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In this paper, we present an alternative method for the spectral analysis of a univariate, strictly stationary
time series {Yt }t∈Z. We define a “new” spectrum as the Fourier transform of the differences between cop-
ulas of the pairs (Yt , Yt−k) and the independence copula. This object is called a copula spectral density
kernel and allows to separate the marginal and serial aspects of a time series. We show that this spectrum is
closely related to the concept of quantile regression. Like quantile regression, which provides much more
information about conditional distributions than classical location-scale regression models, copula spectral
density kernels are more informative than traditional spectral densities obtained from classical autocovari-
ances. In particular, copula spectral density kernels, in their population versions, provide (asymptotically
provide, in their sample versions) a complete description of the copulas of all pairs (Yt , Yt−k). Moreover,
they inherit the robustness properties of classical quantile regression, and do not require any distributional
assumptions such as the existence of finite moments. In order to estimate the copula spectral density ker-
nel, we introduce rank-based Laplace periodograms which are calculated as bilinear forms of weighted
L1-projections of the ranks of the observed time series onto a harmonic regression model. We establish the
asymptotic distribution of those periodograms, and the consistency of adequately smoothed versions. The
finite-sample properties of the new methodology, and its potential for applications are briefly investigated
by simulations and a short empirical example.

Keywords: copulas; periodogram; quantile regression; ranks; spectral analysis; time reversibility; time
series

1. Introduction

1.1. The location-scale paradigm

Whether linear or not, most traditional time series models are of the conditional location/scale
type: conditionally on past values Yt−1, Yt−2, . . . , the random variable Yt is of the form

Yt = ψ(Yt−1, Yt−2, . . .) + σ(Yt−1, Yt−2, . . .)εt , t ∈ Z, (1.1)

where {εt }t∈Z is white noise (either strong or weak, depending on the authors – here, by white
noise we throughout mean strong, i.e., independent white noise), and εt is independent of (in
the case of weak white noise, orthogonal to) Yt−1, Yt−2, . . . . The (Yt−1, Yt−2, . . .)-measurable
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functions ψ and σ are (conditional) location and scale functions, possibly parametrized by some
ϑ . Equation (1.1) may characterize a data-generating process – in which case “=” in (1.1) is to
be considered as “almost sure equality” – or, more generally, it simply describes Yt ’s conditional
(on Yt−1, Yt−2, . . .) distribution – and “=” is to be interpreted as “equality in (conditional) dis-
tribution”. Such distinction is, however, irrelevant from a statistical point of view, as it has no
impact on likelihoods.

In model (1.1), the distribution of Yt conditional on Yt−1, Yt−2, . . . is nothing but the distri-
bution of εt , rescaled by the conditional scale parameter σ(Yt−1, Yt−2, . . .) and shifted by the
conditional location parameter ψ(Yt−1, Yt−2, . . .). Sophisticated as they may be, the mappings

(Yt−1, Yt−2, . . .) �→ (
ψ(Yt−1, Yt−2, . . .), σ (Yt−1, Yt−2, . . .)

)
only can account for a very limited type of dynamics for the process {Yt }t∈Z. The volatility
dynamics for such models, for instance, are quite poor, being of a pure rescaling nature. In
particular, no impact of past values on skewness, kurtosis, tails, can be reflected. All standardized
conditional distributions strictly coincide with that of ε, and all conditional τ -quantiles, hence
all values at risk, follow, irrespectively of τ , from those of ε via one single linear transformation.

Note that the interpretation of ψ and σ depends on the identification constraints on ε: if ε

is assumed to have mean zero and variance one, then ψ and σ are a conditional mean and a
conditional standard error, respectively. In this case, models of the form (1.1) clearly belong to
the L2-Gaussian legacy. If ε is assumed to have median zero and expected absolute deviation or
median absolute deviation one, ψ and σ are a conditional median and a conditional expected or
median absolute deviation.

On the basis of these “remarks”, the following questions naturally arise: Can we do better?
Can we go beyond that (conditional) “location-scale paradigm”? Can we model richer dynamics
under which the conditional quantiles of Y are not just a shifted and rescaled version of those of
ε, and under which the whole conditional distribution of Yt , not just its location and scale, can
be affected by the past? And, can we achieve this in a statistically tractable way?

1.2. Marginal and serial features

Another drawback of models of the form (1.1) is their sensitivity to nonlinear marginal transfor-
mations. If two statisticians observe the same time series, but measure it on different scales, Yt

and Y 3
t or eYt , for instance, and both adjust a model of the form (1.1) to their measurements, they

will end up with drastically different analyses and predictions. The only way to avoid this prob-
lem consists in disentangling the marginal (viz., related to the scale of measurement) aspects of
the series under study from its serial aspects, that is, basing the description of serial dependence
features on quantities such as the F(Yt )’s, where F is Yt ’s marginal distribution function. Those
quantities do not depend on the measurement scale since they are invariant under continuous
strictly increasing transformations.

This point of view is closely related to the concept of copulas (see Nelsen [35] or Genest and
Favre [14]). Consider, for instance, a strictly stationary Markovian process {Yt }t∈Z of order one.
This process is fully characterized by the joint distribution of (Yt , Yt−1) or, equivalently, by the
marginal distribution function F (equivalently, the quantile function F−1) of Yt , along with the
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joint distribution of (Ut ,Ut−1) := (F (Yt ),F (Yt−1)), a “serial copula of order one”. In such a de-
scription, the marginal features of the process {Yt }t∈Z are entirely described by F , independently
of the serial features, that are accounted for by the serial copula. Two statisticians observing the
same phenomenon but recording Yt and eYt , respectively, would use distinct quantile functions,
but they would agree on serial features.

In more general cases, serial copulas of order one are not sufficient, and higher-order or mul-
tiple copulas may be needed. Note that the description of the model in this context is clearly “in
distribution”: Ut is not related to Ut−1 through any direct interpretable “almost sure relation”
reflecting some “physical” data-generating mechanism.

1.3. A new nonparametric approach

The objective of this paper is to show how to overcome the limitations of conditional location-
scale modelling described in Sections 1.1 and 1.2, and to provide statistical tools for a fully
general approach to time series modelling. Not surprisingly, those tools are essentially related to
copulas, quantiles and ranks. The traditional nonparametric techniques, such as spectral analysis
(in its usual L2-form), which only account for second-order serial features, cannot handle such
objects, and we therefore propose and develop an original, flexible and fully nonparametric L1-
spectral analysis method.

While classical spectral densities are obtained as Fourier transforms of classical covariance
functions, we rather define spectral density kernels, associated with covariance kernels of the
form (for (τ1, τ2) ∈ (0,1)2)

γk(x1, x2) := Cov
(
I {Yt ≤ x1}, I {Yt−k ≤ x2}

)
(1.2)

(Laplace cross-covariance kernels) or

γ U
k (τ1, τ2) := Cov

(
I {Ut ≤ τ1}, I {Ut−k ≤ τ2}

)
(1.3)

(copula cross-covariance kernels), where Ut := F(Yt ) and F denotes the marginal distribution
of the strictly stationary process {Yt }t∈Z and I {A} stands for the indicator function of A. Con-
trary to covariance functions, the kernels {γk(x1, x2)|x1, x2 ∈ R} and {γ U

k (τ1, τ2)|τ1, τ2 ∈ (0,1)}
allow for a complete description of arbitrary bivariate distributions for the couples (Yt , Yt−k)

and the corresponding copulas, respectively, and thus escape the conditional location-scale
paradigm discussed in Section 1.1. They are able to account for sophisticated dependence fea-
tures that covariance-based methods are unable to detect, such as time-irreversibility, tail de-
pendence, varying conditional skewness or kurtosis, etc. And, in view of the desired separation
between marginal and serial features expressed in Section 1.2, special virtues, such as invari-
ance/equivariance (with respect to continuous order-preserving marginal transformations), can
be expected from the copula covariance kernels defined in (1.3).

Classical nonparametric spectral-based inference methods have proven quite effective (see,
e.g., Granger [16], Bloomfield [4]), essentially in a Gaussian context, where dependencies are
fully characterized by autocovariance functions. Therefore, it can be anticipated that similar
methods, based on estimated versions of Laplace or copula spectral kernels (associated with
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Laplace and copula covariance kernels, respectively) would be quite useful in the study of series
exhibiting those features that classical covariance-related spectra cannot account for.

Estimation of Laplace and copula spectral kernels, however, calls for a substitute to the ordi-
nary periodogram concept considered in the classical approach. We therefore introduce Laplace
and copula periodogram kernels. While ordinary periodograms are defined via least squares re-
gression of the observations on the sines and cosines of the harmonic basis, our periodogram
kernels are obtained via quantile regression in the Koenker and Bassett [27] sense. A study of
their asymptotic properties shows that, just as ordinary periodograms, they produce asymptoti-
cally unbiased estimates (more precisely, the mean of their asymptotic distribution is 2π times
the corresponding spectrum), and we therefore also consider smoothed versions that yield con-
sistency. Asymptotic results show that copula periodograms, as anticipated, are preferable to the
Laplace ones, as their asymptotic behavior only depends on the bivariate copulas of the pairs
(Ut ,Ut−k), not on the (in general unknown) marginal distribution F of the Yt ’s.

Unfortunately, copula periodogram kernels are not statistics, since their definition involves the
transformation of Yt into Ut , hence the knowledge of the marginal distribution function F . We
therefore introduce a third periodogram kernel, based on the empirical version F̂n of F , that
is, on the ranks of the random variables Y1, . . . , Yn, and establish, under mild assumptions, the
asymptotic equivalence of that rank-based Laplace periodogram with the copula one. Smoothed
rank-based Laplace periodogram kernels, accordingly, seem to be the adequate tools in this con-
text. We conclude with a brief numerical illustration – simulations and an empirical application
– of their potential use in practical problems.

1.4. Review of related literature

Quantities of the form (1.2) and (1.3) naturally come into the picture when the clipped processes
(I {Yt ≤ x})t∈Z and (I {Ut ≤ τ })t∈Z are investigated. Such clipped processes have been consid-
ered earlier in the literature (see, for instance, Kedem [24]). In the field of signal processing, the
idea to replace the quadratic loss by other loss functions has been discussed by Katkovnik [23],
who proposes using Lp-distances and analyzes the properties of the resulting M-periodograms.
Hong [21] used the Laplace covariances corresponding to positive lags to construct a test for
serial dependence. Linton and Whang [33] considered sequences of Laplace autocorrelations
γk(τ, τ )/γ0(τ, τ ) (called quantilogram by these authors) in order to test for directional pre-
dictability. Mikosch and Zhao [34] define a periodogram generated from a suitable sequence
of indicator functions of rare events.

In a pioneering paper, Li [30] suggested least absolute deviation estimators in a harmonic
regression model assuming that the median of the random variables Yt is zero. The focus of this
author is on the quantities of the form (for ω ∈ (0,π); throughout, i stands for the root of −1)

f0,0(ω) = 1

2π

∑
k∈Z

γk(0,0) exp(ikω), ω ∈ (0,π),

the collection of which he calls the Laplace spectrum. He constructs an asymptotically unbiased
estimator for a quantity which differs from f0,0(ωj ) (ωj the j th Fourier frequency) by a fac-
tor involving 1/(F ′(0))2 and, in Li [31], extends his results to arbitrary quantiles. An important
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drawback of Li’s method is that it requires estimates of the quantity F ′(0) in order to obtain an es-
timate of the Laplace spectrum; moreover, the consistency of a smoothed version of his estimates
is not established. More recently, Hagemann [17] proposed an alternative method to estimate the
Laplace spectrum (called quantile spectrum by this author), which is based on the estimation of
a linearization of Li [30]’s statistic. This approach does not suffer from the drawbacks of Li’s
method, and yields consistent estimates avoiding estimation of the marginal density; on the other
hand, it does not allow a direct interpretation in terms of (weighted) absolute deviation estimates.

In order to obtain a complete description of the two-dimensional distributions at lag k, Hong
[20] introduced a generalized spectrum defined as the covariance Cov(eix1Yt , eix2Yt+k ); this con-
cept was used by Chung and Hong [10] to test for directional predictability. Recently, Lee and
Rao [29] considered a Fourier transform of the differences between the joint density of the pairs
(Yt , Yt−k) and the product of their marginal densities to investigate serial dependence. Unlike
ours, these methods are not invariant with respect to transformations of the marginal distribu-
tions.

Finally, there exist some recent proposals using pair-copula constructions to describe depen-
dencies in the time-domain. Domma, Giordano and Perri [11] assume first-order Markov depen-
dence, so that only distributions of pairs (Yt , Yt+1) at lag k = 1 need to be considered. Smith et al.
[39] decompose the distribution at a point in time, conditional upon the past, into the product of
a sequence of bivariate copula densities and the marginal density, known as D-vine (Bedford and
Cooke [2]).

The approach presented in this paper differs from these references in many important aspects.
Essentially, it combines their attractive features while avoiding some of their drawbacks. It shares
the quantile-based flavor of Kedem [24], Linton and Whang [33], Li [30,31] and Hagemann [17].
In contrast to the latter, however, we do not focus on a particular quantile, and consider copula
cross-covariances γ U

k (τ1, τ2) for all pairs (τ1, τ2), while Li [30,31] and Hagemann [17] restrict to
the case τ1 = τ2. As a consequence, we obtain, as in the characteristic function approach of Hong
[20], a complete characterization of the dependencies among the pairs (Yt , Yt−k). This allows to
address such important features as time reversibility (see Proposition 2.1) or tail dependence
in general. By replacing the original observations with their ranks, we furthermore achieve an
attractive invariance property with respect to modifications of marginal distributions, which is
not satisfied in the case of Hong [20]’s method. Moreover, we also avoid the scaling problem
of Li’s estimates and establish the consistency of a smoothed version of periodograms. Finally,
because our method is related to the concept of copulas, it allows to separate the marginal and
serial aspects of a time series, which should make it attractive for practitioners.

1.5. Outline of the paper

The paper is organized as follows. In Section 2.1, we introduce the concepts of Laplace and
copula cross-covariance kernels which, in this quantile-based approach, are to replace the or-
dinary autocovariance function. The corresponding spectra and periodograms are introduced in
Sections 2.2 and 2.3, respectively. Section 3 deals with the asymptotic properties of the Laplace,
copula, and rank-based Laplace periodograms. In Section 4, smoothed periodograms are con-
sidered, and the smoothed rank-based Laplace periodogram kernel is shown to be a consistent
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estimator of the copula spectral density. Some numerical illustration is provided in Section 5,
and most of the technical details are concentrated in an appendix.

2. An L1-approach to spectral analysis

2.1. The Laplace and copula cross-covariance kernels

Covariances clearly are not sufficient for describing a serial copula. We therefore introduce the
following concept, which will be convenient for that purpose. Let {Yt }t∈Z be a strictly stationary
process and define its copula cross-covariance kernel of lag k ∈ Z of {Yt }t∈Z as

γ U
k := {

γ U
k (τ1, τ2)|(τ1, τ2) ∈ (0,1)2},

where γ U
k (τ1, τ2) is defined in (1.3). Similarly, define the Laplace cross-covariance kernel of lag

k ∈ Z of {Yt }t∈Z as

γk := {
γk(x1, x2)|(x1, x2) ∈R

2},
where γk(x1, x2) is defined in (1.2). Contrary to traditional cross-covariances, copula and Laplace
cross-covariance kernels exist for all k (no finite variance assumption needed). The words “co-
variance” and “cross-covariance” are used out of time series classical terminology; but we only
consider covariances of indicators, which always exist, and provide a canonical description of
their joint distributions. The copula cross-covariance kernel of order k indeed entirely charac-
terizes the joint distribution of (Ut ,Ut−k), and conversely, without requiring any information on
the distribution function F of Yt . Along with F , the copula cross-covariance kernel of order k

entirely characterizes the Laplace cross-covariance kernel of order k and the joint distribution of
(Yt , Yt−k), and conversely. If

∫
x2 dF < ∞, the distribution function F of Yt and the collection

of copula cross-covariance kernels of all orders jointly characterize the autocovariance function
of {Yt }t∈Z.

2.2. The Laplace and copula spectral density kernels

Assume that the Laplace cross-covariance kernels γk (equivalently, the copula cross-covariance
kernels γ U

k ), k ∈ Z are absolutely summable, that is, assume that they satisfy

∞∑
k=−∞

∣∣γk(x1, x2)
∣∣ < ∞ for all (x1, x2) ∈R

2.

Then, γk admits the representation

γk(x1, x2) =
∫ π

−π

eikωfx1,x2(ω)dω, (x1, x2) ∈ R
2

with

fx1,x2(ω) := 1

2π

∞∑
k=−∞

γk(x1, x2)e
−ikω, (x1, x2) ∈ R

2. (2.1)
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The collection {ω �→ fx1,x2(ω)|(x1, x2) ∈ R
2}, call it the Laplace spectral density kernel, is such

that each mapping ω ∈ (−π,π] �→ fx1,x2(ω), (x1, x2) ∈ R
2, is continuous and satisfies (writing z̄

for the complex conjugate of z ∈C)

fx1,x2(−ω) = fx2,x1(ω) = fx1,x2(ω). (2.2)

Similarly define the copula spectral density kernel as

fqτ1 ,qτ2
(ω) = 1

2π

∞∑
k=−∞

γ U
k (τ1, τ2)e

−ikω, (τ1, τ2) ∈ (0,1)2, (2.3)

where qτi
:= F−1(τi) (i = 1,2). Note that fqτ1 ,qτ2

is the Fourier transform of the differences
between copulas of the pairs (Yt , Yt−k) and the independence copula. Clearly, the same identity
(2.2) holds for fqτ1 ,qτ2

(ω) as for fx1,x2(ω).

Throughout this paper, we denote by
d= equality in distribution and define �z and 	z as the

imaginary and real part of z ∈C, respectively. Obviously, we have �fx1,x2(ω) = 0 for all ω if and
only if γk(x1, x2) = γ−k(x1, x2) for all k, and we obtain the following result.

Proposition 2.1. The following statements are equivalent:

(1) (Yt , Yt+k)
d= (Yt , Yt−k) for all k ∈ Z (pairwise time-reversibility);

(2) �fx1,x2(ω) = 0 for all ω ∈ (0,π) and (x1, x2) ∈ R
2;

(3) �fqτ1 ,qτ2
(ω) = 0 for all ω ∈ (0,π) and (τ1, τ2) ∈ (0,1)2.

2.3. The Laplace, copula and rank-based Laplace periodogram kernels

The copula cross-covariance kernels describe the serial behavior of Yt ’s quantiles. If quantiles are
to be considered, it seems intuitively reasonable that the traditional L2-tools, which are closely
related with the concepts of mean and variance, be abandoned in favor of quantile-related ones. In
particular, traditional L2-projections should be replaced with (weighted) L1-projections. Recall
that, in traditional spectral analysis, estimation is usually based on the ordinary periodogram

In(ωj,n) := 1

n

∣∣∣∣∣
n∑

t=1

Yte
−itωj,n

∣∣∣∣∣
2

,

where ωj,n = 2πj/n ∈ Fn := {2πj/n|j = 1, . . . , 
n−1
2 � − 1, 
n−1

2 �} denote the positive
Fourier frequencies. A straightforward calculation shows that this can be expressed as

In(ωj,n) = n

4

∥∥b̂n,OLS(ωj,n)
∥∥2 := n

4
b̂′

n,OLS(ωj,n)

(
1 i
−i 1

)
b̂n,OLS(ωj,n),

where ‖ · ‖ denotes the euclidian norm, and

(
ân,OLS(ωj,n), b̂′

n,OLS(ωj,n)
) := Argmin

(a,b′)∈R3

n∑
t=1

(
Yt − (

a,b′)ct (ωj,n)
)2 (2.4)
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is the ordinary least squares estimator in the linear model with regressors ct (ωj,n) := (1,

cos(tωj,n), sin(tωj,n))
′, corresponding to an L2-projection of the observed series onto the har-

monic basis.
If, instead of a representation of Yt itself, we are interested in a representation, in terms of

the harmonic basis, of Yt ’s quantile of order τ , it may seem natural to replace that ordinary
periodogram In(ωj,n) with

L̂n,τ (ωj,n) := n

4

∥∥b̂n,τ (ωj,n)
∥∥2 := n

4
b̂′

n,τ (ωj,n)

(
1 i
−i 1

)
b̂n,τ (ωj,n),

where (
ân,τ (ωj,n), b̂n,τ (ωj,n)

) := Argmin
(a,b′)∈R3

n∑
t=1

ρτ

(
Yt − (

a,b′)ct (ωj,n)
)
, (2.5)

and

ρτ (x) := x
(
τ − I {x ≤ 0}) = (1 − τ)|x|I {x ≤ 0} + τ |x|I {x > 0}, τ ∈ (0,1),

is the so-called check function (see Koenker [26]). In definition (2.5), the L2-loss function, which
yields the classical definition (2.4), is thus replaced by Koenker and Bassett’s weighted L1-loss
which produces quantile regression estimates – see Koenker and Bassett [27]. That this indeed is
a sensible definition will follow from the asymptotic results of Section 3.

This L1-approach has been taken by Li [30] for the particular case τ = 1/2, leading to a
least absolute deviations (LAD) regression coefficient b̂n,0.5 and later by Li [31] for arbitrary
τ ∈ (0,1). More generally, for a given series Y1, . . . , Yn, define the Laplace periodogram kernel
as the collection

L̂n,τ1,τ2(ωj,n) := n

4
b̂′

n,τ1
(ωj,n)

(
1 i
−i 1

)
b̂n,τ2(ωj,n), ωj,n ∈Fn, (τ1, τ2) ∈ (0,1)2. (2.6)

For any (τ1, τ2,ωj,n), computation of L̂n,τ1,τ2(ωj,n) is immediate via the simplex algorithm (as
in classical Koenker–Bassett quantile regression, see Koenker [26]).

Similarly, define the copula periodogram kernel as the Laplace periodogram kernel
L̂U

n,τ1,τ2
(ωj,n) associated with the series U1, . . . ,Un. This means that L̂U

n,τ1,τ2
(ωj,n) is obtained

from (2.6) by replacing the estimate b̂n,τ by the second and third components of the vector

(
â,

(
b̂U

)′) := Argmin
(a,b′)∈R3

n∑
t=1

ρτ

(
Ut − (

a,b′)ct (ωj,n)
)
.

Finally, because the distribution function F required for the calculation of Ut = F(Yt ) is not
known, we introduce the empirical or rank-based Laplace periodogram kernel as the Laplace
periodogram kernel L̂˜n,τ1,τ2(ωj,n) associated with the series n−1R

(n)
1 , . . . , n−1R

(n)
n , where R

(n)
t

denotes the rank of Yt among Y1, . . . , Yn. In other words, L̂˜n,τ1,τ2(ωj,n) is obtained from (2.6)
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by replacing the estimate b̂n,τ by the second and third components of the vector

(â, b̂′˜ ) := Argmin
(a,b′)∈R3

n∑
t=1

ρτ

(
n−1R

(n)
t − (

a,b′)ct (ωj,n)
)
.

A few remarks about the notation used in this paper are in order. With T̂ , we usually denote
a statistic obtained from the original series Y1, . . . , Yn, such as L̂n,τ1,τ2 . The notation T̂ U means
that T̂ has been computed from the probability integral transform U1, . . . ,Un of the data – a
typical example is L̂U

n,τ1,τ2
. Finally, the notation T̂˜ reflects the fact that T̂ has been computed

from the normalized ranks n−1R
(n)
1 , . . . , n−1R

(n)
n (see, for instance, the rank-based Laplace pe-

riodogram kernel L̂˜n,τ1,τ2 ).

3. Asymptotic properties

3.1. Asymptotics of Laplace and copula periodogram kernels

We now proceed to deriving the asymptotic distributions of the Laplace and rank-based Laplace
periodogram kernels, which, as we shall see, establishes their relation to the spectral density
kernels defined in (2.1) and (2.3). Throughout the rest of the paper, we make the following basic
assumptions.

Assumption (A1). The process {Yt }t∈Z is strictly stationary and β-mixing, such that

β(n) := sup
k≥1

E sup
B∈F∞

n+k

∣∣P(
B|Fk−∞

) − P(B)
∣∣ = O

(
n−δ

)
, δ > 1, as n → ∞,

where Fm
l := σ(Yl, . . . , Ym) denotes the σ -field generated by Yl, . . . , Ym.

The class of β-mixing processes is well studied, and contains a wide range of linear and non-
linear processes, including (possibly, under mild additional assumptions) ARMA, general non-
linear scalar ARCH, threshold ARCH, and exponential ARCH processes (see Liebscher [32]),
GARCH(p, q) processes with moments (see Boussama [5]) and GARCH(1,1) processes with
no assumptions regarding the moments (see Francq and Zakoïan [13]), generalized polynomial
random coefficient vector autoregressive processes, and a family of generalized hidden Markov
processes (Carrasco and Chen [9]) which includes stochastic volatility ones.

Assumption (A2). The distribution function F of Yt and the joint distribution functions Fk of
(Yt , Yt+k) are twice continuously differentiable, with uniformly (with respect to their arguments,
and also with respect to k) bounded derivatives. Moreover, there exists a subset T of [0,1] and,
for every τ ∈ T , a positive real dτ , such that inf|x−qτ |≤dτ f (x) > 0, where f and qτ := F−1(τ )

denote the density and τ -quantile corresponding to the distribution function F .
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Denote by L̂n,τ1,τ2 and L̂U
n,τ1,τ2

, respectively, the Laplace and copula periodogram kernels
associated with a realization of length n. For each (τ1, τ2) ∈ (0,1)2 and ω ∈ (0,π), write

◦
fτ1,τ2

(ω) := fqτ1 ,qτ2
(ω)/

(
f (qτ1)f (qτ2)

)
(3.1)

for the scaled version of the spectral density kernel fqτ1 ,qτ2
(ω) defined in (2.3). In the following

two statements,
L−→ stands for convergence in distribution, and χ2

k denotes a chi-square distri-
bution with k degrees of freedom. We also introduce the piecewise constant function (defined on
the interval (0,π))

gn(ω) := ωj,n, (3.2)

where ωj,n is the Fourier frequency closest to ω – more precisely, ωj,n is such that ω belongs
to (ωj,n − 2π

n
,ωj,n + 2π

n
]. The following result is the key for understanding the asymptotic

properties of the Laplace periodogram kernel.

Theorem 3.1. Let � := {ω1, . . . ,ων} ⊂ (0,π) and T := {τ1, . . . , τp} ⊂ (0,1) denote distinct
frequencies and distinct quantile orders, respectively. Let Assumptions (A1) and (A2) be satisfied
with (A2) holding for every τ ∈ T . Then

√
n
(
b̂n,τ

(
gn(ω)

))
τ∈T ,ω∈�

L−→
n→∞

(
Nτ (ω)

)
τ∈T ,ω∈�

,

where (Nτ (ω))τ∈T ,ω∈� denotes a Gaussian random vector with mean zero and covariance

Mω1,ω2
τ1,τ2

:= Cov
(
Nτ1(ω1),Nτ2(ω2)

)
(3.3)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4π

(
	◦
fτ1,τ2

(ω) �◦
fτ1,τ2

(ω)

−�◦
fτ1,τ2

(ω) 	◦
fτ1,τ2

(ω)

)
if ω1 = ω2 =: ω,(

0 0
0 0

)
if ω1 �= ω2.

Proof. The proof consists of two basic steps which we only sketch here. Details are provided in
Appendix A.
Step 1. The first step consists of a linearization of the estimate b̂n,τ (ωj,n) defined in (2.5). To be
precise, for any τ ∈ (0,1), ω ∈ (0,π), and δ ∈R

3, let

Ẑn,τ,ω(δ) :=
n∑

t=1

(
ρτ

(
Yt − qτ − n−1/2c′

t (ω)δ
) − ρτ (Yt − qτ )

)
, (3.4)

where ct (ω) := (1, cos(ωt), sin(ωt))′, and qτ denotes the τ -quantile of F . Further define

Zn,τ,ω(δ) := −δ′ζ n,τ,ω + 1
2δ′Qn,τ,ωδ,
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where

ζ n,τ,ω := n−1/2
n∑

t=1

ct (ω)
(
τ − I {Yt ≤ qτ }

)
, (3.5)

and

Qn,τ,ω := f (qτ )n
−1

n∑
t=1

ct (ω)c′
t (ω). (3.6)

We first show that the minimizers

δ̂n,τ,ω := arg min
δ

Ẑn,τ,ω(δ) and δn,τ,ω := arg min
δ

Zn,τ,ω(δ) = (Qn,τ,ω)−1ζ n,τ,ω (3.7)

are close in probability (uniformly with respect to ω ∈ Fn). Note that, from the definition in (2.5),
it follows that the random variable

√
nb̂n,τ (ωj,n) coincides with the second and third components

of the vector δ̂n,τ,ω . Moreover, for ωj,n = 2πj/n, we have

Qn,τ,ωj,n
= f (qτ )diag(1,1/2,1/2), (3.8)

where diag(a1, . . . , ak) denotes the diagonal matrix with diagonal elements a1, . . . , ak . More
precisely, we establish the following bound

sup
ω∈Fn

‖δ̂n,τ,ω − δn,τ,ω‖ = OP
(
rn(δ)

)
,

(3.9)
rn(δ) := (

n−1/8 logn
) ∨ (

n(1/4)(1−δ)/(1+δ)(logn)3/2).
This result is obtained from the following arguments, for which the details are provided in

Section A.1. Roughly speaking, bounds of the type (3.9) can be obtained by showing that the
corresponding functions Ẑn,τ,ω and Zn,τ,ω are uniformly close in probability. A precise statement
is given in Lemma A.1 (see Section A.1.2), where we show that (3.9) follows if the bound

sup
ω∈Fn

sup
‖δ−δn,τ,ω‖≤ε

∣∣Ẑn,τ,ω(δ) − Zn,τ,ω(δ)
∣∣ = OP

(
rn(δ)

2) (3.10)

can be established for some ε > 0.
Note that

P
(

sup
ω∈Fn

sup
‖δ−δn,τ,ω‖≤ε

∣∣Ẑn,τ,ω(δ) − Zn,τ,ω(δ)
∣∣ > rn(δ)

2
)

≤ P
(

sup
ω∈Fn

sup
‖δ‖≤ε+‖δn,τ,ω‖

∣∣Ẑn,τ,ω(δ) − Zn,τ,ω(δ)
∣∣ > rn(δ)

2, sup
ω∈Fn

‖δn,τ,ω‖ ≤ A
√

logn
)

+ P
(

sup
ω∈Fn

sup
‖δ‖≤ε+‖δn,τ,ω‖

∣∣Ẑn,τ,ω(δ) − Zn,τ,ω(δ)
∣∣ > rn(δ)

2, sup
ω∈Fn

‖δn,τ,ω‖ > A
√

logn
)

≤ P
(

sup
ω∈Fn

sup
‖δ‖≤ε+A

√
logn

∣∣Ẑn,τ,ω(δ) − Zn,τ,ω(δ)
∣∣ > rn(δ)

2
)

+ P
(

sup
ω∈Fn

‖δn,τ,ω‖ > A
√

logn
)
.
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By application of Lemma A.2, it is therefore sufficient to show that, for an enlarged A,

sup
ω∈Fn

sup
‖δ‖≤A

√
logn

∣∣Ẑn,τ,ω(δ) − Zn,τ,ω(δ)
∣∣ = OP

(
rn(δ)

2) (3.11)

and (3.10), hence also, in view of Lemma A.1, (3.9) is proved. The proof of (3.11) is deferred to
Section A.1.1.
Step 2. As we have discussed at the beginning of the first step, the asymptotic properties of√

nb̂n,τ (ωj,n) can be obtained from those of the random variables δn,τ,ω for which an explicit
expression is available. More precisely, for given sets � := {ω1, . . . ,ων} ⊂ (0,π) of frequencies
and T := {τ1, . . . , τp} ⊂ (0,1), consider the linear combination with coefficients λik ∈ R2, i =
1, . . . , ν, k = 1, . . . , p

p∑
k=1

ν∑
i=1

λ′
ik

√
nb̂n,τk

(
gn(ωi)

)
(3.12)

=
p∑

k=1

ν∑
i=1

λ′
ik

n∑
t=1

2

f (qτk
)

vtn(ωi)√
n

(
τk − I {Yt ≤ qτk

}) + oP(1),

where vtn(ω) := (cos(gn(ω)t), sin(gn(ω)t))′. The first equality is a consequence of (3.7), (3.8)
and (3.9). Along the same lines as in the proof of Theorem 2 of Li [30], and using the fact that
(A1) implies

∑∞
k=−∞ |γk(qτ1 , qτ2)| ≤ C

∑∞
k=−∞ |k|−δ < ∞, we obtain that

Cov

(
n∑

t=1

2

f (qτk1
)

vtn(ωi1)√
n

(
τk1 − I {Yt ≤ qτk1

}), n∑
t=1

2

f (qτk2
)

vtn(ωi2)√
n

(
τk2 − I {Yt ≤ qτk2

}))

converges to M
ωi1 ,ωi2
τk1 ,τk2

defined in (3.3). Hence, we have

Var

(
n∑

t=1

p∑
k=1

ν∑
i=1

λ′
ik

2

f (qτk
)

vtn(ωi)√
n

(
τk − I {Yt ≤ qτk

})) → Var

(
p∑

k=1

ν∑
i=1

λ′
ikNτk

(ωi)

)
.

By an application of the central limit theorem for triangular arrays of strongly mixing random
variables in Francq and Zakoïan [12], with κ = 0, Tn = 0, r∗ = (δ − 1)/(2 + 4δ) and ν∗ =
3/(δ − 1), we deduce that

n∑
t=1

p∑
k=1

ν∑
i=1

λ′
ik

2

f (qτk
)

vtn(ωi)√
n

(
τk − I {Yt ≤ qτk

}) L−→ N
(

0,Var

(
p∑

k=1

ν∑
i=1

λ′
ikNτk

(ωi)

))
,

where (Nτ (ω))τ∈T ,ω∈� denotes a Gaussian random vector with mean zero and covariance matrix
Cov(Nτ1(ω1),Nτ2(ω2)) = M

ωi1 ,ωi2
τk1 ,τk2

. Because of (3.12), the quantity

√
n

p∑
k=1

ν∑
i=1

λ′
ikb̂τk

(
gn(ωi)

)
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converges in distribution to the same normal limit. Thus, it follows from the traditional Cramér–
Wold device that (√

nb̂n,τ

(
gn(ω)

))
τ∈T ,ω∈�

L−→
n→∞

(
Nτ (ω)

)
τ∈T ,ω∈�

. �

As an immediate consequence of the above result, the continuous mapping theorem yields the
asymptotic distribution of a collection of Laplace periodogram kernels.

Theorem 3.2. Under the assumptions of Theorem 3.1,(
L̂n,τ1,τ2

(
gn(ω1)

)
, . . . , L̂n,τ1,τ2

(
gn(ων)

)) L−→ (
Lτ1,τ2(ω1), . . . ,Lτ1,τ2(ων)

)
, (3.13)

where the random variables Lτ1,τ2 associated with distinct frequencies are mutually independent.
Moreover,

Lτ1,τ2(ω) ∼ π
◦
fτ1,τ2

(ω)χ2
2 if τ1 = τ2, (3.14)

and

Lτ1,τ2(ω)
d= 1

4
(Z11,Z12)

(
1 i
−i 1

)(
Z21
Z22

)
if τ1 �= τ2,

where (Z11,Z12,Z21,Z22)
′ is a Gaussian vector with mean zero and covariance matrix

�4(ω) := 4π

⎛⎜⎜⎜⎜⎝
◦
fτ1,τ1

(ω) 0 	◦
fτ1,τ2

(ω) �◦
fτ1,τ2

(ω)

0
◦
fτ1,τ1

(ω) −�◦
fτ1,τ2

(ω) 	◦
fτ1,τ2

(ω)

	◦
fτ1,τ2

(ω) −�◦
fτ1,τ2

(ω)
◦
fτ2,τ2

(ω) 0

�◦
fτ1,τ2

(ω) 	◦
fτ1,τ2

(ω) 0
◦
fτ2,τ2

(ω)

⎞⎟⎟⎟⎟⎠ . (3.15)

It follows from Theorem 3.2 that E[Lτ1,τ2(ω)] = 2π
◦
fτ1,τ2

(ω) for all (τ1, τ2) ∈ (0,1)2 and

ω ∈ (0,π), which indicates that an estimator of the scaled spectral density 2π
◦
fτ1,τ2

(ω) defined in

(3.1) could be based on an average of quantities of the form L̂n,τ1,τ2(ω). Moreover, the following
result, which is an immediate consequence of Theorem 3.2, yields the asymptotic distribution of
the copula periodogram kernel.

Corollary 3.1. Let � := {ω1, . . . ,ων} ⊂ (0,π) denote distinct frequencies and (τ1, τ2) ∈ (0,1)2.
If Assumptions (A1)–(A2) hold for every τ ∈ {τ1, τ2}, then(

L̂U
n,τ1,τ2

(
gn(ω1)

)
, . . . , L̂U

n,τ1,τ2

(
gn(ων)

)) L−→ (
LU

τ1,τ2
(ω1), . . . ,L

U
τ1,τ2

(ων)
)
, (3.16)

where gn(ω) is defined in (3.2). The random variables LU
τ1,τ2

in (3.19) associated with distinct
frequencies are mutually independent,

LU
τ1,τ2

(ω) ∼ πfqτ1 ,qτ2
(ω)χ2

2 if τ1 = τ2, (3.17)
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and

LU
τ1,τ2

(ω)
d= 1

4
(Z11,Z12)

(
1 i
−i 1

)(
Z21
Z22

)
if τ1 �= τ2,

where (Z11,Z12,Z21,Z22)
′ ∼N (0,�4(ω)) with covariance matrix

�4(ω) := 4π

⎛⎜⎜⎝
fqτ1 ,qτ1

(ω) 0 	fqτ1 ,qτ2
(ω) �fqτ1 ,qτ2

(ω)

0 fqτ1 ,qτ1
(ω) −�fqτ1 ,qτ2

(ω) 	fqτ1 ,qτ2
(ω)

	fqτ1 ,qτ2
(ω) −�fqτ1 ,qτ2

(ω) fqτ2 ,qτ2
(ω) 0

�fqτ1 ,qτ2
(ω) 	fqτ2 ,qτ2

(ω) 0 fqτ2 ,qτ2
(ω)

⎞⎟⎟⎠ . (3.18)

In particular, E[LU
τ1,τ2

(ω)] = 2πfqτ1 ,qτ2
(ω). This indicates that the copula periodogram kernels

L̂U
n,τ1,τ2

, rather than the Laplace ones L̂n,τ1,τ2 , are likely to be the appropriate tools for statistical
inference about fqτ1 ,qτ2

. Unfortunately, they are not statistics, since they involve the unknown
marginal distribution F which in practice is unspecified. This problem is taken care of in the
next section.

3.2. Asymptotics of rank-based Laplace periodogram kernels

The final result of this section establishes the asymptotic equivalence of the copula and rank-
based Laplace periodogram kernels L̂U

n,τ1τ2
(ω) and L̂˜n,τ1τ2(ω), where the latter do not involve

F , hence can be computed from the data. In particular, the following results show that b̂˜n,τ , and

L̂˜n,τ1,τ2(ω) are asymptotically distribution-free with respect to the marginal distribution of Yt in
the sense that their asymptotic distributions only depend on the process {Ut }t∈Z.

Theorem 3.3. Let � := {ω1, . . . ,ων} ⊂ (0,π) and T := {τ1, . . . , τp} ⊂ (0,1) denote distinct
frequencies and quantile orders, respectively. Let Assumptions (A1)–(A2) be satisfied with (A2)
holding for every τ ∈ T . Then,(

b̂˜n,τ

(
gn(ω)

))
τ∈T ,ω∈�

L−→
n→∞

(
NU

τ,ω

)
τ∈T ,ω∈�

,

where (NU
τ,ω)τ∈T ,ω∈� is a Gaussian random vector with mean zero and covariance matrix

Mω1,ω2
τ1,τ2

:= Cov
(
NU

τ1,ω1
,NU

τ2,ω2

)

=

⎧⎪⎪⎨⎪⎪⎩
4π

( 	fqτ1 ,qτ2
(ω) �fqτ1 ,qτ2

(ω)

−�fqτ1 ,qτ2
(ω) 	fqτ1 ,qτ2

(ω)

)
if ω1 = ω2 =: ω, and(

0 0
0 0

)
if ω1 �= ω2.

At first glance, the fact that replacing the Ut ’s with their ranks does not have any impact
on the asymptotic distribution of b̂˜n,τ (gn(ω)) seems quite surprising: a completely different
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phenomenon indeed typically occurs when estimating a copula, see e.g. Genest and Segers [15].
The explanation for this is that the Bahadur representation for the vector (â, b̂˜) is (see the proof
of Theorem 3.3) of the very special form

√
n
((

â, b̂˜′)′ − (qτ ,0,0)′
) = (

QU
n,ω

)−1
n−1/2

n∑
t=1

ct (ω)
(
τ − I {Ut ≤ τ } + F

(
F̂−1

n (τ )
) − τ

)
,

where the matrix QU
n,ω := 1

n

∑n
t=1 ct (ω)c′

t (ω) is diagonal. The additional term F(F̂−1
n (τ )) − τ

comes into play because we are using ranks to estimate the unknown marginals. However, due
to the fact that, for Fourier frequencies ω,

∑n
t=1 cos(ωt) = ∑n

t=1 sin(ωt) = 0, this effect is not
present in the first-order expansion of b̂˜ and thus does not influence its asymptotic distribution.

Together with the above result, the continuous mapping theorem then yields the following
result.

Theorem 3.4. Under the assumptions of Theorem 3.3(
L̂˜n,τ1,τ2

(
gn(ω1)

)
, . . . , L̂˜n,τ1,τ2

(
gn(ων)

)) L−→ (
LU

τ1,τ2
(ω1), . . . ,L

U
τ1,τ2

(ων)
)
, (3.19)

where gn(ω) and the distribution of the random variables LU
τ1,τ2

are defined in (3.2) and Corol-
lary 3.1, respectively.

Proof of Theorem 3.3. Recall that F̂n denotes the empirical distribution function of Y1, . . . , Yn;
let e1 := (1,0,0)′, δ = (δ1, δ2, δ3)

′, and Ut := F(Yt ). We introduce the functions

Ẑ˜n,τ,ω(δ) :=
n∑

t=1

(
ρτ

(
F̂n(Yt ) − τ − n−1/2c′

t (ω)δ
) − ρτ

(
F̂n(Yt ) − τ

))
,

ẐU
n,τ,ω(δ) :=

n∑
t=1

(
ρτ

(
Ut − τ − n−1/2c′

t (ω)δ
) − ρτ (Ut − τ)

) − δ1
√

n
(
F
(
F̂−1

n (τ )
) − τ

)
,

ZU
n,τ,ω(δ) := −δ′(ζU

n,τ,ω + e′
1

√
n
(
F
(
F̂−1

n (τ )
) − τ

)) + 1

2
δ′QU

n,ωδ,

where QU
n,ω := n−1 ∑n

t=1 ct (ω)c′
t (ω) and ζU

n,τ,ω := n−1/2 ∑n
t=1 ct (ω)(τ − I {Ut ≤ τ }). If we can

show that the difference Ẑ˜n,τ,ω(δ)−ZU
n,τ,ω(δ) is uniformly small in probability, a slight modifi-

cation of the arguments developed in the proof of Theorem 3.2 yields a uniform linearization of
δ̂˜n,τ,ω := arg minδ Ẑ˜n,τ,ω(δ). More precisely, we show that

sup
ω∈Fn

∥∥ δ̂˜n,τ,ω − δU
n,τ,ω

∥∥ = OP
(
n(1/8)(1−δ)/(1+δ) logn

)
, (3.20)

where δU
n,τ,ω := arg minδ ZU

n,τ,ω(δ) = (QU
n,ω)−1(ζU

n,τ,ω + e1
√

n(F (F̂−1
n (τ )) − τ)). The asymp-

totic normality of the linearization δU
n,τ,ω then follows by the same arguments as in Step (2) of

the proof of Theorem 3.1; details are omitted for the sake of brevity.
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In order to prove (3.20), we note that Lemma A.1 in Appendix A also holds with Ẑn,τ,ω(δ),
ZX

n,τ,ω(δ), δX
n,τ,ω and δ̂n,τ,ω replaced by Ẑ˜n,τ,ω(δ), ZU

n,τ,ω(δ), δU
n,τ,ω and δ̂˜n,τ,ω , respectively.

Therefore, it suffices to establish that, for some ε > 0,

sup
ω∈Fn

sup
‖δ−δU

n,τ,ω‖≤ε

∣∣ Ẑ˜n,τ,ω(δ) − ZU
n,τ,ω(δ)

∣∣ = OP
(
n(1/4)(1−δ)/(1+δ)(logn)2). (3.21)

Note that δU
n,τ,ω decomposes into a term containing ζU

n,τ,ω , to which Lemma A.2 applies, and

a term involving
√

n(F (F̂−1
n (τ )) − τ) which, for every τ , converges in distribution, so that

P(
√

n(F (F̂−1
n (τ ))−τ) > A

√
logn) → 0 for any A > 0. Therefore, there exists a constant A such

that limn→∞ P(supω∈Fn
‖δU

n,τ,ω‖ > A
√

logn) = 0. It follows that, in order to establish (3.21), we
may restrict to a supremum with respect to the set ‖δ‖ ≤ 2A

√
logn. Knight’s identity (Knight

[25]; see page 121 of Koenker [26]) yields

Ẑ˜n,τ,ω(δ) = Ẑ˜n,τ,ω,1(δ) + Ẑ˜n,τ,ω,2(δ),

where

Ẑ˜n,τ,ω,1(δ) = −δ′n−1/2
n∑

t=1

ct (ω)
(
τ − I

{
Ut ≤ F

(
F̂−1

n (τ )
)})

,

and

Ẑ˜n,τ,ω,2(δ) =
n∑

t=1

∫ n−1/2c′
t (ω)δ

0

(
I
{
Ut ≤ F

(
F̂−1

n (s + τ)
)} − I

{
Ut ≤ F

(
F̂−1

n (τ )
)})

ds.

A similar representation holds for ẐU
n,τ,ω(δ). Now the proof of (3.21) is a consequence of the

following two auxiliary results, which are proved in Sections A.2.1–A.2.2:

sup
ω∈Fn

sup
‖δ‖≤A

√
logn

∣∣∣∣∣ Ẑ˜n,τ,ω,1(δ) − δ′n−1/2
n∑

t=1

ct (ω)
(
τ − I {Ut ≤ τ })

(3.22)

− δ1
√

n
(
F
(
F̂−1

n (τ )
) − τ

)∣∣∣∣∣ = OP
(
n(1/4)(1−δ)/(1+δ)(logn)2)

and

sup
ω∈Fn

sup
‖δ‖≤A

√
logn

∣∣∣∣∣ Ẑ˜n,τ,ω,2(δ) −
n∑

t=1

∫ n−1/2c′
t (ω)δ

0

(
I {Ut ≤ s + τ } − I {Ut ≤ τ })ds

∣∣∣∣∣
(3.23)

= OP
(
n(1/4)(1−δ)/(1+δ)(logn)2).

Note that the combination of (3.22) and (3.23) implies that Ẑ˜n,τ,ω and ẐU
n,τ,ω are uniformly

close in probability. Finally, we obtain from (3.11) that

sup
ω∈Fn

sup
‖δ‖≤A

√
logn

∣∣ẐU
n,τ,ω(δ) − ZU

n,τ,ω(δ)
∣∣ = OP

(
rn(δ)

2), (3.24)
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where we may replace Ẑn,τ,ω(δ) with ẐU
n,τ,ω(δ) and Zn,τ,ω(δ) with ZU

n,τ,ω(δ), since U1, . . . ,Un

are β-mixing with the rate from (A1), as required, and the additional term δ1
√

n(F (F̂−1
n (τ ))−τ)

appears in both ẐU
n,τ,ω(δ) and ZU

n,τ,ω(δ). Combining (3.22)–(3.24) yields (3.21), thus completing
the proof of Theorem 3.3. �

4. Smoothed periodograms

We have seen in Section 3.1 that the Laplace periodogram kernel, for all (τ1, τ2), converges in
distribution, and that the expectation of the limit is the scaled spectral density kernel (at (τ1, τ2))

2π
◦
fτ1,τ2

(ω) := 2π
fqτ1qτ2

(ω)

f (qτ1)f (qτ2)
= 1

f (qτ1)f (qτ2)

∞∑
k=−∞

γk(qτ1 , qτ2)e
−iωk.

In practice, however, this is not enough, and consistent estimation is a minimal requirement.
For this purpose, we consider, as in traditional spectral estimation, smoothed versions of our
periodograms, of the form

f̂n,τ1,τ2(ωj,n) :=
∑

|k|≤Nn

Wn(k)L̂n,τ1,τ2(ωj+k,n) (4.1)

at the Fourier frequencies ωj,n = 2πj/n, where Nn → ∞ as n → ∞ is a sequence of positive
integers, and Wn = {Wn(j): |j | ≤ Nn} is a sequence of positive weights satisfying

Wn(k) = Wn(−k) for all k and
∑

|k|≤Nn

Wn(k) = 1.

Extending the definition of f̂n,τ1,τ2 to the interval (0,π), we introduce{
(0,π) � ω �→ f̂n,τ1,τ2(ω)|(τ1, τ2) ∈ (0,1)2}

as the smoothed Laplace periodogram kernel, where

f̂n,τ1,τ2(ω) := f̂n,τ1,τ2

(
gn(ω)

)
, (4.2)

and the function gn is defined in (3.2). In order to show that f̂n,τ1,τ2(ω) is a consistent estimator

of the scaled spectral density
◦
fτ1,τ2

(ω), we make the following additional assumptions.

Assumption (A3). Nn/n → 0, and
∑

|k|≤Nn
W 2

n (k) = O(1/n) as n → ∞.

Assumption (A4). For any τ1, τ2, τ3, τ4 ∈ (0,1),

∞∑
k2,k3,k4=−∞

∣∣cum
(
I {Yt ≤ qτ1}, I {Yt+k2 ≤ qτ2}, I {Yt+k3 ≤ qτ3}, I {Yt+k4 ≤ qτ4}

)∣∣ < ∞,
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where cum(ζ1, . . . , ζr ) := ∑
(−1)p−1(p − 1)!(E∏

j∈ν1
ζj ) · · · (E∏

j∈νp
ζj ) (with summation ex-

tending over all partitions {ν1, . . . , νp}, p = 1, . . . , r of {1, . . . , r}) denotes the r th order joint
cumulant of the random vector (ζ1, . . . , ζr ) (cf. Brillinger [7], page 19).

Assumption (A5). The functions ω �→ fqτ1 ,qτ2
defined in (2.3) are continuously differentiable for

all (τ1, τ2) ∈ (0,1)2.

Note that an assumption similar to (A4), but with the cumulant of Yt ’s instead of the cumulant
of the indicators, is made when consistency of smoothed cross-periodograms is proved, and that
(A5) follows if (A1) holds with δ > 2, because this implies∑

k∈Z
|k|∣∣γk(τ1, τ2)

∣∣ < ∞.

Theorem 4.1. Let (A1)–(A5) hold. Then the smoothed Laplace periodogram defined in (4.1)
and (4.2) is a consistent estimator for the scaled Laplace spectral density; more precisely,

f̂n,τ1,τ2(ω) = 2π
◦
fτ1,τ2

(ω) + OP
(
Rn + n−1/2 + Nn/n

) = 2π
◦
fτ1,τ2

(ω) + oP(1), (4.3)

where Rn = (n−1/8(logn)3/2) ∨ (n(1/4)(1−δ)/(1+δ)(logn)9/4).

Proof. The proof proceeds in several steps which are sketched here – technical details can be
found in Appendix B. We first show (Section B.1) that

L̂n,τ1,τ2(ωj,n) = Ln,τ1,τ2(ωj,n)/
(
f (qτ1)f (qτ2)

) + OP(Rn), (4.4)

uniformly in the Fourier frequencies ωj,n := 2πj/n, where

Ln,τ1,τ2(ωj,n) := n−1dn(τ1,ωj,n)dn(τ2,−ωj,n),

dn(τ,ωj,n) :=
n∑

t=1

eiωj,nt
(
τ − I {Yt ≤ qτ }

) = (1, i)nbn,τ,ωj,n
2−1f (qτ ) and

n1/2bn,τ,ωj,n
:= 2

f (qτ )
n−1/2

n∑
t=1

(
cos(ωj,nt)

sin(ωj,nt)

)(
τ − I {Yt ≤ qτ }

)
.

As an immediate consequence, we obtain

f̂n,τ1,τ2(ωj,n) =
∑

|k|≤Nn

Wn(k)Ln,τ1,τ2(ωj+k,n)/
(
f (qτ1)f (qτ2)

) + OP(Rn).

In Section B.2, we show that, for any ωj,n = 2πj/n,

Kn :=
∑

|k|≤Nn

Wn(k)

(
Ln,τ1,τ2(ωj+k,n)

f (qτ1)f (qτ2)
−◦
fτ1,τ2

(ωj+k,n)

)
= OP(1/

√
n). (4.5)
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Now, let ωjnn be a sequence of Fourier frequencies such that |ωjn,n − ω| = O(Nn/n) for some

ω ∈ (0,π): both for f ≡ 	◦
fτ1,τ2

and f ≡ �◦
fτ1,τ2

, we have∣∣∣∣∣ ∑
|k|≤Nn

Wn(k)
(
f (ωjn+k,n) − f (ω)

)∣∣∣∣∣ ≤
∑

|k|≤Nn

Wn(k)
∣∣f ′(ξjn+k,n)

∣∣|ωjn+k,n − ω|

≤ Cn

∑
|k|≤Nn

Wn(k)|2πk/n + ωjnn − ω|

≤ Cn

∑
|k|≤Nn

Wn(k)|2πk/n| + Cn

∑
|k|≤Nn

Wn(k)|ωjnn − ω|

≤ Cn

(
2πNn/n + |ωjnn − ω|) ∑

|k|≤Nn

Wn(k) = O(Nn/n),

where |ξjn+k,n − ω| ≤ |ω − ωjn+k,n| and Cn := supξ∈�n
|f ′(ξ)| is the supremum over

�n = {
ξ |ω − |ω − ωjn,n| − ωNn,n ≤ ξ ≤ ω + |ω − ωjn,n| + ωNn,n

}
.

Note that, since |ω − ωjn,n| → 0 and ωNn,n = 2πNn/n → 0, Cn → f ′(ω), so that (Cn) is a
bounded sequence. This yields∣∣∣∣∣ ∑

|k|≤Nn

Wn(k)
(◦
fτ1,τ2

(ωjn+k)−
◦
fτ1,τ2

(ω)
)∣∣∣∣∣ = O(Nn/n),

which completes the proof of Theorem 4.1. �

For a consistent estimation of the (unscaled) Laplace spectral density fτ1,τ2(ω), we propose a
smoothed version

f̂˜n,τ1,τ2(ω) := f̂˜n,τ1,τ2

(
gn(ω)

)
, f̂˜n,τ1,τ2(ωj,n) :=

∑
|k|≤Nn

Wn(k) L̂˜n,τ1,τ2(ωj+k,n)

of the rank-based Laplace periodogram L̂˜n,τ1,τ2(ω). We then have the following result.

Theorem 4.2. Let Assumptions (A1)–(A5) hold. Then the smoothed rank-based Laplace peri-
odogram f̂˜n,τ1,τ2 is a consistent estimator of the (unscaled) Laplace spectral density fqτ1 ,qτ2

.
More precisely,

f̂˜n,τ1,τ2(ω) = 2πfqτ1 ,qτ2
(ω) + OP

(
n(1/8)(1−δ)/(1+δ)(logn)3/2 + Nn/n

) = 2πfqτ1 ,qτ2
(ω) + oP(1).

Proof. The proof is very similar to that of Theorem 4.1. The main difference lies in the asymp-
totic representation for the second and third coordinates n1/2bU

n,τ,ω of the quantity δU
n,τ,ω in
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(3.20). Here we use (3.20), which implies that

sup
ω∈Fn

∥∥∥∥∥n1/2bU
n,τ,ω − 2n−1/2

n∑
t=1

(
cos(ωt)

sin(ωt)

)(
τ − I

{
F(Yt ) ≤ τ

})∥∥∥∥∥
= OP

(
n(1/8)(1−δ)/(1+δ)(logn)3/2).

The rest of the proof follows as in the proof of Theorem 4.1, yielding the estimate

f̂˜n,τ1,τ2(ω) = 2πfτ1,τ2(ω) + OP
(
n(1/8)(1−δ)/(1+δ)(logn)3/2 + n−1/2 + Nn/n

)
.

Finally, the assumptions imply that n−1/2 = O(n(1/8)(1−δ)/(1+δ)(logn)3/2), which completes the
proof of Theorem 4.2. �

Note that Theorem 4.1 solves an important open problem raised in Li [30,31], who considered
the Laplace periodogram L̂n,τ1,τ2 for τ1 = τ2. This author established the asymptotic unbiased-
ness of a smoothed version of the Laplace periodogram, but not its consistency. Moreover, as
pointed out in Theorem 3.1 the smoothed version of L̂n,τ1,τ2 is not consistent for the copula
spectral density kernel, which is the main object of interest in this paper. Theorem 4.2 shows that
the smoothed rank-based Laplace periodogram yields a consistent estimate of this quantity.

5. Finite-sample properties

5.1. Simulation results

In order to illustrate the finite-sample properties of the new estimates, we present a small sim-
ulation study, where we consider four models. In Models (1) and (2), the observations are
AR(1) processes with Yt = −0.3Yt−1 + εt , and N (0,1)- and t1-distributed innovations εt .
Note that in Model (2) no moments exist, hence the traditional spectral density is not de-
fined. Model (3) is a QAR(1) model (cf. Koenker and Xiao [28]), that is, a model of the form
Yt = θ0(Ut ) + θ1(Ut )Yt−1, where (Ut ) is a sequence of i.i.d. standard uniform random variables
and θ1 and θ0 are functions from [0,1] to R; more specifically, we chose θ1(u) = 1.9(u − 0.5)

and θ0(u) = 0.1�−1(u), with � the standard normal distribution function. Model (4) is the
ARMA(1,1) model Yt = −0.8Yt−1 + 1.25εt−1 + εt with εt ∼ t3. Note that this defines an all-
pass ARMA(1,1) process where the observations are uncorrelated, but not independent (cf. e.g.,
Breidt, Davis and Trindade [6]). All results presented in this section are based on 5000 indepen-
dent replications.

For each of those four models, we generated pseudo-random time series of lengths n = 100,
n = 500 and n = 1000, and computed the Laplace and rank-based Laplace periodogram for
τ1, τ2 ∈ {0.05,0.25,0.5,0.75,0.95}. We also computed the smoothed estimates using Daniell
kernels with parameters (2,1) for n = 100, (10,4) for n = 500, and (10,25) for n = 1000 –

namely, the kernel W
(m1,...,mp)
n (j) recursively defined, for parameters (m1, . . . ,mp), with Nn =
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j=1 mj < n/2, as

W(m)
n (j) := (2m − 1)−1I

{|j | ≤ m
}
,

W
(m1,...,mp)
n (j) := C

(
W

(m1,...,mp−1)
n ∗ W

(mp)
n

)
(j)

= C
∑

|k|≤mp

(2mp − 1)−1W
(m1,...,mp−1)
n (j − k),

where ∗ denotes convolution of two kernels and the constant C is chosen such that∑
|j |≤Nn

W
(m1,...,mp)
n (j) = 1; the parameters m1 and m2, Nn = m1 + m2, were chosen by empir-

ical considerations.
From all calculated periodograms, we determine the mean as an approximation to the expec-

tation of the various estimates. Each of the following figures subdivides into nine subfigures. For
any combination of τ1 and τ2, the imaginary parts of periodograms and spectra are represented
above the diagonal, and the real parts below; for τ1 = τ2, those quantities are real and we rep-
resent them on the diagonal. All curves are plotted against ω/(2π). In all figures, the dashed
line represents the “true” spectrum (scaled for Figures 1–4; unscaled for Figures 5–8) and the

Figure 1. Smoothed Laplace periodograms and (scaled) spectral densities as defined in (3.1) from 5000
replications of length n = 500 of an AR(1) process with N (0,1) innovations. All curves are plotted against
ω/(2π). Real parts (Imaginary parts) of the periodogram and spectrum are presented in subfigures with
τ2 ≤ τ1 (τ2 > τ1): the dashed line represents the actual scaled spectrum [cf. (3.1)], the solid line the (point-
wise) mean of the simulated smoothed Laplace periodograms. The gray areas represent the 0.1, 0.25, 0.75
and 0.9 (pointwise) sample quantiles of the smoothed periodograms over the 5000 replications.
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Figure 2. Smoothed Laplace periodograms and (scaled) spectral densities as defined in (3.1). The process
is an AR(1) process with t1 innovations and the sample size is 500. All curves are plotted against ω/(2π).
Real parts (Imaginary parts) of the periodogram and spectrum are presented in subfigures with τ2 ≤ τ1
(τ2 > τ1): the dashed line represents the actual scaled spectrum [cf. (3.1)], the solid line the (pointwise)
mean of the simulated smoothed Laplace periodograms. The gray areas represent the 0.1, 0.25, 0.75 and
0.9 (pointwise) sample quantiles of the smoothed periodograms over the 5000 replications.

solid line the (pointwise) mean of the simulated smoothed Laplace periodograms. The gray areas
represent the 0.1, 0.25, 0.75 and 0.9 (pointwise) sample quantiles of the smoothed periodograms
from the 5000 simulation runs.

For the sake of brevity, only results for sample size n = 500 are presented here, but further
results, which show a similar behavior, are available from the authors.

We first discuss the results for the smoothed Laplace periodogram in the case of an AR(1)
process. Figure 1 is with Gaussian innovations, while the case of t1-distributed innovations
is shown in Figure 2. Inspection of these figures reveals that the imaginary component of the
spectrum is vanishing in the case of Gaussian innovations (see Figure 1). This observation re-
flects the fact that AR processes with Gaussian innovations are time-reversible. On the other
hand, for t1-distributed innovations, this phenomenon only takes place for the extreme quan-
tiles (τ1 = 0.05, τ2 = 0.95), meaning that P(Xt ≤ q0.05,Xt+k ≤ q0.95) is approximately equal to
P(Xt ≤ q0.95,Xt+k ≤ q0.05). This, however, does not hold for τ1 = 0.5 and τ2 = 0.05 or 0.95,
which indicates a time-irreversible impact of extreme values on the central ones.

In Figure 3, the simulation results for the QAR(1) process are shown. We see that the
(scaled) copula spectrum for τ1 = τ2 = 0.25 has the shape previously observed in the case
of the AR(1) process, where the autoregressive parameter was negative. Note that the func-
tion θ1(u) takes negative values for u ∈ (0,0.5). On the other hand, for τ1 = τ2 = 0.75, it
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Figure 3. Smoothed Laplace periodograms and (scaled) spectral densities as defined in (3.1). The process
is a QAR(1) process with θ1(u) = 1.9(u − 0.5), θ0(u) = 0.1�−1(u) and the sample size is 500. All curves
are plotted against ω/(2π). Real parts (Imaginary parts) of the periodogram and spectrum are presented
in subfigures with τ2 ≤ τ1 (τ2 > τ1): the dashed line represents the actual scaled spectrum [cf. (3.1)], the
solid line the (pointwise) mean of the simulated smoothed Laplace periodograms. The gray areas represent
the 0.1, 0.25, 0.75 and 0.9 (pointwise) sample quantiles of the smoothed periodograms over the 5000
replications.

has the shape of the spectral density in the AR(1) case when the autoregressive parameter is
positive, while θ1(u) is positive for u ∈ (0.5,1). For τ1 = τ2 = 0.5 we observe a flat spec-
trum, indicating that the sequence (I {Yt ≤ q0.5}) has zero autocorrelation, which would imply
P(Xt ≤ q0.5,Xt+k ≤ q0.5) = P(Xt ≤ q0.5)P(Xt+k ≤ q0.5). The imaginary part of the spectrum
clearly indicates time-irreversibility, which implies that the QAR(1) process, irrespective of the
choice of θ0, cannot be a Gaussian process.

The simulation results for the all-pass ARMA(1,1) process are shown in Figure 3. We see
here that the statistics proposed are very able of capturing the serial dependence which (due to
uncorrelatedness) would completely escape the traditional analysis. Another finding is that, in
most cases, the bias is larger for the estimation of the Laplace spectrum with τ1 = τ2: see, for
instance, the diagonals of Figures 1–4.

The corresponding rank-based Laplace periodograms are shown in Figures 5–8, respectively.
The results indicate the same type of time-reversibility features as observed with the Laplace
periodogram. It is interesting to note that, for the rank-based Laplace periodograms, the bias
appears to be much smaller, and smoothing seems to be more effective.

Finally, we investigate the quality of the estimates by their mean squared properties. In Ta-
ble 1, we provide the square roots of the integrated mean squared errors (MSE). We consider the
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Figure 4. Smoothed Laplace periodograms and (scaled) spectral densities as defined in (3.1). The process
is an ARMA(1,1) process with t3 innovations and the sample size is 500. All curves are plotted against
ω/(2π). Real parts (Imaginary parts) of the periodogram and spectrum are presented in subfigures with
τ2 ≤ τ1 (τ2 > τ1): the dashed line represents the actual scaled spectrum [cf. (3.1)], the solid line the (point-
wise) mean of the simulated smoothed Laplace periodograms. The gray areas represent the 0.1, 0.25, 0.75
and 0.9 (pointwise) sample quantiles of the smoothed periodograms over the 5000 replications.

smoothed rank-based Laplace periodograms for sample sizes n = 100, 500, and 1000. Note that,
because of symmetry, we do not display all combinations. For example, the spectra correspond-
ing to the quantiles (0.05,0.05) and (0.95,0.95) coincide in the scenario under consideration. In
all cases, we observe, from the point of view of MSE, a reasonable behavior of the rank-based
Laplace periodograms. It is interesting to note that the integrated MSE is larger when quantiles
in the neighborhood of τ = 0.5 are involved. For example, the integrated MSE is increasing from
(0.05,0.05) to (0.05,0.25) and (0.05,0.50), then decreasing from (0.05,0.75) to (0.05,0.95).
This phenomenon is closely related to the fact that the empirical copula has variance zero at the
boundaries of the unit cube, see Genest and Segers [15] for more details on this fact.

5.2. An empirical application: S&P 500 returns

The smoothed rank-based Laplace periodogram was computed from the series of daily return
values of the S&P 500 index (Jan/2/1963–Dec/31/2009, n = 11 844), based on a Daniell kernel
with parameters (200,100), for the same quantile orders as in the previous section. The results
for the smoothed traditional periodogram are shown in Figure 9, and those for the rank-based
Laplace periodogram in Figure 10, with the same convention as in Section 5.1.
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Figure 5. Smoothed rank-based Laplace periodograms and (unscaled) spectral densities as defined in (2.3).
The process is an AR(1) process with N (0,1) innovations and the sample size is 500. All curves are plotted
against ω/(2π). Real parts (Imaginary parts) of the periodogram and spectrum are presented in subfigures
with τ2 ≤ τ1 (τ2 > τ1): the dashed line represents the actual scaled spectrum [cf. (2.3)], the solid line the
(pointwise) mean of the simulated smoothed Laplace periodograms. The gray areas represent the 0.1, 0.25,
0.75 and 0.9 (pointwise) sample quantiles of the smoothed periodograms over the 5000 replications.

The nonlinear features of that series have been stressed by many authors (see, e.g., Abhyankar,
Copeland and Wong [1], Berg, Paparoditis and Politis [3], Brock, Hsieh and LeBaron [8], Hinich
and Patterson [18,19], Hsieh [22], and Vaidyanathan and Krehbiel [40]). Those nonlinear features
cannot be detected by classical correlogram-based spectral methods, and hence do not appear in
Figure 9, where the traditional smoothed periodogram is depicted. They do appear, however, in
the plots of Figure 10. Whereas the picture for the central quantiles τ1 = τ2 = 0.5 looks quite
similar to that in Figure 9, the remaining ones, which involve at least one extreme quantile,
are drastically different, indicating a marked discrepancy between tail and central dependence
structures. All plots involving at least one extremal quantile yield a peak at the origin, which
possibly corresponds to a long-range memory for extremal events. Imaginary parts are not zero,
suggesting again time-irreversibility. Such features entirely escape a traditional spectral analysis.

Appendix A: Technical details for the proofs in Section 3

In this section, we give the technical details for the proofs of Theorems 3.1 and 3.3. Those proofs
rely on a series of lemmas. Two of them (Lemmas A.6 and A.7) are general results, to be used
at several places in both proofs; their statements and proofs are postponed to Section A.3. Two
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Figure 6. Smoothed rank-based Laplace periodograms and (unscaled) spectral densities as defined in (2.3).
The process is an AR(1) process with t1 innovations and the sample size is 500. All curves are plotted
against ω/(2π). Real parts (Imaginary parts) of the periodogram and spectrum are presented in subfigures
with τ2 ≤ τ1 (τ2 > τ1): the dashed line represents the actual scaled spectrum [cf. (2.3)], the solid line the
(pointwise) mean of the simulated smoothed Laplace periodograms. The gray areas represent the 0.1, 0.25,
0.75 and 0.9 (pointwise) sample quantiles of the smoothed periodograms over the 5000 replications.

further ones (Lemmas A.4 and A.5) are specific to the proof of (3.20) and Theorem 3.3: they
are presented in Section A.2.3. Finally, Lemmas A.1 and A.2 are auxiliary results used in the
proofs of (3.9) and (3.20); they are regrouped in Section A.1.2, along with Lemma A.3, which is
specific to the proof of (3.9).

A.1. Details for the proof of (3.9)

Recall that (3.9) was obtained by combining Lemmas A.1 and A.2 with Equation (3.11). In
Section A.1.1, we establish (3.11), thus completing (but for Lemmas A.1–A.3) the proof of The-
orem 3.1. In Section A.1.2, we state and prove Lemmas A.1–A.3, which completes the proof of
(3.9). The notation of Theorem 3.1 is used throughout this section.

A.1.1. Proof of (3.11)

In this proof, we use a blocking argument by Yu [42] – call it the independent blocks argument.
Let mn := �n1/(1+δ) logn�, μn := 
n/(2mn)�, and split the set {1, . . . , n} into 2μn subsets of size
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Figure 7. Smoothed rank-based Laplace periodograms and (unscaled) spectral densities as defined in (2.3).
The process is a QAR(1) process with θ1(u) = 1.9(u − 0.5), θ0(u) = 0.1�−1(u) and the sample size
is 500. All curves are plotted against ω/(2π). Real parts (Imaginary parts) of the periodogram and spectrum
are presented in subfigures with τ2 ≤ τ1 (τ2 > τ1): the dashed line represents the actual scaled spectrum
[cf. (2.3)], the solid line the (pointwise) mean of the simulated smoothed Laplace periodograms. The gray
areas represent the 0.1, 0.25, 0.75 and 0.9 (pointwise) sample quantiles of the smoothed periodograms over
the 5000 replications.

mn and a “residual” subset of size n − 2mnμn:

Si := {
k ∈ N: 2(i − 1)mn + 1 ≤ k ≤ (2i − 1)mn

}
, i = 1, . . . ,μn,

Ti := {
k ∈ N: (2i − 1)mn + 1 ≤ k ≤ 2imn

}
, i = 1, . . . ,μn, (A.1)

Rn := {2mnμn + 1, . . . , n}.

Associated with this partition of {1, . . . , n}, consider the partition

(Yt )t∈S1, (Yt )t∈T1; (Yt )t∈S2, . . . , (Yt )t∈Tμn−1; (Yt )t∈Sμn
, (Yt )t∈Tμn

; (Yt )t∈Rn

of {Y1, . . . , Yn} into 2μn blocks of length mn and a “residual” block of length n − 2mnμn. The
independent block mn-sequence then is defined as a collection of 2μn mutually independent mn-

dimensional random variables (Xt )t∈Si
, (Xt )t∈Ti

, i = 1, . . . ,μn, such that (Xt )t∈Si

d= (Yt )t∈Si

and (Xt )t∈Ti

d= (Yt )t∈Ti
, along with an (n − 2mnμn)-dimensional variable (Xt )t∈Rn independent

of all other (Xt )’s.
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Figure 8. Smoothed rank-based Laplace periodograms and (unscaled) spectral densities as defined in (2.3).
The process is an ARMA(1,1) process with t3 innovations and the sample size is 500. All curves are plotted
against ω/(2π). Real parts (Imaginary parts) of the periodogram and spectrum are presented in subfigures
with τ2 ≤ τ1 (τ2 > τ1): the dashed line represents the actual scaled spectrum [cf. (2.3)], the solid line the
(pointwise) mean of the simulated smoothed Laplace periodograms. The gray areas represent the 0.1, 0.25,
0.75 and 0.9 (pointwise) sample quantiles of the smoothed periodograms over the 5000 replications.

The independent blocks argument will be used to establish results of the form

P

(
sup
θ∈�n

∣∣∣∣∣
n∑

t=1

θ(t, Yt )

∣∣∣∣∣ > ηn

)
= o(1),

where �n are sets of measurable functions θ :R2 → R. For the argument, consider the decom-
position

P

(
sup
θ∈�n

n∑
t=1

θ(t, Yt ) > ηn

)

≤ P

(
sup
θ∈�n

∣∣∣∣∣
μn∑
i=1

∑
t∈Si

θ(t, Yt )

∣∣∣∣∣ > ηn/3

)

+ P

(
sup
θ∈�n

∣∣∣∣∣
μn∑
i=1

∑
t∈Ti

θ(t, Yt )

∣∣∣∣∣ > ηn/3

)
+ P

(
sup
θ∈�n

∣∣∣∣∣∑
t∈Rn

θ(t, Yt )

∣∣∣∣∣ > ηn/3

)
=: P (1)

n + P (2)
n + P (3)

n .
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Table 1. Root Integrated Mean Square Errors of smoothed, rank-based Laplace periodograms, for the four models described in Section 5.1, and
various series lengths

(τ1, τ2)

Yt n (0.05,0.05) (0.05,0.25) (0.05,0.5) (0.05,0.75) (0.05,0.95) (0.25,0.25) (0.25,0.5) (0.5,0.5)

Model (1) 100 0.0212 0.0408 0.0459 0.0401 0.0219 0.0651 0.0837 0.0876
500 0.0085 0.0185 0.0215 0.0189 0.0099 0.0347 0.0429 0.0474

1000 0.0054 0.0117 0.0137 0.0121 0.0064 0.0225 0.0275 0.0310

Model (2) 100 0.0223 0.0418 0.0462 0.0405 0.0234 0.0672 0.0852 0.0929
500 0.0091 0.0188 0.0213 0.0188 0.0110 0.0353 0.0441 0.0506

1000 0.0059 0.0120 0.0135 0.0120 0.0072 0.0228 0.0282 0.0330

Model (3) 100 0.0207 0.0398 0.0452 0.0386 0.0214 0.0652 0.0830 0.0873
500 0.0084 0.0184 0.0213 0.0186 0.0098 0.0349 0.0428 0.0471

1000 0.0053 0.0115 0.0135 0.0119 0.0064 0.0227 0.0277 0.0309

Model (4) 100 0.0220 0.0412 0.0453 0.0398 0.0226 0.0654 0.0834 0.0873
500 0.0097 0.0191 0.0214 0.0190 0.0108 0.0344 0.0422 0.0465

1000 0.0064 0.0122 0.0135 0.0121 0.0071 0.0226 0.0271 0.0306
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Figure 9. Smoothed traditional periodogram, S&P 500 returns curve is plotted against ω/(2π).

Figure 10. Smoothed rank-based Laplace periodograms, S&P 500 returns. All curves are plotted against
ω/(2π). Real parts (Imaginary parts) of the periodogram and spectrum are presented in subfigures with
τ2 ≤ τ1 (τ2 > τ1).



L1-approach to spectral analysis 811

The last probability P
(3)
n is zero as soon as

(i) sup
θ∈�n

sup
t=1,...,n

∣∣θ(t, Yt )
∣∣ ≤ Cn a.s. and mnCn < ηn/3,

which will be the case in all applications of the independent blocks argument. The first
probability P

(1)
n can be handled by applying Lemma 4.1 from Yu [42], by which we have

P

(
sup
θ∈�n

∣∣∣∣∣
μn∑
i=1

∑
t∈Si

θ(t, Yt )

∣∣∣∣∣ > ηn/3

)
≤ P

(
sup
θ∈�n

∣∣∣∣∣
μn∑
i=1

∑
t∈Si

θ(t,Xt )

∣∣∣∣∣ > ηn/3

)
+ o(1),

since by the choice of mn we have μnβ(mn) = o(1). A similar argument applies to the second
probability P

(2)
n . We assume that the set �n consists of finitely many, say |�n|, elements to

further obtain

P

(
sup
θ∈�n

∣∣∣∣∣
μn∑
i=1

∑
t∈Si

θ(t,Xt )

∣∣∣∣∣ > ηn/3

)
≤ |�n| sup

θ∈�n

P

(∣∣∣∣∣
μn∑
i=1

∑
t∈Si

θ(t,Xt )

∣∣∣∣∣ > ηn/3

)
,

where the summands
∑

t∈Si
θt (Xt ), i = 1, . . . ,μn are independent by construction. If we addi-

tionally show that

(ii) sup
θ∈�n

μn∑
j=1

Var

(∑
t∈Sj

θ(t,Xt )

)
≤ V 2

n and sup
θ∈�n

μn∑
j=1

Var

(∑
t∈Tj

θ(t,Xt )

)
≤ V 2

n ,

the version of Bennett’s inequality given in Lemma A.6 can be applied, so that, under (i) and (ii),

P

(
sup
θ∈�n

∣∣∣∣∣
μn∑
i=1

∑
t∈Si

θ(t,Xt )

∣∣∣∣∣ > ηn/3

)
≤ P

(
sup
θ∈�n

∣∣∣∣∣
μn∑
i=1

∑
t∈Si

(
θ(t,Xt ) − E

[
θ(t,Xt )

])∣∣∣∣∣ > λn

)

≤ 2|�n| exp

(
− log 2

4

(
λ2

n

2V 2
n

∧ λn

mnCn

))
,

where λn := ηn/3 − n supθ∈�n
supt=1,...,n |E[θ(t,Xt )]|. Exactly the same argument can be used

to handle the probability P
(2)
n . Hence, we obtain

P

(
sup
θ∈�n

∣∣∣∣∣
n∑

t=1

θ(t, Yt )

∣∣∣∣∣ > ηn

)
≤ En + o(1),

(A.2)

En := 4|�n| exp

(
− log 2

4

(
λ2

n

2V 2
n

∧ λn

mnCn

))
.

An application of the independent block argument for finite �n thus boils down to establishing
(i)–(ii) discussed above and ensuring that En = o(1).

Regarding the proof of (3.11) note that, it is obviously possible to construct N = o(n5) points
d1, . . . , dN (dependence on n is not reflected in the notation) such that, for every δ with ‖δ‖ ≤
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A
√

logn, there exists an index j (δ) for which ‖δ − dj (δ)‖ ≤ n−3/2. Define

Kn(δ; τ,ω) :=
n∑

t=1

(∫ n−1/2c′
t (ω)δ

0

(
I {Yt ≤ s + qτ } − I {Yt ≤ qτ }

)
ds − f (qτ )(2n)−1(c′

t (ω)δ
)2

)
and note, by direct calculation, that, for n ≥ n0 with n0 ∈N independent of τ and ω,

sup
ω∈Fn

∣∣Kn(a; τ,ω) − Kn(b; τ,ω)
∣∣ ≤ 1.5

√
n‖a − b‖.

By applying Knight’s identity, we therefore have

sup
ω∈Fn

sup
‖δ‖≤A

√
logn

∣∣Ẑn,τ,ω(δ) − Zn,τ,ω(δ)
∣∣ = sup

θ∈�n

∣∣∣∣∣
n∑

t=1

θ(t, Yt )

∣∣∣∣∣ + OP
(
n−1),

where

�n :=
{
θ(t, y) :=

∫ n−1/2c′
t (ω)dj

0

(
I {y ≤ s + qτ } − I {y ≤ qτ }

)
ds − f (qτ )(2n)−1(c′

t (ω)dj

)2
∣∣∣

ω ∈Fn, j = 1, . . . ,N

}
.

In order to show that supθ∈�n
|∑n

t=1 θ(t, Yt )| = OP(rn(δ)
2), we apply the independent blocks

argument with �n defined above and ηn := Drn(δ)
2 for a suitable constant D.

Due to the fact that n(1−δ)/(2+2δ)(logn)3/2 � rn(δ)
2 and that, by Lemma A.3,

sup
θ∈�n

sup
t=1,...,n

∣∣θ(t, Yt )
∣∣ ≤ Cn−1/2(logn)1/2 =: Cn,

almost surely, (i) in the independent blocks argument follows.
Next, a direct calculation shows that (ii) in the independent blocks argument holds with V 2

n :=
Cn−1/2(logn)2.

Finally, let us complete the independent blocks argument by establishing that for En defined
in (A.2) we have En = o(1). Observe that the bounds in Lemma A.3 imply

sup
θ∈�n

sup
t=1,...,n

E
[∣∣θ(t,Xt )

∣∣] ≤ C log(n)3n−3/2 = o
(
n−1rn(δ)

2).
Thus, we find that for sufficiently large n

λn := D
(
rn(δ)

2/3 − n sup
θ∈�n

sup
t=1,...,n

E
[∣∣θ(t,Xt )

∣∣]) ≤ Drn(δ)
2/6.

Noting that |�n| = Nn = o(n6) direct calculations yield En = o(1) for D in the definition of
ηn being large enough. This completes the application of the independent blocks argument and
shows that supθ∈�n

|∑n
t=1 θ(t, Yt )| = OP(rn(δ)

2).
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Summing up, except for Lemma A.3 which is taken care of in the next section, we have proven
(3.11). If we now prove Lemmas A.1 and A.2, (3.10) and (3.9), hence Theorem 3.1, follow. The
purpose of Section A.1.2 below is to complete the proof of Theorem 3.1 by establishing the
missing Lemmas A.1–A.3.

A.1.2. Three auxiliary lemmas

We now state and prove the three lemmas that have been used in the proof of Theorem 3.1.
Lemma A.1 generalizes ideas from Pollard [37].

Lemma A.1. Let Ban(x) denote the closed ball (in R
3) with center x and radius an > 0. Assume

that, for some sequence of real numbers an = o(1),

�n := sup
ω∈Fn

sup
δ∈Ban (δn,τ,ω)

∣∣Ẑn,τ,ω(δ) − Zn,τ,ω(δ)
∣∣ = oP

(
a2
n

)
.

Then, supω∈Fn
|δ̂n,τ,ω − δn,τ,ω| = oP(an).

Proof. Let rn,τ,ω(δ) := Ẑn,τ,ω(δ) − Zn,τ,ω(δ). Simple algebra and the explicit form (3.7) of
δn,τ,ω yield

Ẑn,τ,ω(δ) = 1
2 (δ − δn,τ,ω)′Qn,τ,ω(δ − δn,τ,ω) − 1

2 (δn,τ,ω)′Qn,τ,ωδn,τ,ω + rn,τ,ω(δ). (A.3)

Any δ ∈ R
3 \ Ban(δn,τ,ω) with distance ln := ‖δ − δn,τ,ω‖ > an to δn,τ,ω can be represented as

δ = δn,τ,ω + ln,τ,ωdn,τ,ω , where dn,τ,ω := l−1
n,τ,ω(δ − δn,τ,ω).

The point δ∗
n,τ,ω = δn,τ,ω +andn,τ,ω lies on the boundary of the ball Ban(δn,τ,ω). The convexity

of Ẑn,τ,ω(δ) therefore implies

anl
−1
n,τ,ωẐn,τ,ω(δ) + (

1 − anl
−1
n,τ,ω

)
Ẑn,τ,ω(δn,τ,ω)

≥ Ẑn,τ,ω

(
δ∗
n,τ,ω

) = Zn,τ,ω

(
δ∗
n,τ,ω

) + rn,τ,ω

(
δ∗
n,τ,ω

)
≥ 1

2 d′
n,τ,ωQn,τ,ωdn,τ,ωa2

n − 1
2 (δn,τ,ω)′Qn,τ,ωδn,τ,ω − �n

≥ 1
2 d′

n,τ,ωQn,τ,ωdn,τ,ωa2
n + Ẑn,τ,ω(δn,τ,ω) − 2�n.

Rearranging and taking the infimum over ω and δ, we obtain

inf
ω∈Fn

inf
δ:|δ−δX

n,τ,ω|>an

(
Ẑn,τ,ω(δ) − Ẑn,τ,ω(δn,τ,ω)

)
(A.4)

≥ inf
ω∈Fn

inf
δ:|δ−δn,τ,ω|>an

ln,τ,ωa−1
n

(
1

2
d′

n,τ,ωQn,τ,ωdn,τ,ωa2
n − 2�n

)
.

By assumption, the smallest eigenvalue of Qn,τ,ω is bounded away from zero uniformly in ω ∈
Fn, for n sufficiently large. Hence, 2�n < 1

2 d′
n,τ,ωQn,τ,ωdn,τ,ωa2

n with probability tending to

one, the right-hand side in (A.4) is strictly positive, and the minimum of Ẑn,τ,ω(δ) cannot be
attained at any δ with |δ − δn,τ,ω| > an. �
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Lemma A.2. Let (A1) hold, and δn,τ,ω be defined as in (3.7). Then, for any τ ∈ (0,1) for which
f (qτ ) > 0, there exists a constant A such that

lim
n→∞ P

(
sup

ω∈Fn

‖δn,τ,ω‖ > A
√

logn
)

= 0.

Proof. Denote by ‖x‖∞ the sup-norm of x. Since, for x ∈ R
3,

√
3‖x‖∞ ≥ ‖x‖, it suffices to

prove that

lim
n→∞ P

(
sup

ω∈Fn

‖δn,τ,ω‖∞ > 3−1/2A
√

logn
)

= 0.

Next note that
√

n supω∈Fn
‖δn,τ,ω‖∞ = supθ∈�n

|∑n
t=1 θ(t, Yt )|, where

�n := {
θ(t, y) := f (qτ )

−1ct,k(ω)
(
τ − I {y ≤ qτ }

)|k = 1,2,3,ω ∈Fn

}
,

with (ct,1(ω), ct,2(ω), ct,3(ω)) := (1, cos(ωt), sin(ωt)).
We apply the independent blocks argument described in Section A.1.1, with �n defined above

and ηn := 3−1/2An1/2(logn)1/2 with a suitably chosen constant A. To this end, remark that (i) in
the independent blocks argument holds for A large enough, because we have, almost everywhere,

sup
θ∈�n

sup
t=1,...,μnmn

∣∣θ(t, Yt )
∣∣ ≤ 2

f (qτ )
=: Cn

which implies,

sup
θ∈�n

∣∣∣∣∣∑
t∈Rn

θ(t, Yt )

∣∣∣∣∣ ≤ 2mn

f (qτ )
a.e.

Regarding (ii) from the independent blocks argument note that for all θ ∈ �n

Var

(∑
t∈Si

θ(t,Xt )

)
=

∑
s∈Si

∑
t∈Si

E
[
θ(s,Xs)θ(t,Xt )

]

= (Qn,τ,ω)−2
∑

|ι|<mn

γι(τ, τ )

(2i−1)mn+(ι∧0)∑
j=2(i−1)mn+1+(0∨ι)

cj+ι,k(ω)cj,k(ω)′.

Since |ct,k(ω)| ≤ 1 and

∞∑
ι=−∞

∣∣γι(τ, τ )
∣∣ ≤ 1 + C1

∞∑
ι=−∞
ι�=0

ι−δ =: C < ∞,

we have
μn∑
i=1

Var

(∑
t∈Si

θ(t,Xt )

)
≤ 4C

(
f (qτ )

)−2
n =: V 2

n .
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Direct calculations show that En defined in (A.2) of the independent blocks argument satisfies
En = o(1). This completes the independent blocks argument and concludes the proof. �

Lemma A.3. For the Fourier frequencies ω ∈Fn, let

Ht(δ; τ,ω) :=
∫ n−1/2c′

t (ω)δ

0

(
I {Xt ≤ s + qτ } − I {Xt ≤ qτ }

)
ds (A.5)

and define

Wt,n(ω, δ) := Ht(δ; τ,ω) − f (qτ )(2n)−1(c′
t (ω)δ

)2
. (A.6)

Then, for some finite constant C (independent of t, t1, t2) and n large enough,

sup
ω∈Fn

sup
t

∣∣E[
Wt,n(ω, δ)

]∣∣ ≤ C‖δ‖3n−3/2,

(A.7)
sup

ω∈Fn

sup
t

∣∣Wt,n(ω, δ)
∣∣ ≤ C

(
n−1/2‖δ‖ + n−1‖δ‖2)

almost surely, and

sup
ω∈Fn

∣∣E[
Wt1,n(ω, δ)Wt2,n(ω, δ)

]∣∣ ≤ C
(‖δ‖4 ∨ 1

)(
n−3/2I {t1 = t2} + n−2I {t1 �= t2}

)
. (A.8)

Proof. First, note that

E
[
Ht(δ; τ,ω)

] = E

[∫ n−1/2c′
t (ω)δ

0

(
I {Xt ≤ u + qτ } − I {Xt ≤ qτ }

)]
du

(A.9)

=
∫ n−1/2c′

t (ω)δ

0

(
f (qτ )u + r4(u, τ )

)
du = f (qτ )

2n

(
c′
t (ω)δ

)2 + r1(τ,ω),

where |r4(u, τ )| ≤ C3u
2, hence |r1(ω, τ )| ≤ C4‖δ‖3n−3/2. Next, observe that

E
[
Ht(δ; τ,ω)2]
= E

[∫ n−1/2c′
t (ω)δ

0

∫ n−1/2c′
t (ω)δ

0

(
I {Xt ≤ u + qτ } − I {Xt ≤ qτ }

)
× (

I {Xt ≤ v + qτ } − I {Xt ≤ qτ }
)

dudv

]

= E

[∫ n−1/2c′
t (ω)δ

0

∫ n−1/2c′
t (ω)δ

0

(
I
{
Xt ≤ (u ∧ v) + qτ

} − I
{
Xt ≤ (u ∧ 0) + qτ

}
− I

{
Xt ≤ (v ∧ 0) + qτ

} + I {Xt ≤ qτ }
)

dudv

]
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=
∫ n−1/2c′

t (ω)δ

0

∫ n−1/2c′
t (ω)δ

0
(u ∧ v − u ∧ 0 − v ∧ 0)f (qτ ) + r2(u, v, τ )dudv (A.10)

= 3−1n−3/2f (qτ )
∣∣c′

t (ω)δ
∣∣3 + r3(ω, τ ), (A.11)

where |r2(u, v, τ )| ≤ C1(u
2 + v2), hence |r3(ω, τ )| ≤ C2‖δ‖4n−2. Equality (A.10) follows via a

Taylor expansion, (A.11) from the fact that
∫ x

0

∫ x

0 (u∧v−u∧0−v∧0)dudv = 1
3 |x|3. Similarly,

for t1 �= t2, but from the same block (otherwise Ht1 and Ht2 are independent and the previously
derived approximation of their expectations can be used for the proof),

E
[
Ht1(δ; τ,ω)Ht2(δ; τ,ω)

]
= E

[∫ n−1/2c′
t1

(ω)δ

0

∫ n−1/2c′
t2

(ω)δ

0

(
I {Xt1 ≤ u + qτ } − I {Xt1 ≤ qτ }

)
× (

I {Xt2 ≤ v + qτ } − I {Xt2 ≤ qτ }
)

dudv

]

=
∫ n−1/2c′

t1
(ω)δ

0

∫ n−1/2c′
t2

(ω)δ

0
Ft2−t1(u + qn,τ , v + qτ ) − Ft2−t1(qτ , v + qτ )

− Ft2−t1(u + qτ , qτ ) + Ft2−t1(qn,τ , qτ )dudv

=
∫ n−1/2c′

t1
(ω)δ

0

∫ n−1/2c′
t1

(ω)δ

0
r6(u, v, τ )dudv = r7(ω, τ ), (A.12)

where |r6(u, v, τ )| ≤ C6(u
2 + v2), hence |r7(u, v, τ )| ≤ C7‖δ‖4n−2; equality (A.12) follows via

a Taylor expansion and some straightforward algebra. This completes the proof. �

A.2. Details for the proof of (3.20)

We now turn to the proof of Theorem 3.3. Sections A.2.1–A.2.2 contain the proofs of (3.22) and
(3.23), which are basic in establishing that theorem. Some auxiliary results used in the proofs are
collected in Section A.2.3 under the form of Lemmas A.4 and A.5. Denote by F̂n the empirical
distribution function of Y1, . . . , Yn. Throughout this section, the notation from Section 3.2 is
used.

A.2.1. Proof of (3.22)

Plugging into (3.22) the definition of Ẑ˜n,τ,ω,1(δ), it remains to show that [recall that ct,1(ω) = 1]

max
k=2,3

sup
ω∈Fn

∣∣∣∣∣n−1/2
n∑

t=1

ct,k(ω)
(
I
{
Ut ≤ F

(
F̂−1

n (τ )
)} − I {Ut ≤ τ })∣∣∣∣∣

(A.13)
= OP

(
n−1/4m

1/2
n logn

)
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and ∣∣∣∣∣n−1/2
n∑

t=1

(
I
{
Ut ≤ F

(
F̂−1

n (τ )
)} − I {Ut ≤ τ }) − √

n
(
F
(
F̂−1

n (τ )
) − τ

)∣∣∣∣∣
(A.14)

= OP
(
n−1/4m

1/2
n logn

)
.

First, consider (A.13). Since, by Lemma A.4, |F(F̂−1
n (τ )) − τ | = OP(n−1/2√logn), we obtain

sup
ω∈Fn

∣∣∣∣∣n−1/2
n∑

t=1

ct,k(ω)
(
I
{
Ut ≤ F

(
F̂−1

n (τ )
)} − I {Ut ≤ τ })∣∣∣∣∣

≤ sup
ω∈Fn

n−1/2 sup
|x−τ |≤n−1/2 logn

∣∣∣∣∣
n∑

t=1

ct,k(ω)
(
I {Ut ≤ x} − I {Ut ≤ τ } − (x − τ)

)∣∣∣∣∣ (A.15)

+ sup
ω∈Fn

n−1 logn

∣∣∣∣∣
n∑

t=1

ct,k(ω)

∣∣∣∣∣
for k = 2,3, with probability tending to one. The second term in (A.15) vanishes, because, for
all ω ∈ Fn,

∑n
t=1 cos(ωt) = ∑n

t=1 sin(ωt) = 0. In order to bound the first term, cover the set
Z := {u: |u − τ | ≤ n−1/2 logn} with N < n balls of radius 1/n and centers u1, . . . , uN ∈Z , and
define Gn,ω,k(u) := n−1/2 ∑n

t=1 ct,k(ω)(I {Ut ≤ u} − u). Then, almost surely,

sup
j

sup
ω∈Fn

sup
|u−uj |≤n−1

∣∣Gn,ω,k(u) −Gn,ω,k(uj )
∣∣

≤ sup
u∈Z

n−1/2
n∑

t=1

(
I
{
Ut ≤ u + 2n−1} − I

{
Ut ≤ u − 2n−1} + 4n−1) + O

(
n−1/2)

≤ √
n sup

j=1,...,N

∣∣F̂n,U

(
uj + 2n−1) − F̂n,U

(
uj − 2n−1) − 4n−1

∣∣ + O
(
n−1/2),

where the latter bound, in view of Lemma A.7, is OP(n(1−δ)/(2+2δ) logn). Thus,

sup
j

sup
ω∈Fn

sup
|u−uj |≤n−1

∣∣Gn,ω,k(u) −Gn,ω,k(uj )
∣∣ = OP

(
n(1−δ)/(2+2δ) logn

)
, k = 2,3,

and therefore

max
k=2,3

sup
ω∈Fn

∣∣∣∣∣n−1/2
n∑

t=1

ct,k(ω)
(
I
{
Ut ≤ F

(
F−1

n (τ )
)} − I {Ut ≤ τ })∣∣∣∣∣

(A.16)
≤ max

k=2,3
sup

j=1,...,N

sup
ω∈Fn

∣∣Gn,ω,k(uj ) −Gn,ω,k(τ )
∣∣ + OP

(
n(1−δ)/(2+2δ) logn

)
.

Now, by construction, maxj |uj − τ | ≤ n−1/2 logn.
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Moreover,

max
k=2,3

sup
j=1,...,N

sup
ω∈Fn

∣∣Gn,ω,k(uj ) −Gn,ω,k(τ )
∣∣ = sup

θ∈�n

∣∣∣∣∣
n∑

t=1

θ(t,Ut )

∣∣∣∣∣,
where

�n := {
θ(t, u) := n−1/2ct,k(ω)

(
I {u ≤ uj } − I {u ≤ τ } − (uj − τ)

)|
ω ∈Fn, j = 1, . . . ,N, k = 2,3

}
.

Apply the independent blocks argument with ηn := C̃n−1/2√logn(n1/2mn logn)1/2, where C̃

is a large enough constant, and �n defined above. Direct calculations show that

sup
θ∈�n

∣∣θ(t,Ut )
∣∣ ≤ 2n−1/2 =: Cn a.s.,

which yields (i) from the independent blocks argument, since mnCn ∼ mnn
−1/2 logn � ηn. Ad-

ditionally, for some finite constant C independent of θ ∈ �n E|θ(t,Ut )|2 ≤ Cn−3/2 logn, and
E[θ(t1,Ut1)θ(t2,Ut2)] ≤ Cn−2(logn)2, and thus

sup
θ∈�n

μn∑
j=1

Var

(∑
t∈Sj

θ(t,Ut )

)
≤ C̄n−1/2 logn =: V 2

n ,

sup
θ∈�n

μn∑
j=1

Var

(∑
t∈Tj

θ(t,Ut )

)
≤ V 2

n .

Hence, (ii) from the independent blocks argument holds and the fact that En = o(1) with En

defined in (A.2) follows by a simple calculation. The independent blocks argument thus yields

max
k=2,3

sup
j=1,...,N

sup
ω∈Fn

∣∣Gn,ω,k(uj ) −Gn,ω,k(τ )
∣∣ = OP

(
n−1/4mn logn

) = OP
(
n(1−δ)/(4+4δ) logn

)
.

Together with (A.16), this establishes (A.13). Turning to (A.14), Lemmas A.4 and A.7 yield∣∣∣∣∣n−1/2
n∑

t=1

(
I
{
Ut ≤ F

(
F̂−1

n (τ )
)} − I {Ut ≤ τ } − (

F
(
F̂−1

n (τ )
) − τ

))∣∣∣∣∣
≤ sup

|u−τ |≤n−1/2 logn

∣∣∣∣∣n−1/2
n∑

t=1

(
I {Ut ≤ u} − I {Ut ≤ τ } − (u − τ)

)∣∣∣∣∣
= n1/2 sup

|u−τ |≤n−1/2 logn

∣∣F̂n,U (u) − F̂n,U (τ ) − (u − τ)
∣∣

= OP
(
n−1/2(mn ∨ n1/4) logn

) ≤ OP
(
n−1/4m

1/2
n logn

)
.
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A.2.2. Proof of (3.23)

Observe the decomposition

Ẑ˜n,τ,ω,2(δ) −
n∑

t=1

∫ n−1/2c′
t (ω)δ

0

(
I {Ut ≤ s + τ } − I {Ut ≤ τ })ds

=
n∑

t=1

∫ n−1/2c′
t (ω)δ

0

(
I
{
Ut ≤ F

(
F̂−1

n (s + τ)
)} − I

{
Ut ≤ F

(
F̂−1

n (τ )
)}

− I {Ut ≤ s + τ } + I {Ut ≤ τ })ds

=
∫ 2‖δ‖

−2‖δ‖
n−1/2

n∑
t=1

(
I
{
Ut ≤ F

(
F̂−1

n

(
n−1/2s + τ

))} − I
{
Ut ≤ F

(
F̂−1

n (τ )
)}

− I
{
Ut ≤ n−1/2s + τ

} + I {Ut ≤ τ })
× (

I
{
0 ≤ s ≤ c′

t (ω)δ
} − I

{
0 ≥ s ≥ c′

t (ω)δ
})

ds

= A(1)
n − A(2)

n − A(3)
n + A(4)

n , say,

where

A(1)
n :=

∫ 2‖δ‖

−2‖δ‖
(
S

(+)
n,ω,δ

(
F
(
F̂−1

n

(
n−1/2s + τ

))
, n−1/2s + τ ; s) − S

(+)
n,ω,δ

(
F
(
F̂−1

n (τ )
)
, τ ; s))ds,

A(2)
n :=

∫ 2‖δ‖

−2‖δ‖
n−1/2

n∑
t=1

[(
F
(
F̂−1

n

(
n−1/2s + τ

)) − (
n−1/2s + τ

)) − (
F
(
F̂−1

n (τ )
) − τ

)]
× I

{
0 ≤ s ≤ c′

t (ω)δ
}

ds,

A(3)
n :=

∫ 2‖δ‖

−2‖δ‖
(
S

(−)
n,ω,δ

(
F
(
F̂−1

n

(
n−1/2s + τ

))
, n−1/2s + τ ; s) − S

(−)
n,ω,δ

(
F
(
F̂−1

n (τ )
)
, τ ; s))ds,

A(4)
n :=

∫ 2‖δ‖

−2‖δ‖
n−1/2

n∑
t=1

[(
F
(
F̂−1

n

(
n−1/2s + τ

)) − (
n−1/2s + τ

)) − (
F
(
F̂−1

n (τ )
) − τ

)]
× I

{
0 ≥ s ≥ c′

t (ω)δ
}

ds,

and

S
(+)
n,ω,δ(u, v; s) := n−1/2

n∑
t=1

(
I {Ut ≤ u} − I {Ut ≤ v} − (u − v)

)
I
{
0 ≤ s ≤ c′

t (ω)δ
}
,

S
(−)
n,ω,δ(u, v; s) := n−1/2

n∑
t=1

(
I {Ut ≤ u} − I {Ut ≤ v} − (u − v)

)
I
{
0 ≥ s ≥ c′

t (ω)δ
}
.
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First note that, in view of Lemma A.4,∣∣A(2)
n

∣∣ ≤ 4‖δ‖√n sup
|u−τ |≤2‖δ‖/√n

∣∣F (
F̂−1

n (u)
) − u − (

F
(
F̂−1

n (τ )
) − τ

)∣∣
= OP

(
ρn

(
2(logn)1/2n−1/2, δ

)√
n logn

)
= OP

((
n−1/4(logn)5/4) ∨ (

n(1−δ)/(2+2δ)(logn)3/2))
= OP

(
n−1/4m

1/2
n logn

)
.

A similar bound can be obtained for A
(4)
n . Next, for sufficiently large n, still in view of

Lemma A.4, ∫ 2‖δ‖

−2‖δ‖
∣∣S(+)

n,ω,δ

(
F
(
F̂−1

n

(
n−1/2s + τ

))
, n−1/2s + τ ; s)∣∣ds

≤
∫ 2‖δ‖

−2‖δ‖
sup

v:|v−τ |≤2‖δ‖/√n

∣∣S(+)
n,ω,δ

(
F
(
F̂−1

n (v)
)
, v; s)∣∣ds

≤
∫ 2‖δ‖

−2‖δ‖
sup

v:|v−τ |≤2‖δ‖/√n

sup
u:|u−v|≤n−1/2 logn

∣∣S(+)
n,ω,δ(u, v; s)∣∣ds

≤ 4‖δ‖ sup
s:|s|≤2‖δ‖

sup
v:|v−τ |≤2‖δ‖/√n

sup
u:|u−v|≤n−1/2 logn

∣∣S(+)
n,ω,δ(u, v; s)∣∣.

Similar inequalities hold for
∫ 2‖δ‖
−2‖δ‖ |S(+)

n,ω,δ(F (F̂−1
n (τ )), τ ; s)|ds. Let us show that

sup
ω∈Fn

sup
δ:‖δ‖≤A

√
logn

sup
s:|s|≤2‖δ‖

sup
(u,v):|v−τ |≤2‖δ‖/√n

|u−v|≤n−1/2 logn

∣∣S(+)
n,ω,δ(u, v; s)∣∣

(A.17)
= OP

(
n−1/4m

1/2
n logn

)
.

For any C > 0, we have I {0 ≤ s ≤ c′
tδ} = I {0 ≤ Cs ≤ Cc′

tδ}. Thus, it is sufficient to consider
vectors δ satisfying ‖δ‖ = 1. Since, by definition, ‖ct (ω)‖ = √

2, it also is sufficient to consider
values of s in the interval [0,

√
2]. Finally, note that if

I
{
0 ≤ s1 ≤ c′

tδ1
} = I

{
0 ≤ s2 ≤ c′

tδ2
}

for all t = 1, . . . , n,

then also S
(+)
n,ω,δ1

(u, v; s1) = S
(+)
n,ω,δ2

(u, v; s2). We thus can rewrite (A.17) as

Gn := sup
T ∈Mn

sup
(u,v):|v−τ |≤2‖δ‖/√n

|u−v|≤n−1/2 logn

∣∣S̄(+)
n (u, v;T )

∣∣ = OP
(
n−1/4m

1/2
n logn

)
, (A.18)
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where

Mn := {
T = {

t ∈ {1, . . . , n}: 0 ≤ s ≤ c′
tδ

}|ω ∈Fn, s ∈ [0,
√

2],‖δ‖ = 1
}

(A.19)

and

S̄
(+)
n (u, v;T ) := n−1/2

∑
t∈T

(
I {Ut ≤ u} − u − (

I {Ut ≤ v} − v
))

.

In order to prove (A.17) (equivalently, (A.18)), define the set

Zn := {
(u, v) ∈R

2: |u − v| ≤ n−1/2 logn, |v − τ | ≤ 2An−1/2
√

logn
}

and cover it with N < n2 balls of radius 1/n with centers z1, . . . , zN ∈ Zn. For any (u, v) in
Zn there exists a j such that ‖(u, v) − (z1j , z2j )‖ ≤ 1/n and, letting zj := (z1j , z2j ), we have,
almost surely,

ρ(u, v, zj ) := ∣∣S̄(+)
n (u, v;T ) − S̄

(+)
n (z1j , z2j ;T )

∣∣
≤ n−1/2

n∑
t=1

(
I
{|Ut − z1j | ≤ n−1} + I

{|Ut − z2j | ≤ n−1} + |u − z1j | + |v − z2j |
)

≤ 2n−1/2 + n−1/2
n∑

t=1

(
I
{|Ut − z1j | ≤ n−1} + I

{|Ut − z2j | ≤ n−1})
= 2n−1/2 + n−1/2

n∑
t=1

(
I
{
Ut ≤ z1j + n−1} − I

{
Ut < z1j − n−1}

+ I
{
Ut ≤ z2j + n−1} − I

{
Ut < z2j − n−1})

≤ n1/2(F̂n,U

(
z1j + 2n−1) − (

z1j + 2n−1) − (
F̂n,U

(
z1j − 2n−1) − (

z1j − 2n−1))
+ F̂n,U

(
z2j + 2n−1) − (

z2j + 2n−1)
− (

F̂n,U

(
z2j − 2n−1) − (

z2j − 2n−1))) + O
(
n−1/2),

where F̂n,U denotes the empirical distribution function of U1, . . . ,Un. From Lemma A.7,

sup
z1,...,zN

sup
(u,v)∈[0,1]2

‖zj −(u,v)‖<n−1

∣∣ρ(u, v, zj )
∣∣

≤ n1/2 sup
zj ∈Z

∣∣F̂n,U

(
z1j + 2n−1) − F̂n,U

(
z1j − 2n−1) − 4n−1

∣∣
+ n1/2 sup

zj ∈Z

∣∣F̂n,U

(
z2j + 2n−1) − F̂n,U

(
z2j − 2n−1) − 4n−1

∣∣ + O
(
n−1/2)

= OP
(
mnn

−1/2 logn
)
.
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With this, we have, for Gn defined in (A.18),

Gn ≤ sup
T ∈Mn

sup
z1,...,zN

∣∣S̄(+)
n (z1j , z2j ;T )

∣∣ + OP
(
mnn

−1/2 logn
)
.

Note that

sup
T ∈Mn

sup
z1,...,zN

∣∣S̄(+)
n (z1j , z2j ;T )

∣∣ = sup
θ∈�n

∣∣∣∣∣
n∑

t=1

θ(t,Ut )

∣∣∣∣∣,
where

�n := {
θ(t,w) := n−1/2I {t ∈ T }(I {w ≤ u} − u − (

I {w ≤ v} − v
))|

(u, v) = z1, . . . , zN ,T ∈ Mn

}
.

We apply the independent blocks argument with �n defined above and ηn := n−1/4mn logn;
note that |Mn| ≤ (n + 1)4 by Lemma A.5 and N < n2 by construction.

Simple computations yield (recall that zj ∈Z)

sup
θ∈�n

sup
t=1,...,n

∣∣θ(t,Ut )
∣∣ ≤ 2n−1/2, (A.20)

sup
θ∈�n

μn∑
j=1

Var

(∑
t∈Sj

θ(t,Ut )

)
≤ Cn−1/2 logn =: V 2

n ,

(A.21)

sup
θ∈�n

μn∑
j=1

Var

(∑
t∈Tj

θ(t,Ut )

)
≤ V 2

n .

Thus (i) from the independent blocks argument follows from (A.20) since

n−1/4m
1/2
n logn � mnn

−1/2.

Moreover, (A.21) yields (ii), again from the independent blocks argument. Finally, verify En =
o(1) with En defined in (A.2) by direct calculation to conclude

sup
T ∈Mn

sup
z1,...,zN

∣∣S̄(+)
n (z1j , z2j ;T )

∣∣ = OP
(
n−1/4mn logn

)
.

A similar result can be derived for S(−)
n,ω,δ . This completes the proof.

A.2.3. Two auxiliary lemmas

We now state and prove Lemmas A.4 and A.5 that have been used in Sections A.2.1 and
A.2.2.
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Lemma A.4. (i) Assume that, for any γ > 0 such that [α − γ,β − γ ] ⊂ (0,1),

inf
u∈[α−γ,β+γ ]f

(
F−1(u)

)
> 0.

Then, supu∈[α,β] |F(F̂−1
n (u)) − u| = OP(n−1/2√logn).

(ii) Define ρn(an, δ) := (
an+n1/(1+δ)a2

n logn

n
logn)1/2 ∨ (n−δ/(1+δ) logn). If ρn(an, δ) is o(an),

then

sup
u,v∈[α,β],|u−v|≤an

∣∣F (
F̂−1

n (u)
) − F

(
F̂−1

n (v)
) − (u − v)

∣∣ = OP
(
ρn(2an, δ)

)
.

Proof. Elementary analytic considerations show that, for any nondecreasing function g,
supw∈[u,v] |g(w) − w| ≤ an implies supw∈[u+2an,v−2an] |g−1(w) − w| ≤ an. This, for g(w) =
F̂n(F

−1(w)), u = α − δ, and v = β + δ, along with Lemma A.7, yields part (i) of the lemma.
Turning to part (ii), by Lemma A.7, for any bounded Y ⊂R,

sup
y∈Y

sup
|x|≤an

∣∣F̂n(y + x) − F̂n(y) − F(x + y) + F(y)
∣∣ = OP

(
ρn(an, δ)

)
.

Since, for any A ⊂ [0,1], supu,v∈A |F−1(u) − F−1(v)| ≤ CA|u − v| for some positive con-
stant CA,

sup
u,v∈[α−γ,β+γ ],|u−v|≤an

∣∣F̂n

(
F−1(u)

) − F̂n

(
F−1(v)

) − (u − v)
∣∣ = OP

(
ρn(an, δ)

)
.

We now apply Lemma 3.5 from Wendler [41], with F(w) = F̂n(F
−1(w)), l = an, c =

Dρn(an, δ), C1 = F̂n(F
−1(α − γ )), C2 = F̂n(F

−1(β + γ )). By assumption, l + 2c = an +
2Dρn(an, δ) ≤ 2an for sufficiently large n. By Lemma A.7, we have C1 = α + δ + oP(1), C2 =
β − δ + oP(1) and, for any strictly increasing continuous function G, (F ◦ G−1)−1 = G ◦ F−1

(see Exercise 3 in Chapter 1 of Shorack and Wellner [38]); moreover, by part (i) of the present
lemma, F(F̂−1

n (u)) is uniformly close to u for large n. Hence,

sup
u,v∈[α,β],|u−v|≤2an

∣∣F (
F̂−1

n (u)
) − Fn

(
F̂−1

n (v)
) − (u − v)

∣∣ > Dρn(2an, δ)

implies

sup
u,v∈[α−δ,β+δ],|u−v|≤an

∣∣F̂n

(
F−1(u)

) − F̂n

(
F−1(v)

) − (u − v)
∣∣ > Dρn(an, δ).

Part (ii) of the lemma follows on letting D tend to infinity. �

Lemma A.5. The cardinality of the set Mn defined in (A.19) is at most (n + 1)4.

Proof. Fix a Fourier frequency ωj,n = 2πj/n ∈Fn and note that

ct (ωj,n)
′δ = δ1 + δ2 cos(ωj,nt) + δ3 sin(ωj,nt) = δ1 +

√
δ2

2 + δ2
3 cos

(
ωj,nt + φ(δ2, δ3)

)
,
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where φ(δ2, δ3) ∈ [0,2π] denotes a phase shift. Moreover, for any v ∈ [0,1], noting that the
mapping x �→ cos(ωj,nx + φ) is n/j -periodic,{

t ∈ {1, . . . , n}∣∣0 ≤ v ≤ δ1 +
√

δ2
2 + δ2

3 cos(ωj,nt + φ)
}

=
{

nk

j
+ w

∣∣w ∈ [C1,φ,v,δ − C0,φ,v,δ,C1,φ,v,δ + C0,φ,v,δ], k = 0, . . . , n

}
∩ {1, . . . , n},

where C0,φ,v,δ ∈ [0, n/2j ] and C1,φ,v,δ ∈ [0, n/j ] denote two real-valued constants (depending
on φ,v, δ). Now, we have{

nk

j
+ v

∣∣v ∈ [a1, b1], k = 0,1, . . . , n

}
∩ {1, . . . , n}

=
{

nk

j
+ v

∣∣v ∈ [a2, b2], k = 0,1, . . . , n

}
∩ {1, . . . , n},

provided that �ja1� = �ja2�, �jb1� = �jb2�, where �a� denotes the smallest integer larger or
equal to a. The argument above holds for any Fourier frequency. In particular, it implies that

Mn ⊂
{
T =

{
t ∈ {1, . . . , n} ∩

{
kn

j
+ v

∣∣∣v ∈
[

a − b

j
,
a + b

j

]}}∣∣
b = 0, . . . , �n/2�, a, k = 0, . . . , n, j = 1, . . . , n

}
,

a collection of sets that contains at most (n + 1)4 elements. This completes the proof. �

A.3. Two basic lemmas

Finally, we state and prove here Lemmas A.6 and A.7, which have been used at several places in
this Appendix.

Lemma A.6. Denote by X1, . . . ,Xμnmn a sequence of μn independent blocks of mn random
variables such that supi=1,...,μnmn

|Xi | ≤ Cn a.s., and

μn∑
j=1

Var

(
mnj∑

i=mn(j−1)+1

Xi

)
≤ V 2

n .

Then, for all λn > 0, P(|∑n
j=1 Xj | > λn) ≤ 2 exp(− log 2

4 (
λ2

n

2V 2
n

∧ λn

mnCn
)). In particular, for D > 0,

P(|∑n
j=1 Xj | > 6 max(DVn

√
logn,D2mnCn logn)) ≤ 4n−D2

.

Proof. Defining the random variables Uk := ∑mnk
j=mn(k−1)+1 Xj , k = 1, . . . ,μn, note that

U1,U2, . . . ,Uμn are independent, that |Uj | ≤ mnCn a.s. and that Var(
∑

j Uj ) ≤ V 2
n . Applying
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Bennett’s inequality (see Pollard [36]) yields

P

(∣∣∣∣∣
n∑

j=1

Xj

∣∣∣∣∣ > λn

)

≤ 2 exp

(
− V 2

n

m2
nC

2
n

h

(
mnCnλn

2V 2
n

))
≤ 2 exp

(
−1

4

λn

mnCn

log

(
1 + mnCnλn

2V 2
n

))

≤ 2 exp

(
− log 2

4

λn

mnCn

(
mnCnλn

2V 2
n

∧ 1

))
= 2 exp

(
− log 2

2

(
λ2

n

4V 2
n

∧ λn

2mnCn

))
,

where h(x) := (1 + x) log(1 + x) − x ≥ 1
2x log(1 + x) ≥ log(2)

2 x(x ∧ 1). The second assertion
follows by direct calculation. �

Lemma A.7. Let Assumptions (A1) and (A2) hold.

(i) Let Y ⊂R be a bounded set, D > 1, and 0 ≤ an = o(1). Then,

sup
y∈Y

sup
|x|≤an

∣∣F̂n(y + x) − F̂n(y) − F(x + y) + F(y)
∣∣ = OP

(
ρn(an, δ)

)
,

where ρn(an, δ) := (
an+n1/(1+δ)a2

n logn

n
logn)1/2 ∨ (n−δ/(1+δ) logn).

(ii) For any bounded Y ⊂R, supx∈Y |F̂n(x) − F(x)| = OP(n−1/2√logn).

Proof. The bounded set Z := {(x, y) ∈ R
2|y ∈ Y, |x| ≤ an} can be covered with N = O(n2)

spheres of radius 1
2n−1 and centers (z1j , z2j ) ∈ Z,j = 1, . . . ,N . A Taylor expansion yields

sup
‖(x,y)−(z1j ,z2j )‖≤1/2n

∣∣F̂n(y + x) − F̂n(y) − F(x + y) + F(y)

− (
F̂n(z1j + z2j ) − F̂n(z2j ) − F(z1j + z2j ) + F(z2j )

)∣∣
≤ n−1

n∑
t=1

(
I
{|Yt − z2j | ≤ n−1} + I

{∣∣Yt − (z1j + z2j )
∣∣ ≤ n−1}) + Cn−1,

where the constant C does not dependent on t and j . Therefore,

sup
y∈Y

sup
|x|≤an

∣∣F̂n(y + x) − F̂n(y) − F(x + y) + F(y)
∣∣

≤ sup
θ∈�1,n

∣∣∣∣∣
n∑

t=1

θ(t, Yt )

∣∣∣∣∣ + sup
θ∈�2,n

∣∣∣∣∣
n∑

t=1

θ(t, Yt )

∣∣∣∣∣,
where

�1,n := {
θ(t, y) := n−1(I {y ≤ z1j + z2j } − I {y ≤ z2j }

) − F(z1j + z2j ) + F(z2j )|
j = 1, . . . ,N

}
,
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and

�2,n := {
θ(t, y) := n−1(I{|y − z2j | ≤ n−1} + I

{∣∣y − (z1j + z2j )
∣∣ ≤ n−1}) + Cn−1|

j = 1, . . . ,N
}
.

We proceed to bound the suprema over �1,n and �2,n by applying the independent blocks ar-
gument with ηn := Dρn(an, δ) and a suitable constant D. Begin with �1,n. We have Eθ(t,Xt ) =
0 for all θ ∈ �1,n, supθ∈�1,n

supt |θ(t,Xt )| ≤ 2n−1, and

sup
y

μn∑
j=1

Var

(∑
t∈Sj

I {Xt ≤ y + x} − I {Xt ≤ y} − F(x + y) + F(y)

)
≤ C2μnmn

(
mn|x|2 + |x|) =: V 2

1,n

for some finite constant C2 independent of x, and mn := �n1/(1+δ) logn�, defined as within the
independent blocks argument (see Section A.1.1). The same bound holds with Sj replaced by Tj .
This implies

sup
θ∈�1,n

μn∑
j=1

Var

(∑
t∈Sj

θ(t,Xt )

)
≤ C2(mna

2
n + an)

n
,

and

sup
θ∈�1,n

μn∑
j=1

Var

(∑
t∈Tj

θ(t,Xt )

)
≤ C2(mna

2
n + an)

n
.

A simple calculation [observe that nρn(an, δ) ≥ n1/(1+δ) logn ∼ mn] shows that this implies
(i) and (ii) from the independent blocks argument and that for En defined in (A.2) we have
En = o(1). Thus supθ∈�1,n

|∑n
t=1 θ(t, Yt )| = oP(ηn).

Next, apply the independent blocks argument with �n,2. Observe that

sup
θ∈�1,n

sup
t

∣∣θ(t,Xt )
∣∣ ≤ (C + 2)n−1 a.s.

This yields (i) from the independent blocks argument. Furthermore, we have

sup
θ∈�2,n

μn∑
j=1

Var

(∑
t∈Sj

θ(t,Xt )

)
≤ C′n−2, sup

θ∈�2,n

μn∑
j=1

Var

(∑
t∈Tj

θ(t,Xt )

)
≤ C′n−2

for a constant C′ and the same bound holds with Sj replaced by Tj . Thus (ii) from the indepen-
dent blocks argument is established. Based on this and the fact that

sup
θ∈�2,n

sup
t

∣∣E[
θ(t,Xt )

]∣∣ = O
(
n−2),
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some simple calculations show that for En defined in (A.2) we have En = o(1). This completes
the independent blocks argument for �2,n. Combining the results obtained so far establishes the
first part of this lemma. The second part follows from similar arguments. �

Appendix B: Technical details for the proof of Theorem 4.1

The proof of Theorem 4.1 in Section 4 is relying on Equations (4.4) and (4.5), which we establish
in Sections B.1 and B.2, respectively.

B.1. Proof of (4.4)

Putting

4n−1�̃n := (b̂n,τ1,ωj,n
− bn,τ1,ωj,n

)′
(

1 i
−i 1

)
bn,τ2,ωj,n

+ (bn,τ1,ωj,n
)′
(

1 i
−i 1

)
(b̂n,τ2,ωj,n

− bn,τ2,ωj,n
)

+ (b̂n,τ1,ωj,n
− bn,τ1,ωj,n

)′
(

1 i
−i 1

)
(b̂n,τ2,ωj,n

− bn,τ2,ωj,n
),

we obtain, from the definition of the Laplace periodogram,

Ln,τ1,τ2(ωj,n) := n

4
(b̂n,τ1,ωj,n

)′
(

1 i
−i 1

)
b̂n,τ2,ωj,n

= n

4
(bn,τ1,ωj,n

)′
(

1 i
−i 1

)
bn,τ2,ωj,n

+ �̃n

= 1

f (qτ1)f (qτ2)

(
n−1dn(τ1,ωj,n)dn(τ2,−ωj,n)

) + �̃n.

By (3.9), for τ ∈ {τ1, τ2},

n1/2 sup
ωj,n∈Fn

‖b̂n,τ,ωj,n
− bn,τ,ωj,n

‖ = OP
(
n(1/8)(1−δ)/(1+δ)(logn)7/4),

while Lemma A.2 implies that

n1/2 sup
ωj,n∈Fn

‖bn,τ,ωj,n
‖ = OP(

√
logn),

so that ‖�̃n‖ = OP(n‖b̂n,τ,ωj,n
− bn,τ,ωj,n

‖ · ‖bn,τ,ωj,n
‖) = OP(Rn).
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B.2. Proof of (4.5)

Note that Ln,τ1,τ2(ωj,n) is the cross-periodogram of the bivariate time series(
τ1 − I {Yt ≤ qτ1}, τ2 − I {Yt ≤ qτ2}

)
. (B.1)

Let ωj,n,ωk,n ∈ (0,π) be two sequences of Fourier frequencies. Corollary 7.2.2 in Brillinger [7]
implies that

Var
(
Ln,τ1,τ2(ωj,n)

) = f1,1(ωj,n)f2,2(ωj,n)+ 2π

n
f1,2,1,2(ωj,n,−ωj,n,−ωk,n)+O(1/n) (B.2)

and, for ωj,n �= ωkn,

Cov
(
Ln,τ1,τ2(ωj,n),Ln,τ1,τ2(ωk,n)

) = 2π

n
f1,2,1,2(ωj,n,−ωj,n,−ωk,n) + O

(
1/n2), (B.3)

where f1,1, f2,2 and f1,2,1,2 are the spectra and cumulant spectra of the bivariate time series (B.1),
which exist by Assumption (A4). Note that the orders O(1/n) and O(1/n2) of the remainders in
(B.2) and (B.3) hold uniformly with respect to j and k. The aforementioned spectra coincide with
the Laplace spectra fτ1,τ1 , and fτ2,τ2 and the cumulant spectra are also bounded (see Brillinger
[7], page 26). Therefore,

Cov
(
Ln,τ1,τ2(ωj,n),Ln,τ1,τ2(ωk,n)

) =
{
fτ1,τ1(ωj,n)fτ2,τ2(ωj,n) + R̄n, ωj,n = ωk,n,

R̄n, ωj,n �= ωk,n,

where R̄n = O(1/n) does not depend on j and k. The assertion follows by the fact that the
variance and the bias of the random variable Kn in (4.5) both are of the order O(1/n). For the
variance, note that

Var(Kn) = 1

f 2(qτ1)f
2(qτ2)

×
[ ∑

|k|≤Nn

W 2
n (k)Var

(
Ln,τ1,τ2(ωj+k,n)

)
+

∑
|k1|≤Nn

Wn(k1)
∑

|k2|≤Nn

k2 �=k1

Wn(k2)Cov
(
Ln,τ1,τ2(ωj+k1,n),Ln,τ1,τ2(ωj+k2,n)

)]

= O(1/n),

due to the second part of Assumption (A3) and (B.3). As for the bias, E[Kn] = O(1/n) due to the
fact that ELn,τ1,τ2(ωj+k,n) = ∑∞

k=−∞ γk(qτ1, qτ2)e
−iωj+k,nk + O(1/n) uniformly with respect to

the frequencies (see Theorem 4.3.2 in Brillinger [7]).
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