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LetA = \/1177 (XTX — pl,,) where X is a p x n matrix, consisting of independent and identically distributed
(i.i.d.) real random variables X;; with mean zero and variance one. When p/n — 00, under fourth moment
conditions a central limit theorem (CLT) for linear spectral statistics (LSS) of A defined by the eigenvalues
is established. We also explore its applications in testing whether a population covariance matrix is an

identity matrix.
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1. Introduction

The last few decades have seen explosive growth in data analysis, due to the rapid development of
modern information technology. We are now in a setting where many very important data analysis
problems are high-dimensional. In many scientific areas, the data dimension can even be much
larger than the sample size. For example, in micro-array expression, the number of genes can be
tens of thousands or hundreds of thousands while there are only hundreds of samples. Such kind
of data also arises in genetic, proteomic, functional magnetic resonance imaging studies and so
on (see Chen et al. [11], Donoho [13], Fan and Fan [14]).

The main purpose of this paper is to establish a central limit theorem (CLT) of linear function-
als of eigenvalues of the sample covariance matrix when the dimension p is much larger than
the sample size n. Consider the sample covariance matrix S = %XXT, where X = (X;;)pxn and
Xij,i=1,...,p,j=1,...,narei.i.d. real random variables with mean zero and variance one.
As we know, linear functionals of eigenvalues of S are closely related to its empirical spectral
distribution (ESD) function FS(x). Here for any n x n Hermitian matrix M with real eigenvalues
Al, ..., Ay, the empirical spectral distribution of M is defined by
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where 1(-) is the indicator function. However, it is inappropriate to investigate FS(x) when
p/n — oo since S has (p — n) zero eigenvalues and hence FS(x) converges to a degenerate
distribution with probability one. Note that the eigenvalues of S are the same as those of %XTX

except (p — n) zero eigenvalues. Thus, instead, we turn to the eigenvalues of %XTX and re-

normalize it as
1
A= /£<—XTX—In>, (1.1)
n\p

where I, is the identity matrix of order n.
The first breakthrough regarding the ESD of A was made in Bai et al. [7]. They proved that
with probability one

FA(x) — F(x),
which is the so-called semicircle law with the density

1
_ ) H
F/(x)z{znv4 x“, if |x] <2,

0, if |x| > 2.

(1.2)

In random matrix theory, F(x) is referred to as the limiting spectral distribution (LSD) of A.
For such matrices, Chen and Pan [10] proved that the largest eigenvalue converges to the right
endpoint of the support of F (x) with probability one. When X1 ~ N (0, 1), Karoui [20] reported
that the largest eigenvalue of XX after properly centering and scaling converges in distribution
to the Tracy—Widom law, and Birke and Dette [9] established central limit theorems for the
quadratic function of the eigenvalues of A. Recently, Pan and Gao [24] further derived the LSD
of a general form of (1.1), which is determined by its Stieltjes transform. Here, the Stieltjes
transform for any distribution function G is given by

1
mg(z)=/EdG(x), 3(2) > 0,

where J(z) represents the imaginary part of z.

Gaussian fluctuations in random matrices are investigated by different authors, starting with
Costin and Lebowitz [12]. Johansson [18] considered an extended random ensembles whose
entries follow a specific class of densities and established a CLT of the linear spectral statistics
(LSS). Recently, a CLT for LSS of sample covariance matrices is studied by Bai and Silverstein
[5] and of Wigner matrices is studied by Bai and Yao [6].

We introduce some notation before stating our results. Denote the Stieltjes transform of the
semicircle law F by m(z). J(z) is used to denote the imaginary part of a complex number z.
For any given square matrix B, let tr B and B denote the trace and the complex conjugate matrix

of B, respectively. The norm ||B|| represents the spectral norm of B, that is, ||B|| = \/Al(BE)

o . . o . d .
where A1 (BB) means the maximum eigenvalue of BB. The notation —> means ‘“convergence in
distribution to”. Let 4 denote any open region on the real plane including [—2, 2], which is the
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support of F'(x), and M be the set of functions which are analytic on 4. For any f € M, define

A +o00 A n 0 1_m2
Gu(f)=n f(x)d(F (x)—F(x))—%¢l f(—m—m )Xn(m) s dm, (1.3)
—0 m|=p
where
_ JR2 _
Xyomy 2 T5F 54 A A:m—\/g(umz),

(1.4)
2 n ) m3 m? noy
B=m"—1- —m(1+2m), C=— +vg—2)— [—m",
p n \1—m?2 p

v =EX ‘1‘1 and v/ B2 — 4 AC is a complex number whose imaginary part has the same sign as
that of B. The integral’s contour is taken as [m| = p with p < 1.

Let {T}} be the family of Chebyshev polynomials, which is defined as To(x) = 1, T1(x) = x
and Ty41(x) = 2xTi(x) — Tr—1(x). To give an alternative way of calculating the asymptotic
covariance of X (f) in Theorem 1.1 below, for any f € M and any integer k > 0, we define

b1

1 .
Wi (f) & > f(2cos0)e*? do
TJ-n

1 [ 1! 1
= — (2cosf)coskb dd = —/ 2x) Ty (x) ———dx.
2n ﬂ'tf TJ-1 ! V1 —x2

The main result is formulated in the following.

Theorem 1.1. Suppose that

(@) X = (Xij)pxn where {X;;:i=1,2,...,p; j=1,2,...,n} are i.i.d. real random vari-
ables with EX 11 =0, EX%l =land vy = EX?] < 0.
(1) n/p—>0asn— oo.

Then, for any f1, ..., fx € M, the finite-dimensional random vector (G,(f1), ..., G,(fx)) con-
verges weakly to a Gaussian vector (Y (f1),..., Y (fx)) with mean function EY(f) =0 and
covariance function

cov(Y(f1). Y(f2) = (va = HWI(DWI(2) +2 ) kW(f) Wi(f2) (1.5)
k=1
1 2 2
= 4—nz/_2 /_2 Fi) £ H (x, y)dx dy, (1.6)

where

4—xy+/E— D@2
H(x,y) = (v4 — 34— x2,/4 — y2 421 < >
(5,3 = (4 = HVA =324 =32 4 2log

—xy = /@)@y
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Remark 1.1. Note that &, (m) in (1.3) and X, (m) & BV B-4AC ‘5‘2% are the two roots of the
equation Ax% 4+ Bx + C = 0. Since n/p — 0, an easy calculation shows X, (m) = o(1) and

X, (m) = 1—m” _m’”z + o(1). Hence in practice, one may implement the mean correction in (1.3) by
taking
[|-B++B2—4AC| |-B—-+B?—-4AC
X, (m) = min oV , oA ,

and m = pe'? with € [-27,2n]and 0 < p < 1.

The mean correction term, the last term in (1.3), can be simplified when n3 /p = 0(1). Indeed,
if n3/p =0(1), we have 4AC = o(1), B=m? — 1. By (1.4),

D) — 1 —B+VBE—4AC _ —2nC
S 2A B+ VB2 —4AC

m3 m? o) 4+ nd m* +o(l)
= ——F= — V4 — - o .
T—m2\1—m2z ™ p1—m?

Hence, by using the same calculation as that in Section 5.1 of Bai and Yao [6], we have

n 1 —m?

-1
- lml:pf(—m—m )X, (m) —

! £( -1 m’ 2t [ ] dm 4 o)
=—— —-m—m~)m — vy — —m |dm+o
27 Jimi=p 1—m2 * p

- Ye %) — 1 l 2x)| 2 3)x2 > L
—— @+ fem) -2 [ 5 x)[ (vs =3 —(v4—5>]ﬁ x (17)
- lﬁfl fen 3,
Ty pJa 1 —x2

3
=- l(f(2) + f(=2)) - 1‘Ifo(f) + (g = 3)W2(f) | — n—%(f) +o(1).
4 2 p

dm

Define

+00

3
FE)A(FAR) — F(x)) — \/g%(f)- (1.8)

Under the condition n3/p = O(1), we then give a simple and explicit expression of the mean
correction term of (1.3) in the following corollary.

Qn(f>én/

—00

Corollary 1.1. Suppose that
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(@) X = (Xij)pxn where {X;;:i=1,2,...,p; j=1,2,...,n} are i.i.d. real random vari-
ables with EX11 =0, EX%l =land vy = EX?] < 0.
(b2) n*/p=0(1) as n — oo.

Then, for any fi, ..., fi € M, the finite-dimensional random vector (Q,(f1), ..., On(fx)) con-
verges weakly to a Gaussian vector (X (f1), ..., X (fx)) with mean function

EX(f)=3(f@ + f(=2) = 3%0(f) + (va — 3)¥2(f) (1.9)

and covariance function cov(X (f), X (g)) being the same as that given in (1.5) and (1.6).

Remark 1.2. The result of Bai ef al. [2] suggests that, for large p and n with p/n — oo, the
matrix /A is close to a n x n Wigner matrix although its entries are not independent but
weakly dependent. It is then reasonable to conjecture that the CLT for the LSS of A resembles
that of a Wigner matrix described in Bai and Yao [6]. More precisely, by writing A = ﬁ(wi i)s

where w;; = (sl.Tsl- — )/ P> wij =siTsj/ﬁ for i # j and s; is the jth column of X, we have

Varwi)=vs—1,  Varwp) =1,  E(wh—1)"= %(1}% —3).
Then, (1.9), (1.5) and (1.6) are consistent with (1.4), (1.5) and (1.6) of Bai and Yao [6], respec-
tively, by taking their parameters as 0> = vq — 1, k = 2 (the real variable case) and 8 = 0.
However, we remark that the mean correction term of Q, (f), the last term of (1.8), cannot be
speculated from the result of Bai and Yao [6]. Note that this correction term will vanish in the
case of the function f to be even or n3/p — 0. By the definition of W, (f), one may verify that

_1 PER ) 4x3—3xd
‘113(f)—; ;/]f(x)ﬁ X,

1 1! 5 1
—=\ -3 = — 2x0)| 2(vs = 3)x? — — =) |[—==dx.
5 0(f) + (va =3)Wa(f) n/_If( x)[ (va = 3)x (U4 2>:|m
Remark 1.3. If we interchange the roles of p and n, Birke and Dette [9] established the CLT
for Q,(f) in their Theorem 3.4 when f = xZ and Xij ~ N(0,1). We below show that our

Corollary 1.1 can recover their result. First, since f = x2 is an even function, it implies that the
last term of (1.8) is exactly zero. Therefore, the mean in Theorem 3.4 of Birke and Dette [9] is
the same as (1.9), which equals one. Second, the variance in Theorem 3.4 of Birke and Dette [9]
is also consistent with (1.5). In fact, the variance of Birke and Dette [9] equals 4 when taking
their parameter y = 0. On the other hand, since X;; ~ N (0, 1), we have v4 = 3 and the first term
of (1.5) is zero. Furthermore, by a direct evaluation, we obtain that

T

1 [ 1
\yl(f)=—n/ 4cos39d0=2— (cos 36 + 3 cos6)do =0,

21 J_ g nJ_x

L

1 [7 1
U (f) = _n/ 4¢0s%6 cos20 df = I (cos40 +1+2cos20)do =1,

21 J_n TJ-n
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T

1 [7 1
‘I’k(f)zﬁf 40052900sk9d9=g 2(cos28 + 1) cosk6 db
—T —T
s

1
=5 (cos(k —2)6 + cos(k + 2)0 + 2cos k9) do =0, for k > 3.
TJ-n

It implies that cov(X (x2), X (x2)) = 4, which equals the variance of Birke and Dette [9].

The main contribution of this paper is summarized as follows. We have established the central
limit theorems of linear spectral statistics of the eigenvalues of the normalized sample covari-
ance matrices when both the dimension and the sample size go to infinity with the dimension
dominating the sample size (for the case p/n — o0). Theorem 1.1 and Corollary 1.1 are both
applicable to the data with the dimension dominating the sample size while Corollary 1.1 pro-
vides a simplified correction term (hence, CLT) in the ultrahigh dimension cases (n3/p=0()).
Such an asymptotic theory complements the results of Bai and Silverstein [5] and Pan [23] for
the case p/n — ¢ € (0, o0) and Bai and Yao [6] for Wigner matrix.

This paper is organized as follows. Section 2 provides a calibration of the mean correction
term in (1.3), runs simulations to check the accuracy of the calibrated CLTs in Theorem 1.1,
and considers a statistical application of Theorem 1.1 and a real data analysis. Section 3 gives
the strategy of proving Theorem 1.1 and two intermediate results, Propositions 3.1 and 3.2, and
truncation steps of the underlying random variables are given as well. Some preliminary results
are given in Section 4. Sections 5 and 6 are devoted to the proof of Proposition 3.1. We present
the proof of Proposition 3.2 in Section 7. Section 8§ derives mean and covariance in Theorem 1.1.

2. Calibration, application and empirical studies

Section 2.1 considers a calibration to the mean correction term of (1.3). A statistical application
is performed in Section 2.2 and the empirical studies are carried out in Section 2.3.

2.1. Calibration of the mean correction term in (1.3)

Theorem 1.1 provides a CLT for G, (f) under the general framework p/n — oo, which only
requires zero mean, unit variance and the bounded fourth moment. However, the simulation
results show that the asymptotic distributions of G, (f), especially the asymptotic means, are
sensitive to the skewness and the kurtosis of the random variables for some particular functions f,
for example, f(x) = %x()c2 — 3). This phenomenon is caused by the slow convergence rate
of EG,(f) to zero, which is illustrated as follows. Suppose that EX ?1 < 00. We then have
|EG,(f)| = O(/n/p) + O(1//n) by the arguments in Section 6. Also, the remaining terms
(see (2.1) below) have a coefficient (v4 — 1)4/n/p which converges to zero theoretically since
p/n — oo. However, if n = 100, p = n? and the variables X; ; are from central exp(1) then
(v4 — 1)4/n/p could be as big as 0.8.

In view of this, we will regain such terms and give a calibration for the mean correction term
in (1.3). From Section 6, we observe that the convergence rate of |EG, (f)| relies on the rate of
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[nEw, —m3(z)(m'(z) + v4 — 2)| in Lemma 6.1. By the arguments in Section 6, only Sy below
(6.13) has the coefficient (v4 — 1)/n/p. A simply calculation implies that

S2 = —=2(vqg — )y/n/pm(z) +o(1). 2.1
Hence, the limit of n Ew,, is calibrated as
nEw, = m3(z)[v4 —24m'(z) = 2(v4 — 1)y/n/ pm(2)] + o(1). 2.2)

We then calibrate G, (f) as

. +o0
GCalib(fy 2 fE)A(FA(x) — F(x))
—o0 ) (2.3)
n —1\ 1-Calib 1—m
_ —m - X ———dm,
2mi |m|=ﬂf( R
where, via (2.2),
. -B+ 52 _ 4A0Calib
Ao ) 2 — ,
(2.4)
Calib m? m* nog4
cCl =—[v4—2+ 2—2<U4—1>m\/n/p}—‘/—m,
n 1—m p

A, B are defined in (1.4) and ~/B% — 4ACC2 is a complex number whose imaginary part has
the same sign as that of 3. Theorem 1.1 still holds if we replace G, (f) with Gga“b( ).

We next perform a simulation study to check the accuracy of the CLT in Theorem 1.1 with
G, (f) replaced by the calibrated expression Gsahb( f) in (2.3). Two combinations of (p, n),
p=n?,n%3, and the test function f(x) = %x(x2 — 3) are considered in the simulations, as sug-
gested by one of the referees. To inspect the impact of the skewness and the kurtosis of the
variables, we use three types of random variables, N (0, 1), central exp(l) and central ¢(6).
The skewnesses of these variables are 0, 2 and 0 while the fourth moments of these vari-
ables are 3, 9 and 6, respectively. The empirical means and empirical standard deviations of
Ggalib( )/ NVar(Y (f M2 from 1000 independent replications are shown in Table 1.

It is observed from Table 1 that both the empirical means and standard deviations for N (0, 1)
random variables are very accurate. The empirical means for central exp(1) and central ¢ (6) also
show their good accuracy. We note that the standard deviations for central exp(1) and central
t(6) random variables are not good when »n is small (e.g., n = 50). But it gradually tends to 1 as
the sample size n increases.

Q-Q plots are employed to illustrate the accuracy of the normal approximation in Figures 1
and 2 corresponding to the scenarios p = n? and p = n??, respectively. In each figure, Q—Q plots
from left to right correspond to n = 50, 100, 150, 200, respectively with random variables gener-
ated from N (0, 1) (V), central exp(1) (A) and central ¢ (6) (+). We observe the same phenomenon
that the normal approximation is very accurate for normal variables while the approximation is
gradually better when 7 increases for central exp(1) and #(6) variables.
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Table 1. Empirical means of G (f)/(Var(Y (f)))!/? (cf. (2.3)) for the function f(x) = x(x? —3)
with the corresponding standard deviations in the parentheses

n 50 100 150 200
p=n?
N, 1) —0.314 (1.227) ~0.221 (1.038) —0.188 (1.051) —~0.093 (0.940)
exp(1) —0.088 (2.476) —0.079 (1.447) —~0.140 (1.400) ~0.161 (1.154)
16) —0.084 (2.813) —0.077 (1.541) —0.095 (1.246) —0.0897 (1.104)
p=n?S
N, 1) —0.068 (1.049) —0.053 (1.077) —0.0476 (0.944) —0.016 (1.045)
exp(1) —0.049 (1.879) ~0.029 (1.390) —0.046 (1.162) —~0.045 (1.156)
16) —0.075 (1.693) 0.050 (1.252) —0.044 (1.145) —0.027 (1.044)

n=50, N(0,1)(v), exp(1)(2), t(6)(+) n=100, N(0,1)(v), exp(1)(2), t(6)(+) n=200, N(0,1)(v), exp(1)(2), t(6)(+)

|
a

range(-3.5, 3.5)

range(-3.5, 3.5)

3

I
‘A?* +

3

I

s

Normal quantile

3 -2 -4 0 1 2
Normal uantile

3 2 -1 0 1 2
Normal quantile

Figure 1. The Q-Q plots of the standard Gaussian distribution versus Ggalib( )/ Var(Y (f))) 1/2 based on
the sample generating from N (0, 1) (V), standardized exp(1) (A) and standardized ¢ (6) (+) with the sample
sizes n = 50, 100, 200 from left to right and the dimension p = nZ.

n=50, N(0,1)(v), exp(1)(»), t(6)(+) n=100, N(0,1)(v), exp(1)(2), t(6)(+) n=200, N(0,1)(v), exp(1)(2), t(6)(+)

+ 4 g

© o & 7 © o

range(-5, 5)
range(-3.5, 3.5)
0
1
range(-3.5, 3.5)
0
I

-4 -2 [ 2 4 -3 -2 -1 [ 1 2 3 -3 -2 -1 0 1 2 3

Normal quantile Normal quantile Normal quantile

Figure 2. The Q-Q plots of the standard Gaussian distribution versus Ggalib( )/ (Var(Y (f))) 172 pased on
the sample generating from N (0, 1) (V), standardized exp(1) (A) and standardized ¢ (6) (+) with the sample
sizes n = 50, 100, 200 from left to right and the dimension p = n%3.
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2.2. Application of CLTs to hypothesis test

This subsection is to consider an application of Theorem 1.1 which is about hypothesis testing
for the covariance matrix. Suppose that y = I's is a p-dimensional vector where I"isa p x p
matrix with positive eigenvalues and the entries of s are i.i.d. random variables with mean zero
and variance one. Hence, the covariance matrix of y is ¥ = I'T'”". Suppose that one wishes to
test the hypothesis

Hy: X =1, Hi:Z #1p. 2.5)

Based on the i.i.d. samples yj, ..., Yy, (from y), many authors have considered (2.5) in terms
of the relationship of p and n. For example, John [19] and Nagao [22] considered the fixed-
dimensional case; Ledoit and Wolf [21], Fisher ef al. [16] and Bai et al. [2] studied the case of
f — ¢ € (0, 00); Srivastava [26], Srivastava, Kollo and von Rosen [27], Fisher [15] and Chen et
al. [11] proposed the testing statistics which can accommodate large p and small n.

We are interesting in testing (2.5) in the setting of 5 — 00. As in Ledoit and Wolf [21] and

Birke and Dette [9], we set f = x>. We then propose the following test statistic for the hypothesis

of (2.5):
L, = %[n(fxzdFB(x) — /xzdF(x)>
n —1)2 yCalib 1 —m?
- z—mfmlzp(“m J AR = dm ) |

where Xfalib (m) is givenin (2.4) and B = \/g (%YTY —1I,,) is the normalized sample covariance
matrix with Y = (y, ..., ¥»). The asymptotic mean and variance of L, are 0 and 1, respectively,
see Theorem 1.1 or Remark 1.3 for details. Since there is no close form for the mean correction
term in (2.6), we use Matlab to calculate this correction term. It shows that as n/p — 0,

(2.6)

. 1 —m?
% (m +m ™) XS0 () — T dm = vy — 2.
T Jim|=p m

We also note the fact that
E[n/xzd(FB(x) - F(x))] = E[trBB” —n]=v; —2.
Thus, we use the following test statistic in the simulations:
L,= %[n (/ x2dFB(x) — /xzdF(x)> — (vs — 2)} = %(trBBT —n—(n—2). (2.7
Since I'’'T" = I, is equivalent to rr’ = I,,, under the null hypothesis Hy in (2.5), we have

L, -5 N, 1). 2.8)
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By the law of large numbers, a consistent estimator of vy is Vy = HL Zi’ f Yi‘; under the null
hypothesis Hy. By Slutsky’s theorem, (2.8) also holds if we replace v4 of (2.7) with Vy.

The numerical performance of the proposed statistic L, is carried out by Monte Carlo simu-
lations. Let Zy /2 and Z1 42, respectively, be the 100c/2% and 100(1 — «¢/2)% quantiles of the
asymptotic null distribution of the test statistic L,,. With T replications of the data set simulated

under the null hypothesis, we calculate the empirical size as

#LM < Zy o) + LM > 710}
T ,

& =
where # denotes the number and L™/ represents the values of the test statistic L, based on the

data set simulated under the null hypothesis. The empirical power is calculated by

{#Lzrlllter < Zoc/2} 4 {#Lf,her > Zl—a/Z}
T b

3:

where Lzher represents the values of the test statistic L, based on the data set simulated under
the alternative hypothesis. In our simulations, we fix 7 = 1000 as the number of replications and
set the nominal significance level = 5%. By asymptotic normality, we have Z,,2 = —1.96 and
Zi_g2 =1.96.

Our proposed test is intended for the situation “large p, small n”. To inspect the impact caused
by the sample size and/or the dimension, we set

n = 20, 40, 60, 80,
p = 600, 1500, 3000, 5500, 8000, 10000.

The entries of s are generated from three types of distributions, Gaussian distribution, standard-
ized Gamma(4, 0.5) and Bernoulli distribution with P(X;; =+1) =0.5.

The following two types of covariance matrices are considered in the simulations to investigate
the empirical power of the test.

1. (Diagonal covariance.) ¥ = diag(ﬁllvp], 11_[vp)), where v =0.08 or v = 0.25, [a] de-
notes the largest integer that is not greater than a.

2. (Banded covariance.) X = diag(Ay, diag(1,_[y,p1)), where Aj is a [v2 p] X [v2 p] tridiago-
nal symmetric matrix with the diagonal elements being equal to 1 and elements below and
above the diagonal all being equal to v .

Since the test in Chen et al. [11] accommodates a wider class of variates and has less restric-
tions on the ratio p/n, we below compare performance of our test with that of Chen et al. [11].
To simplify the notation, denote their test by the CZZ test. Table 2 reports empirical sizes of the
proposed test and of the CZZ test for the preceding three distributions. We observe from Table 2
that the sizes of both tests are roughly the same, when the underlying variables are normally
or Bernoulli distributed. It seems that the CZZ test looks better for skewed data, for example,
gamma distribution. We believe additional corrections such as the Edgeworth expansion will be
helpful, which is beyond the scope of this paper. However, our test still performs well for skewed
data if p > n.
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Table 2. Empirical sizes of CZZ test and L,, at the significant level « = 5% for normal, gamma, Bernoulli
random vectors

CZZ test L,
n n
p 20 40 60 80 20 40 60 80
Normal random vectors
600 0.069 0.071 0.052 0.052 0.063 0.077 0.066 0.082
1500 0.057 0.059 0.061 0.059 0.055 0.058 0.058 0.062
3000 0.067 0.068 0.057 0.053 0.048 0.067 0.056 0.052
5500 0.064 0.06 0.067 0.058 0.054 0.055 0.071 0.068
8000 0.071 0.062 0.062 0.054 0.055 0.049 0.06 0.059
10000 0.055 0.059 0.063 0.06 0.037 0.058 0.057 0.054
Gamma random vectors
600 0.055 0.073 0.056 0.062 0.103 0.119 0.125 0.123
1500 0.064 0.047 0.059 0.059 0.094 0.072 0.072 0.088
3000 0.069 0.071 0.059 0.052 0.066 0.074 0.071 0.061
5500 0.065 0.069 0.048 0.041 0.077 0.073 0.047 0.045
8000 0.069 0.065 0.07 0.053 0.078 0.075 0.063 0.059
10000 0.072 0.06 0.06 0.057 0.078 0.082 0.065 0.06
Bernoulli random vectors
600 0.078 0.079 0.056 0.037 0.048 0.064 0.046 0.037
1500 0.065 0.050 0.051 0.053 0.039 0.040 0.049 0.050
3000 0.048 0.053 0.058 0.060 0.040 0.052 0.052 0.056
5500 0.059 0.061 0.059 0.042 0.040 0.052 0.060 0.040
8000 0.065 0.074 0.065 0.059 0.046 0.052 0.05 0.051
10000 0.07 0.057 0.047 0.048 0.044 0.037 0.038 0.047

Table 3 to Table 5 summarize the empirical powers of the proposed tests as well as those of the
CZZ test for both the diagonal and the banded covariance matrix. Table 3 assumes the underlying
variables are normally distributed while Tables 4 and 5 assume the central gamma and the central
bernoulli random variables, respectively. For the diagonal covariance matrix, we observe that the
proposed test consistently outperforms the CZZ test for all types of distributions, especially for
“small” n. For example, when n = 20, even n = 40, 60, 80 for v = 0.08, the CZZ test results in
power ranging from 0.2-0.8, while our test still gains very satisfying power exceeding 0.932.

For the banded covariance matrix, we observe an interesting phenomenon. Our test seems
to be more sensitive to the dimension p. When p = 600, 1500, 3000, the power of our test is
not that good for small v, (= 0.4). Fortunately, when p = 5500, 8000, 10000, the performance
is much better, where the power is one or close to one. Similar results are also observed for
vy = 0.8. We also note that large v, outperforms smaller v, because when v, becomes larger, the
corresponding covariance matrix becomes more “different” from the identity matrix. As for the
CZZ test, its power is mainly affected by n. But generally speaking, our test gains better power
than the CZZ test for extremely larger p and small n.
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Table 3. Empirical powers of CZZ test and L, at the significant level & = 5% for normal random vectors.
Two types of population covariance matrices are considered. In the first case, X1 = diag(2 x 1yp1, 1p—[vp])
for v=0.08 and v = 0.25, respectively. In the second case, Xy = diag(Ay, diag(1,_[v,p])), Where Aj is a
[v2 p] X [vp p] tridiagonal symmetric matrix with diagonal elements equal to 1 and elements beside diagonal
all equal to vy for v =0.5, v =0.8 and v = 0.5, vy = 0.4, respectively

CZZ test Ly
n n

p 20 40 60 80 20 40 60 80
Normal random vectors (v = 0.08)

600 0.186 0.392 0.648 0.826 0.932 1 1 1
1500 0.179 0.397 0.642 0.822 0.999 1 1 1
3000 0.197 0.374 0.615 0.867 1.000 1 1 1
5500 0.225 0.382 0.615 0.85 1 1 1 1
8000 0.203 0.391 0.638 0.843 1 1 1 1

10000 0.204 0.381 0.639 0.835 1 1 1 1
Normal random vectors (v = 0.25)

600 0.571 0.952 0.997 1 1 1 1 1
1500 0.585 0.959 1.000 1 1 1 1 1
3000 0.594 0.961 1.000 1 1 1 1 1
5500 0.617 0.954 1 1 1 1 1 1
8000 0.607 0.957 0.999 1 1 1 1 1

10000 0.595 0.949 1 1 1 1 1 1
Normal random vectors (v] = 0.5, v =0.8)

600 0.333 0.874 0.997 1 0.443 0.493 0.492 0.488
1500 0.310 0.901 0.999 1 0.987 0.997 0.997 0.998
3000 0.348 0.889 0.998 1 1.000 1.000 1.000 1.000
5500 0.382 0.871 0.998 1 1 1 1 1
8000 0.33 0.867 0.998 1 1 1 1 1

10000 0.359 0.868 0.998 1 1 1 1 1
Normal random vectors (v] = 0.5, v =0.4)

600 0.142 0.364 0.668 0.896 0.078 0.089 0.069 0.102
1500 0.131 0.354 0.653 0.890 0.220 0.235 0.230 0.226
3000 0.139 0.361 0.662 0.899 0.635 0.660 0.647 0.684
5500 0.148 0.352 0.645 0.898 0.97 0.979 0.989 0.989
8000 0.152 0.36 0.688 0.905 0.981 0.978 0.986 0.989

10000 0.137 0.328 0.674 0.886 1 1 1 1

2.3. Empirical studies

As empirical applications, we consider two classic datasets: the colon data of Alon et al. [1]
and the leukemia data of Golub et al. [17]. Both datasets are publicly available on the web
site of Tatsuya Kubokawa: http://www.tatsuya.e.u-tokyo.ac.jp/. Such data were used in Fisher
[15] as well. The sample sizes and dimensions (n, p) of the colon data and the leukemia data


http://www.tatsuya.e.u-tokyo.ac.jp/

CLT for normalized sample covariance matrices 1101

Table 4. Empirical powers of CZZ test and L, at the significant level « = 5% for standardized
gamma random vectors. Two types of population covariance matrices are considered. In the first case,
¥y = diag(2 x 1pyp), 1p—[vp)) for v = 0.08 and v = 0.25, respectively. In the second case, ¥p =
diag(Ay, diag(1p—[y,p1)), where Ap is a [vap] x [vy p] tridiagonal symmetric matrix with diagonal ele-
ments equal to 1 and elements beside diagonal all equal to v| for vi =0.5, v =0.8 and v =0.5, v = 0.4,
respectively

CZZ test L,
n n

p 20 40 60 80 20 40 60 80
Gamma random vectors (v = 0.08)

600 0.331 0.638 0.891 0.982 0.999 1 1 1
1500 0.356 0.636 0.901 0.979 1 1 1 1
3000 0.197 0.383 0.638 0.823 1 1 1 1
5500 0.178 0.361 0.658 0.845 1 1 1 1
8000 0.199 0.399 0.642 0.85 1 1 1 1

10000 0.216 0.353 0.636 0.843 1 1 1 1
Gamma random vectors (v = 0.25)

600 0.621 0.943 1.000 1 1 1 1 1
1500 0.610 0.946 0.999 1 1 1 1 1
3000 0.579 0.946 0.997 1 1 1 1 1
5500 0.596 0.957 0.999 1 1 1 1 1
8000 0.616 0.962 0.999 1 1 1 1 1

10000 0.614 0.955 0.999 1 1 1 1 1
Gamma random vectors (v = 0.5, vy =0.8)

600 0.192 0.871 0.998 0.972 0.122 0.413 0.423 0.133
1500 0.198 0.883 0.995 0.980 0.440 0.992 0.993 0.433
3000 0.343 0.885 0.995 1 1 1 1 1
5500 0.342 0.88 0.996 1 1 1 1 1
8000 0.349 0.877 0.998 1 1 1 1 1

10000 0.337 0.879 0.998 1 1 1 1 1
Gamma random vectors (v; = 0.5, vy =0.4)

600 0.117 0.353 0.650 0.780 0.087 0.111 0.114 0.120
1500 0.138 0.365 0.661 0.799 0.183 0.215 0.226 0.157
3000 0.129 0.349 0.646 0.89 0.593 0.621 0.627 0.61
5500 0.124 0.335 0.678 0.889 0.945 0.972 0.981 0.986
8000 0.142 0.369 0.668 0.901 0.999 1 1 1

10000 0.142 0.336 0.668 1 1 1 1 1

are (62,2000) and (72, 3571), respectively. Simulations show that these two datasets have zero
mean (1078 to 10~!!) and unit variance. Therefore, we consider the hypothesis test in (2.5) by
using the test statistic L, in (2.7). The computed values are L, = 33933.7 for the colon data
and L, = 60956 for the leukemia data. It is also interesting to note that the statistic values of
Fisher [15] are 6062.642 for the colon data and 6955.651 for the leukemia data when testing
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Table 5. Empirical powers of CZZ test and L, at the significant level « = 5% for standardized
Bernoulli random vectors. Two types of population covariance matrices are considered. In the first case,
Xy = diag(2 x 1pyp), 1p—[vp)) for v = 0.08 and v = 0.25, respectively. In the second case, ¥p =
diag(Ay, diag(1p—1y,p1)), where Ay is a [vy p] x [vy p] tridiagonal symmetric matrix with diagonal ele-
ments equal to 1 and elements beside diagonal all equal to v| for vy = 0.5, v =0.8 and v1 =0.5, v =0.4,
respectively

CZZ test L,
n n

p 20 40 60 80 20 40 60 80
Bernoulli random vectors (v = 0.08)

600 0.216 0.381 0.622 0.849 0.972 1 1 1
1500 0.198 0.401 0.632 0.837 1 1 1 1
3000 0.203 0.362 0.622 0.823 1 1 1 1
5500 0.196 0.354 0.627 0.829 1 1 1 1
8000 0.203 0.373 0.638 0.834 1 1 1 1

10000 0.213 0.397 0.637 0.822 1 1 1 1
Bernoulli random vectors (v = 0.25)

600 0.594 0.952 0.998 1 1 1 1 1
1500 0.619 0.960 1.000 1 1 1 1 1
3000 0.594 0.964 0.999 1 1 1 1 1
5500 0.609 0.948 1.000 1 1 1 1 1
8000 0.589 0.952 1 1 1 1 1 1

10000 0.603 0.957 0.999 1 1 1 1 1
Bernoulli random vectors (vi = 0.5, vy =0.8)

600 0.356 0.870 0.996 1 0.507 0.512 0.526 0.558
1500 0.359 0.892 0.995 1 0.999 1 1 0.999
3000 0.343 0.877 0.998 1 1.000 1 1 1.000
5500 0.355 0.868 0.997 1 1.000 1.000 1.000 1.000
8000 0.332 0.873 0.997 1 1 1 1 1

10000 0.353 0.872 1 1 1 1 1 1

Bernoulli random vectors (v = 0.5, vp =0.4)
600 0.153 0.348 0.643 0.901 0.092 0.086 0.079 0.085

1500 0.154 0.372 0.643 0.878 0.239 0.255 0.235 0.241
3000 0.141 0.339 0.649 0.882 0.682 0.680 0.680 0.674
5500 0.156 0.343 0.656 0.893 0.997 0.994 0.994 0.994
8000 0.144 0.353 0.664 0.904 1 1 1 1
10000 0.139 0.356 0.685 0.889 1 1 1 1

the identity hypothesis. Also, the statistics of Fisher [15] and L, in (2.7) are both asymptotic
normality (standard normal). As in Fisher [15], we conclude that p-values of the test statistics
are zero which shows evidence to reject the null hypothesis. This is consistent with Fisher’s [15]
conclusion for these two datasets.
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3. Truncation and strategy for the proof of Theorem 1.1

In the rest of the paper, we use K to denote a constant which may take different values at differ-
ent places. The notation oz, (1) stands for a term converging to zero in L, norm; 2%, means

ip. . . .-
“convergence almost surely to”’; —— means “convergence in probability to”.

3.1. Truncation

In this section, we truncate the underlying random variables as in Pan and Gao [24]. Choose §,
satisfying

Tim 8 EIX 0 T(1X01> 8,9mp) =0, 8, 10,8, ¢/p 1 0. 3.1

In what follows, we will use § to represent §,, for convenience. We first truncate the variables
)A(,-j = X;;j1(]X;j| < 6./np) and then normalize it as f(ij = ()A(,'j — E)A(,-j)/o, where o is the stan-
dard deviation of X;;. Let X = (X;;) and X = (X;;). Define A, A and G, (f), G,(f) similarly
by means of (1.1) and (1.3), respectively. We then have

P(A#A) <npP(IXn|=8¢np) < K§*EIXul*1(1X11] > 8:¢/np) = o(1).
It follows from (3.1) that
|1 —o?| <2|EXTI(1X11 > 8.¢npl)|

<2(np)” 28 2EIX11[* I (1X11] > 8.¢/mp) = o((np)~'/?)

and
|EX11] <63 (np) *EIX111*1(1X11] > 8:/mp) = o((np) /).

Therefore

EuX-X)TX-X) <> E[X;; - X;;?

i,j
(1-0)? o , 1 o2
<Kpn —2E|X11| +—2|EXij| =o(1)
o o

and

EuX'X < ZE|)2,~J»|2 < Knp, EuXX' < ZE|5(,,~|2 < Knp.
ij ij
Recalling that the notation A;(-) represents the jth largest eigenvalue, we then have
kj(XTX) = /npi;(A) + p. Similar equalities also hold if X, A are replaced by X, A or 5(, A.
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Consequently, applying the argument used in Theorem 11.36 in Bai and Silverstein [3] and
Cauchy—Schwarz’s inequality, we have

E|Gu(f) = Gu(H)] = D E|£(:jA) = f(1j(A))]
j=1

n n
N ~ Kf TS ST
<Ky Y E[rjA) —x;A)] = == Er;(XTX) — 2 (XTX)|
j=1 VAP o

Ky < _ T %X X <7 <Tx\11/2
EluX-X)" X-X) - 2(r X' X+ X' X
Tt ( )

2Ky v NT % <& T~ v 7%
<—|EuX-X)'X=-X)- (EauX' X+ EtrX' X
Tl T &% )

=<

1/2

=o(1),

where K y is a bound on | f’(x)|. Thus, the weak convergence of G, (f) is not affected if we re-
place the original variables X;; by the truncated and normalized variables X; - For convenience,
we still use X;; to denote X;;, which satisfies the following additional assumption (c):

(c) The underlying variables satisfy
|X;;| < 8Ynp, EX;; =0, EX} =1, EX}; =vs+o(1),
where § = 8, satisfies lim, 08, *E|X11|*1(1X11| > 8, &mp) = 0, 8, | 0, and

n
O np 1 oo.

For any € > 0, define the event F, (¢) = {maX <, |A;(A)| > 2 + &} where A is defined by the
truncated and normalized variables satisfying assumption (c). By Theorem 2 in Chen and Pan
[10], for any £ > 0

P(Fu(e)) =o(n™"). (3.2)

Here we would point out that the result regarding the minimum eigenvalue of A can be obtained
similarly by investigating the maximum eigenvalue of —A.

3.2. Strategy of the proof

We shall follow the strategy of Bai and Yao [6]. Specifically speaking, assume that ug, v are
fixed and sufficiently small so that ¢ C 4 (see the definition in the introduction), where ¢ is the
contour formed by the boundary of the rectangle with (ug, £iv) where up > 2,0 < v < 1. By
Cauchy’s integral formula, with probability one,

1
Gu(f) = —z—mf F@n[ma(2) = m(@) — X (m(2)]dz,
S
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where m,(z), m(z) denote the Stieltjes transform of F A(x) and F(x), respectively.
Let

M,(2) =n[m,(z) —m(2) — X, (m(2)],  z€s.
For z € ¢, write M, (z) = M\" (2) + M? (z) where

MV (2) = n[ma(z) — Ema(2)], MP (2) = n[Emy(z) — m(z) — X, (m(2))]-

Split the contour ¢ as the union of ¢, ¢7, ¢r, co Where ¢; = {z = —ug + iv, £,n~ ! < |v| <
vih 6 ={z =uo +iv,En~" < |v| < w1}, 50 = {z = Fuo +iv, [v] < &n '} and g, = {z =
u vy, |u| < uo} and where &, is a slowly varying sequence of positive constants and v; is a
positive constant which is independent of n. Throughout this paper, let C; ={z:z=u +iv,u €
[—uo, uol, [v| = vi}.

Proposition 3.1. Under assumptions (bl), (c), the empirical process {M,(z), z € C1} converges
weakly to a Gaussian process {M(z), z € C1} with the mean function

A(z) =0 (3.3)
and the covariance function
A(z1,22) =m/(z1)m' (z2)[va =3 +2(1 - m(z1)m(22))_2]- G4

As in Bai and Yao [6], the process of {M(z),z € C;} can be extended to {M(z), R(z) ¢
[—2,2]} due to the facts that (i) M (z) is symmetric, for example, M (z) = M (z); (ii) the mean
and the covariance function of M (z) are independent of v and they are continuous except for
N(z) ¢ [—2, 2]. By Proposition 3.1 and the continuous mapping theorem,

1 1
L / FoM@dz 5 - [ Fom@dz
2mi u 27 cu

Thus, to prove Theorem 1.1, it is also necessary to prove the following proposition.

Proposition 3.2. Let z € C{. Under assumptions (bl), (c), there exists some event U, with
P(Up) — 0, as n — oo, such that

2
lim limsupE‘ f M ()1(Uf)dz| =0, (3.5)
V0 n—oo iir0Si
lim lim sup / EM,(2)1(U5)dz| =0 (3.6)
w0 n—o0 Sy 061
and
2 2
limE|| MY )dz| =0, limE| | M(z)dz| =0. (3.7)
vid0 Si vid0 Si
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Since E|MM(2)|? = A(z,Z) and E|M(z)|> = A(z,Z) + |[EM(2)|?, (3.7) can be easily ob-
tained from Proposition 3.1. For i = 0, if we choose U,, = F;(¢) with the ¢ = (ug — 2)/2, then
when Uy happens, Vz € o, we have |m,,(z)| <2/(up —2) and |m(z)| < 1/(uo — 2). Thus

4 \? 4&,
< <
_n(uo—2> ool = =557

where || o|| represents the length of ¢o. Furthermore,

Y (R S 2|| I
n — .
~ \ug—2 wup—2 P S0

M;D ()1 (Uy) dz
S0

/ My (2)I1(Uy)dz
)

These imply that (3.6) and (3.5) are true for z € o by noting that £, — 0 as p — oo.
Sections 5 and 6 are devoted to the proof of Proposition 3.1. The main steps are summarized
in the following:

e According to Theorem 8.1 in Billingsley [8], to establish the convergence of the process
{M,(z), z € Cy1}, it suffices to prove the finite-dimensional convergence of the random part
M,El)(z) and its tightness, and the convergence of the non-random part M,Ez) (2).

e For the random part M,gl)(z), we rewrite it in terms of a martingale expression so that we
may apply the central limit theorem of martingales to find its asymptotic mean and covari-
ance.

e For the non-random part M,(lz) (z), by the formula of the inverse of a matrix and the equation
satisfied by m(z) we develop an equation for (Em, (z) — m(z)). Based on it, we then find
its limit under assumptions 7/ p — 0 and n°/p = O(1) for Theorem 1.1 and Corollary 1.1,
respectively.

Section 7 uses Lemma 4.4 below to finish the proofs of (3.5) for i =1, r so that the proof of
Proposition 3.2 is completed. Section 8 uses Bai and Yao’s [6] asymptotic mean and covariance
function to conclude the proof of Theorem 1.1.

4. Preliminary results

This section is to provide simplification of M,Sl)(z) and some useful lemmas needed to prove
Proposition 3.1.

4.1. Simplification of M,(,l) ()

The aim of this subsection is to simplify M,gl)(z) so that M,El)(z) can be written in the form of
martingales. Some moment bounds are also proved.
Define D = A — zI,,. Let si be the kth column of X and X be a p x (n — 1) matrix constructed
from X by deleting the kth column. We then similarly define Ay = \/Ln_p(XkTXk — pl,,—1) and
diag 1

Dy = Ag — zl,—1. The kth diagonal element of D is a;; = = Tip (S,{sk — p) — z and the kth row
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of D with the kth element deleted is q,{ = \/Ln_ps,z X;. The Stieltjes transform of FA has the form

my(2) = %tr D~!. The limiting Stieltjes transform m (z) satisfies

1

m(z) = —
(one may see Bai and Yao [6]).
Define the o-field 7 = o (s, S2, . . ., S¢) and the conditional expectation Ex () = E(-|Fk). By
the matrix inversion formula, we have (see (3.9) of Bai [4])

(1+q/ D 2qp)
- C
_akllcag + qlf D, lqk

w(D!'-D; ") =— 4.2)

We then obtain

n
MP @) =uD' —EuD = (B — E-)u(D =D ) =) "o (4.3)
k=1 k=1

= (Ex — Ep—1)u — Exxy, 4.4)
where

ok = —(Ex — Ec—1)Be(1+a D qr).

e =—B B (1 + Q;{Dk_z%),

nkzL(SZSk—P)_Vkl Br = - !
VP —ag® +a{D; '

. 1
k — )
2+ (1/(np)) tM}”

MI(CS) — Xka—S’XZ’ s = 1, 2,

s = @D a— p) e MY, =B
In the above equality, gy is obtained by (4.2) and the last equality uses the facts that
B = B + BBk 4.5)
and
(Ej — Ekl)[ﬁ}g<1 + %trM,@)} =0,  Ex_1kx=0.

We remind the readers that the variable z has been dropped from the expressions such as
D!, D;l, Bk, Vks and so on. When necessary, we will also indicate them as D_l(z), D;l(z),

B (), vis(2), etc.
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We next provide some useful bounds. It follows from the definitions of D and Dy, that
D'X"X = pD~" + /np(I, + D7),
D 'X! X = pD; ' + /np(Li—i +zD; ). @0

Since the eigenvalues of D! have the form 1/(A;(A)—2), D~ < 1/v; and similarly ||D,:1 I <
1/v;. From Theorem 11.4 in Bai and Silverstein [3], we note that — B (z) is the kth diagonal
element of D™! so that |B¢| < 1/v;. Moreover, considering the imaginary parts of 1/ ,B}Cr and
1/Bx and by (4.6) we have

|BY] < 1/, ‘1+itrM§j> <(1+11%), s=1,2 4.7)
np

and
_1=1
1+q/D;'D; qx
_1=1
v (1+q/'D;'Dy qp)

|(1+a/ D 2qi) Be| < =1/v1. (4.8)

Applying (4.5), we split ¢ as

1 2 2 2 1 2
(1 + tr M )>(/3}:) e — v (BF) m — (1 + —qu qk)(ﬂ}:) Bini
= U1 + k2 + U3

As will be seen, 41, tx2 could be negligible by Lemma 4.1 below.
By Lemma 4.1, (4.7) and (4.8), we have

2
< K8*,

Z(Ek — Er—1ua

<ZE’(1+—sk ,ﬂ”sk)(ﬂ " Beng

and that

2

Z(Ek — Er-1u2

k=1

K
<ZE‘VH (B me? <KZ Elya|*E|n )1/257n+1(82.

Therefore, M,gl)(z) is simplified as

M (2) = ZEk[ ( +—ptrM<2))(ﬁ,§r)2nk—xk]+oL2<1>

- (4.9)
= Z Ex(ax(z)) +or, (1),

k=1
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where o (z) represents the term in the square bracket. Thus, to prove finite-dimensional conver-
gence of M (), z € Ty we need only consider the sum

Za,ZEk a(z))) ZZa]Ek (o (z))), (4.10)

k=1 j=1

where ay, ..., a; are complex numbers and / is any positive integer.

4.2. Useful lemmas
The aim of this subsection is to provide some useful lemmas.

Lemma 4.1. Let z € Cy. Under assumptions (bl), (c), we have

2 -1 4 1 n 1
Elyks|” < Kn™, Elys|" = K S +t—=+—) (4.11)
n )4 np
2 -1 4 84 1 p 1
Elnl"<Kn™",  Em|"<K—+K|5+—=5+—) (4.12)
n n n np

Proof. From Lemma 5 in Pan and Zhou [25], we obtain
E|s/Hs; — rH|* < K (EX}))’E(rHH)? < K E(wrMYM”)? < Kn?p?, (4.13)

where H = M,(f) — diag(a ﬁ) ..,a%)y and aﬁj) is the jth diagonal element of the matrix M,((S).
To get the third inequality in (4.13), by (4.6) and the uniform bound for ||D,:1 ||, we obtain

(s) - =
eMOM,| = oD X! XD, X! X | < z@ L XTI |
- 4.14)
n —1 —1 2 Kn 14
= 26D | P+ np (Lot + 2D ) | < o
1
Let E;(-) = ECI X1k, X2k, ..., Xjx), j = 1,..., p. Since {Xjk} _; are independent of a]] ,
(X?k— Da (Y) =E;-E;_ 1)(X —1)a§§.).By Burkholder’s inequality and assumption (c)
P 4 P 4
E|Y (X3 —1)al?| =E|Y (& —E; 1) (X3 —1)a})
j=1 j=1
2 P
<KE(ZE|X11| | ) +K Y EIXnPElajl*  (4.15)
Jj=1 Jj=1

< Kn’p*+n’p?,
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where we use the fact that, with WJT being the jth row of X,

4 . g T 4
Elaj) | = E[6] XD *X[&)| o
= E|W]TDk_SW./|4 = U1_4SE||W]T ||8 < Kn*+Kn’p.

Here for j =1, ..., p, €; denotes the p-dimensional unit vector with the jth element being 1

and all the remaining being zero. It follows from (4.13) and (4.15) that

4< K E
E|yks] _W

Moreover, applying Lemma 8.10 in Bai and Silverstein [3], we have
K 4 4 s* 1 p 1
Einl* < 55 Elsfse —n|' + KE[pu @' <k = + k(5 + &+ —).
n=p p n>  n?> np

The bounds of the absolute second moments for yyg, nr follow from a direct application of
Lemma 8.10 in Bai and Silverstein [3], (4.6) and the uniform bound for ||D,:] Il (]

When z € ¢; U ¢, the spectral norm of D~!(z) as well as the quantities in (4.7) or Lemma 4.1
are unbounded. In order to prove Lemma 6.1, we will establish the bounds similar to those in
(4.7) and in Lemma 4.1 for z € ¢; U ¢, below.

Let the event U, = {max <, |A;(A)| > uo/2 + 1} and Upp = {maxj<, [A;(Ap)| =1 +uo/2}.
The Cauchy interlacing theorem ensures that

AMA) = A1(AR) = 2(A) = X(Ap) = -+ = Ap—1(Ag) = 1, (A). (4.17)

Thus, Uyr C U,. By (3.2) for any £ > 0

P(Un) < P(Up) =0(n""). (4.18)
We claim that
max{[D~' @], [D7 @], 18]} < & 'n; 4.19)
Lljnc)fl{, j=12,...,n,
|2 (A) —z] (420)
M_K, i=1,2,...,(n—1);
12 (Ar) —z|

D@ | 1(US) < 2/(uo —2), D @)1 (US) <2/(mo —2). (4.21)
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Indeed, the quantities in (4.19) are bounded due to |1/J(z)| <&, 5 while (4.20) holds because
I(US)/|Aj(A) —z] (or I(US) /12 j(Ar) — z|) is bounded by v]_1 when z € ¢, and bounded by
2/(up—2) when z € g;Ug,. The estimates in (4.21) hold because of the eigenvalues of D1 )
(or D_ll(Ug)) having the form I (Uy)/(X;(A) —z) (or I(U;)/(X;(Ar) — 2)).

Lemma 4.2. Let 7z € . The following bound
1Bkl1(Us) < K, (4.22)
holds.

Proof. In view of (4.2), to prove (4.22), we need to find an upper bound for [rD~! —
trD,:1 [1(Uy) and a lower bound for |1 + q,{D,:zkuI(U,f). It follows from (4.20) and (4.17)
that

|trD_1 — trD,:1 |I(U,f) <

1(Uy)

n 1 n—1 1
Z Aj(A) —z B ; Aj(Ar) —z

j=1 /

n—1
Aj(A) — Aj(Ax) 1 ¢
I(U,
: (Z Iy A) = 2l1, A — 2] |xn(A>—z|) ()

j=1
(4.23)
n—1
< K(Z(AJ-(A) —1j(AR) + 1>I(U,f)
j=1
< K(M(A) =2 (A) +1)1(Uy) < K (uo +3).
Letu;(Ag), j=1,...,n — 1 be the eigenvectors corresponding to the eigenvalues A ; (Ay), j =

n—1 wiADu (Ap) .

l,...,n—1.Then ) =1 oA S the spectral decomposition of Dk’z. We distinguish two
' J

cases:
(1) Whenz € V] = ¢, U{z:|3(2)| > (ug — 2)/4}, via (4.7), we then obtain
1Bl (US) < 1/|3(2)| < maxfo; !, 4/(uo —2)} < K.

Thus, (4.22) is true for z € V.
(ii) When z € Vo = (g1 U ¢;) N{z:13(2)| < (ug — 2)/4}, if Uy happens, we have | (Ay) —
N)| = ”05 2 since N(z) = Fug for z € V,. A direct calculation shows

— (% (Ap) — R@)* — 132

n—1
n(1-+a D01 (U) = 1+ 3 PO (gl w1 (1) >
j=1

Therefore, |1 + qTDk_zq|I (Uf) has a lower bound which, together with (4.23), implies
(4.22) is true for z € V.
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Since ¢, = V1 U V,, we finish the proof of Lemma 4.2. O

Lemma 4.3. Let z € g, and fix = Z (5 sk — p) — 4 Dy @)k + E o wXD ™! ()X The
following bounds hold

_ 4 84 1 n 1
Elul*<K—+K|5+—5+— (4.24)
n n p np
and
|Eii|=o(n""). (4.25)

Proof. Write
i = L(STSk_P)_Vkl‘i‘ 1+z,/£ ltrD“(z)— ltrD’l(z)
J/np k n n n k

(1 ﬁ)(ltD_l() EltD_l()> !
- +z ; ;r Z)— ;r Z +\/—n_p

=L —yx1+ L3+ La+ Ls.

When the event U happens, reviewing the proof of the second result of (4.11) and via (4.21),
we also have

1 n 1
41(U° -
Elys|'1(Uy) < K<n—2 + o - E)’ m=1,2.
Moreover, by (4.18) and (4.19)
Elyis|* I (Up) =o(n ™).
It follows that
4 1 n 1
Elyks|" < K S+ —=+— m=1,2. (4.26)
n p np

Using Lemma 8.10 in Bai and Silverstein [3], (4.18), (4.19) and (4.23) we then have

E|L|* <K8*n7!, E|L3|* < Kn~%, E|Ls|* <Kn?p~2. 4.27)
As for L4, by Burkholder’s inequality, (4.3) and (4.23), we have

4
n
E|Ly|* < Kn"*E|Y "(Ex — Ex—1)(uD™' —uD; ')

k=1

n n 2
<Kn™* Z E|urD ™' (z) — ter_l(z)I4 +Kn~! E(Z ErD™'(2) — ter_l(z)|2>
k=1 k=1
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Kn™* Y ElrD™(2) —uD @[ 1(U) (4.28)
k=1
2
+Kn _4E(2Ek|trD ") —uDy (z)|> 1(Uf) +o(n™")
k=1
SKn_z.

Therefore, the proof of (4.24) is completed. Also, the analysis above yields

82 1 n 1
E|L —yul* < K(— +5+5+ —) <K&n!, E|L3+ Ls+ Ls|* < Kn~2. (4.29)
n n p np

It is also easy to verify that, for z € ¢,

2

(stsk—p)| <Kn™', Elyiml> < Kn~'. (4.30)

E‘L
N

We proceed to prove (4.25). First of all

{080}

For s = 1, 2, denoting M,(:) = (ai(;))pxp, we then have

|ELY| =

)3/2

1 b 3
=——— Y E(X}—1) <Kk&/n. (430
3/2 Z jk =
(np)*/2 =

3
Ey} = (Z Xk X jeays +Z X2 — “)>

i#]
=Ji+h+J3+ s,

where

3 E szk“z(;)a(A)a(A)) (Z X3 X (af)) ) = Ju+ Ji2,

i# ], jF# 1# i#]

e >
E(Z ).

J3 = 3n3p3 E<Z Xik(Xizk I)ka(X N 1)a(5)a(”a§j)>,
i#]

J4=3

2 2 (v2 2 () () ()
n3p3E(ZXik(Xik—1)X]ka” aiasy ).
i#)
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The inequality (4.16) can be extended to the range z € ¢, by a similar method as that in (4.26).
Therefore,

1
|2l < K —— p8® Jap(n* +n?p)* < k827",
n3p
1 _ _ _ _
3l < K ey SPPEIWIPEIW; P +o(n™*) <Kp~' +o(n™),  L=<Kp'+o(nt),

where w is the jth row of Xj.
C0n51der J1 now. We first note that Ji; = O(p_l). Split Ji» as

(s) (s) (s)

ll ll

1 N
Ji2 = 5 Eu(XD;°X])’
n p?

i#t

<>()<> <>()<> 1 SYa

) S S ) S S S
ajjaji EZa 3P3E2(aii)

i#] i#] i=1
§Kn_2—|—Kp—1.
Thus, we obtain

|Evi|<K(* '+ p7"). (4.32)

It follows from (4.29), (4.30) and (4.32) that

|Efi}| < |E(L1 —w)®| + |E(Ls + La+ Ls)*| +3|E(L1 — yk1)(L3 + La + Ls)?|
+3|E(Ly — yk1)*(L3 + Ly + Ls)|
<|EL}| + |EyS| +3E2ELY - EV2y2 + 3EV2LY - EV2yl + Kn™3* + Kon™!

=o(n7").

The proof of Lemma 4.3 is completed. ]
The following lemma will be used to prove the first result of (3.5) and (6.15) below.

Lemma 4.4. For z € ¢, we have
EM{P ()| <K,

where M,(Zl)(z) =n(m,(z) — Em,(z)).

Proof. Note that the expression M, M (z) in (4.3) may not be suitable for z € ¢,, since ,B}(r or even
B 1(US) may be not bounded. For this reason, we introduce the following notations with the
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purpose to obtain a similar expression to (4.3). Let

1 , 1 T < 1 (1) 1 (H
wk=—=(s.8k—p)—yvk1— | —ttM; " — —EtrM .
,/np( k ) np k np k

-

k= O’
z+ (1/(mp)) E r M,

Hence
Br = &k + Bréxfik- (4.33)
As in (4.3) and a few lines below it, by (4.33), we write

n
M () = Z(Ek — Ex—0) (1 + lk2 + (k3 + K1),
k=1

where
. _ (4 1 M) 6024 . EPRT Y
r1(z) = + p tr MG ) (6r)” fek, k2(2) = = i1 (€x)” ek,
. _ 1o £\2/2 .z
@) =—(1+ p q; D, “(Dak ) Br(éx)” iy Kr = &k yi2(2).

We next derive the bounds for §; and the forth moment of fi;. Since F, 2 Fasn— 00, we
conclude from (4.18), (4.19), (4.21) and the dominated convergence theorem that, for any fixed
positive integer ¢

E|my(z) —m(@)|" — 0. (4.34)
By (4.6), (4.23) and (4.34), we then have

EitrM(l) = E|:<l —i—z\/z)m () — <1 sz\/E)l(trD_1 —trD ) + n_—l] — m(z)
np p) " p/n KT '

Hence,

1
z+m(z) +o(1)
On the other hand, via (4.6), (4.23) and (4.28)

4 4
< <1 +z\/z> n*EleD™ = EaD!|* < kn?,
P

and this, together with (4.26), implies

2

2. 4.
z+m(z) = (4.35)

|éx| =

E

1 1
el Lam? - p L em®
np np

4 84 1 n 1
Elul* <K—+K|(=5+—5+— ) (4.36)
n n p np
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Combining (4.35), (4.36), Lemma 4.2, (4.18), (4.19), (4.21) with Burkholder’s inequality, we
obtain

EMP )| < K.

The proof of the lemma is completed. |

5. Convergence of ML (z)

To prove Proposition 3.1, we need to establish (i) the finite-dimensional convergence and the
tightness of M,(,l)(z); (ii) the convergence of the mean function EM(z). This section is devoted
to the first target. Throughout this section, we assume that z € C; and K denotes a constant
which may change from line to line and may depend on v; but is independent of .

5.1. Application of central limit theorem for martingales

In order to establish the central limit theorem for the martingale (4.10), we have to check the
following two conditions:

Condition 5.1 (Lyapunov condition). For some a > 2,

n 1
Z Er1 |: Ex <Z a; Ex(ak (Zj))>
k=1 j=1

Condition 5.2. The covariance

a .
} L.

An(z1,22) & ZEk—l[EkOlk(Zl) - Exay(z2)] (5.1
k=1

converges in probability to A(z1, z2) whose explicit form will be given in (5.29).
Condition 5.1 is satisfied by choosing a = 4, using Lemma 4.1, and the fact that via (4.7)
1+ vl_z

1
< —— Il + —Iwl.
Uh V1

1
| (2)| = ’(1 + tngf)> (BY) i + Bk

Consider Condition 5.2 now. Note that
1 2 2 0
@) =1+ 2 M )68 = s = 5 (),

By the dominated convergence theorem, we have

2 n
32002 > Ex-1[Ex(B{ GDmi(z) - Ex (B c2)me(22)) ] (5.2)

k=1

Al’l(le ZZ) =
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By (4.6), (4.2), (4.8), (4.1) and the fact m, (z) BN m(z), and the dominated convergence theo-
rem again, for any fixed 7,

1 t
E‘—trM,((l) —m(z)| =0, E|,8 ) +m(z)| — 0, as n — oQ. 5.3)
np

Substituting (5.3) into (5.2) yields

92 -
An(z1,22) = |:M(Z1)m(22) Z Er—1(Exmk(z1) - Exnk(22)) + Oi.p.(l):|

022071 =
, (5.4)
0 -
Y [m(z1)m(z2) An(z1, 22) + 0ip.(1)].

By Vitali’s theorem (see Titchmarsh [28], page 168), it is enough to find the limit of A, (z1,22).
To this end, with notation Ej (M,(cl) (2)) = (aij(2))nxn, write

1 14
Exne(z) = \/@ (X - 1 - — (Z Xix X jkaij () + Z X all(Z)>

Jj=1 i#]

By the above formula and independence between {X lk}p | and Ej (M(l) ), a straightforward cal-
culation yields

1 2
Ex—1[Exni(z1) - Exmi(z2)] = - E(XT = 1)+ A1 + Ay + A3 + Au, (5.5)

where

_ ! 2 2N~ __ 1 SR
A= npﬁE(Xll 1) ;au(m), Ay = npﬁE(Xll 1) l;a,,(zz),

2 & 1 2’
Az = 22 Zaij(m)aij(Zz), Ay = WE(X%I —1) Zaii(zl)aii(zz)-
17&] i=1

Note that a;; (z) is precisely Ekai(l.l) in (4.16). From (4.16), we then obtain for j =1, 2,4

Also, we conclude from (4.16) that

Y as= %ZZk s Zzau(m)au(@) = ZZk +or, (D),
k=1 k=1

k=1i=1
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where
1 1
L= EM @) EM (2).

Summarizing the above we see that

2 n
An(z1.22) ==Y Zi+vs—1+o0L,(1). (5.6)
n k=1

5.2. The asymptotic expression of Zj

The goal is to derive an asymptotic expression of Z; with the purpose of obtaining the limit of
An(z1, 22).

5.2.1. Decomposition of Z

To evaluate Zy, we need two different decompositions of EkM,(Cl) (z). With slight abuse of nota-
tion, let {e;,i =1,...,k—1,k+1,...,n} be the (n — 1)-dimensional unit vectors with the ith
(or (i — 1)th) element equal to 1 and the remaining equal to O according as i < k (or i > k). Write
X = Xy +sie] . Define

1
Dy, =Dy —e;h! = —(X/{,Xk — ply) — 21,

V/np
1
Dy =Dy —eh! —rel = (X Xki — ply) — 2,
vhp (5.7)

1 1 1 .
bl = —si X+ s (sfsi—plel . ri= XS,

1 TH-1 —1 T

&= g 9 =h; Dy (2)ei, My = XiiDy; ()X, -
L

Here I is obtained from I,,_; with the ith (or (i — 1)th) diagonal element replaced by zero if
i <k (ori > k). With respect to the above notations we would point out that, for i < k (ori > k),
the matrix Xy; is obtained from X; with the entries on the ith (or (i — 1)th) column replaced by
Zero, hl.T is the ith (or (i — 1)th) row of Ay and r; is the ith (or (i — 1)th) column of A; with the
ith (or (i — 1)th) element replaced by zero. (X!, Xy — pl(;)) is obtained from (X] Xy — pI,—1)
with the entries on the ith (or (i — 1)th) row and ith (or (i — 1)th) column replaced by zero.

The notation defined above may depend on k. When we obtain bounds or limits for them such
as % tr Dk_i1 the results hold uniformly in k.

Observing the structure of the matrices Xj; and Dk_l.l, we have some crucial identities,

TH-1 -1 ~1
Xiiei =0, e D, =e Dy =—z""¢, (5-8)
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where 0 is a p-dimensional vector with all the elements equal to 0. By (5.8) and the frequently
used formulas

owl=—wlhy-wy!,

—1
-1 Y 'a
(Yeab®) “a = 9)
p’y-!
b’ (Y+ab”) = > X
(¥ +ab")" T 14bTY la’

we have

—1 -1, Tr—1
Dk _Dki,r__é-l ktrelh Dklr’

(5.10)

AT o.uT
D, Xp;sie;

D! —p; ' =
ki,r ki Zﬁ

We first claim the following decomposition of EkM,(cl)(z), fori <k,

Gi Gi
EkM,il)(Z) = EMy; — Ek(—l MkiSiSl-TMki) + Ek<—l Mki)SiS,-T
znp z/np

oy i N g (ST
+8;s; Ek(zﬁ ) Ek(z )s,sl (5.11)
= B1(2) + B2(z) + B3(2) + B4(2) + B5(2).

Indeed, by the decomposition of Xy, write
M{" = XD !XT, + XD teisT +sie/ DX, +siel Dy ey
Applying (5.7), (5.8) and (5.10), we obtain
XD X[, = XDy X[, — ;ix,{in,;ilre,-hf D X[,

gi
=My — My;s; - S; Xlek, er,

z/np J_

;‘.
=My — ——My;s;s! My;.
Znp

Similarly,

1T Gi D! Gi §7
XD, "ejs; = Myis;s;] . sie! D 'X1 = ——s;s] My;,

N N

7 ST G 1
s;e; Dk e;s; _;“ls, Dk”e, _—;sis.

1
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Summarizing the above and noting Ej(s;) =s; for i < k yield (5.11), as claimed.
On the other hand, write

n
D; = Z eih,‘T_ZIn—l-
i=1(£k)

Multiplying by D;l on both sides, we have
n
D=L+ Y eh/D". (5.12)
i=1(k)
Therefore, by (5.8), (5.10) and the fact that X X[ = Y, s;s/ , we have

n

Ed(M () = —E(XiXD) + > Ermi(Xeeth! D 'XT)

=10
n n
=—Ek( > SiSiT>+ > Ex(Gsih] Dl (X[ +eis]))
) =10
(5.13)
n
é‘.
=——kL -y sisf+ ) Ek( — SisiTMki>
i<k i=1(#k) np

n
+ Z Ek(é“il?iSiSiT)-
i=1(#£k)

Consequently, by splitting Ek(M]((l)(Zz)) asin (5.11) for i < k and zlEk(M,((l)(Zl)) as in (5.13),
we obtain

2
212y = n—p2 tr Ele({l)(Zl) : EkM/(:)(Zz)
(5.14)
= C1(z1,22) + Ca(z1, 22) + C3(21, 22) + Ca(z1, 22),

where

1
Ci(en22) = =500 = k) w EM (22),

5 5
1
Cr(z1,22) =—— E S?(E Bj(ZZ))Si = E Caj,
j=1 j=1

n
P i<k
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1 ; >
G =5 > Ek[gj% sZMkl-(m(Z Bj<zz>)sl}
j=1

i<k

6
1 ¢i(z1) r M
+—ZEk[—s~ My D) EM, @o)si | =) Csj,
2 i k J
Pk VP j=1

1 5
G =5 > Ex [ci(mﬂi (@1)s! (Z Bj(zz)>5i]

i<k =1
1 6
1
s 2 BlaGonens EM @s] = Y0 Cyr
i~k =1

where C;; corresponds to Bj, j =1,...,5, for example, Cy| = —np% Zi<k sl.T(Bl(zg))s,-, and
C3; and Cy4; are similarly defined. Here both C3(z1, z2) and C4(z1, z2) are broken up into two
parts in terms of i > k or i < k. As will be seen, the terms in (5.14) tend to O in L1, except
Cps, C34, Cy5. Next let us demonstrate the details.

5.2.2. Conclusion of the asymptotic expansion of Zj

The purpose is to analyze each term in C;(z1, z2), j = 1, 2, 3, 4. We first claim the limits of ¢;, ©%;
which appear in C(z1, z2) for j =2, 3, 4:

W L4, m(z)/z, gi(2) Ly —zm(2), asn — oQ. (5.15)

Indeed, by (5.8) and (5.10), we have

1 1
O = —s! Myisi — s's;i — p). 5.16
i np i kiSi ZM( i i P) ( )
Replacing M,({m) in Yk, (z) by My, by a proof similar to that of (4.11), we have
1 1 4 11
E|—s; My;s; — —tMy;| <K —+— 5.17)
np np n np

By (4.6), we then have v; — Zln trD,:i1 i 0. To investigate the distance between trD,:i1 and
tr Dk_1 , let Aki be the matrix constructed from Ay by deleting its ith (or (i — 1)th) row and ith (or
(i — 1)th) column and write Dki e Dki (z) = Aki —zI, o ifi <k (ori > k). We observe that l'),:l.1
can be obtained from Dk_l.l by deleting the ith (or (i — 1)th) row and ith (or (i — 1)th) column
ifi <k (ori > k). Then tr Dk_i1 - ter_iI = —%. By an identity similar to (4.2) and an inequality
similar to the bound (4.8), we also have |ter_l — tr])ki| < 1/v;. Hence |trD,:1 — ter_il| <

(1/vy + 1/|z]). From (4.2), we have |ter_1 — trD| < 1/v; as well. As %trD*1 i> m(z) for
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any fixed ¢ by the Helly—Bray theorem and the dominated convergence theorem, we obtain the
first conclusion of (5.15).

Since the imaginary part of (z¢;)~ Vs (3(z) + pS(sTMk, s;)) whose absolute value is greater
than vy, we have |¢;| < |z|/v1. Consequently, via (4.1), we complete the proof of the second
consequence of (5.15), as claimed.

Consider C1(z1, z2) first. By (4.6),

1
E|Ci(z1.22)| = E|———(n — k) tr ML (z2)
P 5.18)
K ©.
—2n p K — 0.
np p

Before proceeding, we introduce the inequalities for further simplification in the following.
By Lemma 8.10 in Bai and Silverstein [3] and (4.6), for any matrix B independent of s;,

E|sI My;Bs; |2 < K(E|s]MyBs; — ter,-B|2 + KE|trMyBJ?) < Kp*n’E|B|%,  (5.19)
where we also use the fact that, via (4.6),
|tr My BBM; | = |trD'/>XT BBX,, D, XJ,X: D /?|
< [0 AXG - 1BIP - XDy X |
=n- B D5 X] X

=n-IBI?- | pD! + ip (a1 + D) |7
< Knp*|IBJI°.

For i > k, since E;xMy, is independent of s;, we similarly have
E|sT ExMBs;|* < Kn?p?. (5.20)

Applying Cauchy—Schwarz’s inequality, (5.19) with B =1I,,_; and the fact that |¢;| is bounded
by |z|/vi we have

E|czj|§1<\/§, j=1.2.3.4. (5.21)
Using (5.19) with B = ExM;; (z2) or B = ExM; in (5.19), we also have

E|C3j|§K\/§, j=1,2,34. (5.22)
By (5.20), (5.15) and (5.19) with B =1,,_;, we obtain

E|C4jl <K=, j=12.3.4.6. (5.23)
p
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Consider C3; now. Define g:,' and Mki, the analogues of ¢;(z) and My;(z) respectively, by
(S1,..-,SksSkats ..., 87, where §¢,1,...,8§, are i.i.d. copies of si41,...,s, and independent
of s1,...,s,. Then g:,-, Mki have the same properties as ¢;(z), Mg; (z), respectively. Therefore,
|5i| < |zl/v1 and [[M; | < K p. Applying (5.19) with B = My (z1), we have

1 Gi(z1) i(z2) « T
E|Cyp| =E|— EE - Mg \Y I iS; Mg i
|C32] ‘npz Ek k k( NG s; Mki(z1) — (z2)8i8; Myi(z2)si

K Y 2 Y 2
< ——— Y E"?|sIMii(20)Myi z)si|” - E'/?|s] My (22)si 5.24
< n2p3 i £ | i ki (21)Mg; (z2) l| | i ki (22) l| ( )

K

IA

n
s
Third, consider C»s. In view of (5.15), it is straightforward to check that
k
Cas Z—Zm(22)+0L1(1)~ (5.25)

Further, consider C34. By (5.15) and (5.19), we have

1 i
Cyy = py Z Ek|:i/(§_;) s My (11)34(12)51}

i<k

1 i i
=— ZEk[&SiTMki(ZI)Ek<Z§ (z2) Mki(22)>sisiTsi:|

np< J/np 24/1p
1 T
= 2mG@m(2) 5 Y s ExMyi(z1) - ExMyi (22)s; +or, (1) (5.26)

i<k

1
= Zlm(Z1)m(Z2)n2—pz th(EkMki (z1) - ExMy; (zg)) +o,(1)

i<k
k
= Zlm(Zl)M(Zz);Zk +or, (1),

where the last step uses the fact that via (5.11), (5.19), (5.8) and a tedious but elementary calcu-
lation

1
ps |tr( ExMyi (z1) - ExMyi (22)) — tr Ex(XiD ' @D)XT ) - Ex(XiDy ' (22)XT )| <

=-|>q

Consider Cy4s finally. By (5.15), we have

k
Cis = —mz(m)m(zz); +or,(1). (5.27)
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We conclude from (5.14), (5.18), (5.21)—(5.27) and the fact m2(z) + zm(z) + 1 = 0 that
k k 5 k
212k = —;m(m) —m (zm(z2) + ;Zlm(m)'n(Zz)Zk +or, (1)

k k
= ;ZW(Zl)m(Zz) + ;ZW(Zl)M(Zz)Zk +or, (1),

which is equivalent to

_ (k/nm)m(z1)m(z2)
Zy = T— (k/mmGy)m(z) +or, (D). (5.28)

5.3. Proof of Condition 5.1

The equality (5.28) ensures that

1 n
ZPZZtrEkM(I)(ZI) ExM;” (z2) = sz

— / _tmomz2) =—1- (m(zl)m(zz))_1 log (1 - m(zl)m(zz)).

l—tm(21)m(22)

Thus, via (5.6), we obtain

Anzr.22) —25 vy — 3 = 2(m(z1)m(z2)) " log (1 — m(z1)m(z2)).

Consequently, by (5.4)
2

021022
= m'(z)m' (z22)[va — 3+ 2(1 = m(z)m(z2)) .

A(z1,22) =

[(v4 —3)m(z1)m(z2) — 2log (1 — m(z)m(z2))]
(5.29)

5.4. Tightness of M ()

This section is to prove the tightness of M,(,])(z) for z € C;. By (4.7) and Lemma 4.1,

ZZa,Ek 1 (o (z))) <KZZ|a]| E‘ak(zj)| <K,

k=1 j=I1 k=1 j=1

which ensures condition (i) of Theorem 12.3 of Billingsley [8]. Condition (ii) of Theorem 12.3
of Billingsley [8] will be verified by proving

EIMP (z1) — M{" (z2) 2

> <K, 21,22 € Cy. (5.30)
lz1 — 22|
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We employ the same notations as those in Section 4.1. Let
1 _ _ _ _
Ty = ESZXka "z (D @) + D (z2))D ! (22X sk
1 _ _ _ _
= o XDy ' (D (20 + D @)D ()XY,
1 _ _ _ _
Tiz = @(SkTXka Yz)Di @)X s — XDy (2D (z)XT),
1
di1(2) = ﬂk<z><1 + o5 M,?)(z)sk>,
1
do@) =1+ — MY (2),
np
— i —1 -1 T
diz=1+ np terDk (Zz)Dk (Zl)Xk s
1 -1 -1 -1 -1 T
drs = E terDk (Zl)(Dk (z1) +Dk (Z2))Dk (z2) X -

As in (4.3), we write

MV (z1) — MP(z2)

=-— Z(Ek — Ex—1)(dr1(z1) — dr1(22))

k=1

=—(21—22) Z(Ek — Ex—D[Bx(z1) (Yk1 + dia) — Br(z)dk1 (22) (Tha + di3) |

k=1

=—(z1 —22) Z(Ek — Ex—1)

k=1

1125

x [ + 1) + 13 — Br(z1) Br(z2)diadis — Br(21) Br(z2)di3 v (22) ]

n
=—@1 -2 ) (Ex—E DO +h+5+lk+1s+1),
k=1

where

I = Br(z1) Y1, I = Br(z) BY ()i (21)dkas
I3 = —Bi(z21) Yr2dk1(z1), ls = —Bi(z1) BY @)k (21) B (z2)di2 (z2)die3,

Is = —B{ (21) B (22) B (z2)mk (z2)dra (22) i3, le = —Bi(z1) Br(z2)dr3 i (22).
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Here the last step uses (4.5) for B (z1) and the facts that
D %(z1) = D (z2) = (21 — 22)D; ' @) (D (z1) + Dy ' (22))D (z2).
Bi(z1) — Br(z2) = (22 — 21) Br(21) Bk (z2) Y2 + (22 — 21) Br (21) Br (z2)di3,
(Ex — Ex—1) B (z1)dka =0, (Ex — Ex—1)B{ (21) B (22)dka(z2)di3 = 0.

By (4.6) and Lemma 8.10 in Bai and Silverstein [3], without any tedious calculations, one may
verify that

|dij ()| < K, j=1,2,3,4, and E|Tyl*<Kp !, j=1,2.

The above inequalities, together with Burkholder’s inequality, imply (5.30).

6. Uniform convergence of EM,(z)

To finish the proof of Proposition 3.1, it remains to derive an asymptotic expansion of
n(Emy,(z) —m(z)) for z € C; (defined in Section 3.2). In order to unify the proof of Theorem 1.1
and Corollary 1.1, we derive the asymptotic expansion of n(Em,, (z) —m(z)) under both assump-
tions n/p — 0 and n>/p = O(1) in Proposition 6.1. For the purpose of proving (3.6), we will
prove a stronger result in Proposition 6.1, namely uniform convergence of n(Em,, (z) —m(z)) for
2 € 6o =Ui—s,,.u Gi- For z located in the wider range g, the bounds or limits in Section 3 (e.g.,
Lemma 4.1, (5.3), (5.15)), cannot be applied directly. Hence in Section 4, we re-establish these
and other useful results. Throughout this section, we assume z € ¢, and use the same notations
as those in Section 3.

Proposition 6.1. Suppose that assumption (c) is satisfied.
(1) Under assumption (bl): n/p — 0, we have the following asymptotic expansion
n[Emy(z) —m(2) — Xy (m(2))] = o(1), (6.1)

uniformly for z € ¢, = Ui:l,r,u Gi, where X, (m) is defined in (1.4).
(ii) Under assumption (b2): n3/p = O(1), we have the following asymptotic expansion

n 4 /
n[Emn(z) —m@)+ |—m*@(1+m (Z))i|
p
(6.2)
=m>(@)(m'(2) + va —2)(1 +m'(2)) + o(D),
uniformly for z € ¢, = Ui:l,r,u g

This, together with (5.29) and the tightness of M, ,(11) (z) in Section 5.4, implies Proposition 3.1.
It remains to prove Proposition 6.1. To facilitate statements, let

1
Cz4+ E(1/(mp) e XD 1(9)XT’

1 & _ _
op = ;m(z)ﬂkuk, &n
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Here, w,, &, all depend on z and n, and &, are non-random.
Lemma 6.1. Let z € g,,. We have

nEw, =m>(z)(m'(2) + vs — 2) +o(1).

Assuming that Lemma 6.1 is true for the moment, whose proof is given in Section 6.1 below,
let us demonstrate how to get Proposition 6.1. By (3.8) in Bai [4], we obtain

1 3 1 n
my(2)=-tuD' @) === ps. (6.3)
n n
k=1
Applying (4.1), (6.3), (4.6) and taking the difference between S; and m, we have

1 ¢ 1
Emy(z) —m(z) = _; ZEﬁk + m
k=1

l n
=E Y Bum(2) [ﬂk — (Emn(2) —m(2)) — \/g(l + zEmn(z))] (6.4)
k=1

= Ew, +m(z) Em, (2)(Emp(2) —m(z)) + \/§M(Z)Emn(z)(1 + 2Em,(2)).

Under assumption n/p — 0: Let Em,, m respectively, denote Em,(z), m(z) to simplify the
notations below. By (4.1) and (6.4), we have

Em, —m = Ew, +m2(Emn —m) +m(Em, — m)2 + \/zm(Emn —m)(1 + zm)
p

n 2 n 2 n_ 2
+ ;m (14+zm)+ ;zm(Em,,—m) + ;zm (Em;, —m)

= A(Emy —m)* + (B + 1)(Emy —m) + Cy,

[n
Cy=Ew, — |—m".
p

Rearranging the above equation, we observe that (Em,, — m) satisfies the equation Ax? + Bx +
C, = 0. Solving the equation, we obtain

—B+ /B —4AC, —B— B —4AC,
2A ’

= 24 ’

where A, B are defined in (1.4) and

X =
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where /B2 — 4.AC, is a complex number whose imaginary part has the same sign as that of 5.
By the assumption n/p — 0 and Lemma 6.1, we have 4.AC,, — 0. Then x(;) = o(1) and x¢) =

l—m_m2 +o(1). Since Em, —m = o(1) by (6.5), we choose Em, —m = x(1). Applying Lemma 6.1
and the definition of X}, (m) in (1.4), we have

—4AnEw, —m?(2)(m'(2) + va — 2)]
2A(/B? — 4AC, + /B2 —4AC)

n[Ema(2) —m(2) = Xu(m(2)] =

— 0.

Hence Proposition 6.1(i) is proved.
Under assumption n>/p = O(1): subtracting m(z) Em,, (z) (Em,(z) — m(z)) on the both sides
of (6.4) and then dividing i (1 — m(z) Em,(z2)), we have

n(Ema(z) — m(2)) = — 2 @ Em @)+ < 2)
" T 1 =—m@)Emy(2) p 1 —m(zx)Em,(2)
m3(2) , n3 m*(z) n3
=—Fm@+v4—-2)—, | ————+ol.[— ),
e GO Rl Rl e e ( p)
where we use (4.34), Lemma 6.1, (4.1) and the fact that m’(z) = lf’;(zz()z). Proposition 6.1(ii) is

proved. Hence, the proof of Proposition 6.1 is completed. Now it remains to prove Lemma 6.1.

6.1. Proof of Lemma 6.1

From the definitions of B, &, and ji; (see Lemma 4.3), we obtain
Bk = &n + BrEnli. (6.5)

By (6.5), we further write By as By =&, + E,%,tlk + E;Z[L,% + ,Bkégﬂi, which ensures that

nEw, =m()e, y_ E(u) +m(2)&, ) E(i)

k=1 k=1
+m(2)E Y E(i13) +m@)E, > E(Brii}) (6.6)
k=1 k=1

£ H\ + Hy + H3 + Hy,

where H;, j =1,2,3,4 are defined in the obvious way. As will be seen, H3 and Hj are both
negligible and the contribution to the limit of n Ew,, comes from Hj and H,. Now, we analyze
Hj,j=1,...,4 one by one.
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Consider Hy first. It follows from (4.1) and (4.34) that

|
T 21+ m@ +o(l)

&n

= —m(z) +o(1). ©6.7)

By Lemma 4.2 and Lemma 4.3,

4

)
E|Bring] < KE|ag|1(Uy) + E|Beisf |1 (Un) < K(?

+ %) +o(n~") <Ks'n7!,
which, together with (6.7), further implies

Hy =o(1). (6.8)
It follows from Lemma 4.3 and (6.7) that

H3 =o(1). (6.9)

Consider H| next. We have, via (4.6) and (4.2),

n
1 1
Hy = m(2)é, Z(E— XD 'XT —E— trM,((l))
=\ np np

- (1 +z\/z>m(z)énl ZE(trD—l —trD ') + \/zm(z)é,, (6.10)
p n = p

_ ZAVINE E e 1 ry® .

- <1+z p)m(z)snnkZ:;E[,Bk<1+npskMk sk>i|+\/;m(z)s,,.

Applying (4.23), (4.26) and (4.34), it is easy to see

L 7@ 1 Y _ /
1+EskMk se=1+ Eter +or,(1)=14m'(z)+or,1).

This, together with (6.7), Lemma 4.2 and (6.3), ensures that
Hi = -m*@)(1 +m'(2)) Emy(2) + o(1) = —m> () (1 + m'(2)). (6.11)
Consider H, now. By the previous estimation of E ji; included in H; we obtain
Efi} = E(jix — Ejuw)* +0(n™?). 6.12)
Furthermore a direct calculation yields

E(iix — Eji)* = S1 + 52, (6.13)
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where

1 2
S1= ;E(X%l — 1)+ Ey3, Sz =821 + S22,

1
S = ——E(@M — ExM)?,

n2p?
Sp = —np\z/@E[(sZsk —p)(sIMPs, — EeMM)].
We claim that
nS; — va — 1 42m'(2), nSy — 0, nSy» — 0, as n — oo. (6.14)
Indeed, with notation M(l) (Cl(l))pxp,l j=1,...,p, as illustrated in (4.16), we have

W Y 3P Ela’ 2 — 0. Via this, (4.34) and (4.6), a simple calculation yields

2
1
nEykzl:—z (Zx,kxjka +Z X% — <”>

i#j

(sz,kX,kX;ktha” “)> ZE [(x% = 1)*(a")]

iF#j s#t

1
p2
2 M, (1> 2 ()2

—2 Za —i—o(l)——Etr(M )" +o(l)

= gEtrD—2+<>(1)—>2m’( )
= n k Z).

Since E|X %] —1|> = vg — 1, we have proved the first result of (6.14). By Burkholder’s inequality,
Lemma 4.4, (4.6), (4.18) and (4.23)

2
1
n|521|:K<1+z /ﬁ) —E|M<1>(z)|2+1<n—1 <Kn . (6.15)
p) n

Furthermore,

) P
n|Sxp| = W‘E<Z(Xr2k - 1)) : <%:Xikxjkai(;)>

t=1

2
pnp

|E(X121 - 1)X]21 . EtI'M](Cl)| < K\/z_i_o(nﬁ) 0.
p
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Therefore, the proof of the second result of (6.14) is completed. We then conclude from (6.14),
(6.12), (6.13) and (6.7) that

Hy — m*(2)(2m'(z) +vq — 1). (6.16)
Finally, by (6.6), (6.8), (6.9), (6.11) and (6.16), we obtain
nEw, = m3(z)(m’(z) + vy —2) +o(1).

Lemma 6.1 is thus proved. This finishes the proof of Proposition 3.1.

7. Proof of Proposition 3.2

Recall the definition of U,, below Proposition 3.2 or in Section 4. For i =1, r, by Lemma 4.4

2
E 5/ E|M,§1)(z)|2dz§K||§,~||—>0, asn — oo, vy — 0.
<

/ M ()1 (Uf) dz
Si

Moreover,

< | |EMy(2)|dz— 0, asn — 0o, v — 0,
G

/ EM,(2)I(Uy)dz
o

where the convergence follows from Proposition 6.1.

8. Calculation of the mean and covariance

To complete the proof of Theorem 1.1 and Corollary 1.1, it remains to calculate the mean function
and covariance function of Y (f) and X (f). The computation exactly follows Bai and Yao [6]
and so we omit it.
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