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This paper answers a question of Émery [In Séminaire de Probabilités XLII (2009) 383–396 Springer]
by constructing an explicit coupling of two copies of the Beneš et al. [In Applied Stochastic Analysis
(1991) 121–156 Gordon & Breach] diffusion (BKR diffusion), neither of which starts at the origin, and
whose natural filtrations agree. The paper commences by surveying probabilistic coupling, introducing
the formal definition of an immersed coupling (the natural filtration of each component is immersed in
a common underlying filtration; such couplings have been described as co-adapted or Markovian in older
terminologies) and of an equi-filtration coupling (the natural filtration of each component is immersed in the
filtration of the other; consequently the underlying filtration is simultaneously the natural filtration for each
of the two coupled processes). This survey is followed by a detailed case-study of the simpler but potentially
thematic problem of coupling Brownian motion together with its local time at 0. This problem possesses its
own intrinsic interest as well as being closely related to the BKR coupling construction. Attention focusses
on a simple immersed (co-adapted) coupling, namely the reflection/synchronized coupling. It is shown that
this coupling is optimal amongst all immersed couplings of Brownian motion together with its local time at
0, in the sense of maximizing the coupling probability at all possible times, at least when not started at pairs
of initial points lying in a certain singular set. However numerical evidence indicates that the coupling is not
a maximal coupling, and is a simple but non-trivial instance for which this distinction occurs. It is shown
how the reflection/synchronized coupling can be converted into a successful equi-filtration coupling, by
modifying the coupling using a deterministic time-delay and then by concatenating an infinite sequence of
such modified couplings. The construction of an explicit equi-filtration coupling of two copies of the BKR
diffusion follows by a direct generalization, although the proof of success for the BKR coupling requires
somewhat more analysis than in the local time case.
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coupling; coupling; excursion theory; filtration; immersed coupling; Lévy transform; local time;
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1. Introduction

We begin with a brief survey of probabilistic coupling, which serves both to introduce some key
concepts and to establish a context for the results proved in this paper. The concept of coupling
has a long and distinguished history, dating back to Doeblin [11] (a biographical appreciation is
given by Lindvall [27]). The method is now the subject of two scholarly expositions (Lindvall
[28], Thorisson [40]), and has become a standard tool of the working probabilist (a somewhat
more general concept appears in ergodic theory as the notion of a “joining”). Historically the
thematic problem for coupling is that of constructing two copies of a given process on the same
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sample space, starting at two different starting points but eventually coinciding. Such a coupling
is said to be successful. In fact, many applications of coupling do not address the objective of
eventually coinciding; nevertheless the thematic problem has been formative for the theory and
remains significant in developing methods and intuition. Probabilistic coupling in general has
found application throughout probability, for example in construction of gradient estimates, in
distributional approximation (for instance, Stein–Chen approximation), in perfect simulation,
and in monotonicity results for heat equations in insulated domains. The study of coupling in its
own right is therefore a foundational topic for probability theory.

A landmark development in the study of coupling was the introduction of the notion of maxi-
mal coupling: a coupling which simultaneously maximises the chances of succeeding before time
t for all possible t . Perhaps it will surprise the reader to learn that maximal couplings always ex-
ist: this was established by Griffeath [15] for time-homogeneous discrete Markov chains and
by Goldstein [14] for more general discrete-time processes, based on a tail σ -algebra condition.
(Note that even a maximal coupling need not necessarily have probability 1 of succeeding!) See
also the very explicit construction given by Pitman [31] for time-homogeneous discrete Markov
chains, Sverchkov and Smirnov’s [38] note on coupling for continuous time using the J1 topol-
ogy, and Thorisson’s [39] notion of shift coupling, which weakens the coupling requirement by
allowing for general time-shifting of the coupled processes. (An informative treatment of some
subtleties is given in the treatment of “faithful coupling” in Rosenthal [35].)

In general, the construction of maximal couplings is a demanding business: for substantial
applications the task of construction is liable to require at least as much knowledge of the process
in question as might be needed to solve the original problem to which the coupling method
is to be applied. (Notwithstanding this general and justifiable pessimism, the simple reflection
coupling of Brownian motion is a successful maximal coupling. Attention was originally drawn
to this construction by the influential unpublished preprint of Lindvall [26].) More commonly,
one works with less powerful couplings that are more easily constructed and analyzed, such as
“co-adapted couplings”. Co-adapted couplings (sometimes also called “Markovian couplings” in
the context of coupling of Markov processes) require the two copies of the processes concerned
to be adapted to the same filtration, and to have the same conditional laws based on conditioning
on filtration σ -algebras. In the succinct language of filtrations (cf. Beghdadi-Sakrani and Emery
[2], Émery [12,13]), the natural filtrations of the two processes must both be immersed in a
common filtration (that is, the martingales of the natural filtrations must remain martingales in
the larger common filtration). We therefore propose and adopt the new terminology of immersed
couplings to replace the nomenclature of co-adapted or Markovian couplings:

Definition 1. Consider two processes X and Y . An immersed coupling of X and Y is a construc-
tion of copies X̂, Ŷ of X, Y , defined on the same probability space (�,F ,P), and adapted to
the same filtration {Ft : t ≥ 0}, such that any martingale in the natural filtration of X̂ remains a
martingale in the common filtration {Ft : t ≥ 0}, and likewise for any martingale in the natural
filtration of Ŷ .

The extent to which immersed couplings are less powerful than maximal couplings was as-
sessed in a preliminary way by Burdzy and Kendall [5], where they were studied in the guise
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of Markovian couplings. As part of a study of shy coupling (the antithesis of the thematic cou-
pling problem, in which one seeks to construct coupled copies which almost surely stay at least
a fixed positive distance apart), Kendall [21], Lemma 6, records a characterization of immersed
couplings of Brownian motion which has long been part of the general folklore of stochastic
calculus: any immersed coupling of two d-dimensional Brownian motions A and B can be rep-
resented by the stochastic differential equation

dA = J� dB + K� dC, (1)

where C is a Brownian motion independent of B (perhaps to be defined after augmenting the
filtration, if this is necessary to construct C), and J and K are two (d × d) matrix-valued pre-
dictable random processes satisfying J�J +K�K = I where I is the (d ×d) identity matrix. We
can view J as a predictable matrix-valued control for a somewhat degenerate stochastic control
problem. (An informal discussion of links between stochastic control and coupling can be found
in Kendall [20], Section 2.)

The terminology of immersed couplings is useful not only for its succinct definition, but also
because it draws attention to a stricter constraint. Additionally, one could demand that either of
the coupled copies could be constructed from the other, which corresponds to the requirement
that the coupling possesses the equi-filtration property:

Definition 2. Consider two processes X and Y . An equi-filtration coupling of X and Y is an
immersed coupling X̂, Ŷ such that the natural filtration of X̂ is equal to that of Ŷ .

Of course it is the case that the equi-filtration coupling property follows from each natural
filtration being immersed in the other. Consider one of the simplest nontrivial examples of cou-
pling; Lindvall’s Brownian reflection coupling is not only a successful maximal coupling, but
also immersed and even equi-filtration. This is a very special case; for example Connor [10],
Ph.D. thesis, considers reflection coupling of the Ornstein–Uhlenbeck process, if one copy of
the Ornstein–Uhlenbeck process is started from 0 and the other copy is started from equilibrium.
He notes that reflection coupling of the driving Brownian motions is clearly immersed but is not
maximal even in the simple case. (Further exploration of the difference between maximality and
immersion for couplings can be found in Kuwada and Sturm [25], Kuwada [24].)

The first objective of this paper is to investigate and explore properties of the construction of
immersed and equi-filtration couplings in the simple case of coupling Brownian motion together
with local time at 0. As a coupling problem this is only a little more complicated than the basic
Brownian motion case, but it produces an example of existence of a successful immersed cou-
pling (the reflection/synchronized coupling, Definition 3) which is optimal among all immersed
couplings but (according to numerical evidence) is not maximal (Theorems 8, 9, 12 below). The
reader may wish to compare other work on optimal immersed couplings for random walks on
the line, on hypercubes and on hypercomplete graphs (Rogers [33], Connor and Jacka [9], Con-
nor [8]).

A significant motivation for this study arises from the consideration that the reflection coupling
has been a model for a wide variety of more sophisticated immersed couplings. For example, re-
flection coupling has been generalized to the case of elliptic diffusions with smooth coefficients
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(Lindvall and Rogers [29], Chen and Li [7]), and also to the case of Riemannian Brownian
motion (Kendall [18]), in which case there are connections with curvature properties. More re-
cently, coupling techniques have been extended to cover some cases of hypoelliptic diffusions
(Ben Arous et al. [3], Kendall and Price [23], Kendall [20,22]); essentially the issue here is to
couple simultaneously not only Brownian motion but also one or more path functionals of the
Brownian motion, namely time integrals, iterated time integrals, and Itô stochastic area integrals.
Here it is necessary to augment the reflection coupling strategy with other coupling strategies,
notably synchronous coupling and rotation coupling. In the stochastic differential framework (1),
synchronous coupling corresponds to K = 0 and J = I, while rotation coupling corresponds to
K = 0 and J equal to a d-dimensional rotation. (It is interesting to compare this direction of re-
search with the work of Émery [12], Theorem 1; this characterizes Brownian filtrations using the
notion of “self-coupling” – jointly immersed Brownian filtrations for which a prescribed scalar
functional is approximately coupled.)

While Brownian motion together with local time at 0 does not form a hypoelliptic diffusion in
the strict sense, nevertheless the question of its coupling theory is clearly related to the hypoel-
liptic couplings mentioned above. The successful reflection/synchronized coupling is not only
simple, but also (in view of the results proved here) evidently the right coupling for this situ-
ation. It is reasonable to hope that a careful and complete study of the reflection/synchronized
coupling will be helpful in formulating and studying coupling methods for more general situa-
tions, as well as suggestive for coupling theory for hypoelliptic diffusions. The second objective
of the paper is to demonstrate the first fruits of this aspiration and is fulfilled in Theorem 18 be-
low, exhibiting a successful equi-filtration coupling for the BKR diffusion. The approach follows
closely the methods developed for the reflection/synchronized coupling for Brownian motion
together with local time at 0.

In summary, then, this paper conducts a case study of an almost surely successful coupling of a
simple non-elliptic diffusion in the context of immersed and equi-filtration couplings; namely the
reflection/synchronized coupling for Brownian motion together with local time at 0. The results
of this case study are then applied to answer a question raised by Émery [13], by constructing an
explicit equi-filtration coupling for BKR diffusions neither of which are begun at the origin.

Section 2 introduces the simple reflection/synchronized coupling for Brownian motion to-
gether with local time at 0, exploiting Tanaka’s formula and the Lévy transform to re-cast the
problem in terms of coupling Brownian motion together with a variant of its running supremum.
The simplicity of this coupling allows for explicit calculation: in particular it is shown that the
reflection/synchronized coupling is optimal amongst all immersed couplings, at least when their
starting conditions are non-singular (here “optimal” means optimal in the sense of maximizing
the probability of coupling by a given time t , for all possible times t , while “singular” means
that in the re-cast form the two running suprema processes do not start from the same level).
The moment-generating function for the coupling time is computed, and compared numerically
with the moment-generating function for the maximal coupling time: numerical calculation then
indicates that the reflection/synchronized coupling cannot be a maximal coupling.

The reflection/synchronized coupling is an immersed coupling but is not equi-filtration. Sec-
tion 3 shows that if the couplings are perturbed by a simple deterministic time delay then it
is possible to use a sequence of the resulting approximate couplings to construct a successful
equi-filtration coupling of Brownian motion together with its local time at 0.
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Section 4 introduces the BKR diffusion, sketches the immersed coupling described in Émery
[13] (which bears a strong family resemblance to the reflection/synchronized coupling of Sec-
tion 2, and which therefore is described here as a variant reflection/synchronized coupling), and
notes that significant components of this variant reflection/synchronized coupling are actually
immersed in the natural filtrations of both coupled diffusions. This is used to generate a success-
ful equi-filtration coupling using the strategy of Section 3, hence answering Émery’s question.

The paper is concluded by Section 5, which reviews the results of the paper and discusses
some further research questions.

2. Coupling Brownian motion together with local time

The purpose of this section is to exhibit a successful immersed (but not equi-filtration) coupling
for the two-dimensional diffusion made up of Brownian motion together with local time at zero.
The simple construction (known already to Émery [13]) is based on Tanaka’s formula for Brow-
nian local time, and permits informative exact computations. In particular we are able to prove
optimality of this coupling amongst all immersed couplings (Theorem 8), so long as the initial
conditions are non-singular in a manner to be explained below, and thus to establish the opti-
mal rate of immersed coupling (Theorem 9). We note in passing that this notion of optimality is
distinct from the notion of ρ-optimality introduced by Chen [6].

2.1. Representation via the Tanaka formula

Recall the Tanaka formula or Lévy transform, expressing Brownian local time at 0 in terms of a
stochastic integral:

d|X| = sgn(X)dX + dL(0). (2)

Here X is a real Brownian motion and L(0) is the local time accumulated by X at 0. An immediate
consequence of (2) is Lévy’s famous transform, which represents |X| and L(0) in terms of a new
real Brownian motion B and S, a variant on the running supremum of B:

B = L(0) − |X|,
(3)

S = L(0).

It follows from (3) that B = L
(0)
0 − |X0| −

∫
sgn(X)dX and St = max{L(0)

0 , sup{Bs : s ≤ t}}, so
S does not start at B0 if |X0| > 0.

Evidently it suffices to exhibit successful coupling strategies for (B,S); off the line X = 0,
this Lévy transform forms a 2 : 1 representation of the original pair (X,L(0)); the two pre-images
under the Lévy transform meet together when the Brownian motion X hits 0.
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2.2. The reflection/synchronized coupling for immersed coupling of
Brownian motion together with local time

The above considerations show that it suffices to exhibit a successful immersed coupling be-
tween (a) the pair (B,S) above and (b) a copy (B̃, S̃) started with different initial conditions.
Were the corresponding X and X̃ not to agree at coupling, one could simply continue with syn-
chronized coupling until |X| = |X̃| hits 0. However, the reflection/synchronized coupling given
below actually terminates with B = S and B̃ = S̃, so at the end of this coupling we already have
|X| = |X̃| = 0. Without loss of generality, suppose that B0 = L

(0)
0 − |X0| ≥ B̃0 = L̃

(0)
0 − |X̃0|.

Definition 3 (Reflection/synchronized coupling). The reflection/synchronized coupling algo-
rithm consists of two stages:

1. Reflection coupling (dB = −dB̃) till the time T1 = inf{t : Bt = B̃t } (the first time that B

and B̃ meet); then (if (B,S) is not already coupled with (B̃, S̃)).
2. Synchronized coupling (dB = +dB̃), run from time T1 until the time T2 = inf{t > T1: Bt ≡

B̃t = ST1 ∨ S̃0} that B ≡ B̃ first hits the higher level ST1 ∨ S̃0 after time T1.

Note that at the end of stage 2 we have B = S and B̃ = S̃, so |X| = |X̃| = 0.
It is possible for the coupling of (B,S) and (B̃, S̃) to be abbreviated to a one-stage (reflection)

coupling in case S0 = S̃0, for if it happens that B (and therefore B̃) both stay below S0 = S̃0 up to
time T1 then coupling will be successfully achieved at time Tcouple = T1 < T2. However we will
see below that this case can be viewed as singular, as a consequence of Lemma 6. Moreover if
X0 and X̃0 are of opposite sign then they will not couple at this stage: it still will be necessary to
proceed to completion of the synchronization stage so that BT2 = ST2 = B̃T2 = S̃T2 and therefore
XT2 = X̃T2 = 0.

If not completed at the end of the reflection stage, then the coupling will succeed at the time
Tcouple = T2; at that moment in time it is the case that simultaneously B = B̃ (since they are
coupled by synchronization after meeting at time T1) and S = S̃(= B = B̃). Note that the [T1, T2]
stage depends on the behaviour of B over the initial time interval [0, T1]. Indeed, note that by
construction (and particularly by choice of initial conditions B0 = L

(0)
0 − |X0| ≥ B̃0 = L̃

(0)
0 −

|X̃0|) it is the case that B̃ will stay below or equal to B until time T2, and hence ST1 ∨ S̃0 =
ST1 ∨ S̃T1 . The construction is illustrated in Figure 1.

The coupling is almost surely successful, since both the first and second stages correspond to
times taken for real Brownian motion to hit specified levels. Indeed, the coupling of (B,S) and
a copy (B̃, S̃) is equi-filtration, not just immersed, because the stopping times T1 and T2 can be
rewritten as hitting times for B in its natural filtration (successively, from B0 to 1

2 (B0 + B̃0), then
from 1

2 (B0 + B̃0) to ST1 ∨ S̃0), and similarly also as hitting times for B̃ in its own natural filtration.
(In particular, T1 can be rewritten as the hitting time of B̃ moving from B̃0 to 1

2 (B0 + B̃0).)
The corresponding immersed coupling of (X,L(0)) with (X̃, L̃(0)) cannot be an equi-filtration
coupling, because the natural filtration of X has to be augmented in order to supply appropriate
randomness for the signs of the excursions of X̃ from zero. (See Émery [13], Lemma 5, for a
similar augmentation in the more complicated case of BKR diffusions.)
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Figure 1. Illustration of a successful reflection/synchronized coupling of Brownian motion B together
with S.

There is a natural reformulation of reflection/synchronized coupling in terms of stochastic
calculus: set dB̃ = J dB up to the coupling time T2, where the predictable control J is given
very simply by

Jt =
{−1 for t < T1 (reflection stage),

+1 for T1 ≤ t ≤ T2 (synchronized stage).
(4)

The failure of mutual immersion for the coupling of (X,L(0)) with (X̃, L̃(0)) is immediately
apparent from the relevant stochastic differential equation

dX̃ = sgn(X̃)J sgn(X)dX, (5)

which is an instance of Tanaka’s classic example of a Brownian motion X̃, defined as a weak
but not strong solution of a stochastic differential equation driven by a second Brownian motion∫

J sgn(X)dX.

2.3. Optimality amongst immersed couplings

The reflection/synchronized coupling strategy is faster than all other immersed couplings, in the
sense that it minimizes

P[Tcouple > t]
simultaneously for all t > 0, except perhaps for the singular case of S0 = S̃0 (this singular case is
discussed around the statement of Lemma 6 below). Equivalently the distribution of the coupling
time Tcouple for any immersed coupling exhibits stochastic domination over the distribution of
Tcouple for the reflection/synchronized coupling (except perhaps in singular cases).
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Before stating and proving a theorem which asserts this optimality, we first establish some
preparatory lemmas. The first one concerns the coupling of two Brownian motions on [0,∞)

that are stopped when the first one of them hits 0.

Lemma 4. Suppose the planar process (U,V ) is composed of two Brownian motions which
are related by an immersed coupling, and suppose that (U,V ) is started at a point (U0,V0) in
the interior of the quadrant {(u, v): u ≥ 0, v ≥ 0}. Let T be the first time that (U,V ) hits the
boundary of the quadrant. Suppose it is desired to construct the coupling so that P[(UT ,VT ) =
(0,0)] = 1. This is possible if and only if U0 = V0 and the coupling is the synchronized coupling.

Proof. Using the formalism of Itô [17] (see also Ikeda and Watanabe [16], Chapter III.1, and the
development in Kendall [19]) and the representation of immersed Brownian couplings given
in (1), the general law of (U,V ) under an immersed coupling produces dU2 = dV 2 = dt ,
Drift dU = Drift dV = 0, and dU dV = J dt for an arbitrary adapted integrand J ∈ [−1,1] which
can be viewed as the control for the stochastic control problem of maximizing the objective func-
tion P[(UT ,VT ) = (0,0)].

Without loss of generality, we may suppose that U0 ≥ V0 > 0. Note that under reflection cou-
pling (J = −1) the probability of (U,V ) hitting the diagonal {(u, v): u = v} before time T is
given by

�(U0,V0) = V0

(1/2)(U0 + V0)
.

We extend the definition of � to the case V0 ≥ U0 > 0 by setting �(U0,V0) = �(V0,U0), so
that

�(U,V ) = min

{
U

(1/2)(U + V )
,

V

(1/2)(U + V )

}
.

An application of Itô calculus shows that if U > V > 0 then, under a general control J ∈
[−1,1],

Drift d�(U,V ) = − 2

(U + V )3
(U − V )(1 + J )dt,

and this is non-positive, and vanishes only when J = −1. A similar result holds for V >

U > 0. On the other hand, if U0 = V0 > 0 and J = +1 then (U,V ) stays on the diagonal, so
that �(U,V ) then remains constant. An argument using the Itô–Tanaka formula for semimartin-
gales thus shows that �(U,V ) is a supermartingale for all immersed couplings of U and V , and
becomes a martingale only under the strategy “use reflection coupling till (U,V ) hits the diago-
nal or the boundary, then use synchronized coupling till (U,V ) hits the boundary”. It follows that
�(U0,V0) is the maximum of P[(UT ,VT ) = (0,0)] over all immersed couplings, and is attained
only by using this strategy. The lemma follows. �

As a consequence of the lemma, we can prove the optimality of the reflection/synchronized
coupling in the special case when B0 = B̃0. This allows us to restrict attention to immersed
couplings which preserve the ordering of B and B̃ .
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Lemma 5. Consider the reflection/synchronized coupling (Example 3) for the special case B0 =
B̃0. This is the only optimal coupling amongst all immersed couplings started with B0 = B̃0, and
so (since the reflection stage succeeds immediately) the uniquely optimal way to proceed is to
cease immediately if S0 = S̃0, and otherwise to conduct a synchronized coupling of B and B̃

until B ≡ B̃ hits S0 ∨ S̃0.

Proof. If S0 = S̃0, then coupling succeeds immediately and there is nothing to prove. Suppose
without loss of generality that S0 > S̃0. Coupling cannot succeed earlier than the first time T̃

at which B̃ hits S0, and if we employ synchronized coupling then coupling will succeed at this
hitting time.

This shows that synchronized coupling is optimal, but we require strict optimality. Consider a
second coupling which does not employ synchronized coupling throughout. It then follows that
there must be a moment, before time T̃ , at which either B > B̃ or B̃ > B . We can apply Lemma 4
to U = S0 −B and V = S0 − B̃; it follows that if synchronized coupling is not employed right up
to time T̃ , then there is a positive probability that one of two possible cases has occurred: either
B has already hit S0 by time T̃ , or B has not yet hit S0 by time T̃ . In the first case, the properties
of Brownian motion B show that almost surely ST̃ > S0, and so successful coupling must occur
after B̃ travels from S0 to ST̃ . In the second case, successful coupling must wait at least until B̃

and B meet after time T̃ .
It follows that, for any coupling other than synchronized coupling, (a) the coupling time can

be no less than T̃ , (b) there is a positive chance of it being strictly greater than T̃ . This establishes
the required stochastic domination (since T̃ is the hitting time of a real Brownian motion started
at B0 = B̃0 and rising to S0 > S0 ∨ S̃0) and so the lemma follows. �

In passing, we are now able to explain the reason why it is appropriate to describe as singular
the case when B0, B̃0 < S0 = S̃0. In this case it is possible for full coupling of (B,S) with (B̃, S̃)

to succeed as soon as B first meets B̃ , so long as B and B̃ do not hit S0 = S̃0 (as noted in
Section 2.2, this need not imply success of the coupling of X with X̃ at that time). The next
lemma shows that if S0 	= S̃0 then this early success cannot occur.

Lemma 6. Suppose S0 	= S̃0. Then an optimal immersed coupling of (B,S) and (B̃, S̃) succeeds
exactly at the first time when B , S, B̃ , and S̃ simultaneously coincide.

Proof. Consider first the case B0 = B̃0. As shown by Lemma 5, it is then the case that the only
optimal immersed coupling is provided by synchronized coupling until B = B̃ first hits S0 ∨ S̃0,
and the characterization of coupling by simultaneous coincidence is immediate.

Consider the case B̃0 < B0 (the case of B̃0 < B0 is entirely similar). It is a consequence of
Lemma 5 that optimality of the immersed coupling implies that the relationship B̃ ≤ B must
persist till full coupling is successful.

So further suppose that S̃0 < S0. In that sub-case it follows from B̃ ≤ B that the relationship
S̃ ≤ S must persist till full coupling is successful. Coupling cannot succeed till S̃ hits S, and when
that happens we must have B̃ = S̃. But in this sub-case we also have B̃ ≤ S̃ ≤ S and B̃ ≤ B ≤ S.
Consequently full coupling must succeed when S̃ first hits S, and at that time B , S, B̃ , and S̃

simultaneously coincide.
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Suppose on the other hand that S0 < S̃0. In that sub-case again, full coupling cannot succeed
before S hits S̃, at which time it is necessary that B also hits S̃. If it is further the case that
B̃ = B at that time, then full coupling succeeds in the manner prescribed by the lemma. If on
the other hand B̃ < B at that time, then (by the properties of Brownian motion) there are instants
immediately after this time at which B̃ < S̃ < B < S, and we can proceed as above. �

We shall now show that the distribution of the coupling time Tcouple under any immersed cou-
pling can be dominated in the limit (as N → ∞) by the distribution of Tcouple under an immersed
coupling whose predictable control J is restricted to values ±1 (thus, a “bang-bang” control),
and moreover such that J is constant on stochastic intervals [τ (N)

k , τ
(N)
k+1) defined as follows. For

any positive even integer N > 0, consider the one-dimensional lattice L(N) (depending implicitly
on B0, and B̃0)

L(N) = B0 + B̃0 − B0

N
Z =

{
B0 + k

N
(B̃0 − B0): k = 0,±1,±2, . . .

}
.

We define a mesh, a sequence of stopping times 0 = τ
(N)
0 < τ

(N)
1 < τ

(N)
2 < · · · , as a sequence of

“crossing times” for this lattice:

τ
(N)
k+1 = inf

{
t > τ

(N)
k : Bt ∈ L(N) \ {B

τ
(N)
k

}}.
Sampling using this mesh of stopping times has the effect of discretizing the Brownian motion
B into a random walk with steps ± 1

N
(B̃0 − B0).

Note, for an immersed coupling restricted to a control J which is locally constant with J = ±1
on each stochastic interval [τ (N)

k , τ
(N)
k+1) of the mesh:

1. both B and B̃ , when sampled at times 0 = τ
(N)
0 < τ

(N)
1 < τ

(N)
2 < · · · , belong to the lattice

L(N), since B̃ is obtained from B using a predictable control J formed from synchroniza-
tions and reflections and which alters only when B belongs to the lattice;

2. because N is even, Tcouple belongs to the set {τ (N)
0 , τ

(N)
1 , τ

(N)
2 , . . .};

3. finally, our candidate for optimality, the reflection/synchronized coupling (Example 3), can
itself be viewed as one of these couplings, since the control changes from +1 to −1 exactly
at one of the stopping times in the mesh. (This is the reason why it is convenient to work
with meshes of stopping times, rather than decompositions of the time axis into disjoint
dyadic intervals.)

We can now summarize and prove a result stating that an optimal immersed coupling can be
approximated in distribution by appropriately chosen “bang-bang” controls of the above form.
The proof is related to the method of proof of Émery [12], Proposition 2; however here we need
the control J to have the “bang-bang” property rather than simply to be locally constant, and to
be composed of stopping times drawn from a mesh of stopping times as specified above.

Lemma 7. For any fixed t > 0, any optimal immersed coupling of (B,S) and (B̃, S̃) can be ap-
proximated weakly over [0, t] (when viewed as a probability distribution on the metric space of
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4-dimensional continuous trajectories, equipped with the sup-norm) by “bang-bang” immersed
couplings for which the control J takes values ±1 only, and only changes at hitting times be-
longing to some mesh.

Note that the lemma does not assert that the “bang-bang” couplings are successful!

Proof of Lemma 7. Consider a general immersed coupling determined by B̃ = B̃0 + ∫
J dB

and subject to the constraint that the coupling is synchronized once B and B̃ have met. (By
Lemma 5, all optimal immersed couplings must be of this form.) Since |J | ≤ 1, for each t > 0
we have E[∫ t

0 J 2 ds] < ∞, and moreover for each ε > 0 we may find continuous predictable f

with E[∫ t

0 |f − J |2 ds] < ε2/4 (for example, ft = 2
δ2

∫ t

t−δ
(t − s)Js ds for sufficiently small δ). It

then follows that for sufficiently large N we may approximate f in L2 by piece-wise constant
J [c] such that J [c] ∈ [−1,1] is predictably constant on each dyadic interval [τ (N)

k , τ
(N)
k+1) of the

mesh, and E[∫ t

0 |f − J [c]|2 ds] < ε2/4, hence

E

[∫ t

0

∣∣J − J [c]∣∣2 ds

]
< ε2.

Doob’s submartingale inequality then implies that we can control

sup
s≤t

{∣∣∣∣∫ s

0
J dB −

∫ s

0
J [c] dB

∣∣∣∣},

so that B̃0 + ∫
J [c] dB is a good path-wise approximation to B̃ = B̃0 + ∫

J dB .
While J [c] is piecewise-constant on stochastic intervals related to the mesh, it does not take

values in {±1}. We need an approximation based on a “bang-bang” control J [bb], which is con-
strained by J [bb] ∈ {±1} as well as by the requirement that J [bb] is predictably constant on
stochastic intervals [τ (M)

k , τ
(M)
k+1 ) which now must be formed on a new mesh, defined for some

still larger even integer M = 2rN , for an integer r > 0. Given M > N , we define J [bb];(M) to
“track” J [c] in the following co-adapted way:

J
[bb];(M)

τ
(M)
k

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1 if

∫ τ
(M)
k

0
J [bb];(M) du ≤

∫ τ
(M)
k

0
J [c] du,

−1 if
∫ τ

(M)
k

0
J [bb];(M) du >

∫ τ
(M)
k

0
J [c] du.

(6)

Since |J | ≤ 1, it follows that we have the following bound for s ∈ [0, t]:∣∣∣∣∫ s

0
J [c] du −

∫ s

0
J [bb];(M) du

∣∣∣∣ ≤ 2 sup
{(

τ
(M)
k+1 ∧ t

) − (
τ

(M)
k ∧ t

)
: k = 1,2, . . .

}
, (7)

converging almost surely to zero as 2r = M/N → ∞.
Consider the sequence of two-dimensional processes {(B, B̃0 + ∫

J [bb];(M) dB): M = 2rN},
defined on the time-range [0, t]. The one-dimensional coordinate processes being Brownian mo-
tions, it follows that this sequence is tight. Any convergent subsequence converges to a limit for
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which the one-dimensional coordinate processes are Brownian motions; moreover, using (7), we
may deduce that in the limit the product of the pair of one-dimensional coordinate processes is
equal to the sum of a martingale and the integral

∫ s

0 J [c] du. Hence by semimartingale Itô cal-
culus the limit has the law of (B, B̃0 + ∫

J [c] dB), no matter what convergent subsequence is
chosen, and therefore by the theory of weak convergence we may deduce that the sequence of
random paths (B, B̃0 + ∫

J [bb];(M) dB) converges weakly to this limit.
It follows that we can choose a sequence of “bang-bang” controls J (n), constant on appropriate

meshes {[τ (Mn)
k , τ

(Mn)
k+1 ): k = 1,2, . . .} (with Mn → ∞), such that (B, B̃0 + ∫

J (n) dB) converges
weakly (using supremum norm over the time interval [0, t]) to the immersed coupling (B, B̃)

which was originally under consideration. �

We can now argue for optimality of the reflection/synchronized coupling in the general non-
singular case (S0 	= S̃0). We need only consider the case when B0 	= B̃0, since Lemma 5 covers
the case of B0 = B̃0; indeed it suffices to consider only those immersed couplings which are
constrained to be synchronized couplings once B and B̃ have met. Employing the terminology of
Section 2.2, we set T1 = inf{t : Bt = B̃t }. Thus, we need consider only those immersed couplings
for which Jt = 1 once t > T1.

Theorem 8. Suppose that B0 	= B̃0 and S0 	= S̃0. The reflection/synchronized coupling (Exam-
ple 3) is optimal amongst all immersed couplings of Brownian motion together with local time.

Proof. As noted above, by Lemma 5 we may restrict attention to immersed couplings for which
(without loss of generality) B ≥ B̃ , and such that B ≡ B̃ after T1 = inf{s: Bs = B̃s}. Moreover,
by the argument of Lemma 6, at the coupling time Tcouple we must have BTcouple = STcouple =
B̃Tcouple = S̃Tcouple .

The first step is to use the weak approximations (B, B̃0 + ∫
J (n) dB) of (B, B̃) (as given in

Lemma 7) to build successful immersed couplings of (B,S) and (B̃, S̃) with coupling times
which are in the limit stochastically dominated by the coupling time derived from (B, B̃).
For convenience, we employ the Skorokhod representation of weak convergence; augmenting
the probability space if necessary, we construct a copy (B(n), B̃(n) = B̃0 + ∫

J ∗,(n) dB(n)) of
(B, B̃0 + ∫

J (n) dB) on the same probability space as (B, B̃) such that almost surely B(n) → B

and B̃(n) → B̃ uniformly on the time interval [0, t]. (We note in passing that this construction
need not respect the underlying filtration. The stochastic integrand J ∗,(n) and the stochastic in-
tegral

∫
J ∗,(n) dB(n) are defined with respect to the natural filtration of B(n), which need not

immerse in the original filtration!)
Although the target coupling of (B,S) and (B̃, S̃) couples at Tcouple, we should not suppose

that (B(n), S(n)) and (B̃(n), S̃(n)) couple at this time (using S(n) and S̃(n) to denote the corre-
sponding supremum processes). However, we can modify (B(n), B̃(n)) to produce a coupling
which does not succeed much later than the original coupling.

Indeed, we have restricted attention to immersed couplings such that at the coupling time
Tcouple we have BTcouple = STcouple = B̃Tcouple = S̃Tcouple . Accordingly, we may choose a sequence
εn → 0 such that

P
[
B

(n)
Tcouple

, S
(n)
Tcouple

, B̃
(n)
Tcouple

, S̃
(n)
Tcouple

all lie within ± εn of each other
] ≥ 1 − εn.
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Accordingly, if we set

T
(n)
3 = inf

{
s: B(n)

s , S(n)
s , B̃(n)

s , S̃(n)
s all lie within ± εn of each other

}
,

then

P
[
T

(n)
3 > t

] ≤ P[Tcouple > t] + εn.

But at time T
(n)
3 we can modify the construction of (B(n), S(n)) and (B̃(n), S̃(n)) to use the

reflection/synchronized coupling (Example 3), obtaining successful coupling at time T
(n)

couple ≥
T

(n)
3 . As ε → 0 so we can deduce by scaling that the extra time T

(n)
couple − T

(n)
3 required for

success of this final coupling must tend to zero in probability.
It follows from these arguments that the infimum of the probability of failing to couple before

time t , for any fixed t > 0,

P[Tcouple > t],
can be approached by considering P[Tcouple > t + εn] for suitable εn → 0 and immersed cou-

plings based on “bang-bang” controls J [bb] constrained by change only at stopping times taken
from meshes 0 = τ

(N)
0 < τ

(N)
1 < τ

(N)
2 < · · · , and which become synchronous after B and B̃ first

meet.
Consider such an immersed coupling with control J [bb]. For a fixed t > 0, we consider the

following value function, defined for 0 ≤ u < t :

V (u;b, b̃, s, s̃)
(8)

= P[Tcouple > t − u|Bu = b, B̃u = b̃, Su = s, S̃u = s̃; reflection/synchronized coupling].
We are particularly interested in the discrete-time process obtained by sampling at stopping times
taken from the specified mesh, but stopping at the terminal time t :{

Zn = V
(
τ (N)
n ∧ t;B

τ
(N)
n ∧t

, B̃
τ

(N)
n ∧t

, S
τ

(N)
n ∧t

, S̃
τ

(N)
n ∧t

)
: n = 0,1,2, . . .

}
.

It follows by definition that V (u;Bu, B̃u, Su, S̃u) is a bounded martingale under the reflec-
tion/synchronized coupling. Under this coupling Z is a discrete-time martingale since it is ob-
tained from the bounded process {Vu∧t : u ≥ 0} by sampling at stopping times. We shall show that
Z is a supermartingale under the coupling specified by J [bb], and moreover that the martingale
property cannot hold if J [bb] = +1 over the initial time interval [0, τ

(N)
1 ). Arguing inductively,

this suffices to establish the theorem.
The crux of the matter is to consider the behaviour of the value function at time zero if the

initial segment of coupling is synchronized. To this end, we make a special construction of the
reflection/synchronized coupling referred to by the value function: we suppose two independent
Brownian motions are employed (both begun at 0), namely B(r) to drive the reflection stage of
the coupling, and B(s) to drive the synchronized stage. We set

• τ
(N;s)
1 = inf{t > 0: |B(s)

t | = 1
N

(B0 − B̃0)},
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• T
(r)
1 to be the time when B(r) first hits − 1

2 (B0 − B̃0), corresponding to the end of the
reflection stage,

• and M(r) = sup{B(r)
s : s ≤ T

(r)
1 }+B0 to be the maximum level achieved during the reflection

stage.

Then the reflection/synchronized coupling time corresponds in law to T
(∗)
3 = T

(r)
1 + inf{s: B

(s)
s +

1
2 (B0 + B̃0) = max{S0 ∨ S̃0,M

(r)}}, and so Z0 = P[T (∗)
3 > t].

Now consider the effect of commencing with a session of synchronized coupling. We consider
two possible cases. Suppose in the first case that

M(r) − 1

N
(B0 − B̃0) ≤ S0 ∨ S̃0.

Then we can represent the initial session of synchronized coupling by using B(s)|[0,τ
(N;s)
1 )

, and

then replacing B
(s)
t by B

(s)

t+τ
(N;s)
1

− B
(s)

τ
(N;s)
1

. Evidently the distribution of T
(∗)
3 is unaffected by this

change. If furthermore

M(r) + 1

N
(B0 − B̃0) ≤ S0 ∨ S̃0

then the reflection stage will start at time τ
(N;s)
1 at level B

(s)

τ
(N;s)
1

, moreover by the end of the re-

flection stage the supremum of the coupled processes will not exceed S0 ∨ S̃0, and the subsequent
synchronization stage will have to move from B

(s)

τ
(N;s)
1

+ 1
2 (B0 + B̃0) to S0 ∨ S̃0. It follows that

T
(∗)
3 is still the coupling time. If on the other hand

M(r) + 1

N
(B0 − B̃0) > S0 ∨ S̃0,

then there is a possibility that the supremum of the coupled processes will exceed S0 ∨ S̃0. How-
ever, the subsequent synchronization stage will still have to move from B

(s)

τ
(N;s)
1

+ 1
2 (B0 + B̃0) to

S0 ∨ S̃0, but may have to move even further. Thus, the coupling time still cannot occur earlier
than T

(∗)
3 .

Suppose in the second case that

M(r) − 1

N
(B0 − B̃0) > S0 ∨ S̃0.

Then we can represent the initial session of synchronized coupling by using an independent copy
B̂|[0,τ̂

(N;s)
1 )

of B|[0,τ
(N;s)
1 )

, and restarting the construction at the new starting points B0 ± 1
N

(B0 −
B̃0), B̃0 ± 1

N
(B0 − B̃0) (same sign for each initial increment). Regardless of the sign of the initial

increment, coupling occurs at τ̂
(N;s)
1 + T

(∗)
3 , so is delayed relative to T

(∗)
3 .



1028 W.S. Kendall

It follows from these arguments that an initial session of synchronized coupling followed by
reflection/synchronized coupling cannot increase the probability of successful coupling by time t

compared with that of reflection/synchronized coupling, and has a positive chance of reducing it;
consequently Z is a supermartingale and the martingale property for Z cannot hold if J [bb] = +1
over the initial time interval [0, τ

(N)
1 ).

Since Z is a martingale for the reflection/synchronized coupling, this suffices to establish the
theorem. �

It is likely that the reflection/synchronized coupling is the unique optimal immersed coupling,
but we do not pursue this technicality here.

In the singular case the value function (8) takes on a more complicated form, and the above
approach in this case will no longer settle whether or not the reflection/synchronized coupling is
optimal amongst immersed couplings.

2.4. Rate of optimal immersed coupling

We now elicit the rate at which the reflection/synchronized coupling occurs. This is accomplished
by calculating the moment generating function of the optimal immersed coupling time in the
non-singular case of S0 	= S̃0, supposing (without loss of generality) that B0 > B̃0.

Theorem 9. Let Tcouple be the coupling time for Brownian motion together with local time, equiv-
alently for Brownian motion B together with its supremum S, using the reflection/synchronized
coupling described above. Let B̃ and S̃ be the corresponding coupled quantities. Under the non-
singular conditions S0 = B0 > B̃0 = S̃0, the coupling time has the following moment generating
function:

E
[
exp(−αTcouple)

] = 1 + sinh

(√
α

2
(B0 − B̃0)

)
log tanh

(√
α

2

B0 − B̃0

2

)
.

Proof. Recall the notation of Section 2.2, and bear in mind the stipulation that S0 	= S̃0. It is
required to calculate the moment generating function

E
[
exp(−αTcouple)

] = E
[
exp(−αT2)

]
.

We can express T2 as the sum of (a) the Brownian hitting time T1, being the time taken for B

to pass from B0 to 1
2 (B0 + B̃0), and (b) a randomized Brownian hitting time T2 − T1, being the

time taken for B to pass from 1
2 (B0 + B̃0) to M1 = sup{Bt : t ≤ T1}. Then

T2 = T1 + H 1(max{S0 ∨ S̃0,M1} − 1
2 (B0 + B̃0)

)
,

where H 1(a) is the time taken for a standard Brownian motion to pass from 0 to a.
We outline the calculations for the special case B0 = S0 and B̃0 = S̃0 (though the calcula-

tions can be extended to the general case). Thus, we are concerned with the moment generating
function of T1 + H 1(M1 − 1

2 (B0 + B̃0)).
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The first task is to investigate aspects of the joint distribution of T1 and M1, specifically

Qα(a) = E
[
exp(−αT1);M1 < a + B0

]
.

This can be calculated using excursion theory, for example by adapting the calculations of Rogers
and Williams [34], §56. For convenience, we set α∗ = √

2α and b = B0 − 1
2 (B0 + B̃0) = 1

2 (B0 −
B̃0). Suppose that excursions are marked using an independent Poisson(α) point process on the
time axis. Then we distinguish the following kinds of excursions of B from B0, noting the rates at
which they happen when the excursions are viewed as points of a Poisson process of excursions
with respect to local time:

1. upward excursions which do not rise above the level a + B0 but are marked (occurring at
rate 1

2 (α∗ coth(α∗a) − 1
a
));

2. upward excursions which rise above the level a + B0 (occurring at rate 1
2a

);
3. downward excursions which do not fall below the level 1

2 (B0 + B̃0) but are marked (occur-
ring at rate 1

2 (α∗ coth(α∗b) − 1
b
));

4. downward excursions which fall below the level 1
2 (B0 + B̃0) (occurring at rate 1

2b
);

5. downward excursions which fall below the level 1
2 (B0 + B̃0) but are not marked before

hitting 1
2 (B0 + B̃0) (occurring at rate α∗

2 cosech(α∗b)).

These rates are computed as in the discussion of Rogers and Williams [34], Section 56, based
on the identification of the law of the Brownian excursion discussed there. Thus, Qα(a) can be
computed as the probability that we see a downward excursion falling to level 1

2 (B0 + B̃0) before
it has been marked (that is, an excursion of type 5) before we ever see upward excursions rising to
level a +B0 (of type 2), or staying below this level but marked (type 1), or downward excursions
which do not fall below the level 1

2 (B0 + B̃0) but are marked (type 3), or downward excursions
which fall below the level 1

2 (B0 + B̃0) but are marked before hitting 1
2 (B0 + B̃0) (type 4 but not

type 5).
We can therefore use Poisson point process theory to compute

Qα(a) = (α∗/2) cosech(α∗b)

1/(2a) + (1/2)(α∗ coth(α∗a) − 1/a) + (1/2)(α∗ coth(α∗b) − 1/b) + (1/(2b))
(9)

= sinh(α∗a)

sinh(α∗(a + b))
.

Consequently, we can show that the desired moment generating function is given by

E
[
exp(−αTcouple)

]
= E

[
exp

(
−α

(
T1 + H 1

(
M1 − 1

2
(B0 + B̃0)

)))]
=

∫ ∞

0
E

[
exp

(
−αH 1

(
a + B0 − 1

2
(B0 + B̃0)

))]
Qα(da)

=
∫ ∞

0
E

[
exp

(−αH 1(a + b)
)]

Q′
α(a)da
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= α∗ sinh
(
α∗b

)∫ ∞

0

E[exp(−αH 1(a + b))]
sinh2(α∗(a + b))

da

= α∗ sinh
(
α∗b

)∫ ∞

0

e−α∗(a+b)

sinh2(α∗(a + b))
da = 1 + sinh

(
α∗b

)
log tanh

(
1

2
α∗b

)
(using b = 1

2 (B0 − B̃0)). �

These excursion-theoretic calculations have been checked by simulation, although direct sim-
ulation is computationally demanding because of the heavy tails of the Brownian hitting times
involved in the reflection/synchronized coupling. This can to some extent be mitigated by the use
of “Rao–Blackwellization” using the known formula for the moment generating function of the
Brownian first passage time.

2.5. Comparison with maximal coupling

It is natural to ask whether the optimal immersed coupling is in fact a maximal coupling. Nu-
merical evidence is that this is not the case, as is readily seen by computing the total mass of
the minimum of the joint densities for (Bt , St ) and (B̃t , S̃t ), and comparing with the coupling
probability for optimal immersion coupling. From Revuz and Yor [32], Example 3.14 part 2o,
the joint density of Bt and St (supposing S0 = B0 = 0) is given by√

2

πt

2s − b

t
exp

(
− (2s − b)2

2t

)
for b ≤ s, s > 0. (10)

(This follows readily from the reflection principle.) We can use this to evaluate numerically the
moment generating function of the maximal coupling times (based on the maximal coupling
derived from the method suggested by Sverchkov and Smirnov [38]). A numerical comparison
of the moment generating functions for these couplings shows that they do not have the same
distribution. This is numerical evidence that the optimal immersed coupling is distinct from (and
slower than) the maximal coupling.

An explicit non-immersion maximal coupling for Brownian motion together with local time,
for particular sets of randomized initial conditions, can be constructed by adapting the recipe of
Pitman [31] for discrete time and space, and using the 2M − X theorem (Pitman [30]) to reduce
the construction to the case of the scalar diffusion which is the three-dimensional Bessel process.

3. Equi-filtration couplings of Brownian motion together
with local time

As noted in Section 2.2, the reflection/synchronized coupling is an equi-filtration coupling when
viewed as a coupling for the absolute value |X| of Brownian motion and L(0) its local time at 0.
However the coupling is not equi-filtration when it is required to couple not just the absolute
value |X| but also X, the Brownian motion itself. This follows immediately from consideration
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of the stochastic differential equation (5), which is of Tanaka type when viewed as generating
the coupled Brownian motion X̃ from

∫
sgn(X)dX. Unless X and X̃ are identical, it is not

possible to extract statistically appropriate signs for the excursions of X̃ from the natural filtration
{Ft : t ≥ 0} of X.

The coupling of (X,L(0)) with (X̃, L̃(0)) can be modified to be equi-filtration by replacing
sgn(X̃t ) and sgn(Xt ) in the coupling control by time-delayed versions, at the price of delaying the
time of successful coupling. Given a positive continuous non-increasing function ψ : [0,∞) →
[0,∞), we introduce the delayed time-change

σ(t) = t − (
ψ(t) ∧ t

)
. (11)

For t > 0 we define a new coupled Brownian motion X̂t , starting at X̂0 = X̃0 but defined up to
time T2 as the solution to a time-delayed version of (5):

dX̂t = sgn(X̂σ(t))Jt sgn(Xσ(t))dXt . (12)

Here we use (4) to define the control J in terms of X via the stopping time T1:

Jt =
{−1 if t ≤ T1,

+1 otherwise.

Of course this exploits the remark in Section 2.2, that T1 and T2 can be defined as hitting times for
B = L(0) − |X|. Adopting the usual convention that sgn(0) = 1, and arguing from the positivity
and continuity of ψ , we can solve the stochastic differential equation (12) step by step over
successive small time intervals. This ensures that sgn(X̂σ(t)) and sgn(Xσ(t)) are defined and
measurable with respect to Fσ(t) = σ {Xs : s ≤ σ(t)}.

This construction makes it clear that the coupled X̂ is immersed in the natural filtration of X.
However the reverse also holds:

Lemma 10. For X̂ defined in terms of X using the time-delayed stochastic differential equation
(12), it is the case that X is immersed in the natural filtration of X̂, so that the coupling of X and
X̂ is equi-filtration.

Proof. The control J appearing in (12) satisfies J ≡ −1 up to the stopping time T1. Accordingly
X̂ ≡ X̂∗ up to T1, where

dX̂∗
t = − sgn

(
X̂∗

σ(t)

)
sgn(Xσ(t))dXt .

However, we may rewrite this last stochastic differential equation as

dXt = − sgn(Xσ(t)) sgn
(
X̂∗

σ(t)

)
dX̂∗

t ,

and so we find that

dXt = − sgn(Xσ(t)) sgn(X̂σ(t))dX̂t

holds up to time T1. Since T1 is a hitting time of X, it follows that X stopped at time T1 is adapted
to the filtration of X̂, and thus that T1 and thus J are adapted to the natural filtration of X̂.
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Arguing from time T1 onwards, since Jt = 1 for t > T1, we can re-write (12) as

dXt = sgn(Xσ(t))Jt sgn(X̂σ(t))dX̂t = sgn(Xσ(t)) sgn(X̂σ(t))dX̂t for T1 < t ≤ T2.

It follows that X up to time T2 is adapted to the natural filtration of X̂. This establishes the mutual
immersion property. �

Of course X̂ 	= X̃, and therefore we cannot assume that the equi-filtration coupling will have
succeeded by time T2. However, we can use the properties of the reflection/synchronized cou-
pling to argue not only that the paths of |X̃| and |X̂| will be close in probability, but also that the
same is true of the respective local times L̃(0) and L̂(0).

Lemma 11. There is a sequence of equi-filtration couplings of (X̂(n), L̂(0);(n)) with (X,L(0))

such that (|X̂(n)|, L̂(0);(n)) converges in probability under supremum norm to (|X̃|, L̃(0)) (using
the reflection/synchronized coupling):

P

[
sup

t

{∣∣∣∣X̂(n)
t

∣∣ − |X̃t |
∣∣ + ∣∣L̂(0);(n)

t − L̃
(0)
t

∣∣} > 4−n
]

< 4−n.

It suffices to exhibit a sequence for which the supremum converges to 0 in probability. Note
that we do not assert that X̂(n) converges to X̃ in probability: if we were able to remove absolute
values then this would contradict the known fact that the stochastic differential equation (5) of
Tanaka type can have no strong solutions.

Proof of Lemma 11. To simplify notation, we take X0 = 0. Note also that by construction
L̂

(0)
0 = L̃

(0)
0 and X̂0 = X̃0.

We shall select ψ depending on ε such that a suitably fast convergent sequence εn → 0 delivers
the required (X̂(n), L̂(0);(n)).

First note that, if we set Ŝ = L̂(0) and B̂ = L̂(0) − |X̂|, then

dB̂ = sgn(X̂) sgn(X̂σ )J sgn(Xσ )dX.

By choice of initial conditions, B̂0 = B̃0. It suffices to show convergence in probability of
supt {|B̂t − B̃t |}, the supremum norm of the difference. Because |J | = | sgn(X)| = | sgn(X̂)| = 1
we can use Doob’s L2 submartingale inequality, the L2 isometry for Brownian stochastic inte-
grals, and Jensen’s inequality to deduce that

E

[
sup

t

{
(B̂t − B̃t )

2}]
= E

[
sup

t

{(∫ t

0

(
sgn(X̂) sgn(X̂σ )J sgn(Xσ ) − J sgn(X)

)
dX

)2}]
≤ 4E

[∫ ∞

0

∣∣sgn(X̂t ) sgn(X̂σ(t)) sgn(Xσ(t)) − sgn(Xt )
∣∣2 dt

]
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≤ 8
∫ ∞

0
E

[∣∣sgn(X̂t ) sgn(X̂σ(t)) − 1
∣∣2]dt + 8

∫ ∞

0
E

[∣∣sgn(Xσ(t)) − sgn(Xt )
∣∣2]dt

= 32
∫ ∞

0
P
[
sgn(X̂t ) 	= sgn(X̂σ(t))

]
dt + 32

∫ ∞

0
P
[
sgn(Xσ(t)) 	= sgn(Xt )

]
dt .

Both X̂ and X are Brownian motions, though not necessarily begun at 0. It is therefore
immediate that P[sgn(X̂t ) 	= sgn(X̂σ(t))] and P[sgn(Xσ(t)) 	= sgn(Xt )] are both dominated by
P[sgn(Xt ) 	= sgn(Xσ(t))] for X a standard Brownian motion begun at 0 (since on average X̂ will
have to travel further to change sign than the standard Brownian motion X). Moreover rotational
symmetry of the standard bivariate normal distribution reveals, if t > ψ(t),

P
[
sgn(Xσ(t)) 	= sgn(Xt )

] = P
[
sgn(Xσ(t)) 	= sgn

(
Xσ(t) + (Xt − Xσ(t))

)]
= 1

2
P
[|Xσ(t)| < |Xt − Xσ(t)|

]
= 1

2
P

[ |Xσ(t)|/√t − ψ(t)

|(Xt − Xσ(t))|/√ψ(t)
<

√
ψ(t)

t − ψ(t)

]

= 1

π
tan−1

√
ψ(t)

t − ψ(t)
.

Thus we obtain, for ε > ψ(ε),

E

[
sup

t

{
(B̂t − B̃t )

2}] ≤ 64
∫ ∞

0
P
[
sgn(Xσ(t)) 	= sgn(Xt )

]
dt

≤ 64

(
ε + 1

π

∫ ∞

ε

tan−1

√
ψ(t)

t − ψ(t)
dt

)

≤ 64

(
ε + 1

π

∫ ∞

ε

√
ψ(t)

t − ψ(t)
dt

)
.

For any ε ∈ (0, 1
2 ), we set

ψ(t) =
⎧⎨⎩ ε3 if t ∈ [0, ε),

ε3

(t − ε + 1)3
if t ≥ ε.

Then (a) ψ is positive continuous non-decreasing over [0,∞), (b) ψ(t) ≤ t for t ≥ ε, and
hence (c)

E

[
sup

t

{
(B̂t − B̃t )

2}] ≤ 64

(
1 + 1

π

∫ ∞

ε

1√
(t/ε)(t − ε + 1)3 − ε2

dt

)
ε

≤ 64

(
1 + 2

π

∫ ∞

0

1√
4(u + 1)3 − 1

du

)
ε = 105.557 . . . × ε.
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The result follows, because L2 convergence of random variables implies convergence in proba-
bility. �

Theorem 12. There are successful equi-filtration couplings of Brownian motion together with
local time starting from any pair of initial conditions (X0,L

(0)
0 ) and (X̃0, L̃

(0)
0 ).

The proof makes it plain that the coupling time for reflection/synchronized coupling can be
approximated arbitrarily well in distribution by the coupling times for suitable equi-filtration
couplings.

Proof of Theorem 12. It suffices to show that there is a sequence εn → 0 such that the following
holds for all reflection/synchronized couplings: if ||X0| − |X̃0|| + |L(0)

0 − L̃
(0)
0 | < εn and X0 = 0

then

P
[
Tcouple > 4−n

] ≤ 4−n. (13)

For then we may construct a successful equi-filtration coupling as the concatenation of a series
of equi-filtration couplings. In the first stage, Lemma 11 can be used to select an equi-filtration
coupling producing (X̂, L̂(0)), which approximates a reflection/synchronized coupling producing
(X̃, L̃(0)) (continued up to but not including time T

(1)
2 , the end of the synchronized stage) such

that we have the following control on the left-limits X̂
T

(1)
2 −, X̃

T
(1)
2 −, L̂

(0)

T
(1)
2 − and L̃

(0)

T
(1)
2 −:

P
[∣∣|X̂

T
(1)
2 −| − |X̃

T
(1)
2 −|∣∣ + ∣∣L̂(0)

T
(1)
2 − − L̃

(0)

T
(1)
2 −

∣∣ > ε1
]
< 4−1.

Moreover, it follows from the construction of the reflection/synchronized coupling that
|X

T
(1)
2 −| = |X̃

T
(1)
2 −| = 0 while L

(0)

T
(1)
2 − = L̃

(0)

T
(1)
2 −.

At time T
(1)
2 , X̃ makes a small jump so that X̃

T
(1)
2

= X̂
T

(1)
2 −, while X, L(0), L̃(0), X̂ and L̂(0)

trajectories remain continuous. The second and further stages are implemented by repeating the
construction.

To be explicit, the construction continues through further stages n = 2,3, . . . , such that at
the end T

(n)
2 − of stage n, conditional on successful fulfilment of all previous stages, we have

|X
T

(n)
2 −| = |X̃

T
(n)
2 −| = 0 and L

(0)

T
(n)
2 − = L̃

(0)

T
(n)
2 −, moreover if n ≥ 2 then T

(n)
2 − T

(n−1)
2 < 4−n, and

P
[∣∣|X̂

T
(n)
2 −| − |X̃

T
(n)
2 −|∣∣ + ∣∣L̂(0)

T
(n)
2 − − L̃

(0)

T
(n)
2 −

∣∣ > εn

]
< 4−n. (14)

(We suppress the conditioning on previous stages for the sake of simple notation.) Stage n is im-
plemented (a) by using a reflection/synchronized coupling of (|X̃|, L̃(0)) with (|X|,L(0)) which
succeeds before time 4−n (this has probability 1 − 4−n), and also (b) by invoking Lemma 11
to continue (X̂, L̂(0)) by an equi-filtration coupling such that the maximum difference over this
stage between the immersed coupling component (|X̃|, L̃(0)) and the equi-filtration coupling
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component (|X̂|, L̂(0)) is less than εn (with conditional probability at least 1 − 4−n). It fol-
lows that the conditional probability of the nth stage (n ≥ 2) completing successfully is at least
1 − 2 × 4−n. At the end of stage n, we impose a small jump on X̃ so that X̃

T
(n)
2

= X̂
T

(n)
2 −.

Thus, with total probability at least

1 − 4−1 −
∞∑

n=2

2 × 4−n = 7

12
,

for all n, stage n is of duration less than 4−n, and at time T
(n)

2 we have X
T

(n)
2 − = X̃

T
(n)
2 − =

0, L
(0)

T
(n)
2 − = L

(0)

T
(n)
2 −, and (X

T
(n)
2 −,L

(0)

T
(n)
2 −) can be approximated by the equi-filtration coupling

component (X̂
T

(n)
2 −, L̂

(0)

T
(n)
2 −) with sum of absolute differences less than εn.

It follows that the bound (13) can be used together with Lemma 11 to construct an equi-
filtration coupling which has probability at least 7

12 of succeeding in finite time. In case of default
at any stage, one can then restart the sequence of couplings, so successful immersed coupling is
almost sure to happen.

We now need to show that we can choose a sequence of εn to satisfy the bound (13). We
refer to (B,S) coordinates. From X0 = 0, we obtain S0 = B0 while ||X0| − |X̂0|| = Ŝ0 − B̂0

and |L(0)
0 − L̂

(0)
0 | = |S0 − Ŝ0|. Suppose that ||X0| − |X̂0|| < εn and |L(0)

0 − L̂
(0)
0 | < εn. Simple

coupling arguments now show that the time taken to achieve reflection/synchronized coupling
from such starting points is maximized if

L
(0)
0 − L̂

(0)
0 = S0 − Ŝ0 = εn,∣∣|X0| − |X̂0|

∣∣ = Ŝ0 − B̂0 = εn.

But with such initial conditions, we can apply a scaling argument to show that T2/ε
2 has a

distribution not depending on εn. It therefore follows that we can choose εn to ensure that (13)
holds whenever ||X0| − |X̃0|| + |L(0)

0 − L̃
(0)
0 | < εn and X0 = 0. �

The following corollary will be of assistance when constructing equi-filtration couplings of
BKR diffusions in the next section.

Corollary 13. The equi-filtration coupling of Theorem 12 can be localized in the following
sense: for fixed δ > 0, for all sufficiently small ε > 0 and for all pairs of initial conditions
(X0,L

(0)
0 ) and (X̃0, L̃

(0)
0 ) with ∣∣|X0| − |X̃0|

∣∣ + ∣∣L(0)
0 − L̃

(0)
0

∣∣ < ε,

we can construct a successful equi-filtration coupling of (X,L(0)) and (X̃, L̃(0)) such that

P
[
one of

(
X,L(0)

)
and

(
X̃, L̃(0)

)
does not stay within ball

((
X0,L

(0)
0

)
, δ

)]
< ε.
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Proof. From the proof of Theorem 12, it follows that for sufficiently small ε we can obtain
uniformly arbitrarily small probability of the equi-filtration coupling failing to couple within an
arbitrarily small period of time. The corollary then follows by observing that it follows from
continuity of Brownian motion and Brownian local time that over a sufficiently small period of
time we can ensure that the probability of there being large deviations either of motion or of local
time is arbitrarily small. �

4. Application to BKR diffusions

The BKR diffusion was introduced by Beneš, Karatzas and Rishel [4] as part of an investiga-
tion into a control problem which possesses no strict-sense optimal law: it is a two-dimensional
diffusion (X,Y ) for which X and Y are Brownian motions connected by

sgn(X)dX + sgn(Y )dY = 0. (15)

Essentially (X,Y ) diffuses linearly in a Brownian fashion along the boundary of a square
{(x, y): |x| + |y| = �}, except that � increases according to a local time driving term whenever
(X,Y ) visits one of the vertices of the square. Émery [13] studied filtration questions concern-
ing this process, and in particular showed that the natural filtration of (X,Y ) is Brownian even
when (X,Y ) is started from the origin. In this connection, he asked a specific question (Émery
[13], Question), which can be stated concisely as follows: given two initial points (X0, Y0) and
(X̃0, Ỹ0), neither of which is the origin, is there an almost surely successful equi-filtration cou-
pling of BKR diffusions (X,Y ) and (X̃, Ỹ ) started from these two points? An affirmative answer
would lead to a constructive proof of Brownianity of the filtration of (X,Y ) started from the
origin. An immersed coupling is exhibited in Émery [13], Lemma 5; however equi-filtration is
required for the purposes of obtaining a constructive proof of the filtration result.

4.1. Sketch construction of immersed coupling for the BKR diffusion

The work of Sections 2, 3 suggests a direct strategy for constructing successful equi-filtration
couplings of BKR diffusions; start with an almost-surely successful immersed coupling, and
then perturb it to produce a nearly-successful coupling which can then be iterated to generate a
successful coupling following the methods used to prove Theorem 12 and associated lemmas.
The immersed coupling described in Émery [13], Lemma 5, bears a strong family resemblance
to the reflection/synchronized coupling given above (Example 3): in preparation for construction
of the equi-filtration coupling we first sketch a description of Émery’s immersed coupling for
BKR diffusions using the terminology of our paper.

Application of the Tanaka formula for Brownian local time to (15) shows that |X| + |Y | =
LX;(0) + LY ;(0) increases as the sum of the local times accumulated by X and Y at 0. In the case
when (X,Y ) does not begin at the origin, so that h = 1

2 (|X0| + |Y0|) > 0, we can determine a
real Brownian motion which drives the BKR diffusion by first defining a binary cádlág switch
process K , which takes values 0 or 1, changing only according to the following rules:
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Figure 2. The construction of a BKR diffusion (X,Y ) from a real Brownian motion can be based on a
binary cádlág process K , which switches when it enters specific regions with boundaries determined by
x, y = ±h for h = 1

2 (|X0| + |Y0|). The initial value (X0, Y0) lies on the boundary of the diamond-shaped
region, and by construction the diffusion will never enter the interior of this region.

1. K takes value 1 on entry to the region |X| < h;
2. K takes value 0 on entry to the region |Y | < h;

and otherwise K is time-constant. The initial value of K is given by

K0 =
{

1 if |X0| ≤ h,
0 otherwise.

This construction is illustrated in Figure 2.
We can then define a real-valued Brownian motion A by

dA = K sgn(Y )dX − (1 − K) sgn(X)dY. (16)

Note that the definition of K implies that Y never vanishes when K = 1, and X never vanishes
when K = 0. This allows us to use A to construct (X,Y ) as follows:

dX = K sgn(Y )dA − (1 − K) sgn(X) sgn(Y )dY,
(17)

dY = −K sgn(X) sgn(Y )dX − (1 − K) sgn(X)dA.

Thus if K = 1, then we can construct X in terms of A (since Y does not then change sign) and
then Y in terms of X, and conversely if K = 0, then we can construct Y in terms of A and then
X in terms of Y . In particular, it is convenient to note the following relationships between X, Y

and the driving Brownian motion A:

dX = sgn(Y )dA, (18)

dY = − sgn(X)dA. (19)
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We can now sketch the construction of an immersed coupling with another BKR diffusion
which also does not begin at the origin. Let (X̃, Ỹ ) be the coupled BKR diffusion, based on
h̃ = 1

2 (|X̃0| + |Ỹ0|) > 0, with K̃ and Ã defined in direct analogy to K and A. We define the
coupling (a variant of the reflection/synchronized coupling described in Definition 3) by the
following definition.

Definition 14 (Variant reflection/synchronized coupling). With the above notation, two BKR
diffusions (X,Y ) and (X̃, Ỹ ) (adapted to the same filtration) are said to be in reflec-
tion/synchronized coupling if their driving Brownian motions A and Ã are related by

dÃ = sgn(Ỹ )J sgn(Y )dA, (20)

where J = −1 until X and X̃ first meet, after which we set J = +1. (Thus X̃ is a reflection of X

till X = X̃.)

Note that this variant coupling does not treat X and Y symmetrically. As discussed in detail
by Émery [13], the variant reflection/synchronized coupling can be represented as an immersed
coupling and is almost surely successful. Given (X,Y ), in order to reconstruct (X̃, Ỹ ) it is nec-
essary to augment the filtration using an appropriate independent sequence of equiprobable ±1
random variables; this is because it is not possible to obtain strong solutions to the stochastic
differential system given by (20), (17), and the analogue of (17) giving (X̃, Ỹ ) in terms of Ã.
Note however that we can construct the paths of X̃ and |Ỹ | from the path of (X,Y ): indeed

Lemma 15. If (X,Y ) and (X̃, Ỹ ) are connected by the variant reflection/synchronized coupling
specified in Definition 14 then X̃ and |Ỹ | are both adapted to the natural filtration of X, and
T1 = inf{t : Xt = X̃t }, and the coupling time Tcouple = T2 = inf{t > T1: |Yt | = |Ỹt | = 0} are
stopping times for this filtration. In particular Tcouple is almost surely finite.

Proof. For the case of X̃, observe that T1 is the first time t that X̃0 − (Xt −X0) hits 1
2 (X0 + X̃0),

and therefore T1 is a stopping time for the natural filtration of X. Moreover,

X̃ = (
X̃0 − (Xt∧T1 − X0)

) + (Xt∨T1 − XT1);
hence X̃ is also adapted to the natural filtration of X.

For the case of |Ỹ |, observe that |Ỹ | satisfies

d|Ỹ | = sgn(Ỹ )dỸ + dLỸ ;(0),

where LỸ ;(0) is the local time accumulated by Ỹ at 0, and we can use the Lévy transform to show
that it suffices to establish that

∫ t

0 sgn(Ỹ )dỸ is measurable with respect to the natural filtration of
X. But we can employ the stochastic differential equation (20) determining the coupling, together
with (19);

sgn(Ỹ )dỸ = − sgn(X̃) sgn(Ỹ )dÃ = − sgn(X̃) sgn(Ỹ ) sgn(Ỹ )J sgn(Y )dA

= − sgn(X̃)J sgn(Y )dA.
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Thus, we can deduce that
∫ t

0 sgn(Ỹ )dỸ is given by a Brownian stochastic integral adapted to the
natural filtration of X, since dX = sgn(Y )dA by (18), and we have already shown that X̃ is so
adapted.

Moreover after T1 we have J ≡ 1 and X ≡ X̃, hence

d|Ỹ | − d|Y | = sgn(Ỹ )dỸ − sgn(Y )dY + dLỸ :(0) − dLY :(0)

= − sgn(X̃) sgn(Y )dA − sgn(Y )dY + dLỸ :(0) − dLY :(0)

= − sgn(X) sgn(Y )dA − sgn(Y )dY + dLỸ :(0) − dLY :(0) = dLỸ :(0) − dLY :(0),

where we use (19) to cancel the two Brownian stochastic differentials. Thus after T1 it is the case
that either |Y | ≥ |Ỹ | for all time, or |Y | ≤ |Ỹ | for all time, and coupling occurs at the first time
T2 after T1 that the coupled reflected Brownian motions |Y | and |Ỹ | simultaneously hit 0.

Now |Y | hits zero when |X| first hits |X0| + |Y0|, or at subsequent times when |X| attains its
running supremum, while we have already shown that |Ỹ | is adapted to the natural filtration of
X, therefore T2 is a stopping time for this filtration.

Finally, almost sure finiteness of Tcouple follows, since it is the (dependent) sum of two almost
surely finite Brownian hitting times T1 and T2 − T1. �

We shall use this partial reconstruction when analyzing the equi-filtration coupling described
below.

4.2. An equi-filtration coupling for BKR diffusions

In order to construct an equi-filtration coupling for BKR diffusions (X,Y ) and (X̃, Ỹ ), with
neither BKR diffusion starting at the origin, we adopt the strategy of Section 3. Given a delayed
time-change σ(t) defined in terms of a positive continuous non-increasing function ψ as in (11),
we can define a new driving Brownian motion Â in terms of A via

dÂt = sgn(Ŷσ (t))Jt sgn(Yσ(t))dA. (21)

Here X (and Y ) are defined in terms of A using (17); we note that J is the immersed control
given in the previous subsection, constructed in terms of (X,Y ) by setting J = −1 till the time
T1 when X first hits 1

2 (X0 + X̃0), and then setting J = +1; finally, Ŷ (and X̂) are defined in

terms of Â using the analogue of (17). The use of the delay σ means that the system of these
stochastic differential equations has a unique strong solution so long as neither BKR diffusion
is begun at the origin. Note that there are issues in finding strong solutions to (17) together
with the switching processes K and K̂ if either or both of the BKR diffusions start at the ori-
gin.

Lemma 16. Suppose (X̂, Ŷ ) is a BKR diffusion defined in terms of a BKR diffusion (X,Y ) using
the time-delayed stochastic differential equation (21) and the analogues of the defining equation
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(17) together with switching processes K and K̂ , so that

dX̂ = sgn(Ŷ )dÂ, (22)

dŶ = − sgn(X̂)dÂ. (23)

If neither BKR diffusion is begun at the origin, then the resulting coupling is equi-filtration.

Note that this definition is not symmetrical in (X,Y ) and (X̂, Ŷ ), since the coupling control
J is defined in terms of (X,Y ). Note further that we do not assert that the coupling is success-
ful!

Proof of Lemma 16. It follows from construction that (X̂, Ŷ ) is immersed in the filtration of
(X,Y ). On the other hand we can argue as in Lemma 10 that the reverse also holds, and hence
that this coupling is equi-filtration. As in Lemma 10 of the argument for the case of Brownian
motion with local time, the key point is to argue first that the trajectory of (X,Y ) up to the time
T1 (while J = −1) is immersed in the filtration of (X̂, Ŷ ), and then to argue that the subsequent
construction (while J = +1) is also immersed. The crucial point is that T1 is a stopping time for
the filtration of (X̂, Ŷ ), as noted in Lemma 15. �

Because of Lemma 15, it makes sense to discuss X̃T2 and |ỸT2 | defined in terms of X and
Y , and in particular to consider the extent to which X̂T2 and |ŶT2 | differ from X̃T2 and |ỸT2 |.
Moreover |Ỹ |T2 = YT2 = 0, so control of ||ŶT2 | − |ỸT2 || corresponds directly to control of |ŶT2 −
ỸT2 | = |ŶT2 | itself.

Lemma 17. Suppose (X̂, Ŷ ) is a BKR diffusion defined in terms of a BKR diffusion (X,Y ) using
the time-delayed stochastic differential equation (21) and the analogues of the defining equations
(18) and (19). For any δ > 0, we can choose ε ∈ (0, 1

2 ) sufficiently small so that if the time-delay
σ(t) = t − (ψ(t) ∧ t) is defined via ψ(t) = ε3/((t − ε + 1)3) for t ≥ ε then

P
[|X̂T2 − X̃T2 | + |ŶT2 − ỸT2 | > δ

] ≤ δ. (24)

Proof. Consider the stochastic differential equation for X̂:

dX̂ = sgn(Ŷ )dÂ = J sgn(Yσ ) sgn(Ŷσ ) sgn(Ŷ )dA.

Since dX = sgn(Y )dA, and since Y ≈ Yσ and Ŷ ≈ Ŷσ , it follows that the coupling between
X̂ and X approximates a reflection coupling up to time T1, and after that approximates a
synchronized coupling. Calculating as in Lemma 11, but recalling from Lemma 15 that X̃ =
(X̃0 − (Xt∧T1 − X0)) + (Xt∨T1 − XT1) is actually adapted to the filtration of (X,Y ),

E

[
sup

t

{
(X̂t − X̃t )

2}] ≤ 4
∫ ∞

0
E

[(
J sgn(Yσ ) sgn(Ŷσ ) sgn(Ŷ ) − J sgn(Y )

)2]dt

≤ 32
∫ ∞

0
P
[
sgn(Ŷσ ) 	= sgn(Ŷ )

]
dt + 32

∫ ∞

0
P
[
sgn(Yσ ) 	= sgn(Y )

]
dt

≤ 105.557 . . . × ε.
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Thus we can control the extent to which the approximate reflection coupling of X and X̂ will
deviate from the reflection coupling of X and X̃ by using the Markov inequality: for any δ > 0
such that ε < δ3/(12 × 105.557 . . .), it follows that

P

[
sup

t

{|X̂t − X̃t |
}

> δ/2
]

≤ δ/3. (25)

We now need to control the approximation of |Ỹ | by |Ŷ |. We first use the almost-sure finiteness
of the stopping time T2 to select a constant time tmax such that

P[T2 > tmax] < δ/3. (26)

It suffices to control the approximation of
∫ t

0 sgn(Ỹ )dỸ by
∫ t

0 sgn(Ŷ )dŶ when 0 ≤ t ≤ tmax.
Observe that

sgn(Ŷ )dŶ − sgn(Ỹ )dỸ = − sgn(Ŷ ) sgn(X̂)dÂ + sgn(Ỹ ) sgn(X̃)dÃ

= −J sgn(Ŷ ) sgn(X̂) sgn(Ŷσ ) sgn(Yσ )dA + J sgn(Y ) sgn(X̃)dA.

Hence, (using the same definition of ψ )

E

[
sup

t≤tmax

{(∫ t

0
sgn(Ŷ )dŶ −

∫ t

0
sgn(Ỹ )dỸ

)2}]

≤ 4
∫ tmax

0
E

[(
sgn(Ŷ ) sgn(X̂) sgn(Ŷσ ) sgn(Yσ ) − sgn(Y ) sgn(X̃)

)2]dt

≤ 48
∫ ∞

0
P
[
sgn(Ŷ ) 	= sgn(Ŷσ )

]
dt + 48

∫ ∞

0
P
[
sgn(Y ) 	= sgn(Yσ )

]
dt

+ 48
∫ tmax

0
P
[
sgn(X̂) 	= sgn(X̃)

]
dt

≤ 158.336 . . . × ε + 48
∫ tmax

0
P
[
sgn(X̂) 	= sgn(X̃)

]
dt .

Now ∫ tmax

0
P
[
sgn(X̂) 	= sgn(X̃)

]
dt ≤

∫ tmax

0

(
P
[|X̂ − X̃| ≥ η

] + P
[|X̃| < η

])
dt

≤
∫ tmax

0

(
1

η2
E

[|X̂ − X̃|2] + 1 ∧ 2η√
2πt

)
dt

≤ 105.557 . . . × tmax

η2
ε + 2

π
η2 +

√
8tmax

π
η.
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It follows that if we choose first η then ε small enough that

η <
1

12 × 48

√
π

8tmax

δ3

12
,

η <

√
π

96 × 12

δ3

12
,

ε <
η2

12 × 48 × 105.557 . . . × tmax

δ3

12
,

ε <
1

12 × 158.336 . . .

δ3

12
,

then

E

[
sup

t≤tmax

{(∫ t

0
sgn(Ŷ )dŶ −

∫ t

0
sgn(Ỹ )dỸ

)2}]
(27)

≤ 158.336 . . . × ε + 48

(
105.557 . . . × tmax

η2
ε + 2

π
η2 +

√
8tmax

π
η

)
≤ 1

3
× δ3

12
.

The lemma now follows from the inequalities (25), (26), and an application of the Markov in-
equality to (27). �

We can now state and prove the main result of this section, that BKR diffusions begun at
non-zero points can be coupled in an equi-filtration manner.

Theorem 18. Given two BKR diffusions begun at different non-zero initial points, they can be
coupled in a mutually immersed manner which succeeds in almost surely finite time, using an
infinite sequence of increasingly rapid equi-filtration couplings, each of which approximates the
variant reflection/synchronized coupling but with delays built into the reflection and synchroniza-
tion couplings to render them equi-filtration.

Proof. From Lemma 17 it follows that at time T2 we can bring (X,Y ) and (X̂, Ŷ ) arbitrarily
close together with probability arbitrarily close to 1. Moreover YT2 = ỸT2 = 0, so that ŶT2 will be
arbitrarily close to zero with probability arbitrarily close to 1.

Restarting at time T2, the evolutions of (X, |Y |) and (X̂, |Ŷ )| can be related to the behaviour of
Brownian motion and its local time at 0. Specifically, (|Y |,X −|Y |) (respectively (|Ŷ |, X̂ −|Ỹ |))
has the stochastic dynamics of the absolute value of Brownian motion together with its local time
at 0, at least until X (respectively X̂) hits zero.

We can therefore apply the iterative coupling technique of Section 3 to achieve exact coupling
of (X,Y ) and (X̂, Ŷ ); the localization supplied by Corollary 13 implies that there is a positive
probability of achieving this coupling before either X or X̂ hit 0, with a uniform positive lower
bound on the probability which tends to 1 as the restarted values at T2 of X − X̂, Y and Ŷ

tend to zero. In the event of default (i.e., the initial variant reflection/synchronized coupling fails
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to achieve approximate coupling at T2, or X or X̂ hits 0 subsequent to T2), then the whole
coupling procedure can be restarted; the initial delayed variant reflection/synchronized coupling
can be arranged to deliver approximate coupling to an arbitrarily small tolerance with probability
arbitrarily close to 1, and then the subsequent iterative coupling will also have success probability
arbitrarily close to 1. Thus, it is possible to arrange that the coupling procedure will only need to
be restarted a finite number of times before coupling is achieved. �

5. Conclusion

In this paper, we have established the basic properties of the reflection/synchronized coupling for
Brownian motion together with local time, and in particular we have shown it is an optimal im-
mersed. but not maximal, coupling. We have also shown that this coupling can be approximated
by explicit equi-filtration couplings; moreover that it can be used as the basis for immersion and
equi-filtration couplings of a more complicated diffusion, thus answering a question arising from
filtration theory.

Further questions include the following:

1. Is Émery’s [13] immersed BKR coupling optimal amongst all immersed couplings of BKR
diffusions? We would be surprised if this were the case, since there are two distinct variants
of Émery’s [13] coupling depending on whether the construction is based on the X compo-
nent or the Y component: it seems implausible that optimal couplings would permit such a
symmetry. It is of course possible that there is no optimal immersed coupling: it may be the
case that some strategies work better for short time while others work better for long time.

2. Reverting to the case of Brownian motion with local time, is it possible to couple Brownian
motion together with local times accumulated at two or more distinct points? This seems to
be a hard question. Analogous generalizations have been carried out for the case of coupling
Brownian motions together with iterated time-integrals (Kendall and Price [23]); however
there is a useful linearity in the time-integral case which is not present here. The question
of coupling finite sets of local times could be viewed as a question of whether one could
couple a finite version of the celebrated Brownian burglar (Warren and Yor [41], Aldous
[1]).

3. There is interesting territory to be explored in the realm of couplings which fall short of
being maximal but yet are not immersed. One example in applied stochastic process theory
is supplied by Smith [37], who investigates the mixing time of a simple Gibbs sampler on
the unit simplex using a two-stage coupling of which the first is immersed (Markovian,
in Smith’s chosen terminology) while the second couples an associated partition process
anticipatively. This non-immersed coupling allows Smith to give an affirmative answer
to a conjecture by Aldous concerning the mixing time of this Gibbs sampler. Arguably
Sigman’s [36] perfect simulation algorithm for super-stable M/G/c queues can be put
in the same category, as this depends on coupling service times not according to time of
arrival of customer but according to time of start of service. It would be likely to be most
illuminating if one could discover simple Brownian coupling problems for which gains of
a similar kind can be made.
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4. It seems clear that the techniques of this paper can be generalized to show that immer-
sion couplings of suitably regular diffusions can always be approximated by equi-filtration
couplings, and it would be interesting to see a fully rigorous proof in a case where the
qualification “suitably regular” is given a pleasant and natural meaning.

The underlying reflection/synchronization coupling for Brownian motion together with local
time is extremely simple, and lends itself to rather complete calculation. Not only is it an exam-
ple of the general programme of coupling Brownian motion together with appropriate functionals
(Ben Arous, Cranston, and Kendall [3], Kendall and Price [23], Kendall [20,22]), but also it can
be viewed as a basic coupling strategy that, like the reflection coupling of Brownian motion
(Lindvall [26]) has the potential to serve as a model in much more general situations. The appli-
cation to the BKR diffusion in this paper illustrates this point; it is hoped that the calculations
described above will facilitate the use of the reflection/synchronization coupling as a building
block in other applications of coupling to probability theory.
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