1 + bN2.

Then (Yn,Zn) ⇒ (N1,N2).

Proof. Because (Yn,Zn) is tight, from any subsequence (n′) we can extract another subsequence
(n′′) convergent in distribution to (L1,L2) say. By the Cramér–Wold device, it follows that for
all real numbers a and b we have

aYn + bZn ⇒ aL1 + bL2.

Therefore for all rational numbers a and b we have

Eei(aN1+bN2) = Eei(aL1+bL2). (45)

Now, for any reals (c, d) we take sequences (an)n≥1 and (bn)n≥1 of rational numbers such that
an → c and bn → d . By the Lebesgue dominated convergence theorem, we pass to the limit
in (45) (written for an and bn), and obtain that the equality in (45) holds for all real num-
bers. Since the Fourier transform determines the measure we obtain (L1,L2) is distributed as
(N1,N2). �

The next lemma is a step in the proof of Theorem 2.

Lemma 18. Let (�,F ,P) be a probability space with F countably generated, G ⊂ F a sigma
algebra, Y a G-measurable integrable random variable, X integrable and let g :R2 → R be a
continuous and bounded function. Let Pω be a regular version of P given F . Then there exists
�1 ⊂ � with P(�1) = 1 such that, for all ω ∈ �1

E
ω
[
g
(
X,Y(ω)

)] = E
ω
[
g(X,Y )

]
. (46)

Proof. It is easy to see that for a simple function V we can find �V ⊂ � with P(�V ) = 1 such
that, for all ω ∈ �V

E
ω
[
g
(
X,V (ω)

)] = E
ω
[
g(X,V )

]
.

Indeed, if V = ∑m
j=1 aj I (Bj ) with Bj ∈ G we have for every B ∈ G

E
(
I (B)

(
g(X,V )|G)) =

m∑
j=1

E
(
I (B ∩ Bj )g(X,V )

) =
m∑

j=1

E
(
I (B ∩ Bj )g(X,aj )

)

= E

(
I (B)

m∑
j=1

I (Bj )E
(
g(X,aj )|G

))
.
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Let Vn → Y a sequence of simple functions. Then we can find a set �1 ⊂ � with P(�1) = 1,
namely �1 = ⋂

n �Vn , such that for all ω ∈ �1

E
ω
[
g
(
X,Vn(ω)

)] = E
ω
[
g(X,Vn)

]
.

Now, for ω fixed in �1, by Lesbegue dominated convergence theorem we get (46) by passing to
the limit. �
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