
Bernoulli 21(2), 2015, 1231–1237
DOI: 10.3150/14-BEJ603

A tight Gaussian bound for weighted sums of
Rademacher random variables
VIDMANTAS KASTYTIS BENTKUS and DAINIUS DZINDZALIETA1

1Vilnius University Institute of Mathematics and Informatics, Akademijos 4, Vilnius, Lithuania.
E-mail: dainiusda@gmail.com

Let ε1, . . . , εn be independent identically distributed Rademacher random variables, that is P{εi = ±1} =
1/2. Let Sn = a1ε1 + · · · + anεn, where a = (a1, . . . , an) ∈R

n is a vector such that a2
1 + · · · + a2

n ≤ 1. We
find the smallest possible constant c in the inequality

P{Sn ≥ x} ≤ cP{η ≥ x} for all x ∈R,

where η ∼ N(0,1) is a standard normal random variable. This optimal value is equal to

c∗ = (
4P{η ≥ √

2})−1 ≈ 3.178.

Keywords: bounds for tail probabilities; Gaussian; large deviations; optimal constants; random sign;
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1. Introduction

Let ε1, . . . , εn be independent identically distributed Rademacher random variables, such that
P{εi = ±1} = 1/2. Let Sn = a1ε1 +· · ·+anεn, where a = (a1, . . . , an) ∈R

n is a vector such that
a2

1 + · · · + a2
n ≤ 1.

The main result of the paper is the following theorem.

Theorem 1.1. Let η ∼ N(0,1) be a standard normal random variable. Then, for all x ∈ R,

P{Sn ≥ x} ≤ cP{η ≥ x}, (1.1)

with the constant c equal to

c∗ := (
4P{η ≥ √

2})−1 ≈ 3.178.

The value c = c∗ is the best possible since (1.1) becomes equality if n ≥ 2, x = √
2 and

Sn = (ε1 + ε2)/
√

2.
Inequality (1.1) was first obtained by Pinelis [4] with c ≈ 4.46. Bobkov, Götze and Houdré

(BGH) [2] gave a simple proof of (1.1) with constant factor c ≈ 12.01. Their method was to use
induction on n together with the inequality

1
2P{η ≥ A} + 1

2P{η ≥ B} ≤ P{η ≥ x} for all x ≥ √
3 and τ ∈ [0,1], (1.2)
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where A := x−τ√
1−τ 2

and B := x+τ√
1−τ 2

. Using a method similar to the one in BGH [2], Bentkus

[1] proved (1.1) with c ≈ 4.00 and conjectured that the optimal constant in (1.1) is c∗. Further
progress was achieved by Pinelis [5], where (1.1) was proved with c ≈ 1.01c∗.

Let us briefly outline our strategy of the proof. For x ≤ √
2 Theorem 1.1 follows from the

symmetry of Sn. For x ≥ √
2 we consider two cases separately. If x ∈ (

√
2,

√
3) and all ai ’s

are “small” we use Berry–Esseen inequality. Otherwise we use induction on n together with
Chebyshev type inequality presented in Lemma 2.1. We remark that the analysis of weighted
sums of random variables based on separate study of these two cases has proved recently to be
effective idea, see [7]. In [6], this idea was used to obtain asymptotically Gaussian bound

P{Sn ≥ x} ≤ P{η ≥ x}
(

1 + C

x

)
,

where C ≈ 14.10 . . . .
A standard application of bounds like (1.1), following Efron [3], is to the Student’s statis-

tic and to self-normalized sums. For example, if random variables X1, . . . ,Xn are independent
(not necessary identically distributed), symmetric and not all identically equal to zero, then the
statistic

Tn = (X1 + · · · + Xn)/

√
X2

1 + · · · + X2
n

is sub-Gaussian and

P{Tn ≥ x} ≤ c∗P{η ≥ x} for all x ∈R. (1.3)

The latter inequality is optimal since it turns into an equality if n = 2, x = √
2 and X1 = ε1,

X2 = ε2. This inequality was previously obtained in [4,5] with constants 4.46 and ≈1.01c∗ in
place of c∗.

2. Proofs

In this section, we use the following notation

τ = a1, ϑ =
√

1 − τ 2, I (x) = P{η ≥ x}, ϕ(x) = −I ′(x), (2.1)

that is, I (x) is the tail probability for standard normal random variable η and ϕ(x) is the
standard normal density. Without loss of generality, we assume that a2

1 + · · · + a2
n = 1 and

a1 ≥ · · · ≥ an ≥ 0. Using (2.1) we have Sn = τε1 + ϑX with X = (a2ε2 + · · · + anεn)/ϑ . The
random variable X is symmetric and independent of ε1. It is easy to check that EX2 = 1 and

P{Sn ≥ x} = 1
2P{X ≥ A} + 1

2P{X ≥ B}, (2.2)

where A = x−τ
ϑ

and B = x+τ
ϑ

.
We start with a simple Chebyshev type inequality.
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Lemma 2.1. Let s > 0 and 0 ≤ a ≤ b. Then, for any random variable Y we have

as
P
{|Y | ≥ a

} + (
bs − as

)
P
{|Y | ≥ b

} ≤ E|Y |s . (2.3)

If Y is symmetric, then

as
P{Y ≥ a} + (

bs − as
)
P{Y ≥ b} ≤ E|Y |s/2. (2.4)

Proof. It is clear that (2.3) implies (2.4). To prove (2.3), we use the obvious inequality

as
I
{|Y | ≥ a

} + (
bs − as

)
I
{|Y | ≥ b

} ≤ |Y |s , (2.5)

where I{E} stands for the indicator function of the event E. Taking expectation, we get (2.3).
�

In similarity to (2.3), one can derive a number of inequalities stronger than the standard Cheby-
shev inequality P{Sn ≥ x} ≤ 1/(2x2). For example, instead of P{Sn ≥ 1} ≤ 1/2 we have the
much stronger

P{Sn ≥ 1} + P{Sn ≥ √
2} + P{Sn ≥ √

3} + · · · ≤ 1/2.

We will make use of Lyapunov type bounds with explicit constants for the remainder term in
the Central limit theorem. Let X1,X2, . . . be independent random variables such that EXj = 0
for all j . Set βj = E|Xj |3. Assume that the sum Z = X1 + X2 + · · · has unit variance. Then
there exists an absolute constant, say cL, such that

∣∣P{Z ≥ x} − I (x)
∣∣ ≤ cL(β1 + β2 + · · ·). (2.6)

It is known that cL ≤ 0.56 . . . [8,9]. Note that we actually do not need the best known bound for
cL. Even cL = 0.958 suffices to prove Theorem 1.1.

Replacing Xj by aj εj and using βj ≤ τa2
j for all j , the inequality (2.6) implies

∣∣P{Sn ≥ x} − I (x)
∣∣ ≤ cLτ. (2.7)

Proof of Theorem 1.1. For x ≤ √
2 Theorem 1.1 follows from the symmetry of Sn and Cheby-

shev’s inequality (first it was implicitly shown in [1], later in [5]). In the case x ≥ √
2, we argue

by induction on n. However, let us first provide a proof of Theorem 1.1 in some special cases
where induction fails.

Using the bound (2.7), let us prove Theorem 1.1 under the assumption that

τ ≤ τL
def= (c∗ − 1)I (

√
3)/cL and x ≤ √

3. (2.8)

Using cL = 0.56, the numerical value of τL is 0.16 . . . . In order to prove Theorem 1.1 under the
assumption (2.8), note that the inequality (2.7) yields

P{Sn ≥ x} ≤ I (x) + τcL. (2.9)
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If the inequality (2.8) holds, the right-hand side of (2.9) is clearly bounded from above by c∗I (x)

for x ≤ √
3.

For x and τ such that (2.8) does not hold we use induction on n. If n = 1, then we have Sn = ε1
and Theorem 1.1 is equivalent to the trivial inequality 1/2 ≤ c∗I (1).

Let us assume that Theorem 1.1 holds for n ≤ k − 1 and prove it for n = k.
Firstly we consider the case x ≥ √

3. We replace Sn by Sk with X = (a2ε2 + · · · + akεk)/ϑ

in (2.2). We can estimate the latter two probabilities in (2.2) applying the induction hypothesis
P{X ≥ y} ≤ c∗I (y). We get

P{Sk ≥ x} ≤ c∗I (A)/2 + c∗I (B)/2. (2.10)

In order to conclude the proof, it suffices to show that the right-hand side of (2.10) is bounded
from above by c∗I (x), that is, that the inequality I (A) + I (B) ≤ 2I (x) holds. As x ≥ √

3 this
follows by the inequality (1.2).

In the remaining part of the proof, we can assume that x ∈ (
√

2,
√

3) and τ ≥ τL. In this case
in order to prove Theorem 1.1, we have to improve the arguments used to estimate the right-hand
side of (2.2). This is achieved by applying the Chebyshev type inequalities of Lemma 2.1. By
Lemma 2.1, for any symmetric X such that EX2 = 1, and 0 ≤ A ≤ B , we have

A2
P{X ≥ A} + (

B2 − A2)
P{X ≥ B} ≤ 1/2. (2.11)

By (2.1), we can rewrite (2.11) as

(x − τ)2
P{X ≥ A} + 4xτP{X ≥ B} ≤ ϑ2/2. (2.12)

For x ∈ (
√

2,
√

3) and τ ≥ τL we consider the cases

(i) (x − τ)2 ≥ 4xτ and (ii) (x − τ)2 ≤ 4xτ

separately. We denote the sets of points (x, τ ) such that x ∈ (
√

2,
√

3), τ ≥ τL and (i) or (ii) holds
by E1 and E2, respectively.

(i) Using (2.2), (2.12) and the induction hypothesis we get

P{Sk ≥ x} ≤ DP{X ≥ B} + ϑ2/2

2(x − τ)2
≤ c∗DI (B) + ϑ2/2

2(x − τ)2
, (2.13)

where X = (a2ε2 + · · · + akεk)/ϑ and D = (x − τ)2 − 4xτ .
In order to finish the proof of Theorem 1.1 (in this case) it suffices to show that the right-hand

side of (2.13) is bounded above by c∗I (x). In other words, we have to check that the function

f (x, τ ) ≡ f
def= (

(x − τ)2 − 4xτ
)
c∗I (B) − 2c∗(x − τ)2I (x) + ϑ2/2, (2.14)

is negative on E1, where B = (x + τ)/ϑ .
By Lemma 2.5 below, we have

f (x, τ ) ≤ f (
√

3, τ ) =: g(τ). (2.15)

Since τ ≤ (3 − 2
√

2)x the inequality f ≤ 0 on E1 follows from Lemma 2.2, below.
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(ii) Using (2.2), (2.12) and induction hypothesis we get

P{Sk ≥ x} ≤ CP{X ≥ A} + ϑ2/2

8xτ
≤ C/(2A2) + ϑ2/2

8xτ
, (2.16)

where X = (a2ε2 + · · · + akεk)/ϑ and C = 4xτ − (x − τ)2.
In order to finish the proof (in this case) it suffices to show that the right-hand side of (2.16) is

bounded above by c∗I (x). In other words, we have to check that

C/
(
2A2) + ϑ2/2 ≤ 8xτc∗I (x) on E2. (2.17)

Recalling that C = 4xτ − (x − τ)2, A = (x − τ)/ϑ , inequality (2.17) is equivalent to

h
def= 1 − τ 2

(x − τ)2
− 4c∗I (x) ≤ 0 on E2. (2.18)

Inequality (2.18) follows from Lemma 2.6, below. The proof of Theorem 1.1 is complete. �

Lemma 2.2. The function g defined by (2.15) is negative for all τ ∈ [τL, (3 − 2
√

2)
√

3].

Lemma 2.3. I ′(B) ≥ ϑI ′(x) on E1.

Lemma 2.4. I (B) ≥ I (x) + I ′(x)τ on E1.

Lemma 2.5. The partial derivative ∂xf of the function f defined by (2.14) is positive on E1.

Lemma 2.6. The function h defined by (2.18) is negative on E2.

Proof of Lemma 2.2. Since g(τL) < 0 it is sufficient to show that g is a decreasing function for
τL ≤ τ ≤ (3 − 2

√
2)

√
3. Note that

g(τ) = (
(
√

3 − τ)2 − 4
√

3τ
)
c∗I (B) + (

1 − τ 2)/2 − 2c∗(
√

3 − τ)2I (
√

3)

and

g′(τ ) = (2τ − 6
√

3)c∗I (B) − (
(
√

3 − τ)2 − 4
√

3τ
)
c∗ϕ(B)(1 + τ

√
3)ϑ−3

− τ + 4c∗(
√

3 − τ)I (
√

3),

where ϕ is the standard normal distribution. Hence

g′(τ ) ≤ w(τ)
def= (2τ − 6

√
3)c∗I (B) − τ + 4c∗(

√
3 − τ)I (

√
3).

Note that the value of B in previous three displayed formulas should also be computed with
x = √

3. Using Lemma 2.4, we get

g′(τ ) ≤ −2c∗(
√

3 + τ)I (
√

3) + 2c∗τ(3
√

3 − τ)ϕ(
√

3) − τ
def= Q(τ)
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with

Q(τ) = −ατ 2 + βτ − γ, α = 0.56 . . . , β = 1.67 . . . , γ = 0.45 . . . .

Clearly, Q is negative on the interval [τL, (3 − 2
√

2)
√

3]. It follows that g′ is negative, and g

is decreasing on [τL, (3 − 2
√

2)
√

3]. �

Proof of Lemma 2.3. Since I ′ = −ϕ by (2.1), the inequality I ′(B) ≥ ϑI ′(x) is equivalent to

u(τ)
def= (

1 − τ 2) exp

{
(x + τ)2

1 − τ 2
− x2

}
− 1 ≥ 0.

Since u(0) = 0, it suffices to check that u′ ≥ 0. Elementary calculations show that u′ ≥ 0 is
equivalent to the trivial inequality x + τ 2x + τx2 + τ 3 ≥ 0. �

Proof of Lemma 2.4. Let g(τ) = I (B). Then the inequality I (B) ≥ I (x) + I ′(x)τ turns into
g(τ) ≥ g(0) + g′(0)τ . The latter inequality holds provided that g′′(τ ) ≥ 0. Next, it is easy to
see that g′(τ ) = −ϕ(B)B ′ and g′′(τ ) = (BB ′2 − B ′′)ϕ(B). Hence, to verify that g′′(τ ) ≥ 0 we
verify that BB ′2 − B ′′ ≥ 0. This last inequality is equivalent to −2 + 2x2 + x3τ + x2τ 2 + xτ +
2xτ 3 + 3τ 2 ≥ 0, which holds since x ≥ 1. The proof of Lemma 2.4 is complete. �

Proof of Lemma 2.5. We have

∂xf = 2(x − 3τ)c∗I (B) + Dc∗I ′(B)/ϑ − 4c∗(x − τ)I (x) − 2c∗(x − τ)2I ′(x).

We have to show that ∂xf ≥ 0 on E1. Using Lemma 2.3, we can reduce this to the inequality

2(x − 3τ)I (B) − (x + τ)2I ′(x) − 4(x − τ)I (x) ≥ 0. (2.19)

On E1 we have that 0 ≤ τ ≤ (3 − 2
√

2)x, so x − 3τ ≥ x − 3(3 − 2
√

2)x = (6
√

2 − 8)x > 0. By
Lemma 2.4 we have that left-hand side of (2.19) is bigger than

2(x − 3τ)
(
I (x) + I ′(x)τ

) − (x + τ)I ′(x) − 4(x − τ)I (x)

= −2(x + τ)I (x) − (
x2 + 7τ 2)I ′(x).

Inequality (2.19) follows by the inequality −(x2 + 7τ 2)I ′(x) ≥ αx(x + τ)ϕ(x) > 2(x + τ)I (x)

on E1 with α = 4
√

14 − 14, where the second inequality follows from the fact that ϕ(x)x/I (x)

increases for x > 0 and is larger than 2/α for x = √
2. The proof of Lemma 2.5 is complete. �

Proof of Lemma 2.6. It is easy to see that the function h attains its maximal value at τ = 1/x.
Hence, it suffices to check (2.18) with τ = 1/x, that is, that for

√
2 ≤ x ≤ √

3 the inequal-

ity g(x)
def= 1 − 4c∗(x2 − 1)I (x) ≤ 0 holds. Using 4c∗I (

√
2) = 1, we have g(

√
2) = 0 and

g(
√

3) < 0. Next, g′(x) = −8c∗xI (x) + 4c∗(x2 − 1)ϕ(x), so g′(
√

2) < 0 and g′(
√

3) > 0.
We have that g′′(x) = 4c∗((5 − x2)xϕ(x) − 2I (x)). Since I (x) ≤ ϕ(x)/x we have that
g′′(x) ≥ 4c∗((5 − x2)xϕ(x) − 2ϕ(x)/x) = 4c∗ϕ(x)/x((5 − x2)x2 − 2) ≥ 8c∗ϕ(x)/x > 0 for
x ∈ (

√
2,

√
3). The proof of Lemma 2.6 is complete. �
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