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The aim of this paper is to study, in the infinite dimensional framework, the existence and uniqueness for
the solution of the following multivalued generalized backward stochastic differential equation, considered
on a random, possibly infinite, time interval:

{—dYt +0yW (1, Y)dQ; > d(t,Y;, Z1)dQr — Z; AWy, 0<t<r,
Yr=n,

where 7 is a stopping time, Q is a progressively measurable increasing continuous stochastic process and
dy W is the subdifferential of the convex lower semicontinuous function y —> W (z, y).

As applications, we obtain from our main results applied for suitable convex functions, the existence for
some backward stochastic partial differential equations with Dirichlet or Neumann boundary conditions.

Keywords: backward stochastic differential equations; subdifferential operators; stochastic variational
inequalities; stochastic partial differential equations

1. Introduction

In this paper, we are interested to prove the existence and uniqueness of a triple (Y, Z, K) which
is the solution for the following generalized backward stochastic variational inequality (BSVI for
short) considered in the Hilbert space framework:

T

T T
Y,+f sz=n+/ [F(s,Ys, Zs)ds + G s, Ys)dAx]—/ Z;dWs,  as,
t t

AT AT INT (ll)

where {W;:t > 0} is a cylindrical Wiener process, d¢, 0¥ are the subdifferentials of a con-
vex lower semicontinuous functions ¢, ¥, {A;:¢ > 0} is a progressively measurable increasing
continuous stochastic process, and 7 is a stopping time.

In fact, we will define and prove the existence of the solution for an equivalent form of (1.1):

00 00 00

Yt+/ sz=77+/ q)(S,Ys,Zs)dQs_f ZsdWs, as.,t >0,
t t t

dK; € 0,V (1, Y)dOy, on [0, 00),

(1.2)
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with O, ® and W adequately defined. The notation dK; € 9,V (¢, Y;) dQ, means that ¥ is a
continuous stochastic process and for any continuous stochastic process X : Ry — H and any
0 < s1 < 3, the bounded variation of K on [sy, s»] is finite and the following inequality holds:

52 52 52
/ (X, — Y., dK,) +/ Y (r, Y,)dQ, 5/ V(r,Y,)dQ,, a.s.
S1 S1 S1
The study of the backward stochastic differential equations (BSDEs for short) in the finite dimen-
sional case (equation of type (1.1) with A and ¢ equal to 0) was initiated by Pardoux and Peng
[16] (see also Pardoux and Peng [15]). The authors have proved the existence and the uniqueness
of the solution for the BSDE on fixed time interval, under the assumption of Lipschitz continuity
of F with respect to y and z and square integrability of n and F'(¢, 0, 0). The case of BSDEs on
random time interval (possibly infinite), under weaker assumptions on the data, have been treated
by Darling and Pardoux [5], where it is obtained, as application, the existence of a continuous
viscosity solution to the elliptic partial differential equations (PDEs) with Dirichlet boundary
conditions.

The more general case of scalar BSDEs with one-sided reflection and associated optimal con-
trol problems was considered by El Karoui, Kapoudjian, Pardoux, Peng and Quenez [8] and with
two-sided reflection associated with stochastic game problem by Cvitani¢ and Karatzas [4].

When the obstacles are fixed, the reflected BSDE become a particular case of BSVI of type
(1.1), by taking W as convex indicator of the interval defined by obstacles. We must mention
that the solution of a BSVI belongs to the domain of the operator dW and it is reflected at the
boundary of this.

The standard work on BSVI in the finite dimensional case is that of Pardoux and Rascanu [17],
where it is proved the existence and uniqueness of the solution (Y, Z, K) for BSVI (1.1) with
A =0, under the following assumptions on F: monotonicity with respect to y (in the sense that
(y =y, F(t,y,2) — F(t,v,2)) <aly’ — y|?), Lipschitzianity with respect to z and a sublinear
growth for F(t,y,0). Moreover, it is shown that, unlike the forward case, the process K is
absolute continuous with respect to dz. In Pardoux and Rascanu [18], the same authors extend
these results to the Hilbert spaces framework. Afterwards, various particular cases of BSVI (1.1)
were the subject of many articles: Maticiuc and Ragcanu [11], Maticiuc, Rdscanu and Zilinescu
[12], Maticiuc and Rotenstein [13], Maticiuc and Nie [9] (where the backward equations are
studied in the frame of fractional stochastic calculus) and Diomande and Maticiuc [7] (where
the generator F at the moment ¢ is allowed to depend on the past values on [0, #] of the solution
(¥, 2)).

Our paper generalizes the existence and uniqueness results from Pardoux and Ragcanu [18]
by considering random time interval [0, 7] and the Lebesgue—Stieltjes integral terms, and by
assuming a weaker boundedness condition for the generator ® (instead of the sublinear growth),
that is,

T P
IE(/ cb”;(s)ds> < 00, where @ (1) := sup |®(z, y,0)|. (1.3)
0 lyl=<p
We mention that, since 7 is a stopping time, the presence of the process A is justified by
the possible applications of equation (1.1) in proving probabilistic interpretation for the solu-
tion of elliptic multivalued partial differential equations with Neumann boundary conditions on
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a domain from R?. The stochastic approach of the existence problem for finite dimensional mul-
tivalued parabolic PDEs, was considered by Maticiuc and Ragcanu [11].

Concerning assumption (1.3), we recall that, in the case of finite dimensional BSDE, Pardoux
[14] has used a similar condition, in order to prove the existence of a solution in L2. His result was
generalized by Briand, Delyon, Hu, Pardoux and Stoica [3], where it is proved the existence in
L? of the solution for BSDEs considered both with fixed and random terminal time. We mention
that the assumptions from our paper are, broadly speaking, similar to those of Briand, Delyon,
Hu, Pardoux and Stoica [3].

The article is organized as follows: in the next section a brief summary of infinite dimensional
stochastic integral and the assumptions are given. Section 3 is devoted to the proof of the exis-
tence and uniqueness of a strong solution for (1.2). In the Section 4, is a new type of solution
(called variational weak solution) and it is also proves the existence and uniqueness result. In
Section 4 are obtained, as applications, the existence of the solution for various type of back-
ward stochastic partial differential equations with boundary conditions. The Appendix contains,
following Pardoux and Réscanu [19], some results useful throughout the paper.

2. Preliminaries

2.1. Infinite dimensional framework

In the beginning of this subsection, we give a brief exposition of the stochastic integral with
respect to a Wiener process defined on a Hilbert space. For a deeper discussion concerning the
notion of cylindrical Wiener process and the construction of the stochastic integral, we refer
reader to Da Prato and Zabczyk [6].

We consider a complete probability space (2, F, P), the set Np = {A € F:IP(A) =0}, aright
continuous and complete filtration {F;};>0, and two real separable Hilbert spaces H, Hj.

Let us denote by SZ [0,T], p = 0, the complete metric space of continuous progressively
measurable stochastic process (p.m.s.p.) X : Q2 x [0, T] — H with the metric given by

- IA1/p
E sup |X,—Xt|p) < 00, if p>0,

pp(X. Xy =1 T

E(l/\ sup |x,—f(,|)<oo, if p=0,
t€l0,T]

and by SZ the space of p.m.s.p. X:Q x [0, 00) — H such that, for all T > 0, the restriction
Xljo,71 € S510, T1. To shorten notation, we continue to write S? for S4,. Remark that S5 [0, T']
is a Banach space for p > 1.

By M?(Q2 x [0,T]; H), p > 1, we denote the Banach space of the continuous stochastic
processes M such that E(|M (¢)|?) < oo, Vt € [0, T], M(0) =0 a.s., and E7s(M;) = M, as.
for all 0 <s <t < T. The norm is defined by |M|yr = [E(IM(T)|P)]V/P. If p > 1, then
MP (2 x [0, T]; H) is a closed linear subspace of SII_’I [0, T].

Let W = {W;(a):t >0,a € Hi} C L%, F,P) be a Gaussian family of real-valued random
variables with zero mean and the covariance function given by E[W;(a) Ws(b)] = (t As)(a, b) u,,
s,t>0,a,be Hy. We call W a Hj-Wiener process if, for all r > 0,
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(i) FY :=0{Ws(a):s€[0,t],ac Hi} Vv Np C F,
(i) Wiipn(a) — Wi(a) is independent of F;, for all & > 0, a € H;.

Let {e;}ien* be an orthonormal and complete basis in H;. We introduce the separable Hilbert
space Lo (Hy; H) of Hilbert—Schmidt operators from H; to H, that is, the space of linear op-
erators Z: Hy — H such that |Z|%2(H1;H) = Z,Oil |Ze,~|12q =Tr(Z*Z) < oo. It will cause no
confusion if we use | Z| to designate the norm in Lo (Hy; H).

The sequence Wi={W!:=W,(e;):t €0, T}, i € N*, defines a family of real-valued Wiener
processes mutually independent on (€2, F, P).

If H; is finite dimensional space then we have the representation W; = Zi Wti ,t >0, but,
in general case, this series does not converge in Hj, but rather in a larger space Hj such that
Hy C H with the injection J: H; — H> being a Hilbert—-Schmidt operator. Moreover, W €
M2(Q2 x [0, TT; Ha).

For 0 < T < oo, we will denote by AZZ(HI’H)(O, T), p = 0, the space L” (Q x (0,T);
L,(H1, H)), that is, the complete metric space of progressively measurable stochastic processes
Z:Qx (0,T)— Ly(H;, H) with metric of convergence

T . p/2\ Inl/p
(]E(/ |ZS—ZS|2ds) ) <00, ifp>0,
dpy(Z,7) = 0

T ~ 12
E(l/\(/ |ZS—ZS|2ds> ><oo, if p=0.
0

The space Aiz(Hl,H)(O’ T') is a Banach space for p > 1 withnorm || Z||o» = dp(Z, 0). From now
on, for simplicity of notation, we write A” (0, T) instead of Aiz (Hy H) (0, T) (when no confusion
can arise).

Let us denote by A? the space of measurable stochastic processes X : Q2 x [0, 00) — H such
that, for all 7 > 0, the restriction X|jo,77 € A?(0, T).

For any Z € A? let the stochastic integral I(Z)(f) = fot ZodWs =32, fé Zs(e;)dWs(e;), t €
[0, T'], where {e;}; is an orthonormal basis in H;. Note that the introduced stochastic integral does
not depend on the choice of the orthonormal basis on Hj. By the standard localization procedure,
we can extend this integral as a linear continuous operator 1: A”(0, T) — S”[0,T], p >0, and
it has the following properties:

Proposition 2.1. Let Z € AP(0,T). Then

() EXZ)(t)=0,Vt €[0,T],if p=>1,
(i) EN(Z)(T)I>=IZI3,. if p = 2,
(iii) énzn’,’\p <Esup,cio.71 MDD < cp| ZIR . if p > 0 (Burkholder-Davis—Gundy in-
equality),
(v) I(Z) eMP(Q x [0,T1; H), if p > 1.

From now on, we shall consider that the original filtration {F;},;>¢ is replaced by the filtration
{F}1=0 generated by the Wiener process. The following Hilbert space version of the martingale
representation theorem, extended to a random interval, holds the following proposition.
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Proposition 2.2. Let 7:Q — [0, 0] be a stopping time, p > 1 and n:Q — H be a F;-
measurable random variable such that E|n|P < oo. Then

1. there exists a unique stochastic process ¢ € AP (0, 00) such that n = En + for ¢ dWs and
& =10,71(t) &, Yt = 0, or equivalently,
2. there exists a unique pair (§,¢) € SP x AP (0, 00) such that

T
gt =n- / ;S dWS‘v as.,t = 0’ (21)
INT

or equivalently,
3. there exists a unique pair (&,¢) € SP x AP (0, 00) such that & = n — ftoogs dWs, a.s.,t >0
and & =EFn =By and & = 1j0,0)()51, 1 2 0.

2.2. Assumptions and definitions

In order to study equation (1.1), or the equivalent form (1.2), we introduce the next assumptions:

(A1) The parameter p > 2;

(A2) The random variable t : Q2 — [0, 00] is a stopping time;

(A3) The random variable n:Q2 — H is F;-measurable such that E|n|P < oo and the
stochastic process (§,¢) € SP x AP (0, 00) is the unique pair associated to n such that
we have the martingale representation formula (2.1);

(A4) The process {A; :t > 0} is a progressively measurable increasing continuous stochastic
process such that Ag = 0;

(As) The functions F:Q x [0,00) x H X Ly(H;, H) = H and G:Q x [0,00) x H — H
are such that

F(,,v,2,G(,-,y)are p.ms.p., forall(y,z) € H x Lo(Hy, H),
F(w,t,-, ), G(w,t,-) are continuous functions a.e.,

and [ Ff(s)ds+ [} G*(s)dAs <00, ¥p, T =0, P-a.s., where F¥(s) = supj <, | F (s,
y,0)| and G¥(s) =sup; <, |G (s, y)|.

Moreover, there exist two p.m.s.p. L, v:Q2 x [0, 00) — R such that fOT lie |2 dt < 00
and fOT |vt|2dA, < 00, for all T > 0,P-a.s., and there exists £ > 0, such that, for all
v,y € H,z,7 € Lo(Hi, H),

2
)

(y =y F(t.y,2) = F(t, y.2)) < Lpo.q e |y — y

2, (2.2)

(y =5.G(t.y) =G, y) <L w ]y —y
|F(t,y.2) = F(t,y,2)| < 1j0.0)|d —z|.
Let us introduce the function

Qi(w) =1+ A(w)



Backward SVIs on random interval 1171

and let {o; :# > O} be the a real positive p.m.s.p. (given by Radon—Nikodym’s representation
theorem) such that « € [0, 1] and dt = o, dQ; and dA; = (1 — ;) d Q.
Let

q)(a)s t9 y, Z) = ]]-[O,T((u)](t)[al(a))F(wv ts ya Z) + (1 - al(a)))G(wv ts y)]7
in which case (2.2) yields

2

(y =y @(t.y.2) = .y, 2) < Lpo,e1 ) [ ey +vi(1 — )]y =y
|®(r,y.2)) — @1, y.2)| < Ljo.(0)las |2 —2].

Fora > 1, let

t
Vi = / ]]-[O,T](S)|:</Ls + %£2>as +v(1— as):| dQ;
0

! a
= fo ﬂ[O,t](S)|:<Ms+§£2> ds + v dAs].

We can give now some a priori estimates concerning the solution of (1.1).

(2.3)

Lemma 2.1. Let (Y, Z), (Y, Z) € 8°[0, T] x A%, T). Under assumption (As) the following
inequalities hold, in the sense of signed measures on [0, 00),

1
(YS7 D(s, Ys, Zs)dQs> = |Ys||cb(sao»0)|dQs + |Ys|2dvs + Z|ZS|2dS 24
and
~ -~ ~ 1 ~
<Ys =Y, ®(s, Y5, Zs) — (s, Y5, Zs)>dQs <Y - YS|2st + g|zs - Zs|2ds~ (2.5)

Proof. The inequalities can be obtained by standard calculus (applying the monotonicity and
Lipschitz property of function ®). (]

(Ae) @, ¥ : H— [0, +00] are proper convex lower semicontinuous (l.s.c.) functions such that
¢ (0) =¥ (0) =0 (consequently 0 € 3 (0) N 3y (0)).

Let us define
W(w,1,y) :=1[0,r()] O] (@) + (1 — a: (@) ¥ ()]
We recall now that the multivalued subdifferential operator d¢ is the maximal monotone operator
dp(y)={y € H:(J,v—y) +9(y) <p(v),Yve H}.

We define Dom(¢) ={y € H:¢(y) < oo} and Dom(d¢) = {y € H : 0¢(y) # &} C Dom(¢) and
by (v, ¥) € d¢ we understand that y € Dom(d¢) and y € d¢(y). We know that int(Dom(p)) =
int(Dom(d¢)) and Dom(¢) = Dom(d¢).
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Definition 2.2. If k:[0,00) — H is a locally bounded variation function, a:[0,00) — R is a
real increasing function, y:[0,00) — H is a continuous function and ¢ is like in (Ag), then
notation dk, € d¢(y;) da; means that for any continuous function x : [0, o0) — H, it holds

s s s
/ (xr — yr, dk;) +/ @(yr)da, < / @ (xr)dar, 0<r<s. (2.6)
t t t

Now we are able to introduce the rigorous definition of a solution for equation (1.1). First,
using definitions of Q, ® and W, respectively, we can rewrite (1.1) in the form

o0 o0 o0
Vot [Cdko=nt [ eevizodo - [z ascezo o
t t t N
dK; € 0,V (1, Y)dQ; = d¢(Y;)dr + 0y (Y) dAy, on [0, 00).
Definition 2.3. We call (Y, Z;, K;);>0 a solution of (2.7) if K has locally bounded variation and
(Y, Z2) € SO x A% with (Y;, Z,) = (&, &) = (1, 0) for t > T such that

Q) [ 1D (s, Yy, Zo)|dQs < 00, P-aus., for all T > 0,
(i) dK, €9, (t,Y,)dQ,,dP ®dQ;-a.c.,

b.
(i) e2V7|Yr — &7 + [7°e2%|Zy — ¢ ds L2750, as T — oo (where V is given by (2.3))

and
() Yo+ [T dK, = Y7 + [T ®(s, Yy, Z,)dQs — [ ZydW;, a5, VO <1 <T.

Let ¢ > 0 and the Moreau—Yosida regularization of ¢ given by ¢.(y) = inf{%| y —v]? +
@(v):v € H}, which is a C! convex function. We mention some properties (see Brézis [2], and
Pardoux and Ragcanu [17] for the last one): for all x,y € H

& 2
@) @e(x)= 5|chg(x)| + ¢(x — Ve (x)),

(b) Ve (x) = d¢:(x) € dg(x — eV (x)),

1
©  [Voe) = Vo] < —lx =y, (2.8)

(d) (Vge(x) — Ve (y), x — y) >0,
@ (Vee(x) = Vos(y),x — y) = —(e + 8)(Vee (x), Vs ().

We introduce the compatibility conditions between ¢, ¥ (which have previously been used in
Maticiuc and Ragcanu [11]):

(A7) Foralle >0,t>0,ye H,z€ Lr(Hy, H)
(i) (Vee(y), Ve () = 0,
(i) (Vo). G, y)+ v y) < |VYeOD||GE, )+ vy, P-as., (2.9)
(i) (VyeO), F(t,y.2) +u; y) < |Vo:W||Ft. y. 2) + 7y, P-as.,

where 1~ = —min{u, 0} and v~ = —min{v, 0}.
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Example 2.4. Let H=R.

A. Clearly, since Vg, and Vi, are increasing monotone, we see that, if y(G (¢, y) +v; y) <0
and y(F(t,y,2) +p; y) <0, Vt, y, z, then compatibility assumptions (2.9) are satisfied.
B. If ¢, ¥ : R — (—00, 4-00] are the convexity indicator functions, that is,

0, if y € a1, az2],
+o0, if y ¢lai1,azl,

0, if y € [b1, b2,

o(y) = { +o0, if y ¢ [b1, bs],

and  ¥(y) = {

where ay, az, by, by € R are such that 0 € [a, ax] N [b1, b2] (see assumption (Ag)), then
Ve (y) = 1[(y —ax)* — (a1 — y)*] and similar for V.

Since (A7)(i) is fulfilled, the compatibility assumptions become G (¢, y) + v, y > 0, for
y <aj and G(t,y) + v, y <0, for y > ay, and, respectively, F(t,y,z) + un, y >0, for
y<brand F(t,y,z) +pn, y <0, for y > bs.

The last assumption is the following:

(Ag) There exist the p.m.s.p. iL,v:2 x [0,00) - R with g > max{u, %,u} and v >
max{v, %v}, such that fOT(|[L,|2 dr + | |2dA;) < 00, VT > 0, P-a.s. and, using nota-
tion

t
V; :=/ ]l[()‘f](S)|:<lly + %Zz) ds + v dAS:|, (2.10)
0

we suppose

@) E[e2Pse0n" (o) + ¥ ()] < oo,

i) E(er™meonn)?) +E(QF) <o0. VT >0, @.11)
. p/2 T b

(iif) IE(/ e2V5\If(s,§s)dQs> +E(f eVslq’(s,Ss,és)|dQs> <00,
0 0

and the locally boundedness conditions:

T P
(iv) E(/ e sup !F(s, ey, 0) - ﬁs)’} dS)
0 lyl=p

T _ - p
+E(/ eVs sup|G(s,e_V’y)—ﬁsy|dAs> < 00, VYT, p >0,
0 lyI<p

) 2.12)
(v) E/ Vs sup |F(s,e*V‘y,0)|2ds
0 yI<p

T ~ ~
+E/ e?Vs sup |G (s, e_VSy)‘szs < 00, Vp > 0.
0 [yI<p
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Remark 2.1. We point out that the purpose of defining of the new process V is due to the com-
putations; see, e.g., inequalities (3.7) and (3.19) from the proof of the first main theorem, where
it is necessary to have a new process V such that dVv, < dV, and 1 >dVy < dV, on [0, 00).

Remark 2.2. It can be choose in (Ag), in particular, /i and ¥ such that i = u* = max{u, 0}
and 7 = vt = max{v, 0}. In this case V defined by (2.10) will become non-decreasing, hence
supgero.r) Vs = Ve and (2.11) and (2.12) will be simplified.

We prefer to keep inequalities ft > max{u, %u} and v > max{v, %v} in this form because we
allow to 1 and v to be negative and therefore to enlarge the class of the generators F and G who
satisfy (2.11) and (2.12) (and also we not restrict the class of the final data n).

3. Main result: The existence of the strong solution

We present first the definition of a solution in the strong case when the process K is absolutely
continuous with respect to dQ (i.e., dK; = U; dQ; on [0, 00)).

Definition 3.1. We call (Y;, Z;,U;);>0 a strong solution of (2.7) if there exist two p.m.s.p. Ul
U? and U, := 119} (), U} + (1 — a,)U2], such that (Y, Z, K) is a solution of (2.7) with K, =
fot U,dQ; and

@) /OT|US|dQS < 00, P-a.s., forall T >0,
(i) Uledpr,), dP ® dr-a.e., U? € 3y (Y;), dP ® dA,-a.e., (3.1
(i) E(e*'7|Yr —&r)?) +1Ef;oe2“|zs —)?ds — 0, as T — 00,
where V is given by (2.3).

Remark 3.1. 1f there exists C > 0 such that supscjo . |Vs| < C, P-as., then the condition
(3.1)(ii) is equivalent to E|Y7 — n|*> + E[°| Z,|>ds — 0, as T — oo.

We can now formulate the first main result. In order to obtain the absolute continuity with
respect to dQ; of the process K (as in Definition 3.1) it is necessary to impose a supplementary
assumption:

(Ag) There exists Ro > 0 such that, for all t > 0,

~ T
7 (250 s ) 1+ EF ( /
t

AT

- 2
er|c1>(s,o,0)|dQs) < Ry, a.s. (3.2)

Remark 3.2. We mention that without this assumption we are not able to prove, among other,
that there exist two processes U'! and U? such that K, = fé Jl[o,,](z‘)[Utl dr + U,2 dA;] (see step
F from the proof of the next theorem).
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Theorem 3.2. Let assumptions (A1)—(Ag) be satisfied. Then the backward stochastic variational
inequality (2.7) has a unique solution (Y, Z, U) such that for all T > 0,

E sup V5|V, < o0 (3.3)
5€[0,T]

and
T T T
Y +/ UsdQs=Y7 +/ D(s, Y, Zg)dQy _/ Z;dWy, as.,Vte[0,T]. (3.4)
t t t

Moreover, for all 2 < q < p, there exists a constant C = C(a, q) > 0 such that, for all t > 0,
P-a.s.

- 00 . q/2
(2) e‘lvlethJrEfr(/ e2Vs|zs|2ds>
t
- 00 . q
< CE” [e““"s»vwmu(/ eVs|<1><s,0,0)|dQS) }
1

5 oo . q/2
(b) quf|Yt—st|‘1+Eff(/ e2V5|zs—zs|2ds)
t

(3.5)
0o . q/2 0o . q
sC]EffK/ eZVw(s,sonx) +<f er|<1>(s,ss,¢s>|dQs) }
t t
© E[2" (o) + v ()] < B[ (o) + v ()],
~ oo . p/2
@ lim E[C”VTIYT—ETI”vL(/ e2Vs|zs—¢s|2ds> ]=0
—00 T
and
) IE/ [V (|Ul ] ds + |U2[* dA,)] < oo (3.6)
0

Proof. If (Y, Z~), (17 Z ) are two solutions, in the sense of Definition 3.1, that satisfy (3.3), then
E sup;¢o.77 ePVs|Yy — Y;|P < oo. From (2.5), satisfied by the process Y — Y, we conclude that

_ - _ _ ~ 1 -
(Yy =Yy, ®(s, Yy, Zg) — D (s, ¥y, Zy) — Ug+ Uy)dQy < |Ys—Ys|2dvy+%|zs —Zs|*ds, (3.7)

since (¥y — Ys» Us — UY) >0, for Us € 8}"1’(5» Yy) and US S 3y\IJ(S, Ys)’ anddV; < d(/s on [0, t].
Applying Proposition A.1 from the Appendix, it follows that there exists C = C(a, p) >0
such that

. _ T . _ r/2 . B
E sup e”"|Y, — Y|P —HE(/ e?Vs|Z, — Zs|2ds) < CE(e”"T Y7 — Y7|7) —— 0,
s€[0,T] 0 T—o00

and the uniqueness is proved.
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The proof of the existence will be split into several steps.

A. Approximating problem. Let n € N* and ¢ = 1/n. We consider the approximating stochastic
equation

o0
Y;’+/ 1jo, () VyW" (s, ¥{') dQ;
t

~ ~ (3.8)
=n+ / ]l[(),n](s)cb(s, Ys s Zn) dgo; — f Z"; dWs, P-as., Ve >0,
t t
or equivalent, P-a.s.,
Y]+ /V\If”sY" dQg
3.9

n
=E]:ﬂn+/ (S, YSn,Z")dQs—f Z;ldWS, Vr € [0, n],
! t
(Ytn’Ztn) = (&1, 1), vVt >n,

with W (w, 5, y) 1= 110,z ()1 ($) s (@) @170 (¥) + (1 — a5 (@) Y1/n (V)]
We notice that @, (¢, y, z) := L[o,,1()(D(, ¥, 2) — V, W' (¢, y)) satisfies inequalities

(V =y, @u(t,3,2) = @1, 3, 2)) < Ljoune) [ (e — s + (v — ) (1 —ap)]|y' = y|*
< Tponunei O s + (1 —a)]|y = y[*

and [, (1, y,2") = Pu(t, ¥, 2)| = Ljonar)()ley|2" — 2|, since pg < jis and vy < vy on [0, 00).
The corresponding process V,* (see definitions (2.3) and (2.10)) is given by

on __ ! ~ ﬂ 2 ~
Vt = ]]-[O,n/\r](s) Us + 2£ ds + vy dAy |.
0

Obviously, \7," = Vt s VE>0.
Applying Proposition A.2 from the Appendix, with ® replaced with ®,,, we deduce that equa-
tion (3.9) has a unique solution (Y", Z") such that

- no 5 p/2
E sup epVS|Ys”|p+E(/ e?Vs|zn| ds) < 00,
s€[0,n] 0

and, using (A.2), it can be prove that

. T -
L |p + E(/ e?Ys
s€[0,T] 0

E sup e

5 p/2
Zﬂ ds) < 00, forall T > 0.

B. Boundedness of Y" and Z". Since ¢", " are convex functions and it is assumed that
¢ (0) =¥ (0) =0, we see that (V,W"(z,y),y) >0, Vy € H, and therefore (2.4) becomes

~ 1
(V. @u(t. Y] Z0) 401} < 1o 0| || @1, 0,0) [ dQ, + ¥/ [*aV;" + - 27" dr.
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Equation (3.8) can be written, for any 7' > 0, in the form
T T
Y=Y} + / D, (s, Y], Z))dQs — / Z!dws, P-as., Vi € [0, T].
t t

Applying Proposition A.1 (see the Appendix), we deduce that, for all g € [2, p], there exists a
constant C = C(a, q) > 0 such that such that, P-a.s., forall 0 <7 < T <n,

e . 5 \??
E7" sup 1" Z!| ds)

T .
v +E </ e
selt,T] t

- T -
< CET |97 |y |7 + ( f 0.0y (s)e"
t

q
<I>(s,0,0)|dQS) }

r . o0 - q
< CE1 | e95%Pselr.7) Vs|sr|q+( f ﬂ[o,n](s)e“|<1>(s,o,0>|dQs> }
t

r . o0 - q
< CE7"| e WPseir.1) Vs|n|q+< / Lo, (s)e"s | @(s,0, O)IdQs> ]
t

since by Jensen’s inequality we have |£7(7 = |IE]'—777|‘1 <E7T [nl9.
Using (A.2), it can be proved that the above inequality holds also forall 0 <frvn <T.
Passing to limit as 7 — oo we infer, using Beppo Levi’s theorem, that P-a.s.

- 0o . ) q/2
E% suped™s |y |7 4+ B (/ 2% 27| ds)
s>t ¢
} . i g (3.10)
=cer [(eqsup“”'” " nl) + </ 0.0 (s)e"* | (5.0, O)IdQs> ]
t
In particular, for g = 2, there exists another constant C > 1 such that, for all # > 0,
ezV, |Ytn |2 < CET [(ez S |77|2)
00 - 2
+ (/ Ljo.n(s)e”* [ @ (s, 0, O)IdQs) } (3.11)
t

< 2CR% =R, P-as.,
where Ry is given by (3.2).

Remark 3.3. We emphasis that we just use, for the first time, assumption (Ag) and the obtained
inequality (3.11) will be essential in order to deduce, using assumption (Ag) of locally bounded-
ness for the generators, the subsequent step D (i.e., the boundedness of the gradient of W) and
what follows afterwards.
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C. Other boundedness results on Y" and Z". Since for all u € H, (u — y, V,¥"(z,y)) <
W (t,u) — W"(t, y), we can deduce (see inequality (2.5)) that, as signed measures on [0, n],

<Y),‘n - %‘tv (Dl’l(s’ anv Z?)>th
<[¥"(@. &) — " (1. Y]")]dO; (3.12)

- 1
|7 — &l |@ & oA + ¥ [PV + |2 — o[ dr.

But 0 < W"(r,§) < W(t, &) = 10,r ()] (Do (@)@ () + (1 — ()Y (§;)], therefore (3.12) be-
comes

W (e, Y dQ, + (Y] — &, (s, Y], Z7))dQ;
~ 1
<W(,E)AQ + |V —&||®w, &, )| O, + |¥|*aV) + %|Z? AR

From (3.9), we see that (Y", Z") satisfies the equation
n n
Y"— & =/ (s, Y, Z7)dQs — / (Z) — &) dwy, vt €[0,n],
t t

since & =§, — ftn;s dW;, vt € [0, n].
Applying again Proposition A.1, there exists a constant C = C(a, p) > 0 such that, P-a.s., for
all t € [0, n],

~ n ~
E" sup epVS}Y;’—éJp—i—E]:’(/ e?Vs
t

s€lt,n]

no_ . p/2
-HE(/ ezvﬁ\ll”(s,Yf) dQS)
t

no_. p/2 no. P
EC]EF’[(/ ezV-vw(s,sadQs) +</ eVSId><s,ss,;s)|dQs) }
t t

) r/2
Z! — ¢ ds)

Therefore

EF pVs|yn poowF [T 2V 2\
supe’ s | Y| —Es| +E e | Zg —§S| ds
s>t t

0o . p/2 o .
sCJEff[(/ ezvsws,ss)dQs) +</ eV
t t

since (Y], Z?) = (&, &) for s > n.

N

D. Boundedness of Vi;,(Y)) and Vir1;,(Y/"). In order to obtain the boundedness for
Vo1, (Y, s”)|2 it is essential to use the following stochastic subdifferential inequality (see Propo-

» (3.13)
D(s, &, Es)’an> :|
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sition 11 in Maticiuc and Rédgcanu [11]), written first for ¢1/,: forall 0 <t <s <n

~ N ~ N ~
01 (Y) = Vi1 (Y")+/ gol/,,(Yr")d(ezv’)+/ 2V Vo, (Y1) dYr.
13

t

Hence,

. s _ s
V1 (V)) = 2V’¢1/n(Yt")+2/ ezv"%/n(Yf)dVrJrf eV Vo (¥))dyy.
t

t

It follows that, P-a.s. forall 0 <t <s <n,
N
g1/ (¥}") +/ Y (Vo (¥]), Lo )V, " (. ¥])) O,
t
~ S ~
<Py (V1) + / 7 (V1Y) Lo (D (1, Y7 Z7) Q)
t

s s . »
—/ 2V (Ve (Y1), Z0 dW,) — 2/ eV p1/n (Y)) AV,
t

t

(and a similar inequality for ¥y ;).
Since

@1/n(0) +¥1/2(0) =0 = @172 (y) + Y170 (y) < 0(y) + ¥ (¥), VyeH, (3.14)

we infer that
V(g1 (Y1) + 1/ (Y, )]+/ 10001 (1) [ | Veorn (V7))
t
+(V¢l/n( ) le/n(Y"»J,_(] —(xr)|VI/f1/n(Y”)| ]er

e [o(Y) + v (¥)] - 2/ 2V [@1/a(Y)) + 10 (Y]] dV, (3.15)

t

/ 62 (VoY) + Vi (Y, Z! dW,)

+ / 2V (V1 (Y2) + Vi/n (Y1), Lo (D (r, Y7, Z1))dO, .
Using definition of &, compatibility assumptions (2.9) gives us
(Ve (), ®(t, y,2))
=110,:1(1)(Vee (1), s F(t,y,2) + (1 — 1) G (2, y))
<1o,.1)(eu|Ft. 3, )| [V )] + (1 — ) |G (2, ||V )]
+ (1 —a)v; 9|V ()| — (1 —a)v; (Ve (), y))

(3.16)
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and respectively,
(VYe(»), (2, y,2))
=110.1(D(V¥e (3).  F(1,y.2) + (1 —a)G(t, y))
<10, (|F @y, 2)||[Vo: 0| + 1 —an) |G, ) || Ve ()|
+ a1yl Vo (0] — e (Ve (), ¥)).-

(3.17)

From (2.9)(i), (3.11), (3.15)~(3.17) and inequality 2ab < 1a” 4+ ab® with « € {2,4}, we obtain

Vo (Y[ dr + Vo (v7)]dA,]

~ 1 S ~
Vi [o1/n(Y)) + vriyn(¥Y)] + 5/ Liouner (V|
t

< [p(rn) + v (v)]+ / 1100 (V| Y2 P | dr + [ [P dA, ]
t

+/ Li0.nA7] (”)462Vr[

F(r, Y, z!) [ dr+|G(r,v")[* dA,] (3.18)

s Ly &y

10m NV [y (VY1 (X)), V) dr 4 v7 (Vo (¥7). Y2} dA, ]

~ N ~ -
- / (o1 (V) + (7). 20 W) =2 [ [ (17) 9070 (17)] 4.
t t
Using (3.14), the definition of V and inequality 0 < ¢1/,(y) < (Vo1,x(y),y),Vy € H, we have

= (Vo (V7)Y dr = v (Ve (V) Y ) A, = 2[ 1 (Y]) + Y1/ (Y]') ] 4V,
=i (Vo (V7). Y7 )dr = v (Vo (Y)'), Y7 dA,

(3.19)
+ @10 (Y + Yiyn (Y] [ 10y dr + v dA,]
= <V§0l/n(an)’ r )Mr dr+ <V1/fl/n(an)’ an>vr_ dA,,
since 2d\7, >dV, > —u, dr —v.dA, on [0, 7].
Hence,
S
— f 110.nnr1 (Y [ (V1 (Y1), Y2)dr + vy (Vg1 (Y1), Y1) dA, ]
t
N - -
=2 [ 10 (47) + (V)] Y,
! (3.20)

s T1 |
S/ ﬂ[o,nm(r)ezv’[Z|V¢1/n(yf)}2dr+Z|V¢1/n(YZ’)|2dAr}
t

VPl Par + o7 P aa,].

N ~
+ / Ljo.nney(r)e*"”
t
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Moreover, we see that E7 fts 62‘7" (Vo1 (Y + V1, (Y], Z! dW,) =0, because

. 1/2
B [ (Vo) |+ Vo1 P
t

- K 1/2
SE[ sup (2ne'” Y,"|)</ e?Vr Zf|2dr> ]
relt,s] t

5~ . 1/2 s . 1/2
5zﬁn,/R6[E(/ e?Vr Z;’—Cr‘zdr) +IE(/ eZV’|§r|2dr> }
t t

< Q.

For s = n, Jensen’s inequality yields
E[e*%o(v?) + v (v2)] = E[e*" (¢(&0) + ¥ ()] < E[*™ (o) + v ()],
and using (3.20), inequality (3.18) becomes
E[CZV[ (wl/fi(ytn) + 1/’1/'I(Ytn))]

Voun (V) [P dr + [V (¥ da,]

1 n .
+ ZE/ ]1[0,n/\r](r)32vr[
t

F(rnY", ) dr+|G(r, ¥")|*d4,)

s Ly &

<E[e*" (o) + ¥ ()] +4E / Lo (27
t

V2Pl P ar+ o[ ].

n ~
+ Z]E/ To.nney(r)e*"”
t

The right hand side in the above inequality is bounded since

2Vr G(r, Y,”)|2 < sup 2Vr G(r, efv’y) 2,
IyI</R
V| F(r Y, Z0) <3 sup &V |F(re "y, 0)] 36227 |20 — ¢ | + 36227 g, .
lyl<+/Rg
Therefore
E[CZ‘Z (‘Pl/n(Ytn) "‘Wl/n(Ytn))] =C, forallr >0 3.21)
and
o ~ ~
E/O 100,0ne1 ([ | Veor/n (Y2 dr + 27 [V (Y2 P dA,] < C. (3.22)

From (3.21) and (2.8)(a) we see that, for all £ > 0,

B[ (|1/nVeun (V)] + [1/n 9y (1) [})] < 2C/m (29
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and

B[ (p(17 — 1/nVuu(¥2) + v (¥ = /WK €. (29

E. Cauchy sequences and convergence. From (3.13), we have

~ o0 ~
EsupeP"s Y;’+Z—Es]p+E</ e?Vs
s>n n

oo L p/2
501@[(/ ezVYW(s,ES)dQS> (3.25)

o L
+</ eVs
n

By uniqueness it follows that, for all t € [0, n],

5 r/2
Z;"H — {s’ ds)

p
Q(SvSS,Cs)’dQs> :|_>0’ n — o0.

n n
Ytn+1 Y= Y;H — &, +/ dKf’l _/ (Z;Hl — Zf)dWS, a.s.,
t

t

where dK"! = (@ (s, YrH!, Z0Hy — & (s, Y™, Z7) — [V, Wt (vt — v wr (y!h]) d Q.
By (2.8)(d) withe = 1/(n+1) and § = 1/n

(v (T (s, 1) = 9w (5, 7)) )
< (e + 0)800.1(5) (Ve (¥7H1). Vi (7)) s + (V3 (V2). iy (¥7)) 4, ).
and using (2.5) we have on [0, n]

(vpth —yp dk )

e+46
2

L1011 () (| Ve (V) + [ Veos (Y1) ?) ds

IA

~ 1
+([Vwe (V)] + (VU () P das] 1 =y Pavy + - 20— z) s,

Proposition A.1 yields once again

n ~
E sup e*Vs|yt! —YS"|2+IE/ e?Vs
s€[0,n] 0

zm+— 77| ds

< CEe?" Voo (Y2)[* + | Vs (Y2 H) [*) ds

n+l 2 T 2V,
Yit —&|" 4+ (e 4+ 8)CE e?¥s (
0

+ (e —|—8)CIE/ N (Vg (v 2+ [V (1) ) dAs.

n
0
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The estimates (3.22) and (3.25) give us, for n — oo,

~ n ~
E sup e*Vs |yt — st|2 +E/ e?Vs|znt — zn *ds
s€[0,n] 0
< EsupeW‘
s>n

C
st+l_€s|2+;—>0.

Hence, for n — o0,

. s _
Esupe?Vs[¥/ T — ¥ <E sup e

s>0 s€[0,n]

Y -y P+ Esupe?”s v+ g7 -0
s>n
and

o0 - n - o ~
5[zt - zfa <[ @0z - 2 Pas e [Tz g P 0
0 0 n

F. Passage to the limit. Consequently there exists (¥, Z) € S? x A? such that

Z;‘—Zs|zds—>0, as n — 00.

~ (.¢] ~
Esupezvf|YS” - Ys|2 -HE/ e2Vs
s>0 0

We have (Y;, Z;) = (n,0) fort > 7, since Y =& =nand Z} =¢; =0fort > 7.

Applying Fatou’s lemma to (3.10) and (3.13), we obtain (3.5)(a), (b) and taking the limit along
a subsequence in (3.11), we deduce that 62‘7‘ |Y; |2 < R6, P-a.s., forall t > 0.

From (3.22), there exist two p.m.s.p. U! and U?, such that along a subsequence still
indexed by n, ]l[ogmn]eNVgD]/n(Y") — ]l[o,,]Ul, weakly in L?>(Q x Ry,dP ® dt; H) and
Lj0.r am1€2Y Vi jn (Y1) = 1j0,11U2, weakly in L2(Q x Ry, dP ® dA,; H).

Applying Fatou’s lemma to (3.22), we obtain (3.6) and from (3.23) we deduce that forall # > 0
fixed, there exists a subsequence indexed also by n, such that

%Wpl/n(Yt")—a—‘S'—»O and %Vlﬁ]/n(yt")_is‘__)()_

We now apply Fatou’s lemma to (3.24) and we conclude (3.5)(d).
From (3.8), we have forall 0 <t < T <n, P-a.s.

T T T
Y +/ VW' (s, ¥{')dQs =Y} +/ (s, Y, Z7)dQ; —/ Z7 AW,
t t

t

and passing to the limit we conclude that

T T T
Y, + / UsdQs =Y + / (s, Y, Zg)dQy — f Z;dWy, a.s.
t t t

with Uy = 10,1(s)[ets U] + (1 — ag)U2], for s > 0.
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Since (2.8)(b), we see that, forall E € F,0<s <rand X € 82[0, T1,
t ~ ~
E f Le((e* Voun(Y)). Xr — Y1) + eV (Y = 1/nVe1/u (V7)) dr
N
t ~
SE/ 1ze* " o(X,)dr.
s

Passing to liminf for n — oo in the above inequality we obtain USl € dp(Yy), dP ® ds-a.e. and,
with similar arguments, US2 eIy (Y;),dP® dAs-a.e.

Summarizing the above conclusions we see that (Y, Z, U) is solution of the BSVI (2.7) under
assumptions (A1)—(Ag). O

4. Variational weak formulation

In this section, we generalize the notion of solution for (1.1), or (2.7), in order to give up
to the assumption (Ag). The existence and the uniqueness of a weak solution (Y, Z) will be
given. We mention that without (Ag) we cannot prove the existence of a process K such that
dK; =U,dQ; € 9,¥ (¢, Y;)dQ, (see Remarks 3.2 and 3.3); more precisely we cannot obtain the
boundedness in L? of the gradients, see (3.22), and respectively, the existence of a process U
such that K; = fot U; dQ;. Therefore, we shall give the definition of a weak solution of the BSVI
2.7).
Let us define the space M of the semimartingales M € S! of the form

t t
Mtzy_/ Nrer+/ erWra
0 0

where N and R are two p.m.s.p. such that
T T
/ IN,|dO, +/ IR.)?dr <oco  as,VT >0andy € LOQ; Fo, P; H).
0 0

For a intuitive introduction, let M € M and (Y, Z) be strong a solution of (2.7), in the sense
of Definition 3.1. By It6’s formula, we deduce inequality

1 1 T T
5 1M — VARES 5/ IR, —zr|2dr+/ U(r, Y,)dQ,
t

t

l T
< 5IMy - Yr|? +/ Y(r, M,)dQ, 4.1)

t
T T
+/ <Mr_YraNr_q)(ra Y., Zr)>er_/ <Mr_Yr»(Rr_Zr)dWr>a
t t

since dK; = U, dQ; € 9,V (t, ¥;) dQ; (see inequality (2.6)).
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Following the approach for the forward stochastic variational inequalities from article Rascanu
[20], we propose the next weak formulation of Definition 3.1:

Definition 4.1. We call (Y;, Z;)1>0 a variational weak solution of 2.7) if (Y,Z) € 8% x A2,
Y, Z) = (&, &)= (,0) fort > t and

T
@ /(|<I>(s,Ys,ZS)|+|\Il(s,Ys)|)dQs<oo, P-a.s., forall T >0,
0

L1 1 [ :
(ii) §|Mt_Yt|2+5/ |Rr_Zr|2dr+/ V(r,Y,)dO,

t t

<2 iM, v
_2 s N
* * 4.2
+ [ wesao,+ [ (- v. N, - 00y, 2)d0, (42)
t t

S
_/ (Mr_Yr’(Rr_Zr)dWr)y
t
VO <t <s,Y(N,R) e L*(Q2 x [0,00); H) x A>,YM € M,
o0
(iii) EeZVT|YT—gT|2+Ef >V Zs — g7 ds — 0, as T — oo.
T

Remark 4.1. 1t is obviously that a strong solution for (2.7) is also a weak solution (see the
intuitive introduction for inequality (4.1)).

Remark 4.2. We highlight the connection between this definition and the Fitzpatrick function
approach for the multivalued BSDEs driven by a maximal monotone operator or, in particular,

by a subdifferential operator (see Ragcanu and Rotenstein [21]).

Theorem 4.2. Let assumptions (A1)—(Ag) be satisfied. Then the backward stochastic varia-
tional inequali{y (2.7) has a unique solution (Y, Z) in the sense of Definition 4.1 such that
E sup;eo,77 ePVs|Y|P < oo, for all T > 0. Moreover, inequalities (3.5) hold.

Proof. First, we shall approximate the data n and ® by 5", respectively ®" which satisfy (3.2).

Let

" (t,y,2) = D(t,y,2) — D(1,0,0) + B(1,0,0)L10,n)(r + | (2,0, 0)| + | V;]).

(@) = n@1po.n(|n@)|+

sup Vi
]

s€l0,t

Obviously, as n — oo,

- T . p
E(e?sPseon Vs [ — p|7) +]E</ e"s|®"(s,0,0) — D(s,0, 0)|dQs> — 0.
0
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Theorem 3.2 shows that there exists a unique solution (Y", Z", U") of the BSVI (2.7) corre-
sponding to n”* and ®":
o0 o0 o0
v [Curdo=ns [ ey zeo - [ ziaw. s,
t t t
Ul edy¥(r,Y"),  Vi=0.

This solution satisfies inequalities (3.5) and (3.6) with Y, Z, U, &, n, &, ¢ replaced respectively,
with Y, Z", U", ®", n", &, ¢".
Since |7"| < |n| and |®"(z,0,0)| < |®(¢,0,0)],

- - o . 2
e2Vi |Y,”]2 < CET [(ezsupxelt,rj Vs|,7|2) + </ eVs d(s, 0, 0)’ dQs> i|, vVt >0, P-a.s.
t

Using (2.5), we see that
(V= Y, @ s, Y2, Z2) = @7 (s, Y, Z2) = (U2 = U)o,

s Lgo
< (V=5 Y] Z0) — @ (s, V7', ZI)) s

+ (Y =Y, ®(s,0,0))(Lj0,0) — Lom) (t + | @2, 0,0)| + [V;]) dQs
< [¥7 = Y"[|®(s,0,0)||(To,01 — Lio,m) (£ + |2, 0,0)] + Vi) dQs
v Pav 45|z - 2 Pas,
a
since (Y — Y, U — UM™) > 0, for U € 3, ¥ (s, ¥7) and U € 3, W (s, ¥Y™), and dV; < dV, on
[0, 1.

Applying Proposition A.1 (see the Appendix) for the equation satisfied by Y” — Y™ on [0, T],
it follows that

5 p/2
n m
z! -7 ds)

- T .
E sup el YS"—YS”’|p+IE</ e?Vs
s€[0,T] 0
T . 5 P
< CE(/O Vs @ (s, 0,0)||(Lio,n — Lo.m) (¢ + | (2, 0,0)] + |V,|)|de>

+ CEPT (|vp —ep|” + |ep — &7 | + &g — v ).

Therefore, passing to the limit for T — oo,

5 r/2
n m
zr -z ds)

~ oo ~
Esupe’"s YS”—Y;”‘[’+]E</ e?Vs
s>0 0

[o
< CIE(/ eVs
0

+ CECP SUps>( ‘75

3 P
®(s,0,0)||(Ljo,n) — Ljo,m)) (t + | @2, 0,0)| + IVz|)|dQs)

.

n,m—o0

nt—n"
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Consequently there exists (Y, Z) € S0 x A a solution of the BSVI (2.7) such that

v 2
E supe?"s Z! — Zs|"ds — 0, asn — 0o

s>0

2 o0 ~
Y - Y| +Ef e’
0

and (Y;, Z;) = (n,0) fort > t,since Y)' =&/ =n"and Z} =¢/' =0fort > 7.
Let M € M given by M; =y — féNr do, + f()th dW,. From the It6’s formula applying to
|M; — Y;’|2, we deduce that, forall0<r <s <T,

1 1 s N
E‘M,—Yt”|2+§[ |Rr—Z;’|2dr+/t W(r, Y")dO,

1
5§|Ms—Y§'|2

N s
+/ W (r,M,)dQ, +/ (M, —Y!, N, — ®(r, Y], Z}"))dO,
t t

N
—/ (M, =Y (R, — Z}) dW,).
t

Since on a subsequence (still denoted by n)

T
sup ‘st —YSIZ—I-/ ’Z? —Zs’zds—>0, a.s.,
s€[0,T] 0

it follows easily, passing to the liminf, that the couple (Y, Z) satisfies inequality (4.2)(ii).
In the same manner, inequalities (3.5) follow now from the similar properties satisfied by the
approximate solution (Y", Z").

In order to prove the uniqueness of the solution let (Y', Z" and (Y2, Z?) be two solutions of
(2.7) corresponding to n' and 1?2, respectively. Hence,

S0t =V Pt ot = 2Py 5 (IR = 2I 4 |, — 22
+ /ts(xp(r, Y +¥(r,v?))dO,
< %(]Ms — Y+ M, - Y2
[~ v N = @3] Z) 4 M, = 2N - (V2 ZE)) a0,

N s
+2/ W(r, M,)dO, —/ (M, — 1!, (R, — Z}) dW,.)
t t

N
—f (M, —Y?, (R — Z})dW,),  VO<t<s,VMe M.

t



1188 L. Maticiuc and A. Rdscanu

oY), ZH+or,v?
2

1, y2 1,72 2 .
LetY =14 7= 242 and o(r) = Z:) From the convexity of ¥ we see

that 2W(r, ¥,) < W(r, ¥,)) + W(r, Y?) and, using the identity

2<y1+y2 1+ 72

1
I S = - ) = ) 0 )

2
we obtain

s Ly

(M, =Y} N, —®(r. Y}, Z)))+ (M, — Y}, N, — @(r, Y, Z}))
—2(M, — Y,, N, — ®(r)) — %(le — Y2 ®(r Y, Z}) - @(r, Y2, Z2))=0
and
(M, —Y! R, —Z!)+ (M, =Y}, R, — Z2) = 2{M, — Y, R, — Z,) — %(Y,l Y2z} -z} =0.
Therefore, since 4 (Im — y'2 + m — y22) = |m — 24222 4 Ly1 — 3212, we have
v} — v +/ts|z} —- 22 dr
<8B, (M) + v} —¥2?
+ 2fY(Y,‘ —¥2, ®(r, ¥}, Z)) - & (r, Y2, Z2))d0,
'

- 2[(1/) Y2, (2} - z})aw,),  YO<t<s,YMeM, (4.3)

where

1 § S 1
Bt,s(M>=5|Ms—Ys|2+/ w(r, Mr)er—/ w(r, Yr)er—5|Ml—Yt|2

t t

1 7S s
_5/ |Rr_Zr|2dr+f <Mr_YraNr_q)(r))er
t t

- / (M, — Y, (R, — Z,)dW,).
t

Our next goal will be to prove that

there exists M® € M such that lirr%) B (M*®) =0, as., Vo<t <s. (4.4)
E—>

Let Mf =e~/2:[Yy + 5- [;e2/2:Y, dQ,]. Clearly, M® € M, since Mf = M§ + [; dM.
The next result it is necessary in order to obtain the limit in the Stieltjes type integrals:
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Lemma 4.3. Ler a:[0, T] — R be a strictly increasing continuous function such that a(0) =0

and f:10,T] — H be a measurable function such that | f(t)| < C a.e. t € [0, T]. Define, for
>0,

t
fo(t) = f(o)e—a(t)/a(e) + %/g) e(tl(r)—a(t))/a(f)f(,,) da(r).

Then as ¢ — 0, fo(t) — f(t), a.e. t € [0, T] and, if f is continuous, then SUDPse[0.7] | fe(®) —
f@®]—0.

Remark 4.3. The same conclusions are true if we consider f;(¢) replaced by

1 T
g:(1) = f(T)e(a(t)—a(T))/a(s) + @ e(a(l)—a(r))/a(s)f(,,) da(r), te[0,T].
t

Proof of Lemma 4.3. Obviously, we have

[’Le(a(r)—a(n)/a(f)f(r)da(r)
0 a(e)

0

:/ e”f((a_l(ua(e)—i—a(t)))) du
—a(t)/a(e)

0 0
=/ e[ f(a  (uale) +a®))) — fla ™ (a®))]du+ f) e du.
—a(t)/a(e) —a(t)/a(e)

But

lim sup
e—0

0
/ 0/ (>eu[f(a_l(”a(8)+“(t))) — fla™(a®))]du

0
glimsup/ e"| f(a " ((a(e) +a®)) v 0)) — f(a " (a(®)))|du

e—0 —00

—n 0
<2c / et du + / e[ f(a™" ((ua(e) +a() v 0)) = f(a~"(a(@)))| du

e¢]

0
<2Ce™ +limsup [ |f(a"'((ua(e) +a(®)v0))— f(a~'(a@®))|du <2Ce™,

e—0

for all n, since limg_, /j | fa (s +8u)) — fa '(s))|du=0ae.
Therefore, there exists

lim
e—0

0
/ e"[f(a~" (ua(e) +a(n)) = £ ()] du| =0,
—a(r)/a(e)

and the first conclusion follows.
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In the case of continuity for f it is sufficient to write

1 t
fo(t) = f(o)e—a(t)/a(é?) 4+ e(a(r)—a(t))/a(S)f(,.) da(r)
a(e) Jo

— f(o)e—a(f)/a(s) + 1 flge(a(r)—a(t))/a(e)f(r) da(r)
a(e) Jo
t
+ L [ eer=a/a® £y dair),
a(e) te
where t, :=a~"Y(a(t) — Va(e)) —> t,as ¢ — 0, and 1, < ¢. O
Applying the above lemma, we can conclude that
M; — Y, vVt e[0,T]. 4.5)

Next, we shall prove that, for all # < s,

/S\Il(r,Mf)dQ,—>/X\IJ(r, Y,)do,.
t t

Using definition of M? and the convexity of the functions ¢ and ¢ we deduce that

S S S r 1
/ ¢ (M;)er dQy < / e Or/Cp(Yp) dr + f ( fo Q—e@u—QrV%(n)dQu)dr
t t t &
N N N 1
:QO(YO)/ e_Q’/QSdr—}-/(; </O Q—C(Q“_Q’)/QS(P(YM)H[OJ](M)dQu>dV
t &
t t 1
- /0 ( fo Q—e@”‘Q”/Qaso(Yu)ﬂ[o,r](u)dQu>dr (4.6)
£

N B Ky s 1 B
= (p(YO)/ e 0r/Qe dr + / <‘P(Yu)/ —C(Q“ 0r)/ Qe ]]-[u,x] (r) dr> do,
i 0 0 Q¢

t t 1 _
- fo (go(n) /0 5o Q”/Qsmu,t](ndr) a0,
£

and

/w(Mf)a—ar)er
t
< / e 000y vy dA, + / ( / rQie@u—Q*)/wan)dQu) dA,
t t 0 &

— w(Yo)/Se_Q’/Qs dA, + /S </rLG(Q”_Q")/Q‘°I//(YM)dQu) dA, 4.7
t 0 0

&
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t r 1
_f < _e(Qu—Qr)/Qew(Yu)dQu> dA,
0o \Jo Qs

N N N 1
=¥ (Yo) / e /0 dA, + /0 (w(m /0 Q—e@uQ"VQfﬂ[u,s](r)dAr)dQu
t &

t t
_[) <‘/f(Yu)f0 Qie(Qu_Qr)/Qgﬂ[u,t](V)dAr> do,.

On the other hand, using Remark 4.3 and Lebesgue’s dominated convergence theorem, we con-
clude that

S t 1
lim _e(QtﬁQr)/Qsar do, = slgn _e(Qu*Qr)/Qsar dQ, = ay, ae. (4.8)

e=>0Jy 3 0Jy €

and respectively,

| 1
lim _e(Qu_Qr)/Qs(l —a,)dQ, = lim/ _e(Qu_Qr)/Qs(l —a,)dO,
e—=0J, e e=0J, Qe

4.9)
= oy, a.e.

From inequalities (4.6) and (4.7), we obtain

/ WY, do,

t
N
5/ v (r, M) dQ,
t

_ 1 _ _ 1 _
<o(Yo)Qse 01/ Qe Q_e(Qz 0r)/ Qe gp + ¥ (Yo) Qe 01/ Qe Q_e(Qz 0r)/ Qe dA,
r e r e

N N 1 s 1
+/ ((p(yu)/ 1 0i-00/0. dr+w(yu)/ 1 0i-00/0. dA,) 40,
0 u Qs u QS
t t 1 t 1
_/ ((p(yu)f L 0ui-00/0: g +w(yu)/ 1 ci-0n/0. dAr) 40,
0 u Qe u Qe
and applying the limits (4.8) and (4.9), we deduce

f w(r, M)do, == / (Yo + ¥ (¥ (1 — ) dQy
! ! (4.10)

= /Sw(u’Yu)dQu-
t

Therefore (4.4) follows immediately, since we have (4.5) and (4.10).



1192 L. Maticiuc and A. Rdscanu

Now returning to inequality (4.3), forall 0 <t <,
lv!— v+ /ts|z,1 — 22
<y v [ v oGy ) ek Z)ae, @i
:
= 2/IS(Y,1 — 2, (2! - Z2)dw,).
From (2.5),
(¥} —¥2, o(r, v}, 2 — &(r, Y2, 22))d0, < |¥, — Y?[*dV, + % z, — 22 dr,
and therefore inequality (4.11) becomes
v, = v+ - 1/a)/tS|Zr1 —72[dr

N N
< vl = w2 [0 = v2Pan 2 [ () -y (2 - 27 aw)

Applying a Gronwall’s type stochastic inequality (see Lemma 12 from the Appendix of Maticiuc
and Rascanu [10]) we conclude that, for all 0 <t < s, P-a.s.

e2\7,|Y[1 _ le}l < 62\75

N ~
v —v2’ - 2/t (v} — v, (2} - Z22)aw,).

Therefore, using also the condition (4.2)(iii) form the definition of weak variational solution, the
uniqueness follows. ]

S. Examples

Let D C R? be an open bounded subset with boundary Bd(D) sufficiently smooth. In what
follows H™ (D) and Hy'(D) stand for the usual Sobolev spaces. Let (2, F, (F;);>0,P) be a
complete probability space, {Wy:0 < s < t} a real Wiener process and set H = H := L*(D).
We notice that the space of Hilbert—Schmidt operators from L*(D) to L?(D) can be identified
with L2(D x D).

Let j:R — (00, 00] be a proper convex ls.c. function, for which we assume that j(u) >
j(0)=0,VueR.

Our aim is to obtain, via Theorem 3.2, the existence and uniqueness of the solution for some
backward stochastic partial differential equations (SPDE) suggested in Pardoux and Rédscanu
[18]. We recall assumptions (A1)—(As), (Ag)(2.12), condition E(Q’T’) < 00, VT > 0, and defini-
tions of ® and V from Section 2.2.
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Example 5.1. First we consider the backward SPDE with Dirichlet boundary condition

—dY(t,x) +93j(Y(t,x))dQ; > AY(t,x)dQ; + ®(r, Y (2, x), Z(t,x)) dQ;
— Z(t,x)dW,, inQx|[0,t] xD,
Y(w,t,x)=0  on$§ x [0, 7] x Bd(D), (5.1

2 o0 Y% 2 prob.
2V |Y(T) — &7 +/ eV ||Z(s) — ¢|| ds —— 0,
T T—o0

where || f11* == [p| f(x)? dx.

Let us apply Theorem 3.2, with W = ¢ = 1/ (in which case the compatibility assumptions (2.9)
are satisfied), where ¢ : L2(D) — (—00, 00] is given by

1
o) = E/D\W(x)yde+/Dj(u(x))dx, if ue H(D), j(w) e LY(D),

+o00, otherwise.

Proposition 2.8 from Barbu [1], Chapter II, shows that the following properties hold:

(a) function ¢ is proper, convex and Ls.c.,
(b) 3@ (u) = {u* € LX(D) :u*(x) € 3j (u(x)) — Au(x) a.e. on D}, Vu € Dom(d¢),
(¢) Dom(d¢) = {u € H} (D) N H*(D) :u(x) € Dom(3j) a.e. on D}.

Moreover, there exists a positive constant C such that
(d ”u”HOl (DNH2(D) = C”u*”Lz(D)v V(u,u*) € dgp.

Letnpbea H(} (D)-valued random variable, F;-measurable such that (Ag) is satisfied and

E[e? stPs<to Vs Inl?] < oo, e?SPsetna1 Vs j () € L1 (Q x D),

and the stochastic processes &, ¢, associated to n by the martingale representation theorem, such

that
T p/2 T o
B ["oerae.) vr([ "
0 0

where V is defined by (2.10).

Applying now Theorem 3.2, we deduce that, under the above assumptions, backward SPDE
(5.1) has a unique solution (¥, Z,U) € 82 X A(zz(DxD) X A(Zz(p) such that (Y (¢), Z(t)) =
(&:,8) =, 0), for7 > 7, and

() Y&, )+ U (s, x)dQs = Y (T, x)+ [TAY (5, x)d Qs+ [ D (s, Y (5, %), Z(5, %)) d Qs —
[TZ(s,x)dW,,in [0, T] x D, as.,
(i) Y(t) € H}(D) N H*(D),dP x dt a.e.,
(iii) Y (t,x) € Dom(dj),dP x dQ; x dx a.e.,
(iv) U(t,x) €dj(Y(t,x)),dP x dQ; x dx a.e.,

P
D(s, &, &) de) < 00, (5.2)

D)
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v) e2VY e L®(0, T; LX($; H}(D))) and eV j(¥) € L®(0, T; L' (2 x D)), VT > 0,
(vi) Efge 2anY(s)nH Dy 495 < %0

Remark 5.1. If we renounce at assumption (Ag), then it follows that backward SPDE (5.1) ad-
mits a variational weak solution. More precisely, Theorem 4.2 shows that there exists a unique
solution (Y, Z) € SY X A(zz(D D) such that (Y (1), Z(t)) = (&, &) = (n,0), for t > , and
forallO0<r<s

(i) M@ — YOI? + 5 [FIRG) — ZWO)Pdr + [ [pj(Y(r,x)dxdQ, < LIM(s) —
YOI + [ [pi(M(@r,x)dxdQ, + [T({M(r) — Y(r),N(r) — AY(r) — ®(r, Y (r),
Zr))NdQ, — [TUM(r) — Y(r), (R(r) — Z(r))dW,)),Y(N,R) € L}(Q x [0, 00);
L% (D)) x ALz(D Dy VM €M,

(ii) Y(t) € Hj(D),dP x dr a.e.,

(iii) Y (¢,x) € Dom(j),dP x dQ; x dx a.e.,

LYX(D)

where M is defined at the beginning of the Section 4 and
17 = [ s and (15.0)i= [ Feoseos

Example 5.2. As a second example we consider the backward SPDE with Neumann boundary
condition
—dY(t,x) =AY (t,x)dQ;
+®(t,Y(1,x), Z(t,x))dQ; — Z, dW,, inQx[0,7] x D,

_w €3j(Y(w,1,x)), on Q x [0, ] x Bd(D), 53)
n
o
Y (T — &1 | +/ o2V, — as prob.
T — 00

We apply again Theorem 3.2, with W = ¢ = v, where ¢ : L2(D) — (—o0, 00] is given by

1 , .
o) = I 5fD|W(x)|2dx+/Bdm)](u(x))dx, if u e H'(D) and k(u) € L' (Bd(D)),

+00, otherwise.
Proposition 2.9 from Barbu [1], Chapter II, shows that:

(a) function ¢ is proper, convex and L.s.c.,

(b) dp(u) = —Au(x),Yu € Dom(dgp),

(¢) Dom(3¢9) = {u € H*(D): =9 € 9 (u(x)) a.e. on Bd(D)},
u

where ‘) is the outward normal derivative to the boundary.
Moreover there are some positive constants C, Co such that

() llll g2py < Cillu — Aull 2(py + C2, Yu € Dom(dp).
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Let  be a H'!(D)-valued random variable, F,-measurable such that (Ao) is satisfied and
E[el’ supefo,r) Vs |;7|/’] < 00, 2 UPselo.7] VSj(n) elL! (Q X Bd(D)),

and the stochastic processes £ and ¢ (from the martingale representation theorem) be such that
(5.2) holds.
Applying Theorem 3.2 we conclude that, under the above assumptions, backward SPDE (5.3)

has a unique solution (¥, Z) € S}, D) X AY, (D Such that (¥ (1), Z(1)) = (& &) = (1, 0). for
t>1,and

@ Y(t,x) =Y(T,0)+ [ AY(5,x)dQs + [T (s, Y (5,x), Z(5,x)) dQy — [ Z(s, x) AW,
in[0,T] x D, a.s.,
(ii) Y(r) € HX(D),dP x dt a.e.,
(iii) —5-Y € Dom(3j), dP x dQ; x dx ae.,
(iv) e?Y € L®(0,T; L*(2; H'(D))) and e?" j(Y) € L™(0, T; L' (R x Bd(D))), VT > 0,
W) Efy e 1Y )1, dQs < oo
Example 5.3. The third example is the backward stochastic porous media equation

—dY (r,x) = A@j)(Y(t,x))dQ; + D(t, Y (1,x), Z(t,x)) dQ;
—Z(t,x)dW,, in Q2 x[0,7] xD,
3j(Y(w,1,x))20  onQx[0,7] x Bd(D), (5.4)

o0
V|| v (1) — &7 +/ | Z(s) — ¢ |7 ds BN
T T—o0

In Theorem 3.2, let H = H (D) (the dual of HO1 (D)), H =R¢ and ¥ = ¢ = v, where
¢:H (D) — (—o0, o0] is given by

(p(u)z{fpj(u(x))dx, ifueL (D), ju) e L (D),

+o00, otherwise,

and j:R — R, is suppose, moreover, to be continuous with lim,_, , j(r)/r = o0.
Proposition 2.10 from Barbu [1], Chapter II, shows that:

(a) function ¢ is proper, convex and L.s.c.,

(b) o) = {u* € H YD) :u*(x) = —Av(u(x)), v € H& (D), v(x) € 9j(u(x)) a.e. on D},
Yu € Dom(d¢),

(c) Dom(3¢) = {u € H~'(D)NLY(D):u(x) € Dom(d/) a.e. on D}.

Let n be a H~!(D)-valued random variable, F;-measurable such that (Ao) is satisfied and
E[erswicon Pl <co,  pel'@xD),  ePewa’ (e Ll (Qx D),

and the stochastic processes £ and ¢ (from the martingale representation theorem) be such that
(5.2) holds.
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From Theorem 3.2 it follows that, under the above assumptions, backward SPDE (5.4) has
a unique solution (Y, Z) € 8% _, D) X A‘()H,1 (pyye Such that (Y (1), Z(0) = (&, &) = (1, 0), for
t>1,and

Q) Y6, )+ [T AU, x)dQy =Y (T, x)+ [ ®(s, Y (5, %), Z(s,x))dQs — [ Z(s,x) dWj,
in[0,T] x D, as.,
(i) Y (¢,x) € Dom(dj),dP x dr x dx a.e.,
(i) U(tr,x) € 9j(Y(t,x)),dP x df x dx a.e.,
(iv) e2Vj(¥Y) e L®(0,T; L' (Q x D)), VT > 0,

v) E[Te2Vs | U (5)|? dQ, < o0.
W) B[P0, 5, 40

Appendix

In this section, we first present some useful and general estimates on (Y, Z) € 810, T x
A%(0, T) satisfying an identity of type

T T
Yi=Yr +/ dK; —/ Z,dWg, tel0,T], P-as.,
t t

where K € SY[0, T] and t —> K;(w) is a bounded variation function, P-a.s.
The following results are proved in monograph Pardoux and Réscanu [19], Annex C.
Assume there exist: three progressively measurable increasing continuous stochastic processes
D, R, N such that Dy = Ryg = No =0, a progressively measurable bounded variation continuous
stochastic process V with Vj = 0, some constants a, p > 1 such that, as signed measures on
[0, T]:
dD; + (Y;,dK;) < (lezz dR, + |Y;|dN; + |Yt|2th) + Z—ant“zdﬂ (A1)

wheren, =(p— 1D AL
Let [le¥ Y |lir, 77 := supgep 7yl Yl

Proposition A.1. Assume (A.1) and that

T p/2 T p
E||Yev||ﬁ)’T]+E(/0 eszn,,szRs> —HEI(/O eVSdNS) < 00.

Then there exists a positive constant C = C(a, p) such that, P-a.s., forallt € [0, T]:

P T p/2 T p/2
By 1fy+ ([ an) ([ eizie) ]
t t

T T
+ES [ / e”Vs|Yy|P 1y, .0dDs + f est|m”—21n¢o||zs||2ds}
t t

T p/2 T p
<CE” [|eVT Yr|” + (/ Vel ) dRs> + (/ e dNS) ]
t t



Backward SVIs on random interval 1197
In particular for all t € [0, T]:
|Y,|? < CE [(|YT|p + 1p22R¥ + NY{’)GPH(V—VH*'H[:.T]]’ P-a.s.

As a simple consequence we can deduce, from the above proposition, an estimate for the
stochastic processes (£, ¢) associated to n as in Proposition 2.2:

Corollary A.1. Let (V;);>0 be a bounded variation and continuous p.m.s.p. with Vo = 0,
n:Q — H a random variable such that E(e? $*Ps<0.11Vs |n|P) < 0o and (£,7) € S° x A%(0, 00)
the unique solution of the following equation (see the martingale representation formula (2.1)):

& = E]:Tr] — ff{r dW,, s € [0, T, a.s. Therefore, there exists C = C(p) > 0 such that for all
t€0,7T],

T p/2
EF sup ePVs 117 + B <f e2Vs |§s|2 ds) < CE (ePSUPse[r.T] Vs |n|P). (A.2)
selt,T] t

Proof. We see at once that the stochastic pair (&, ¢) satisfy equation & = & — fs r ;- dW,, s €
[0, T] a.s. For any fixed r € [0, T'] let (\_/S’)SG[Q,T] be the increasing continuous p.m.s.p. defined by
VI=V,;,s<t,and V! = Sup,¢(.s] Vr»$ = t. Applying Jensen’s inequality and Proposition A.1
for (&, ¢) (which satisfies an inequality of type (A.1), with K =0 and R = N = 0), we deduce
that for all p > 1, there exists C = C(p) > 0 such that

T p/2
E** sup e”Vs|ss|P+Eff< / eZVw:des)
se(t,T] t

_ T __ p/2

<E" sup " |&|P+Eﬁ( / e”s|;s|2ds)
s€lt,T] t

< CE]:’ (eP‘_/% |é§T|P) < CIE]:’ (el)supse[t,T] [Vsl |,7|P)' O

Let us now discuss the existence and uniqueness of a solution for the backward stochastic
equation of the form

T T
Yi=n +/ D(s, Yy, Zg)dQs — / ZydBy, a.s., vVt e[0,T]. (A.3)
t t

We will need the following basic assumptions:

(A}) the process {Q; :t > 0} is a progressively measurable increasing continuous stochastic
process such that Qg =0, and {«; :t > 0} is a real positive p.m.s.p. such that « € [0, 1]
and dt = o, dQy;

(AQ) the function ®:Q x [0,00) x H x Lo(Hy, H) — H is such that

o(, -, y,2) is p.m.s.p., V(y,z) € H x L,(Hy, H),
d(w,t, -, -) is continuous function, dP ® dt-a.e.,
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and P-a.s., fOT <I>f)(s) dQ; < o0, Vp >0, where de)(a), $) = SUP|<p |®(w, s,u,0)];
(A’S) there exist a p.m.s.p. i : Q2 x [0, 00) — R and a function £ : [0, co) — [0, 00) such that
S 11 dQs + Jif (1) dt < 00, P-aus. and, for all y,y' € H, 7,7 € Lo(Hy, H),

2

(y =y, @(t.y,2) =, y,2)) < |y’ —y
|®(t,y,2) = @1, y,2)| < L]z —2].

Leta > 1and V; = [ (15 + ﬁﬁz(s)as)dQs.

Proposition A.2. Let p > 1 and n:Q2 — H be a random variable measurable with respect to
o ({F; :t = 0}). Under the hypotheses (A})—(AY), if moreover,

T P
E(ePVTlnlp) +]E</ sup |eV’CI>(t, e Viy, 0) — s y| dQs> < 00, Vp >0, (A4)
0

lyl=p
there exists a unique pair (Y;, Z;)i>0 € 8% x A9 solution of the BSDE (A.3) in the sense that

G) Yo=n+ [T ©(,Y,, Z,)dQ;s — [ Z,dBy, as., Vi €0, T],
)] EHGVYII{Z)’T] —i—IE(fOT 2% | Z,12 ds)P/? < 0.

Remark A.1. If (V;);>0 is a deterministic process, then assumption (A.4) is equivalent to

T p
E(1n1") +E</ <I>ﬁ(S)dQs> <oc.
0
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