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In this paper, we focus on the following testing problem: assume that we are given observations of a real-
valued signal along the grid 0,1, . . . ,N − 1, corrupted by white Gaussian noise. We want to distinguish
between two hypotheses: (a) the signal is a nuisance – a linear combination of dn harmonic oscillations of
known frequencies, and (b) signal is the sum of a nuisance and a linear combination of a given number ds of
harmonic oscillations with unknown frequencies, and such that the distance (measured in the uniform norm
on the grid) between the signal and the set of nuisances is at least ρ > 0. We propose a computationally
efficient test for distinguishing between (a) and (b) and show that its “resolution” (the smallest value of ρ

for which (a) and (b) are distinguished with a given confidence 1 − α) is O(
√

ln(N/α)/N), with the hidden
factor depending solely on dn and ds and independent of the frequencies in question. We show that this
resolution, up to a factor which is polynomial in dn, ds and logarithmic in N , is the best possible under
circumstances. We further extend the outlined results to the case of nuisances and signals close to linear
combinations of harmonic oscillations, and provide illustrative numerical results.

Keywords: detection by convex optimization; detection in the presence of nuisance; harmonic oscillations
detection; multiple hypothesis testing

1. Introduction

In this paper, we address the following detection problem. A signal – a two-sided sequence of
reals x = {xt , t = 0,±1,±2, . . .} – is observed on the time horizon 0,1, . . . ,N − 1 according to

y = xN−1
0 + ξ,

where ξ ∼ N (0, IN) is the white Gaussian noise and zN−1
0 = [z0; . . . ; zN−1]. Given y we want

to distinguish between two hypotheses:

• Nuisance hypothesis: x ∈ H0, where H0 is comprised of all nuisances – linear combinations
of dn harmonic oscillations of known frequencies.

• Signal hypothesis: x ∈ H1(ρ), where H1(ρ) is the set of all sequences x representable as
s +u with the “nuisance component” u belonging to H0 and the “signal component” s being
a sum of at most ds harmonic oscillations (of whatever frequencies) such that the uniform
distance, on the time horizon in question, from x to all nuisance signals is at least ρ:

min
z∈H0

∥∥xN−1
0 − zN−1

0

∥∥∞ ≥ ρ.

We are interested in a test which allows to distinguish, with a given confidence 1 − α, between
the above two hypotheses for as small “resolution” ρ as possible.
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An approach to this problem which is generally advocated in the signal processing literature
is based on the generalized likelihood ratio test [3,7,10,11]. This test seems to enjoy the optimal
detection performance in the problem of distinguishing between the “pure noise” hypothesis H0
(no nuisance is present) and the “signal hypothesis,” H1, that a signal which is a sum of ds

sinusoids is present. For instance, under certain assumptions on the signal frequencies, this test
is claimed [11] to distinguish 1 − α-reliably1 between H0 and H1 if the �2-norm of the signal
is ≥ c

√
ds ln(N/α). However, implementation of this detector requires computing minimal log-

likelihood – the global optimal value of the optimization problem

min
a,ω,φ

N−1∑
k=0

(
yk −

ds∑
j=1

aj sin(ωjk + φj )

)2

(here the minimum is taken with respect to all problem parameters (aj ,ωj ,φj ), j = 1, . . . , ds ),
and becomes numerically challenging already for very moderate problem dimension ds . To cir-
cumvent numerical problems, under certain assumptions on the signal frequencies (i.e., they
are not “too close to each other”) the test can be applied “sequentially” [11], when “fitting one
frequency at a time.” A second family of tests, which does not require estimation of unknown
frequencies and amplitudes, relies upon noise subspace methods, such as multiple signal classi-
fication (MUSIC) [14,18] (see also [15,19] for detailed presentation of these techniques). To the
best of our knowledge, no theoretical bounds for the resolution of such tests are available. A dif-
ferent test for the case when no nuisance is present, based on the normalized periodogram, has
been proposed in [4]. The properties of this test and of its various modifications were extensively
studied in the statistical literature (see, e.g., [1,6,15–17,20]). However, few theoretical results on
the power of this test are available for the case of sequence x not being a linear combination
of Fourier harmonics e2πıkt/N , k = 0,1, . . . ,N − 1 under signal hypothesis. For instance, in the
paper [2], brought to our attention by the referee, the properties of the periodogram test are anal-
ysed in the problem of detection of one sinusoid, where it is shown that asymptotically (when
N → ∞, the reliability of the test is not “too high,” and the signal frequency is “not too close”
to 0 or 1 but is otherwise arbitrary) the sensitivity of the test can be improved by the factor up to
π
2 , if maximization of the periodogram is carried over all frequencies in [0,1] instead of the set

of “Fourier frequencies” k
N

, k = 0, . . . ,N − 1.
In this paper, we show that a good solution to the outlined problem is offered by an extremely

simple test as follows.

Let FNu = { 1√
N

∑N−1
t=0 ut exp{2πıkt/N}}N−1

k=0 : CN → CN be the Discrete Fourier Transform. Given the ob-

servation y, we solve the convex optimization problem

Opt(y) = min
z

{∥∥FN

(
y − zN−1

0

)∥∥∞ : z ∈ H0
}

and compare the optimal value with a threshold qN (α) which is a valid upper bound on the 1 − α-quantile of
‖FNξ‖∞, α ∈ (0,1) being a given tolerance:

Probξ∼N (0,IN )

{‖FNξ‖∞ > qN(α)
} ≤ α.

If Opt(y) ≤ qN (α), we accept the nuisance hypothesis, otherwise we claim that a signal is present.

1We say that a test distinguishes 1 − α-reliably between the hypotheses, say, H0 and H1 if its risk which is, in our case,
the maximal probability of rejecting the hypothesis when it is true, is bounded by α.
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It is immediately seen that the outlined test rejects the nuisance hypothesis when it is true with
probability at most α.2 Our main result (Theorem 3.1) states that the probability to reject the sig-
nal hypothesis when it is true is ≤ α, provided that the resolution ρ is not too small, specifically,
for an appropriately chosen universal function C(·),

ρ ≥ C(dn + ds)
√

ln(N/α)/N. (!)

In the simplest case when the zero hypothesis just states that x = 0, the above test is similar to
the standard tests based on the maximum of the periodogram; when H0 is nontrivial, our test can
be seen as a natural modification of the classical construction.

Some comments are in order.

A. Our principal contributions, as we see them, are in
– deriving theoretical upper (and close to them lower) bounds on the resolution of the

test under quite general assumptions on nuisances and signals of interest; it should be
stressed that these bounds depend solely on the cardinalities of the sets of “participating”
frequencies. Moreover, we allow for “multiplicities of frequencies,” so that our “sum of
harmonic oscillations” can be an algebraic polynomial or a sum of products of algebraic
polynomials and harmonic oscillations. We are not aware of comparable, in terms of
generality, existing theoretical results on the performance of spectral analysis tests;

– demonstrating that in order to achieve nearly optimal resolution, one can restrict the
periodogram to the frequencies participating in the Discrete Fourier Transform (the tra-
ditional recommendation is to consider denser frequency sets).

B. We show that the power of our test when applied to the detection problem in question is
nearly as good as it can be: precisely, for every pair dn, ds and properly selected H0, no test
can distinguish (1 − α)-reliably between H0 and H1(ρ) when ρ < O(1)ds

√
ln(1/α)/N .

Here and from now on, O(1)’s are appropriately chosen positive absolute constants.
C. We are measuring the resolution in the “weakest” of all natural scales, namely, via the

uniform distance from the signal to the set of nuisances. When passing from the uni-
form norm to the normalized Euclidean norm |xN−1

0 |2 := ‖xN−1
0 ‖2/

√
N ≤ ‖xN−1

0 ‖∞,
an immediate lower bound on the resolution which allows for reliable detection becomes
O(1)

√
ln(1/α)/N . In the case when, as in our setting, signals obeying H0 and H1(ρ) admit

parametric description involving K parameters, this lower bound, up to a factor logarithmic
in N and linear in K , is also an upper resolution bound, and the associated test is based on
estimating the Euclidean distance from the signal underlying the observations to the nui-
sance set. Note that, in general, the | · |2-norm can be smaller than ‖ ·‖∞ by a factor as large
as

√
N , and the fact that “energy-based” detection allows to distinguish well between para-

metric hypotheses “separated” by O(
√

ln(N/α)/N) in | · |2 norm does not automatically
imply the possibility to distinguish between hypotheses separated by O(

√
ln(N/α)/N) in

the uniform norm.3 The latter possibility exists in the situation we are interested in due to

2This fact is completely independent of what the nuisance hypothesis is – it remains true when H0 is an arbitrary set in
the space of signals.
3Indeed, let H0 state that the signal is 0, and H1(ρ) state that the signal is ≥ ρ at t = 0 and is zero for all other t ’s. These
two hypotheses cannot be reliably distinguished unless ρ ≥ O(1), that is, the ‖ · ‖∞ resolution in this case is much larger
than O(

√
ln(N/α)/N).
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the particular structure of the specific nuisance and signal hypotheses; this structure allows
also for a dedicated non-energy-based test.

D. For the sake of definiteness, throughout the paper we assume that the observation noise is
the standard white Gaussian one. This assumption is by no means critical: on a straightfor-
ward inspection of what follows, whatever be the observation noise, with qN(α) defined as
(an upper bound on) the (1−α)-quantile of ‖FNξ‖∞, the above test (1−α)-reliably distin-
guishes between the hypotheses H0 and H1(ρ), provided that ρ ≥ C(dn + ds)qN(α)/

√
N .

For example, the results of Theorems 3.1 and 3.2 remain valid when the observation noise
is of the form ξ = {ξt = ∑∞

τ=−∞ γτ ηt−τ }N−1
t=0 with deterministic γτ ,

∑
τ |γτ | ≤ 1, and

independent ηt ∼N (0,1).
E. The main observation underlying the results on the resolution of the above test is as fol-

lows: when x is the sum of at most d harmonic oscillations, ‖FNx‖∞ ≥ C(d)
√

N‖xN−1
0 ‖∞

with some universal positive function C(d).4 This observation originates from [12] and,
along with its modifications and extensions, was utilized, for the time being in the denois-
ing setting, in [5,8,9,13]. It is worth mentioning that it also allows to extend, albeit with
degraded constants, the results of Theorems 3.1 and 3.2 to multi-dimensional setting.

The rest of this paper is organized as follows. In Section 2, we give a detailed description of the
detection problems (P1), (P2), (N1) and (N2), we are interested in (where (P2) is the problem
we have discussed so far). Our test is presented in Section 3 where we also provide associated
resolution bounds for these problems. Next, in Section 4, we present lower bounds on “good”
(allowing for (1 − α)-reliable hypotheses testing) resolutions, while in Section 5 we describe
some numerical illustrations. The proofs of results of Sections 3 and 4 are put into Section 6.

2. Problem description

Let S stand for the space of all two-sided real sequences z = {zt ∈ R}∞t=−∞. Assume that a
discrete time signal x ∈ S is observed on the time horizon 0 ≤ t < N according to

y = xN−1
0 + ξ, ξ ∼N (0, IN), (1)

where (and from now on) for z ∈S and integers p ≤ q , zq
p stands for the vector [zp; zp+1; . . . ; zq ].

In the sequel, we are interested in the case when the signal is a linear combination of a given
number of harmonic oscillations. Specifically, let � stand for the shift operator on S :

(�z)t = zt−1, z ∈ S.

Let �d be the set of all unordered collections w = {ω1, . . . ,ωd} of d reals which are “symmet-
ric mod 2π,” meaning that for every a, the number of ωi ’s equal, modulus 2π, to a is exactly
the same as the number of ωi ’s equal, modulus 2π, to −a. We associate with w ∈ �d the real

4Since ‖x‖2 = ‖FNx‖2 ≥ ‖FNx‖∞, it follows that for the aforementioned x one has C(d)−1‖x‖∞ ≤ N−1/2‖x‖2 ≤
‖x‖∞ – an important by its own right fact which we were unable to find in mathematical literature.
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algebraic polynomial

pw(ζ ) =
d∏

�=1

(
1 − exp{ıω�}ζ

)
and the subspace S[w] of S , comprised of x ∈ S satisfying the homogeneous finite-difference
equation

pw(�)x ≡ 0. (2)

In other words, S[{ω1, . . . ,ωd}] is comprised of all real two-sided sequences of the form

xt =
d∑

�=1

[
p�(t) cos(ω�t) + q�(t) sin(ω�t)

]
with real algebraic polynomials p�(·), q�(·) of degree < m�, where m� is the multiplicity,
mod 2π, of ω� in w. We set

Sd =
⋃

w∈�d

S[w].

Remark 2.1. In what follows, we refer to the reals ωi constituting w ∈ �d as the frequencies
of a signal from S[w]. A reader would keep in mind that the number of “actual frequencies”
in such a signal can be less than d : for instance, frequencies in w different from 0 mod 2π and
πmod 2π go in “symmetric pairs” (ω,ω′ = −ω mod 2π), and such a pair gives rise to a single
“actual frequency.”

Given a positive integer N , real ε ≥ 0, and w ∈ �d , we set

SN,ε[w] = {
x ∈ S :

∥∥[pw(�)x
]N−1

0

∥∥∞ ≤ ε
}
.

Finally, we denote by SN,ε
d the set

SN,ε
d =

⋃
w∈�d

SN,ε[w].

When N is clear from the context, we shorten the notations SN,ε[w], SN,ε
d to Sε[w] and Sε

d ,
respectively.

In the definitions above, it was tacitly assumed that d is a positive integer. It makes sense to
allow also for the case of d = 0. By definition, �0 is comprised of the empty collection w = ∅

and p∅(ζ ) ≡ 1. With this convention, SN,ε[∅] = {x ∈ S :‖xN−1
0 ‖∞ ≤ ε}.

Observe that the family SN,ε
d , d ≥ 2, is quite rich. For instance, it contains “smoothly vary-

ing signals” (case of wi = 0 mod 2π), along with “fast varying” – amplitude-modulated and
frequency-modulated signals (see [5,8] for more examples).
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We detail now the hypothesis testing problems about the sequence x via observation y given
by (1). In what follows ds and dn are given positive integers, and ρ, εn, εs are given positive
reals.

(P1) The “basic” hypothesis testing problem we consider is that of testing of a simple nui-
sance hypothesis {x = 0} against the alternative that a signal x ∈ Sds “is present,” mean-
ing that the uniform norm of the signal on the observation window [0, . . . ,N − 1] ex-
ceeds certain threshold ρ > 0. In other words, we consider the following set of hypothe-
ses:

H0 = {x = 0},
H1(ρ) = {

x ∈ Sds :
∥∥xN−1

0

∥∥∞ ≥ ρ
}
.

(P2) We suppose that x ∈ S decomposes into “signal” and “nuisance”:

x = s + u,

where s is the signal of interest and a nuisance u belongs to a subspace S[w], assumed
to be known a priori. We consider a composite nuisance hypothesis that x is a “pure
nuisance,” and the alternative (signal hypothesis) that useful signal s does not vanish,
and the deviation, when measured in the uniform norm on the observation window, of
“signal + nuisance” from the nuisance subspace is at least ρ > 0. Thus, we arrive at the
testing problem: given w ∈ �dn decide between the hypotheses

H0 = {
x = u ∈ S[w]},

H1(ρ) =
{
x = u + s :u ∈ S[w], s ∈ Sds ,

such that min
z

{∥∥[x − z]N−1
0

∥∥∞ : z ∈ S[w]} ≥ ρ
}
.

Clearly, problem (P1) is a particular case of (P2) with dn = 0 (and thus Sdn = {0} is a
singleton).

(N1) Given εn > 0 and w ∈ �dn , consider the nonparametric nuisance hypothesis that the
nuisance u ∈ SN,εn[w] with some known w. The signal hypothesis is that the useful
signal s ∈ Sds is present, and x = s +u deviates from the nuisance set on the observation
window by at least ρ > 0 in the uniform norm:

H0 = {
x = u ∈ SN,εn[w]},

H1(ρ) =
{
x = u + s :u ∈ SN,εn[w], s ∈ Sds ,

such that min
z

{∥∥[x − z]N−1
0

∥∥∞ : z ∈ SN,εn[w]} ≥ ρ
}
.

(N2) The last decision problem is a natural extension of (N1): we consider the problem of
testing a nonparametric nuisance hypothesis against a nonparametric signal alternative
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that the useful signal s ∈ SN,εs

ds
is present:

H0 = {
x = u ∈ SN,εn[w]},

H1(ρ) =
{
x = u + s :u ∈ SN,εn[w], s ∈ SN,εs

ds
,

and such that min
z

{∥∥[x − z]N−1
0

∥∥∞ : z ∈ SN,εn[w]} ≥ ρ
}
.

Note that problem (N1) is a particular case of (N2) with εs = 0.

In the sequel, we refer to the sequences obeying H0 (resp., H1 = H1(ρ)) as nuisance (resp.,
signal) sequences.

Let ϕ(·) be a test, that is, a Borel function on RN taking values in {0,1}, which re-
ceives on input observation (1) (along with parameters describing H0 and H1). The event
{ϕ(y) = 1} corresponds to rejecting the hypothesis H0, while {ϕ(y) = 0} implies that H1 is
rejected. The quality of the test is characterized by the error probabilities – the probabilities of
rejecting erroneously each of the hypotheses:

ε0(ϕ;H0) = sup
x∈H0

Probx

{
ϕ(y) = 1

}
, ε1

(
ϕ;H1(ρ)

) = sup
x∈H1(ρ)

Probx

{
ϕ(y) = 0

}
.

We define the risk of the test as

Risk(ϕ,ρ) = max
{
ε0(ϕ;H0), ε1

(
ϕ;H1(ρ)

)}
.

Let α ∈ (0,1/2) be given. In this paper, we address the following question: for the testing prob-
lems above, what is the smallest possible ρ such that one can distinguish (1−α)-reliably between
the hypotheses H0 and H1 = H1(ρ) via observation (1) (i.e., is such that Risk(ϕ,ρ) ≤ α). In the
sequel, we refer to such ρ as to α-resolution in the testing problem in question, and our goal is
to find reasonably tight upper and lower bounds on this resolution along with the test underlying
the upper bound.

3. Basic test and upper resolution bounds

In this section, we present a simple test which provides some upper bounds on the α-resolutions
in problems (P1)–(N2).

Let �N = {μτ = exp{2πıτ/N} : 0 ≤ τ < N −1} be the set of all roots μ ∈ C of unity of degree
N , and let FN : CN → C(�N) be the normalized Fourier transform:

[FNf ](μ) = 1√
N

N−1∑
t=0

ftμ
t , μ ∈ �N. (3)

Note that (3) can also be seen as a mapping from S to C(�N).
Given a tolerance α ∈ (0,1/2), let qN(α) be the (1 − α)-quantile of ‖FNξ‖∞, so that

Probξ∼N (0,IN )

{‖FNξ‖∞ ≥ qN(α)
} ≤ α.
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Let QN (α) be the (1 − α)-quantile of the standard normal distribution:

1√
2π

∫ ∞

QN (α)

e−s2/2 ds = α.

In the sequel, we use the following immediate bound for qN(·):5

qN(α) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
inf

0≤s≤1
max

[
QN

(
sα

4

)
,

√
ln

(
N − 2

2(1 − s)α

)]
for N even,

inf
0≤s≤1

max

[
QN

(
sα

2

)
,

√
ln

(
N − 1

2(1 − s)α

)]
for N odd

(4)
� √

ln(N/α),

where a � b means that the ratio a/b is in-between absolute positive constants.
The test we are about to consider (and which we refer to as basic test in the sequel) is as

follows:

1. Given y, we solve the convex optimization problem

OptZ (y) = min
z∈Z

∥∥FN

(
y − zN−1

0

)∥∥∞, (5)

where the set Z is defined according to

Z =
⎧⎨⎩

{0} for problem (P1),

S[w] for problem (P2),

Sε[w] for problems (N1) and (N2).
(6)

2. We compare OptZ (y) to qN(α), where α is a given tolerance: if OptZ (y) ≤ qN(α), we
accept H0, otherwise we accept H1.

We describe now the properties of the basic test as applied to problems (P1), (P2), (N1) and
(N2).

5For instance, for even N , [FNξ ](1) and [FNξ ](−1) are (real) standard normal variables, and |[FNξ ](μ)|2 follows expo-
nential distribution when μ = ±1. Indeed, in the latter case the joint distribution of real and imaginary parts of [FNξ ](μ)

is N (0, 1
2 I2), so that 2[FNξ ](μ)|2 ∼ χ2

2 (χ2 distribution with 2 degrees of freedom). As a result, ‖FNξ‖∞ can be
bounded with max(|FNξ ](1)|, |FNξ ](−1)|,√ηN−2), where ηN−2 is the maximum of N − 2 independent exponential
random variables, what implies the bound (4) in this case.

It is worth to mention that the same argument leads to the bound for qN (α) which is equivalent to (4) in the case
when the observation noise is of the form ξ = {ξt = ∑∞

τ=−∞ γτ ηt−τ }N−1
t=0 with deterministic γτ ,

∑
τ |γτ | ≤ 1, and

independent ηt ∼ N (0,1). Indeed, in this case we have [FNξ ](μ) = ∑∞
τ=−∞ γ μ,τ ητ , with

∑
τ |γ μ,τ |2 ≤ 1. In other

words, the joint distribution of real and imaginary parts of [FNξ ](μ) is N (0,�2), with Trace(�2) ≤ 1. Then for any
ρ > 0,

Prob
{‖FNξ‖∞ ≥ ρ

} ≤ N max
μ∈�N

Prob
{∣∣[FNξ ](μ)

∣∣ ≥ ρ
} ≤ 2N Prob

{|ζ | ≥ ρ
}
,

where ζ ∼N (0,1), and Prob{‖FNξ‖∞ ≥ QN ( α
4N

)} ≤ α.
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Theorem 3.1. The risk of the basic test as applied to problems (P1), (P2) is bounded by α,
provided that d∗ = dn + ds > 0 and

ρ ≥ O(1)d3∗ ln(2d∗)qN(α)N−1/2 = O(1)d3∗ ln(2d∗)
√

N−1 ln(N/α) (7)

with properly chosen positive absolute constants O(1).6

The result for the nonparametric problems (N1) and (N2) is similar.

Theorem 3.2. The risk of the basic test as applied to problems (N1), (N2) is bounded by α,
provided that d∗ = dn + ds > 0, ρ satisfies (7) with properly selected O(1)’s and, in addition, εn

and εs are small enough, specifically,

Ndn+1/2εn + Nds+1/2εs ≤ O(1)qN(α) (8)

with properly selected positive absolute constant O(1).

The proofs of Theorems 3.1 and 3.2 are relegated to Section 6.
Theorems 3.1 and 3.2 provide us with upper resolution bounds independent of the frequencies

constituting w and w. When εn, εs are “small enough,” so that (8) holds true (we refer to the
corresponding range of problems’ parameters as the parametric zone), our upper bound on α-
resolution in all testing problems of interest is essentially the same as in the case of εn = εs = 0 –
it is C(dn + ds)

√
ln(N/α)/N with the factor C(d) = O(1)d3 ln(2d) depending solely on d .

On the other hand, when εn and εs are not “small enough,” that is, when (N, εn, εs) are not
in the range described by (8), and ρ = O(1)

√
ln(1/α)/N , (1 − α)-reliable decision between the

hypotheses participating in (N1), (N2) becomes impossible, whatever be the test (see items (ii)
in Propositions 4.2, 4.3 below). This phenomenon is by no means surprising: indeed, allowing
for εn and/or εs to be positive means allowing for nonparametric components in the nuisance
and/or nonnuisance signals.7 When these components are not “small enough,” their presence
changes significantly the resolution level at which reliable test is possible. The study of problems
(N1) and (N2) in the nonparametric range (i.e., with (N, εn, εs) beyond the range given by (8))
goes beyond the scope of this paper8 and deserves, we believe, a dedicated study. Our “educated
guess” is that correct nonparametric version of the basic test in problems (N1), (N2) should be as
follows: given (N, εn, εs) not satisfying (8), find the largest integer N such that (N, εn, εs) does
satisfy (8), and then run the basic test on, say, all N -point subintervals of the N -point observation
horizon, inferring the validity of the nuisance hypothesis if and only if it was accepted by the
basic test on every subinterval.9

6Note that the signal s ∈ Sds is assumed to be at a distance ρ > 0 from the nuisance subspace (and thus from the origin).
In other words, under the premise of the Theorem 3.1 ds > 0.
7Think, for example, of a “plain nonparametric” signal xN−1

0 , which is a restriction on the grid {i/N}N−1
i=0 of a smooth

function on [0,1]. It is immediately seen that such a signal belongs to SN,ε [0] with ε ≤ ‖f ′‖∞/N .
8For “de-noising” analogies of our testing problems in the nonparametric range, see [5,8,9,13].
9With this approach, the basic test on a subinterval should be associated with confidence O(α/N) instead of α, in order

to account for the possibility of “large deviations” in at least one of N − N + 1 runs of the basic test.
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4. Lower resolution bounds

The lower resolution bounds of this section complement the upper bounds of Section 3. We start
with the parametric setting (P1) and (P2). Through this section, ci(dn, ds) are properly selected
positive and monotone functions of their arguments.

Proposition 4.1. Given integers dn ≥ 0, ds ≥ 1, and a real α ∈ (0,1/2), consider problems (P1)

and (P2) with parameters dn (dn = 0 in the case of problem (P1)), ds , α and w = {
dn︷ ︸︸ ︷

0, . . . ,0}.
Then for properly selected c0(dn, ds) and all N ≥ c0(dn, ds) the α-resolution ρ in the problems
(P1) and (P2) admits the lower bound

O(1)ds

√
ln(1/α)/N.

We see that in the problem (P1) α-resolution grows with ds at least linearly. Note that by
Theorem 3.1, this growth is at most cubic (more precisely, it is not faster than O(1)d3

s ln(ds)).
Besides this, we see that the upper bounds on α-resolution for problems (P1) and (P2) stemming
from Theorem 3.1 and associated with the basic test coincide, within a factor depending solely
on dn, ds,N and logarithmic in N , with lower bounds on α-resolution.

We have the following lower bound on the α-resolution in the problem (N1).

Proposition 4.2. Given integers dn > 0, ds ≥ 2 and reals α ∈ (0,1/2), εn ≥ 0, consider prob-

lem (N1) with parameters dn, ds , N , εn, α and w = {
dn︷ ︸︸ ︷

0, . . . ,0}. Then for properly selected
ci(dn, ds) > 0 depending solely on dn, ds and for all N satisfying

N ≥ c0(dn, ds), (9)

the α-resolution ρ∗(α) in the problem (N1) satisfies:

(i) in the range 0 ≤ εn ≤ c1(dn, ds)N
−dn−1/2√ln(1/α),

ρ∗(α) ≥ c2(dn, ds)
√

ln(1/α)/N;
(ii) in the range

c3(dn, ds)N
−dn−1/2

√
ln(1/α) ≤ εn ≤ c1(dn, ds)N

√
ln(1/α), (10)

ρ∗(α) ≥ c4(dn, ds)
[
εnN

dn+1/2[ln(1/α)
]−1/2]1/(2dn+3)

√
N−1 ln(1/α).

In the case of the problem (N2), we have a similar lower bound on α-resolution when εn ≤ εs .

Proposition 4.3. Given integers dn > 0, ds ≥ 2 and reals α ∈ (0,1/2), εn ≥ 0, consider problem

(N2) with parameters dn, ds , N , εn, εs , α and w = {
dn︷ ︸︸ ︷

0, . . . ,0}.
Assume that 0 ≤ εn ≤ εs . Then for properly selected ci(dn, ds) > 0 depending solely on dn, ds

and all N ≥ c0(dn, ds), the α-resolution ρ∗(α) in the problem (N2) satisfies:
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(i) in the range 0 ≤ εs ≤ c1(dn, ds)N
−ds−1/2√ln(1/α),

ρ∗(α) ≥ c2(dn, ds)
√

ln(1/α)/N;

(ii) in the range

c3(dn, ds)N
−ds−1/2

√
ln(1/α) ≤ εs ≤ c1(dn, ds)

√
ln(1/α), (11)

ρ∗(α) ≥ c4(dn, ds)
[
εsN

ds+1/2[ln(1/α)
]−1/2]1/(2ds+1)

√
N−1 ln(1/α)

(12)
≥ c5(dn, ds)ε

1/(2ds+1)
s

(
ln(1/α)

)ds/(2ds+1)
.

The results of items (i) in Propositions 4.2 and 4.3 say that when dn, ds are fixed, N is large,
and εn, εs are small enough so that the problem parameters are in the parametric zone (i.e., (8)
holds), Theorem 3.2 describes “nearly correctly” (i.e., up to factors depending solely on dn, ds,N

and logarithmic in N ) the α-resolution in problems (N1) and (N2): within such a factor, the α-
resolution for problems (N1), (N2), same as for problems (P1), (P2), is

√
ln(1/α)/N . Besides,

items (ii) in Propositions 4.2 and 4.3 show that when (εn, εs) goes “far beyond” the range (8),
the α-resolution in problems (N1), (N2) becomes “much worse” than

√
ln(1/α)/N .

5. Numerical results

Below we report on some numerical experiments with the basic test.

5.1. Problem (N1)

The goal of the first series of simulations was to quantify “practical performance” of the basic
test as applied to problem (N1).

Organization of experiments

We consider problem (N1) on the time horizon 0 ≤ t < N for N ∈ {128,512,1024} with re-
liability threshold α = 0.01. In these simulations dn = 4, the frequencies in w are selected at
random, εn = 0.01, and ds = 4 (note that N and εn are deliberately chosen not to satisfy (8)). As
explained in Section 3, the above setup specifies the basic test for problem (N1), and our goal is
to find the “empirical resolution” of this test. To this end, we ran 10 experiments as follows. In a
particular experiment:

• We draw at random w ∈ S4, a shift s̄ ∈ S[w] and basic nuisance u ∈ Sεn[w].
• We generate a “true signal” x according to xλ = λs̄ + u, where λ > 0 is (nearly) as small as

possible under the restriction that with x = xλ, the basic test “rejects reliably” the hypothesis
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Table 1. Problem (N1) with d = ds = 4, α = ε = 0.01

Experiment #

1 2 3 4 5 6 7 8 9 10 Mean Mean×N1/2

Experiments with N = 128:
Resolution 1.10 1.58 1.52 1.51 2.28 1.85 1.12 1.92 1.12 1.82 1.58 17.9
Signal/noise 0.70 1.09 0.94 0.95 1.36 1.03 0.77 1.06 0.69 1.10 0.97 11.0

Experiments with N = 512:
Resolution 0.79 1.30 1.31 0.79 0.79 0.79 0.48 0.79 0.81 0.48 0.83 18.8
Signal/noise 0.44 0.71 0.74 0.43 0.43 0.44 0.30 0.50 0.44 0.34 0.48 10.8

Experiments with N = 1024:
Resolution 0.60 0.92 0.36 0.58 0.46 0.35 0.36 0.56 0.42 0.59 0.52 16.6
Signal/noise 0.32 0.56 0.24 0.41 0.31 0.27 0.26 0.43 0.26 0.39 0.35 11.0

H0, namely, rejects it in every one of 15 trials with x = xλ and different realizations of the
observation noise ξ , see (1).10

• For the resulting λ, we compute ρ = minu∈Sεn [w] ‖xλ − u‖∞, which is the output of the
experiment. We believe that the collection of 10 outputs of this type gives a good impression
on the “true resolution” of the basic test. As a byproduct of an experiment, we get also the
‖ · ‖∞-closest to xλ point ux ∈ Sεn[w]; the quantity r = ‖xλ − ux‖2/

√
N can be thought of

as a natural in our context “signal-to-noise ratio.”

The results are presented in Table 1. We would qualify them as quite compatible with the
theory we have developed: both empirical resolution and empirical signal-to-noise ratio decreases
with N as N−1/2. The “empirically observed” resolution ρ for which the basic test (1 − α)-
reliably, α = 0.01, distinguishes between the hypotheses H0 and H1(ρ) associated with problem
(N1) is ≈ 6

√
ln(N/α)/N .

Comparison with MUSIC

An evident alternative to the basic test is (a) to apply the standard MUSIC algorithm [18] in order
to recover the spectrum of the observed signal, (b) to delete from this spectrum the “nuisance
frequencies,” and (c) to decide from the remaining data if the signal of interest is present. Our
related numerical results are, to the best of our understanding, strongly in favor of the basic
test. Let us look at Figure 1 where we present four MUSIC pseudospectra (we use pmusic
function from MATLAB Signal Processing Toolbox) of the observations associated with signals
x obeying the hypothesis H1(ρ) (magenta) and of the observations coming from the ‖ · ‖∞-
closest to x nuisance (i.e., obeying the hypotheses H0) ux (blue). ρ was chosen large enough for

10Since a run of the test requires solving a nontrivial convex program, it would be too time-consuming to replace 15
trials with few hundreds of them required to check reliably that the probability to reject H0, the signal being xλ, is at
least the desired 1 − α = 0.99.
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Figure 1. MUSIC pseudospectra as built by MATLAB function pmusic(·,8).† Dot (magenta): signal
plus nuisance; solid (blue): pure nuisance; dash vertical bars: nuisance frequencies (d = 4 elements in w
correspond to 2 “actual” frequencies). (a), (b) N = 128; (c), (d) N = 1024.
†In the present setup, w ∪ w = {±wj ,1 ≤ j ≤ 4}, which requires the pmusic parameter p to be set to 8.

the basic test to accept reliably the hypothesis H1(ρ) when it is true. We see that while sometimes
MUSIC pseudospectrum indeed allows to understand which one of the hypotheses takes place
(as it is the case in the example (d)), “MUSIC abilities” in our context are rather limited.11 For
example, it is hard to imagine a routine which would attribute magenta curves in the examples
(a)–(c) to signals, and the blue curves – to the nuisances.

11It should be noted that MUSIC is designed for a problem different from (and more complex than) the detection we
are interested in, and thus its weakness relative to a dedicated detection test does not harm algorithm’s well-established
reputation.
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5.2. Comparison with energy test

Our objective here is to compare the resolution of the basic test to that of the test which imple-
ments the straightforward idea of how to discover if the signal x underlying observations (1) does
not belong to a known nuisance set U ⊂ S . The test in question, which we refer to as energy test,
is as follows: given a tolerance α and an observation y, we solve the optimization problem

Opt(y) = inf
u∈U

∥∥y − uN−1
0

∥∥2
2

and compare the optimal value with the (1 − α)-quantile

pN(α) : Probξ∼N (0,IN )

{‖ξ‖2
2 > pN(α)

} = α

of the χ2-distribution with N degrees of freedom. If Opt(y) > pN(α), we reject the nuisance
hypothesis H0 stating that x ∈ U , otherwise we accept the hypothesis. Note that the basic test is
of a completely similar structure, with ‖FN(y −uN−1

0 )‖2∞ in the role of ‖y −uN−1
0 ‖2

2 and q2
N(α)

in the role of pN(α). It is clear that the energy test rejects H0 when the hypothesis is true with
probability at most α (cf. item 10 in Section 6.2). In order to simplify the presentation, we restrict
this test comparison to the simplest case of U = {0}, i.e., the case of problem (P1). Let us start
with some theoretical analysis. Given a natural ds > 0 and a real ρ > 0, consider the signal hy-
pothesis H 1(ρ) stating that the signal x underlying observations (1) satisfies ‖xN−1

0 ‖∞ ≥ ρ and

that xt is a real algebraic polynomial of degree ≤ d − 1 of t ∈ Z, meaning that x ∈ S[
d︷ ︸︸ ︷

0, . . . ,0].
Observe that with our U = {0}, Opt(y) is nothing but

‖y‖2
2 = ∥∥xN−1

0 + ξ
∥∥2

2 = ‖ξ‖2
2 + 2ξT xN−1

0 + ∥∥xN−1
0

∥∥2
2.

It follows that the hypothesis H0 is accepted whenever the event

‖ξ‖2
2 + 2ξT xN−1

0 + ∥∥xN−1
0

∥∥2
2 ≤ pN(α)

takes place. Now, from the standard results on the χ2 distribution it follows that for every α ∈
(0,1), for all large enough values of N with properly chosen absolute constants it holds

Probξ∼N (0,IN )

{
pN(α) − ‖ξ‖2

2 ≥ O(1)
√

N ln(1/α)
} ≥ O(1),

whence also

Probξ∼N (0,IN )

{{
pN(α) − ‖ξ‖2

2 ≥ O(1)
√

N ln(1/α)
}∩ {

ξT xN−1
0 ≤ 0

}} ≥ O(1).

As a result, whenever x ∈ S satisfies ‖xN−1
0 ‖2

2 ≤ O(1)
√

N ln(1/α), the probability to accept H0,
the true signal being x, is at least O(1), provided that N is large enough. On the other hand,
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for a given ds and large N there exists a polynomial x of degree ds − 1 such that ‖xN−1
0 ‖2 ≤

d−1
s N1/2‖xN−1

0 ‖∞, see the proof of Proposition 4.1. It immediately follows that with ds ≥ 1
and (small enough) α > 0 fixed, the energy test cannot distinguish (1 − α)-reliably between the
hypotheses H0 and H 1(ρ), provided that

ρ = O(1)ds

[
N−1 ln(1/α)

]1/4 (13)

and N is large enough. In other words, with ds and (small enough) α fixed, the resolution of the
energy test in problem (P1) admits, for large N , the lower bound (13). Note that as N grows,
this bound goes to 0 as N−1/4, while the resolution of the basic test goes to 0 as N−1/2√ln(N)

(Theorem 3.1). We conclude that the basic test provably outperforms the energy test as N → ∞.
The goal of the simulation experiments we are about to report is to investigate this phenomenon
numerically.

Organization of experiments

In the simulations to follow, the basic test and the energy test were tuned to 0.99-reliability
(α = 0.01) and used on time horizons N ∈ {256,1024,4096}. For a fixed N , and every value of
the “resolution parameter” ρ from the equidistant grid on [0,4] with the grid step of 0.05, we
run 10 000 simulations as follows:

• we generate z ∈ S[w], and specify signal x as ρz/‖zN−1
0 ‖∞;

• we generate y according to (1) and run on the observations y the basic test and the energy
test.

For each test, the outcome of a series of 10 000 simulations is the empirical probability p of
rejecting the nuisance hypothesis H0 (which states that the signal underlying the observations is
identically zero). For ρ = 0, p is the (empirical) probability of false alarm (rejecting H0 when it
is true), and we want it to be small (about α = 0.01). For ρ > 0, p is the empirical probability
of successful detection of an actually present signal, and we want it to be close to 1 (about
1 − α = 0.99). Given that p ≤ α when ρ = 0, the performance of a test can be quantified as the
smallest value ρ∗ of ρ for which p is at least 1 − α (the less is ρ∗, the better).

We use 4-element collections w (i.e., ds = 4), and for every N and ρ run two 10 000-element
series of simulations differing in how we select w and z. In the first series (“random signals”), w
is selected at random, and z is a random combination of the corresponding harmonic oscillations.
In the second series (“bad signal”) we use w = {0,0,0,0}, and z is the algebraic polynomial of
degree 3 with the largest, among these polynomials, ratio of ‖zN1

0 ‖∞/‖zN−1
0 ‖2. In the latter case,

only the realisation of noise varied from one experiment to another.
The results of our experiments are presented in Table 2. They are in full accordance to what is

suggested by our theoretical analysis; for N = 256, both tests exhibit nearly the same empirical
performance. As N grows, the empirical performances of both tests improve, and the “perfor-
mance gap” (which, as expected, is in favor of the basic test) grows.
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Table 2. Basic test vs. Energy test, problem (P1) with ds = 4. p(B), p(E): empirical probabilities, taken over 10 000 trials, of detecting signal
using the basic test (B) and the energy test (E). ρ∗(·) is the smallest ρ for which p(·) ≥ 1 − α = 0.99

N = 256, random signals (ρ∗(B) ≈ 1.10, ρ∗(E) ≈ 1.35):

ρ

0.00 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55

p(B) 0.010 0.960 0.977 0.987 0.993 0.998 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
p(E) 0.011 0.710 0.779 0.842 0.887 0.933 0.956 0.974 0.987 0.994 0.997 0.999 1.000 1.000

N = 256, “bad” signal (ρ∗(B) ≈ 2.65, ρ∗(E) ≈ 2.75):

ρ

0.00 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10

p(B) 0.010 0.973 0.984 0.987 0.991 0.994 0.998 0.998 0.999 1.000 1.000 1.000 1.000 1.000
p(E) 0.011 0.941 0.956 0.971 0.978 0.984 0.990 0.993 0.995 0.997 0.998 0.998 1.000 1.000

N = 1024, random signals (ρ∗(B) ≈ 0.60, ρ∗(E) ≈ 0.90):

ρ

0.00 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10

p(B) 0.010 0.960 0.986 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
p(E) 0.010 0.303 0.421 0.559 0.686 0.795 0.886 0.938 0.974 0.992 0.997 0.999 1.000 1.000
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Table 2. Continued

N = 1024, “bad” signal (ρ∗(B) ≈ 1.40, ρ∗(E) ≈ 1.90):

ρ

0.00 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00

p(B) 0.011 0.960 0.980 0.990 0.997 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
p(E) 0.011 0.505 0.564 0.633 0.703 0.770 0.819 0.863 0.903 0.932 0.960 0.971 0.987 0.993 0.996 0.997

N = 4096, random signals (ρ∗(B) ≈ 0.30, ρ∗(E) ≈ 0.65):

ρ

0.00 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

p(B) 0.009 0.931 0.993 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
p(E) 0.009 0.084 0.165 0.291 0.472 0.667 0.823 0.930 0.980 0.997 1.000

N = 4096, “bad” signal (ρ∗(B) ≈ 0.75, ρ∗(E) ≈ 1.35):

ρ

0.00 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45

p(B) 0.010 0.975 0.994 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
p(E) 0.012 0.184 0.223 0.290 0.376 0.477 0.567 0.676 0.767 0.843 0.899 0.945 0.975 0.986 0.995 0.999 1.000
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6. Proofs

6.1. Preliminaries

Notation

In what follows, for a complex valued polynomial p(ζ ) = ∑m
k=0 pkζ

k , we denote∥∥p(·)∥∥∞ = max
ζ∈C,|ζ |=1

∣∣p(ζ )
∣∣

and denote by

|p|s = ∥∥[p0;p1; . . . ;pm]∥∥
s
, 1 ≤ s ≤ ∞,

the �s -norm of the vector of coefficients, so that∥∥p(·)∥∥2
2 := 1

2π

∮
|ζ |=1

∣∣p(ζ )
∣∣2|dζ | = |p|22.

The key fact underlying Theorems 3.1, 3.2 is the following proposition.

Proposition 6.1. Let d , N be positive integers and s ∈ Sd . Then

‖FNs‖∞ ≥ c(d)N1/2
∥∥sN−1

0

∥∥∞, (14)

where c(d) > 0 is a universal nonincreasing function of d . One can take

c(d) = O(1)/
(
d3 ln(2d)

)
(15)

with properly selected positive absolute constant O(1).

Proof. Let us fix s ∈ Sd ; we intend to prove that s obeys (14). Let u = {ω1, . . . ,ωd} be a sym-
metric mod 2π collection such that s ∈ S[u], and let

pu(ζ ) =
d∏

�=1

(
1 − exp{ıω�}ζ

)
,

so that pu(�)s ≡ 0. Further, let M be the index of the largest in magnitude of the reals
s0, s1, . . . , sN−1, so that

|sM | = ∥∥sN−1
0

∥∥∞. (16)

We can w.l.o.g. assume that M ≥ (N − 1)/2. Indeed, otherwise we could pass from s to the
“reversed” sequence s′ ∈ Sd : s′

t = sN−t−1, t ∈ Z, which would not affect the validity of our
target relation (14) and would convert M < (N − 1)/2 into M ′ = N − 1 − M ≥ (N − 1)/2.

10. We need the following technical lemma.
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Lemma 6.1. Let d be a positive integer, and let u = {υ1, . . . , υd} ∈ �d . For every integer m

satisfying

m ≥ m(d) := d Ceil

(
5d max

[
2,

1

2
ln(2d)

])
(17)

one can point out real polynomials q(ζ ) = ∑m
j=1 qj ζ

j and r(ζ ) = 1 +∑m−d
j=1 rj ζ

j such that

1 − q(ζ ) = pu(ζ )r(ζ ), (18)

and

|q|2 ≤ C1(d)/
√

m, where C1(d) = 3ed3/2
√

ln(2d). (19)

The proof of Lemma 6.1 is presented in the Appendix.
20. The following statement is immediate:

Lemma 6.2. Let m ≤ (N − 1)/2, and g ∈ CN be such that gi = 0 for i > m. Let h ∈ CN be
the discrete autoconvolution of g, that is, the vector with entries hk = ∑

0≤i,j≤m,i+j=k gigj ,
0 ≤ k ≤ 2m and with zero remaining N − 2m − 1 entries. Then

‖FNh‖1 = √
N‖g‖2

2.

Proof. We have

[FNh](μ) = N−1/2
∑

0≤t≤2m

[ ∑
0≤j,k≤m,j+k=t

gj gk

]
μt

= N−1/2
∑

0≤t≤2m

∑
0≤j,k≤m,j+k=t

(
gjμ

j
)(

gkμ
k
)

= N1/2

[
N−1/2

m∑
j=0

gjμ
j

]2

.

Invoking the Parseval identity, we conclude that

‖FNh‖1 = N1/2‖FNg‖2
2 = N1/2‖g‖2

2. �

30. Let

N > 60d2 ln(2d), (20)

and let

m = Floor

(
N − 1

4

)
. (21)
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Then (17) is satisfied, and, according to Lemma 6.1, there exists a polynomial q(ζ ) = ∑m
j=1 qj ζ

j

such that

1 − q(ζ ) = pu(ζ )r(ζ ), |q|2 ≤ C1(d)/
√

m,

with some polynomial r . Setting q+(ζ ) = q2(ζ ) = ∑2m
j=1 q+

j ζ j , we get

q+
k =

∑
1≤i,j≤m,i+j=k

qiqj ,

(
1 − q+(�)

)
s = (

1 + q(�)
)(

1 − q(�)
)
s = (

1 + q(�)
)
r(�)pu(�)s ≡ 0,

whence sM = ∑2m
i=1 sM−iq

+
i (note that M ≥ (N − 1)/2 ≥ 2m by (21)). Let now h ∈ RN be the

vector with coordinates

hi =
{

q+
M−i , i = M − 1, . . . ,M − 2m,

0, otherwise.

Note that by Lemma 6.2 and due to |q|2 ≤ C1(d)/
√

m one has

‖FNh‖1 ≤ N1/2|q|22 ≤ C2
1(d)

√
N/m.

We have

∥∥sN−1
0

∥∥∞ = |sM | =
∣∣∣∣∣

2m∑
i=1

q+
i sM−i

∣∣∣∣∣ = ∣∣〈h, sN−1
0

〉∣∣ = ∣∣〈FNh,FNs〉∣∣ ≤ ‖FNh‖1‖FNs‖∞,

where the last equality is given by the fact that FN is unitary, whence

‖FNs‖∞ ≥ ∥∥sN−1
0

∥∥∞/‖FNh‖1 ≥ m

C2
1(d)

√
N

∥∥sN−1
0

∥∥∞.

Invoking (21), (20), and (19), we see that for N satisfying (20) our target relation (14) indeed
holds true, provided that

c(d) ≤ O(1)
[
d3 ln(2d)

]−1 (22)

with properly selected positive absolute constant O(1).
40. It remains to verify (14) when N ≤ 60d2 ln(2d). Since FN is unitary, we have ‖sN−1

0 ‖∞ ≤
‖sN−1

0 ‖2 = ‖FNs‖2 ≤ ‖FNs‖∞
√

N , whence

‖FNs‖∞ ≥ N−1/2
∥∥sN−1

0

∥∥∞ ≥ N−1[N1/2
∥∥sN−1

0

∥∥∞
] ≥ 1

60d2 ln(2d)

[
N1/2

∥∥sN−1
0

∥∥∞
]
,

which completes the proof. �
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6.2. Proof of Theorem 3.1

10. Let us prove the result for the basic test, let it be denoted ϕ̂, as applied to the problem (P2);
note that (P1) is the particular case of (P2) corresponding to dn = 0.

We have to show that under the premise of the theorem ε0(ϕ̂;H0) ≤ α and ε1(ϕ̂;H1(ρ)) ≤ α.
The first bound is evident. Indeed, let �α = {ξ :‖FNξ‖∞ ≤ qN(α)}, so that Probξ∼N (0,IN ){ξ ∈
�α} ≥ 1 − α. Under the hypothesis H0, the set Z from (6) contains the true signal xN−1

0 , so
that the optimal value OptZ (y) in (5) is at most ‖FNξ‖∞. It follows that when ξ ∈ �α (which
happens with probability ≥ 1 − α) we have OptZ (y) ≤ qN(α), and the basic test will therefore
accept H0. We conclude that ε0(ϕ̂;H0) ≤ Prob{ξ /∈ �α} ≤ α.

20. Now let x ∈ H1(ρ), that is, x = s + u, where s ∈ S[w] for some w ∈ �ds , u ∈ S[w], and∥∥[x − z]N−1
0

∥∥∞ ≥ ρ ∀z ∈ S[w].

Let z ∈ S[w], and let s = x − z. Then s ∈ Sd∗ , d∗ = dn + ds , and ‖sN−1
0 ‖∞ ≥ ρ, whence, by

Proposition 6.1,

‖FNs‖∞ ≥ c(d∗)N1/2
∥∥sN−1

0

∥∥∞ ≥ c(d∗)N1/2ρ.

It follows that the optimal value OptZ (y) in (5) is at least c(d∗)N1/2ρ −‖FNξ‖∞. Recalling the
definition of qN(α), we conclude that

Prob
{
OptZ (y) > c(d∗)N1/2ρ − qN(α)

} ≥ 1 − α

as soon as

ρ >
2qN(α)

c(d∗)
√

N
, (23)

and the probability to reject H1(ρ) when the hypothesis is true is ≤ α. We see that for
the proper choice of the absolute constant O(1) under the premise of Theorem 3.1 one has
ε1(ϕ̂,H1(ρ)) ≤ α.

6.3. Proof of Theorem 3.2

10. We start with the following simple

Lemma 6.3. Let d and N be positive integers, let ε ≥ 0, let u = {υ1, . . . , υd} be a symmetric
mod 2π d-element collection of reals. Whenever w ∈ SN,ε[u], there exists a decomposition w =
s + z such that s ∈ S[u] and ∥∥zN−1

0

∥∥∞ ≤ Ndε. (24)

Proof. Let pu(ζ ) = ∏d
�=1(1 − exp{ıυ�}ζ ) and r = pu(�)w, so that ‖rN−1

0 ‖∞ ≤ ε due to w ∈
SN,ε[u]. Let, further, δ be the discrete convolution unit (i.e., δ ∈ S is given by δ0 = 1, δt = 0,
t = 0). For � = 1, . . . , d , let γ (�) be a two-sided complex-valued sequence obtained from the
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sequence {exp{ıυ�t}}t∈Z by replacing the terms with negative indexes with zeros, and let r+ be
obtained by similar operation from the sequence r . Let us set

χ = γ (1) ∗ γ (2) ∗ · · · ∗ γ (d) ∗ r+,

where ∗ stands for discrete time convolution. It is immediately seen that χ is a real-valued two-
sided sequence which vanishes for t < 0 and satisfies the finite-difference equation pu(�)χ = r+
(due to the evident relation (1 − exp{ıυk}�)γ (k) = δ). It follows that (pu(�)(w − χ))t = 0
for t = 0,1, . . . , which (along with the fact that all the roots of pu(ζ ) are nonzero) implies
that the sequence s = w − χ can be modified on the domain t < 0 so that pu(�)s ≡ 0. Then
z = w − s coincides with χ on the domain t ≥ 0, and w = s + z with s ∈ S[u] and zt = χt ,
t = 0,1, . . . . It remains to note that for two-sided complex-valued sequences μ,ν starting at
t = 0 we clearly have ‖[μ ∗ ν]N−1

0 ‖∞ ≤ ‖μN−1
0 ‖1‖νN−1

0 ‖∞. Applying this rule recursively and
taking into account that ‖[γ (�)]N−1

0 ‖1 = N , we get the recurrence∥∥[γ (1) ∗ · · · ∗ γ (�+1) ∗ r+]N−1
0

∥∥∞ ≤ N
∥∥[γ (1) ∗ · · · ∗ γ (�) ∗ r+]N−1

0

∥∥∞, � = 0,1, . . . , d − 1,

whence ‖χN−1
0 ‖∞ ≤ Ndε. Since χt = zt for t = 0,1, . . . , (24) follows. �

20. We are ready to prove Theorem 3.2. It suffices to consider the case of problem (N2) (prob-
lem (N1) is the particular case of (N2) corresponding to εs = 0). The fact that for the basic test
ϕ̂ one has ε0(̂φ̄) ≤ α can be verified exactly as in the case of Theorem 3.1. Let us prove that
under the premise of Theorem 3.2 we have ε1(ϕ̂) ≤ α as well. To this end let the signal x un-
derlying (1) belong to H1(ρ), so that x = r + u for some u ∈ SN,εn[w] and some r ∈ SN,εn[w]
with dn-element collection w and ds -element collection w, both symmetric mod 2π. Let also
z ∈ SN,εn[w]. Since x ∈ H1(ρ), we have∥∥[x − z]N−1

0

∥∥∞ ≥ ρ. (25)

Applying Lemma 6.3 to r , u, z, we get the decompositions

x = s + s′ + v′ : s ∈ S[w], s′ ∈ S[w],∥∥[v′]N−1
0

∥∥∞ ≤ Ndnεn + Nds εs,

z = s′′ + v′′ : s′′ ∈ S[w],∥∥[v′′]N−1
0

∥∥∞ ≤ Ndnεn,

⇒ w := x − z = s̄ + v̄, (26)

s̄ = s + s′ − s′′ ∈ S[w ∪ w],
v̄ = v′ − v′′,

∥∥v̄N−1
0

∥∥∞ ≤ σ := 2Ndnεn + Nds εs .

Now, (25) implies that ‖wN−1
0 ‖ ≥ ρ, whence, by (26),∥∥s̄N−1

0

∥∥∞ ≥ ρ̂ := ρ − σ.
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Assuming that ρ̂ > 0, noting that s̄ ∈ S[w̃] for (d∗ = dn + ds)-element symmetric mod 2π col-
lection w̃ and invoking Proposition 6.1, we get

‖FN s̄‖∞ ≥ c(d∗)N1/2ρ̂.

Taking into account that ‖FNv̄‖∞ ≤ ‖v̄N−1
0 ‖2 ≤ N1/2‖v̄N−1

0 ‖∞ and (26), we get also ‖FNv̄‖∞ ≤
N1/2σ . Combining these observations, we get∥∥FN [x − z]∥∥∞ = ‖FN s̄ + FNv̄‖∞ ≥ ‖FN s̄‖∞ − ‖FNv̄‖∞

≥ c(d∗)N1/2ρ̄ − N1/2σ = c(d∗)N1/2[ρ − σ ] − N1/2σ

= c(d∗)N1/2[ρ − [
1 + c−1∗ (d∗)

]
σ
]︸ ︷︷ ︸

ϑ

.

Since z ∈ SN,εn[w] is arbitrary, we conclude that the optimal value OptZ (y) in (5) is at least
ϑ − ‖FNξ‖∞, so that

Prob
{
OptZ (y) > ϑ − qN(α)

} ≥ 1 − α. (27)

It remains to note that with properly selected positive absolute constants O(1)’s in (7) and (8),
these restrictions on ρ, εn, εs ensure that ϑ > 2qN(α) (see (26), (15)), and therefore (27) implies
the desired bound ε1(ϕ̂) ≤ α.

6.4. Proof of Proposition 4.1

Here we prove the lower resolution bound for problem (P2). The result of the proposition for
the setting (P1) may be obtained by an immediate modification of the proof below for dn = 0,
pw(·) = 1, and z ≡ 0. Below we use notation κi for positive absolute constants.

10. Note that for every integer ds > 0 there exists a real polynomial qds on [0,1] of de-

gree ds − 1 such that
∫ 1

0 q2
ds

(r)dr = 1 and max0≤r≤1 |qds (r)| = qds (1) = ds .12 Let q = {qt =
N−1/2qds (t/N)}+∞

t=−∞, λ > 0, and consider the two-sided sequence

x̄ = {
x̄t = θNλ(−1)t qt

}+∞
t=−∞,

where θN > 0 is chosen in such a way that∥∥x̄N−1
0

∥∥
2 = λ.

12Indeed, let a real polynomial p of degree κ satisfy p(1) = 1 (and thus
∑κ

i=0 pi = 1). Then the vector of coefficients
p∗ of the polynomial p∗

κ of the minimal L2(0,1)-norm is the optimal solution to the convex quadratic optimization
problem

min

{∫ 1

0

(
κ∑

i=0

pi t
i

)2

dt =
κ∑

i,j=0

pipj

i + j + 1
, subject to

κ∑
i=0

pi = 1

}
.

The latter problem can be solved explicitly and its optimal value is (κ + 1)−2.
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Note that θN given by this requirement does not depend on λ and that θN → 1 as N → ∞ due to∫ 1
0 q2

ds
(r)dr = 1. We have

|x̄N−1|/
∥∥x̄N−1

0

∥∥
2 → |qds (1)|√∫ 1

0 q2
ds

(r)dr

= ds as N → ∞. (28)

The derivative q ′
ds

(r) of the polynomial qds satisfies

max
0≤r≤1

∣∣q ′
ds

(r)
∣∣ ≤ 2(ds − 1)2 max

0≤r≤1

∣∣qds (r)
∣∣ ≤ 2d3

s

(the first inequality in this chain follows from Markov brothers’ inequality). We conclude that
for properly selected κ1 ≥ 1 and all N ≥ κ1d

2
s (dn + 1) it holds qds (t/N) ≥ ds/2 whenever N −

dn − 1 ≤ t ≤ N − 1. Taking into account that θN → 1 as N → ∞, it follows that for properly
selected c0(ds, dn) ≥ κ1d

2
s (dn + 1) and all N ≥ c0(ds, dn) it holds

N − dn − 1 ≤ t ≤ N − 1 ⇒ |x̄t | = (−1)t x̄t ,
(29)

min
N−dn−1≤t≤N−1

|x̄t | ≥ |x̄N−1|/2 ≥ κ2θNλN−1/2ds ≥ κ3λN−1/2ds.

Beside this, for every ds and N , we clearly have x̄ ∈ S[w] with w = {
ds︷ ︸︸ ︷

π, . . . ,π} (indeed, for all
t ∈ Z, ((1 + �)ds x̄)t = (−1)t θNλ((1 − �)ds q)t = 0).

20. Let w = {
dn︷ ︸︸ ︷

0, . . . ,0}, with pw(ζ ) = (1 − ζ )dn . Assuming N ≥ c0(ds, dn), we have∣∣(pw(�)x̄
)
N−1

∣∣ ≥ 2dn min
N−dn−1≤t≤N−1

|x̄t | ≥ 2dnκ3λN−1/2ds,

so that for every z ∈ S[w] we have∣∣(pw(�)[x̄ − z])
N−1

∣∣ ≥ 2dnκ3λN−1/2ds.

Since N − 1 ≥ dn, when taking into account that |pw|1 = 2dn we get for any z ∈ S[w]

2dn
∥∥[x̄ − z]N−1

0

∥∥∞ = |pw|1
∥∥[x̄ − z]N−1

0

∥∥∞ ≥ ∣∣(pw(�)[x̄ − z])
N−1

∣∣ ≥ 2dnκ3λN−1/2ds,

whence

∀z ∈ S[ŵ] :
∥∥[x̄ − z]N−1

0

∥∥∞ ≥ κ3λN−1/2ds. (30)

Now let us set λ = κ4
√

ln(1/α), with the absolute constant κ4 selected to ensure that λ <

2QN (α). The latter relation, due to λ = ‖xN−1
0 ‖2, ensures that the hypotheses “observation (1)

comes from x ≡ 0” and “observation (1) comes from x = x̄” cannot be distinguished (1 − α)-
reliably. Thus, (30) implies the lower resolution bound κ3κ4dsN

−1/2√ln(1/α).
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6.5. Proof of Proposition 4.2

In the reasoning below, ci denote positive quantities depending solely on d = dn, and κi denote
positive absolute constants. We start with proving the claim (ii).

10. Let us set

f̄t = sin

(
π

8
+ π

4

t

N − 1

)
, t ∈ Z. (31)

Assuming c0 > 40d , let us fix an integer τ such that

d − 1 ≤ τ ≤ (N − 1) − 20d (32)

and set

γ = γτ,N = εf̄ −1
τ , f = γ f̄ . (33)

By the definition of f we have

0 ≤ ft ≤ ε for 0 ≤ t ≤ τ, (34)

and

ε + κ0N
−1(t − τ)ε ≤ ft ≤ ε + κ1N

−1(t − τ)ε for τ ≤ t ≤ N − 1. (35)

Let p(ζ ) = (1 − ζ )d = pw(ζ ). We clearly can find a sequence x = {xt = a cos(π
4 t + b)}∞t=−∞

such that p(�)x = f , and, due to ds ≥ 2, we have x ∈ Sds . Further, let z̄ ∈ S satisfy z̄t = xt for
0 ≤ t ≤ τ , and

(
p(�)z̄

)
t
=

⎧⎨⎩
ft , 0 ≤ t ≤ τ,

0, t < 0,

ε, t ≥ τ.

Note that z̄ is well defined due to p(�)x = f , and, taking into account (33)–(35), we conclude
that z̄ ∈ Sε[w].

20. By the above construction, the sequence δ = x − z̄ is such that (p(�)δ)t = 0 for 0 ≤ t ≤ τ ,
and κ0(t − τ)N−1ε ≤ (p(�)δ)t ≤ κ1(t − τ)N−1ε when τ < t < N , see (35). Besides, δt = 0
when 0 ≤ t ≤ τ . By evident reasons, these two observations combine with the first inequality in
(32) to imply that ∥∥δN−1

0

∥∥∞ ≤ c4(N − τ)d+1N−1ε (36)

for some c4 > 0 depending solely on d . We conclude that∥∥δN−1
0

∥∥
2 ≤ ∥∥δN−1

0

∥∥∞
√

N − τ ≤ c4(N − τ)d+3/2N−1ε.

Now note that the hypotheses “observation (1) comes from x = z̄” and “observation (1)
comes from x = z̄ + δ” cannot be distinguished (1 − α)-reliably unless ‖δN−1

0 ‖2 ≥ 2QN (α) >√
κ3 ln(1/α). Equipped with this κ3 and with c4 participating in (36), let us set

ν = Floor
((

κ3 ln(1/α)N2c−2
4 ε−2)1/(2d+3))

. (37)
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It is immediately seen that with properly chosen positive c1, c3 depending solely on d , and with
ε satisfying (10), we have 20d < ν < N − d , so that setting

τ = N − ν,

we ensure (32). From now on, we assume that c1, c3 are as needed in the latter conclusion. With
the just defined τ , we have ‖δN−1

0 ‖2
2 ≤ κ3 ln(1/α), meaning that x and z̄ cannot be distinguished

(1 − α)-reliably.
30. To prove the claim (ii) it now suffices to show that a properly chosen c5 > 0, depending

solely on d ,

∀z ∈ Sε[w] :
∥∥[x − z]N−1

0

∥∥∞ ≥ c5(N − τ)d+1N−1ε = c5ν
d+1N−1ε. (38)

Indeed, given z ∈ Sε , we have

τ ≤ t < N ⇒ (
p(�)[x − z])

t
= (

p(�)x
)
t
− (

p(�)z
)
t
≥ ft − ε ≥ κ0N

−1ε(t − τ),

with concluding inequality given by (35). Setting θ = �(N − 1 − τ)/2�, the sequence

st = (x − z)t−τ , t ∈ Z

satisfies (
p(�)s

)
t
≥ κ2θN−1ε, θ ≤ t ≤ 2θ, (39)

and, by the right inequality in (32), θ ≥ 10d . Setting k = �(θ − d)/d� ≥ 2, consider the polyno-
mial

q(ζ ) = (
1 − ζ k

)d = (1 − ζ )d
(
1 + ζ + · · · + ζ k−1)d︸ ︷︷ ︸

v(ζ )

= (1 − ζ )d
d(k−1)∑
j=0

vj ζ
j ;

where, clearly,

vj ≥ 0,
∑
j

vj = kd . (40)

Let now r = q(�)s. Taking into account that |q(·)|1 = 2d , we have

r2θ ≤ 2d
∥∥s2θ

θ

∥∥∞ ≤ 2d
∥∥[x − z]N−1

0

∥∥∞, (41)

since, by construction, ‖[x − z]N−1
0 ‖∞ ≥ ‖s2θ

θ ‖∞. On the other hand, r = v(�)u, u = p(�)s, so
that

r2θ =
d(k−1)∑
j=0

vju2θ−j .
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By (39), we have u2θ−j ≥ κ2θN−1ε for 0 ≤ j ≤ d(k − 1) (note that d(k − 1) < θ ), and by (40),

r2θ ≥ κ2θN−1ε
∑
j

vj = kdκ2θN−1ε.

Combining the latter inequality with (41) we come to ‖[x̄ − z]N−1
0 ‖∞ ≥ κ22−dkdθN−1ε. Re-

calling that by construction k > κ10(N − τ)/d , θ ≥ κ11(N − τ), we arrive at (38). (ii) is proved.
40. It remains to prove (i). Note that when ε < c12N

−1/2√ln(1/α), the conclusion in (i) is
readily given by a straightforward modification of the reasoning in Section 6.4. Note that for
the time being the only restriction on the lower bound c0 on N , see (9), was that c0 ≥ 40d ,
see the beginning of item 10. Now let us also assume that N is large enough to ensure that
c12N

−1/2 ≥ c3N
−d−1/2 (which still allows to choose c0 as a function of d = dn only). With the

resulting c0, the range of values of ε for which we have justified the conclusion in (i) covers the
corresponding range of ε allowed by the premise of (i).

6.6. Proof of Proposition 4.3

The proof of the statement (i) is given by a straightforward modification of the reasoning in

Section 6.4. Let us prove (ii). Let w = {
ds︷ ︸︸ ︷

π, . . . ,π}, and 0 ≤ τ < N − dn − 1, so that SN,εs [w]
contains the sequence x̄ = {x̄t = c1εs(−1)t (t − τ)

ds+ }∞t=−∞ with 0 < c1 = c1(ds) small enough.
Then for w = {0, . . . ,0} (dn zeros), with pw(ζ ) = (1 − ζ )dn , we have for any z ∈ SN,εn[w]:∣∣(pw(�)[x̄ − z])

N−1

∣∣ ≥ ∣∣(pw(�)x̄
)
N−1

∣∣− ∣∣(pw(�)z
)
N−1

∣∣ ≥ 2dn |x̄N−d−1| − εn

≥ c2εs(N − τ)ds − εn,

where c2 > 0 depends only on ds and dn. Therefore, when denoting ν = N − τ , for every z ∈
SN,εn[w] we have

2dn
∥∥[x̄ − z]N−1

0

∥∥∞ = |pw|1
∥∥[x̄ − z]N−1

0

∥∥∞ ≥ ∣∣(pw(�)[x̄ − z])
N−1

∣∣ ≥ c2εsν
ds − εn,

whence,

∀z ∈ SN,εn[w] :
∥∥[x̄ − z]N−1

0

∥∥∞ ≥ 2−dn
(
c2εsν

ds − εn

)
. (42)

It is immediately seen that with properly selected positive ci = ci(dn, ds), i = 3,4,5,6, assuming

εsN
ds+1/2 ≥ c3

√
ln(1/α) and εs ≤ c4

√
ln(1/α) (43)

and selecting τ according to

ν = N − τ = Floor
(
c5
[
ε−2
s ln(1/α)

]1/(2ds+1))
,
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we ensure that 0 ≤ τ < N − dn − 1 and

(a) τ < N − dn − 1,

(b)
∥∥x̄N−1

0

∥∥
2 < 2QN (α),

(c) 2−dn
(
c2εsν

ds − εn

) ≥ ρ̄ := c6ε
1/(2ds+1)
s

(
ln(1/α)

)ds/(2ds+1)

(when verifying (c), take into account that 0 ≤ εn ≤ εs ). By (b), the hypotheses “observation (1)
comes from x ≡ 0” and “observation (1) comes from x = x̄” cannot be distinguished (1 − α)-
reliably, while (42), the already established inclusion x̄ ∈ SN,εs [w] and (c) imply that x̄ obeys
the hypothesis H1(ρ̄) associated with the problem (N2). The bottom line is that in the case of
(43), ρ̄ defined in (c) is a lower bound on ρ∗(α).

Appendix: Proof of Lemma 6.1

10. Let λ ∈ C, 0 < |λ| ≤ 1, let ε ∈ (0,1), and let n ≥ 1 be an integer. Setting δ = 1 − ε, consider
the polynomials

fk(ζ ) = fk(ζ ;λ, ε) := (1 − λζ )

k∑
�=0

(δλζ )� = 1 − λζ

1 − δλζ

[
1 − [δλζ ]k+1], k = 0,1, . . .

(44)

pn(ζ ) = pn(ζ ;λ, ε) := 1

n

n−1∑
k=0

fk(ζ ) = (1 − λζ )

n−1∑
�=0

[δλζ ]�[1 − �/n].

Observe that

fk(0) = 1, fk(1/λ) = 0,

whence

pn(0) = 1, pn(1/λ) = 0. (45)

1.10. Let us bound from above the uniform norm ‖pn(·)‖∞ of pn on the unit circle. We have
pn(ζ ) = rn(λζ ), where

rn(ζ ) = 1

n
(1 − ζ )

n−1∑
k=0

1 − (δζ )k+1

1 − δζ
= (1 − ζ )

n − δζ ((1 − [δζ ]n)/(1 − δζ ))

n(1 − δζ )

= 1 − ζ

1 − δζ︸ ︷︷ ︸
gn(ζ )

n(1 − δζ ) − δζ + [δζ ]n+1

n(1 − δζ )︸ ︷︷ ︸
hn(ζ )

.

Since |λ| ≤ 1, we have ‖pn(·)‖∞ ≤ ‖gn(·)‖∞‖hn(·)‖∞. When |ζ | = 1, we have∣∣gn(ζ )
∣∣ = 1

δ

|1 − ζ |
|δ−1 − ζ | ≤ 1

δ
. (46)



1162 A. Juditsky and A. Nemirovski

If we set ζ = cos(φ) + ı sin(φ), and ε = θ/n and δ = 1 − ε = 1 − θ/n with some θ ∈ (0, n), we
obtain∣∣hn(ζ )

∣∣ ≤ |n(1 − δζ ) − δζ | + δn+1

n|1 − δλ|

=
√

[n − (n + 1)δ cos(φ)]2 + (n + 1)2δ2 sin2(φ) + δn+1

n

√
[1 − δ cos(φ)]2 + δ2 sin2(φ)

=
√

n2 + (n + 1)2δ2 cos2(φ) − 2n(n + 1)δ cos(φ) + (n + 1)2δ2 sin2(φ) + δn+1

n

√
1 + δ2 cos2(φ) − 2δ cos(φ) + δ2 sin2(φ)

=
√

n2 + (n + 1)2 − 2n(n + 1)δ cos(φ) + δn+1

n
√

1 + δ2 − 2δ cos(φ)

=
√[n − (n + 1)δ)]2 + 2n(n + 1)δ[1 − cos(φ)] + δn+1

n
√[1 − δ]2 + 2δ[1 − cos(φ)]

=
√[θ((n + 1)/n) − 1]2 + 2(n + 1)(n − θ)[1 − cos(φ)] + δn+1

n
√

θ2/n2 + 2n−1(n − θ)[1 − cos(φ)]

=
√[θ((n + 1)/n) − 1]2 + 2(n + 1)(n − θ)[1 − cos(φ)] + δn+1√

θ2 + 2n(n − θ)[1 − cos(φ)] =
√

α + βt + γ√
μ + νt

,

where

α = [
θ
(
(n + 1)/n

)− 1
]2

, β = 2(n + 1)(n − θ), γ = δn+1,
(47)

μ = θ2, ν = 2n(n − θ), t = 1 − cos(φ).

It is immediately seen that with positive α,β, γ,μ and ν such that

μ/ν > α/β, (48)

the maximum of the function
√

α+βt+γ√
μ+νt

over t such that α + βt ≥ 0 is achieved when α + βt =√
βμ−αν

γ ν
and is equal to

√
β
ν

√
1 + γ 2ν

βμ−αν
. Now, assume that

1 < θ < n. (49)

Then n+1
n

θ2 > [θ n+1
n

− 1]2, so that the parameters α, . . . , ν defined in (47) satisfy (48). We
conclude that

∥∥hn(·)
∥∥∞ ≤

√
n + 1

n

√
1 + [1 − θ/n]2(n+1)

((n + 1)/n)θ2 − [θ((n + 1)/n) − 1]2
. (50)
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Note that

n + 1

n
θ2 −

[
θ
n + 1

n
− 1

]2

= 2θ
n + 1

n
− θ2 n + 1

n2
− 1 ≥ 1

when θ satisfies

2n

n + 1
≤ θ < n, (51)

and (50) implies in this case that

∥∥hn(·)
∥∥∞ ≤

√
n + 1

n

√
1 + [1 − θ/n]2(n+1) ≤ exp

{
1

2n
+ 1

2
e−2θ

}
.

The latter bound combines with (46) to imply that in the case of (51) (recall that 1−δ = ε = θ/n)
we get for all |λ| ≤ 1:

max
|z|≤1

∣∣pn(z;λ, ε)
∣∣ ≤ 1

1 − θ/n
exp

{
1

2n
+ 1

2
e−2θ

}
(52)

≤ exp

{
θ

n − θ
+ 1

2n
+ 1

2
e−2θ

}
.

1.20. Now let us bound from above ‖1 − pn(·)‖2. We have

pn(ζ ) = 1 +
n−1∑
�=1

(
δ�

[
1 − �

n

]
− δ�−1

[
1 − � − 1

n

])
[λζ ]� − 1

n
δn−1[λζ ]n

= 1 +
n−1∑
�=1

δ�−1
(

[1 − ε]
[

1 − �

n

]
−

[
1 − � − 1

n

])
[λζ ]� − 1

n
δn−1[λζ ]n

= 1 −
(

n−1∑
�=1

δ�−1
[
ε

[
1 − �

n

]
+ 1

n

]
[λζ ]� + 1

n
δn−1[λζ ]n

)
.

Taking into account that |λ| ≤ 1, we conclude that

∥∥1 − pn(·)
∥∥

2 ≤
∥∥∥∥∥

n−1∑
�=1

(1 − ε)�−1ε

[
1 − �

n

]
[λζ ]�

∥∥∥∥∥
2

+ 1

n

∥∥∥∥∥
n∑

�=1

(1 − ε)�−1[λζ ]�
∥∥∥∥∥

2

≤
√√√√ n∑

�=1

ε2(1 − ε)2(�−1) +√
1/n (53)

≤
√

ε2

1 − (1 − ε)2
+√

1/n ≤ √
ε +

√
1

n
≤ 2

√
max

[
ε,

1

n

]
.
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20. Let n = �m/d� and λ� = exp{−ıυ�}, 1 ≤ � ≤ d , where m, d and υ1, . . . , υd are as de-
scribed in the premise of the lemma. Let us set

θ = max

[
2,

1

2
ln(2d)

]
≤ 3 ln(2d), ε = θ

n
,

q(ζ ) = 1 − pn(ζ ;λ1, ε) · pn(ζ ;λ2, ε) · . . . · pn(ζ ;λd, ε).

2.10. Observe that by (17) we have

n ≥ n(d) := Ceil(5dθ) = Ceil

(
5d max

[
2,

1

2
ln(2d)

])
. (54)

Our choice of θ and n ensures (51), so that 0 < ε < 1, and by (52) we also have

max
|z|≤1

∣∣pn(z;λ�, ε)
∣∣ ≤ exp

{
θ

n − θ
+ 1

2n
+ 1

2
e−2θ

}
≤ e1/d , (55)

where the concluding inequality is readily given by the choice of θ and by (54). Recall that by
(44), pn(ζ ;λ�, ε) is divisible by (1 − λ�ζ ); when setting

r�(ζ ) = pn(ζ ;λ�, ε)

1 − λ�ζ
=

n−1∑
�=0

[
(1 − ε)λ�ζ

]�[1 − �/n],

and r(ζ ) = ∏d
�=1 r�(ζ ), we clearly have r(0) = 1, deg r ≤ d(n − 1) ≤ m − d , and

1 − q(ζ ) = pu(ζ )

d∏
�=1

r�(ζ ) = pu(ζ )r(ζ ),

as required in (18) (note that q is a real polynomial due to u ∈ �d ).
2.20. By (55) we have ‖pn(·; ε,λk)‖∞ ≤ e1/d , while (53) says that∥∥pn(·;λk, ε) − 1

∥∥
2 ≤ 3

√
ln(2d)/n.

We have

1 −
�+1∏
k=1

pn(·;λk, ε) =
[

1 −
�∏

k=1

pn(·;λk, ε)

]
pn(·;λ�+1, ε) + [

1 − pn(·;λ�+1, ε)
]
.

When denoting α� = ‖1 − ∏�
k=1 pn(·;λk, ε)‖2 for � = 1,2, . . . , d and setting α0 = 0, we get

α�+1 ≤ α�

∥∥pn(·;λ�+1, ε)
∥∥∞ + ∥∥pn(·;λ�+1, ε) − 1

∥∥
2 ≤ α�e1/d + 3

√
ln(2d)/n, 0 ≤ � < d.
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It follows that α� ≤ 3�

√
ln(2d)

n
e�/d when � ≤ d , which implies

∥∥q(·)∥∥2 ≤ 3ed
√

ln(2d)/n ≤ 3ed3/2

√
ln(2d)

m
,

and (19) follows.
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