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Uniform asymptotic confidence bands for a multivariate regression function in an inverse regression model
with a convolution-type operator are constructed. The results are derived using strong approximation meth-
ods and a limit theorem for the supremum of a stationary Gaussian field over an increasing system of sets.
As a particular application, asymptotic confidence bands for a time dependent regression function ft (x)

(x ∈ Rd , t ∈ R) in a convolution-type inverse regression model are obtained. Finally, we demonstrate the
practical feasibility of our proposed methods in a simulation study and an application to the estimation of
the luminosity profile of the elliptical galaxy NGC5017. To the best knowledge of the authors, the results
presented in this paper are the first which provide uniform confidence bands for multivariate nonparametric
function estimation in inverse problems.

Keywords: confidence bands; deconvolution; inverse problems; multivariate regression; nonparametric
regression; rates of convergence; time dependent regression function; uniform convergence

1. Introduction

1.1. Inverse regression models

In many applications, it is impossible to observe a certain quantity of interest because only indi-
rect observations are available for statistical inference. Problems of this type are called inverse
problems and arise in many fields such as medical imaging, physics and biology. Mathematically
the connection between the quantity of interest and the observable one can often be expressed
in terms of a linear operator equation. Well-known examples are Positron Emission Tomogra-
phy, which involves the Radon Transform (Cavalier [9]), the heat equation (Mair and Ruymgaart
[22]), the Laplace Transform (Saitoh [29]) and the reconstruction of astronomical and biolog-
ical images from telescopic and microscopic imaging devices, which is closely connected to
convolution-type operators (Adorf [1], Bertero et al. [2]).

Inverse problems have been studied intensively in a deterministic framework and in mathemat-
ical physics. See, for example, Engl et al. [13] for an overview of existing methods in numerical
analysis of inverse problems or Saitoh [29] for techniques based on reproducing kernel Hilbert
spaces. Recently, the investigation of inverse problems has also become of importance from a
statistical point of view. Here, a particularly interesting and active field of research is the con-
struction of statistical inference methods such as hypothesis tests or confidence regions.

In this paper, we are interested in the convolution type inverse regression model

Y = (f ∗ ψ)(x) + ε, (1.1)
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where ε is a random error, the operation ∗ denotes convolution, ψ is a given square integrable
function and the object of interest is the function f itself. An important and interesting applica-
tion of the inverse regression model (1.1) is the recovery of images from imaging devices such
as astronomical telescopes or fluorescence microscopes in biology. In these cases, the observed,
uncorrected image is always at least slightly blurry due to the physical characteristics of the prop-
agation of light at surfaces of mirrors and lenses in the telescope. In this application, the variable
x represents the pixel of a CCD and we can only observe a blurred version of the true image
modeled by the function f . In the corresponding mathematical model, the observed image is (at
least approximately) a convolution of the real image with the so-called point spread function ψ ,
that is, an inverse problem with convolution operator.

The inference problem regarding the function f is called inverse problem with stochastic
noise. In recent years, the problem of estimating the regression function f has become an im-
portant field of research, where the main focus is on a one dimensional predictor. Several authors
propose Bayesian methods (Bertero et al. [2], Kaipio and Somersalo [19]) and construct estima-
tors using tools from nonparametric curve estimation (Mair and Ruymgaart [22], Cavalier [10],
Bissantz et al. [8]). Further inference methods, in particular the construction of confidence inter-
vals and confidence bands, are much less developed. Birke et al. [5] have constructed uniform
confidence bands for the function f with a one-dimensional predictor.

The present work is motivated by the fact that in many applications one has to deal with an
at least two-dimensional predictor. A typical example is image reconstruction since a picture
is a two-dimensional object. Also in addition to the spatial dimensions, the data often show a
dynamical behavior, thus repeated measurements at different times can be used to extend the
statistical inference. For example, in astrophysics spectra of different objects like supernovae or
variable stars show changes in time on observable timescales. In this case, the function f depends
on a further parameter, say ft and the reconstruction problem refers to a multivariate function
even if the predictor is univariate.

The purpose of the present paper is the investigation of asymptotic properties of estimators
for the function f in model (1.1) with a multivariate predictor. In particular, we present a result
on the weak convergence of the sup-norm of an appropriately centered estimate, which can be
used to construct asymptotic confidence bands for the regression function f . In contrast to other
authors (e.g., Cavalier and Tsybakov [11]), we do not assume that the function ψ in model (1.1)
is periodic, because in the reconstruction of astronomical or biological images from telescopes
or microscopic imaging devices this assumption is often unrealistic.

1.2. Confidence bands

In a pioneering work, Bickel and Rosenblatt [4] extended results of Smirnov [30] for a histogram
estimate and constructed confidence bands for a density function of independent, identically dis-
tributed (i.i.d.) observations. Their method is based on the asymptotic distribution of the supre-
mum of a centered kernel density estimator. Since then, their method has been further developed
both in the context of density and regression estimation. For density estimation, Neumann [23]
derived bootstrap confidence bands, and Giné and Nickl [16] derived adaptive asymptotic bands
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over generic sets. In a regression context, asymptotic confidence bands were constructed by Eu-
bank and Speckman [14] for the Nadaraya–Watson estimator and by Xia [32] for a local polyno-
mial estimator. Bootstrap confidence bands for nonparametric regression were proposed by Hall
[18], Neumann and Polzehl [24] and by Claeskens and van Keilegom [12]. For the statistical in-
verse problem of deconvolution density estimation, Bissantz et al. [7] constructed asymptotic and
bootstrap confidence bands, where Lounici and Nickl [21] obtained non-asymptotic confidence
bands by using concentration inequalities. Recently, Birke et al. [5] provided uniform asymptotic
and bootstrap confidence bands for a spectral cut-off estimator in the one-dimensional indirect
regression model with convolution operator.

All these results are limited to the estimation of univariate densities and regression functions,
and are not applicable in cases where the quantity of interest depends on a multivariate predictor.
In such cases, to the best knowledge of the authors, confidence bands are not available. One
reason for this gap is that a well-established way to construct asymptotic uniform confidence
bands, which uses a pioneering result of Bickel and Rosenblatt [4] as the standard tool, cannot be
extended in a straightforward manner to the multivariate case. There are substantial differences
between the multivariate and one-dimensional case, and for multivariate inverse problems the
mathematical construction of confidence bands requires different and/or extended methodology.

In the present paper, we will consider the problem of constructing confidence bands for the
regression function in an inverse regression model with a convolution-type operator with a mul-
tivariate predictor. The estimators and assumptions for our asymptotic theory are presented in
Section 2, while Section 3 contains the main results of the paper. In Section 4, we consider the
special case of time dependent regression functions with a univariate predictor, which originally
motivated our investigations. In Section 5, the finite-sample properties of the proposed asymp-
totic confidence bands are illustrated by means of a small simulation study and an application to
HST data is discussed. The arguments of Sections 6 and 7, which contain all technical details of
the proofs, are based on results by Piterbarg [27] who provided a limit theorem for the supremum

sup
t∈Tn

X(t)

of a stationary Gaussian field {X(t)|t ∈Rd}, where {Tn ⊂Rd}n∈N is an increasing system of sets
such that λd(Tn) → ∞ as n → ∞. This result generalized the multivariate extension in Bickel
and Rosenblatt [3], who provided a limit theorem for the supremum supt∈[0,T ]d X(t), as T → ∞.

2. Notation and assumptions

2.1. Model and notations

Suppose that (2n + 1)d observations (xk, Yk),k = (k1, . . . , kd) ∈ Gn := {−n, . . . , n}d from the
model

Yk = g(xk) + εk := (f ∗ ψ)(xk) + εk, (2.1)
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are available, where the function f :Rd → R is unknown, ψ :Rd → R is a known function and
g := f ∗ ψ denotes the convolution of f and ψ , that is

g(x) := (f ∗ ψ)(x) :=
∫
Rd

f (s)ψ(x − s)ds. (2.2)

The basic assumptions that guarantee the existence of the integral (2.2) and also assure g ∈
L2(Rd) is that f ∈ L2(Rd) and ψ ∈ L1(Rd) ∩ L2(Rd), which will be assumed throughout this
paper. In model (2.1), the predictors xk := k · 1

nan
are equally spaced fixed design points on a

d-dimensional grid, with a sequence (an)n∈N satisfying

nan → ∞ and an ↘ 0 for n → ∞.

The noise terms {εk|k ∈ Gn} are a field of centered i.i.d. random variables with variance σ 2 :=
Eε2

k > 0 and existing fourth moments. As a consequence of the convolution theorem and the
formula for Fourier inversion, we obtain the representation

f (x) = 1

(2π)d

∫
Rd

Fg(ξ)

Fψ(ξ)
exp

(
iξT x

)
dξ. (2.3)

An estimator for the regression function f can now easily be obtained by replacing the unknown
quantity Fg =F(f ∗ψ) by an estimator F ĝ. The random fluctuations in the estimator F ĝ cause
instability of the ratio F ĝ(ξ)

Fψ(ξ)
if at least one of the components of ξ is large. As a consequence,

the problem at hand is ill-posed and requires regularization. We address this issue by excluding
large values of ξj for any j = 1, . . . , d from the domain of integration, that is, we multiply
the integrand in (2.3) with a sequence of Fourier transforms Fη(h·) of smooth functions with
compact support [−h−1, h−1]d . Here h = hn is a regularization parameter which corresponds
to a bandwidth in nonparametric curve estimation and satisfies h → 0 if n → ∞. For the exact
properties of the function η, we refer to Assumption A below.

An estimator f̂n for the function f in model (2.1) is now easily obtained as

f̂n(x) = 1

(2π)d

∫
Rd

F ĝ(ξ)

Fψ(ξ)
exp

(
iξT x

)
Fη(hξ)dξ, (2.4)

where

F ĝ(ξ) = 1

(2π)d/2ndad
n

∑
k∈Gn

Yk exp
(−iξT xk

)

is the empirical analogue of the Fourier transform of g. Note that with the definition of the kernel

Kn(x) = 1

(2π)d/2

∫
Rd

Fη(ξ)

Fψ(ξ/h)
exp

(
iξT x

)
dξ, (2.5)

the estimator (2.4) has the following representation

f̂n(x) = 1

(2π)dndad
nhd

∑
k∈Gn

YkKn

(
(x − xk)

1

h

)
. (2.6)
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Note that the kernel Kn can be expressed as a Fourier transform as follows

Kn = F
( Fη

Fψ(·/h)

)
.

Also note that the kernel Kn is a so-called deconvolution kernel. It is the analogue of a kernel
in classical nonparametric kernel estimation with the difference that it depends on n via the
bandwidth h in a rather complicated manner. For this reason, we use the notation Kn instead of
Kh which corresponds to Kh(·/h) = 1

hd K(·/h). Asymptotically, this kernel can be replaced by
its limit K , see Assumption B, Remark 2 and Example 1 in the following discussion.

The first step of the proof of our main result (see Theorem 1 in Section 3) will consist of a
uniform approximation of f̂n(x) − Ef̂n(x) by an appropriate stationary Gaussian field. In the
second step, we apply results of Piterbarg [27] and Bickel and Rosenblatt [3] to obtain the de-
sired uniform convergence for the approximation process of the first step. Finally, these results
are used to construct uniform confidence regions for Ef̂n(x). Our approach is then based on un-
dersmoothing: the choice of sufficiently small bandwidths assures the same limiting behaviour of
f̂n(x) −Ef̂n(x) and f̂n(x) − f (x). This avoids the estimation of higher order derivatives, which
often turns out to be difficult in applications. Thus, the limit theorem obtained in the second step
will also provide uniform confidence regions for the function f itself. Whereas undersmoothing
implies that the rate-optimal bandwidth cannot be used, there has also been some theoretical jus-
tification why this choice of the regularization parameter is useful for constructing confidence
intervals (see Hall [17]).

2.2. Assumptions

We now introduce the necessary assumptions which are required for the proofs of our main
results in Section 3. The first assumption refers to the type of (inverse) deconvolution problem
describing the shape of the kernel function η in the spectral domain.

Assumption A. Let Fη denote the Fourier transform of a function η such that

A1. supp(Fη) ⊂ [−1,1]d .
A2. Fη ∈ D(Rd) = {f :Rd →R|f ∈ C∞(Rd), supp(f ) ⊂Rd compact}.
A3. There exists a constant D > 0, such that Fη(ξ) = 1 for all ξ ∈ [−D,D]d and |Fη(ξ)| ≤

1 for all ξ ∈Rd .

Remark 1.

1. The decay of the tails of the kernel Kn is given in terms of the smoothness of the inte-
grand in (2.5). The choice of a smooth regularizing function Fη has the advantage that the
smoothness of 1/Fψ carries over to Fη(h·)/Fψ .

2. Functions like Fη are called bump functions. Their existence follows from the C∞
Urysohn lemma (see, e.g., Folland [15], Lemma 8.18).
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3. Note that D(Rd) ⊂ S (Rd), where S (Rd) denotes the Schwartz space of smooth and
rapidly decreasing functions. Since F :S (Rd) → S (Rd) is a bijection (see, e.g., Folland
[15], Corollary 8.28) we know that η ∈ S (Rd) as well.

4. For the sake of transparency, we state the conditions and results with the same regular-
ization parameter h for each direction. In practical applications, this might not be the best
strategy. The results presented in Sections 3 and 4 also hold for different sequences of band-
widths h1, . . . , hd as long as the system of rectangles {[0, h−1

1 ] × · · · × [0, h−1
d ]|n ∈N} is a

blowing up system of sets in the sense of Definition 14.1 in Piterbarg [27]. This is the case
if the assumption

d∑
p=1

(
d∏

j=1,j 
=p

1

hj

)
≤ L1 ·

(
d∏

j=1

1

hj

)L2

,

is satisfied for a constant L1 that only depends on d and a constant L2 < 1. This condition
is not a restriction in our setting because it holds whenever hj · nγj → Cj for constants
Cj , γj > 0, j = 1, . . . , d .

In general, two kinds of convolution problems are distinguished in the literature, because
the decay of the Fourier transform of the convolution function ψ determines the degree of ill-
posedness. In the case of an exponentially decreasing Fourier transform Fψ the problem is called
severely ill-posed. In the present paper, the class of moderately ill-posed problems is considered,
where the Fourier transform of the convolution function decays at a polynomial rate (the precise
condition will be specified in Assumption B below). Throughout this paper

Wm
(
Rd

) = {
f ∈ L2(Rd

)|∂(α)f ∈ L2(Rd
)

exists ∀α ∈Nd, |α| ≤ m
}
,

denotes the Sobolev space of order m ∈N, where ∂(α)f is the weak derivative of f of order α. In
the subsequent discussion, we will also make use of the Sobolev space for general m > 0, which
is defined by

Wm
(
Rd

) = {
f ∈ L2(Rd

)|(1 + |ξ |2)m/2Ff ∈ L2(Rd
)}

.

Assumption B. We assume the existence of a function � :Rd → R such that the kernel K =
F(� ·Fη) satisfies

B1. K 
= 0 and there exist constants β > d/2, M ∈ N, indices 0 < μ1 < μ2 < · · · < μM and
L2-functions f1, . . . , fM−1, fM :Rd →R with the property

ξαfp ∈Wm
(
Rd

)
(p = 1, . . . ,M − 1)

for all multi-indices α ∈ {0, . . . , d}d, |α| ≤ d and all m >
d+|α|

2 , such that

hβKn(x) − K(x) =
M−1∑
p=1

hμpFfp(x) + hμMFfn,M(x), (2.7)
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where fM may depend on n, that is, fM = fM,n and ‖fM,n‖L1(Rd ) = O(1).

B2. ξα� ·Fη, ξα hβ

Fψ(·/h)
·Fη ∈ Wm(Rd) for some m >

d+|α|
2 .

B3. log(n) · hμM (a
−d/2
n h−d/2) · ‖fM‖L1(Rd ) = o(1) and hμ1(log(n))2 = o(1).

Remark 2. Assumption B1 implies hβKn → K in L2(Rd) and also specifies the order of this
convergence. It can be understood as follows. If the convergence of the difference hβKn − K is
fast enough, that is,

log(n) · hμ1(anh)−d/2 = o(1) (2.8)

we have M = 1. On the other hand, in some relevant situations (see Example 1(ii) below) the
rate of convergence hμ1 is given by h2 for each d and (2.8) cannot hold for d ≥ 4. Here, the
expansion (2.7) provides a structure, such that our main results remain correct although the rate
of convergence is not very fast. We can decompose the difference hβKn −K in two parts, where
one part depends on n only through the factors hμp and the other part converges sufficiently fast
(in some cases this term vanishes completely).

Example 1. This example illustrates the construction of the functions in the representation (2.7).

(i) Let d = 2 and ψ(x) = 1
4 exp(−|x1|) exp(−|x2|), x = (x1, x2)

T , ξ = (ξ1, ξ2)
T . Then we

have h4

Fψ(ξ/h)
= 2π(h4 + h2(ξ2

1 + ξ2
2 ) + ξ2

1 ξ2
2 ), which implies β = 4,M = 3 and

h4 · Kn(x) =
∫
R2

(
h4 + h2(ξ2

1 + ξ2
2

) + ξ2
1 ξ2

2

)
Fη(ξ) exp

(
ixT ξ

)
dξ,

K(x) =
∫
R2

Fη(ξ)ξ2
1 ξ2

2 exp
(
ixT ξ

)
dξ.

With the definitions f1(ξ) = 2π(ξ2
1 + ξ2

2 )Fη(ξ), f2(ξ) = 2πFη(ξ) and fn,3 ≡ 0 we ob-
tain

h4 · Kn(x) − K(x) = h2 ·Ff1(ξ) + h4 ·Ff2(ξ).

In this example, the condition log(n)h2/
√

ad
nhd = o(1) is satisfied. However, the fol-

lowing results are valid if the weaker condition of a decomposition of the form (2.7)
holds. Furthermore, since the factors of Fη in f1 and f2 are polynomials, we have
Ffj (ξ) ∈ S (Rd), which implies ξαfj ∈ Wm(Rd) for all α and all m ∈N.

(ii) If |x| =
√

x2
1 + · · · + x2

d and ψ(x) = 2−(d+1)/2e−|x| we have

Fψ(ξ) = 1√
2π



(
d + 1

2

)
1

(1 + |ξ |2)(d+1)/2
,

(see Folland [15], Exercise 13). If d is odd we use the identity

(
h2 + |ξ |2)(d+1)/2 =

(d+1)/2∑
j=0

( d+1
2
j

)
h2j |ξ |(d+1)/2−2j ,
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and an expansion of the form (2.7) is obvious from the definition of Kn in (2.5). If the
dimension d is even the situation is more complicated. Consider for example the case
d = 4, where

h5

Fψ(ξ/h)
→

√
2π

(5/2)
|ξ |5 =

√
2π

(5/2)

√(
ξ2

1 + ξ2
2 + ξ2

3 + ξ2
4

)5 as n → ∞.

It follows that the constant β and the functions �,Kn and K from Assumption B are given

by β = d + 1 = 5, �(ξ) =
√

2π
(5/2)

|ξ |5 and

hβKn(x) = 1

(2π)2

∫
Rd

√
2π

(5/2)

(
h2 + |ξ |2)(d+1)/2Fη(ξ) exp

(
iξT x

)
dξ,

K(x) = 1

(2π)2

∫
Rd

√
2π

(5/2)
|ξ |d+1Fη(ξ) exp

(
iξT x

)
dξ,

respectively. In order to show that Assumption B1 holds in this case we use Taylor’s
theorem and obtain

h5

Fψ(ξ/h)
− �(ξ) =

√
2π

((d + 1)/2)

(
h2 · 5

2
· |ξ |3 + h4 · 5

2
· 3

2
· (|ξ |2 + λdh2)1/2

)
,

for some constant λd ∈ [0,1). Recalling the definition of Kn in (2.5) this gives(
hβKn − K

)
(x) = h2Ff1(ξ) + h4Ff2,n(ξ),

where the functions f1 and f2,n are defined by

f1(ξ) = 1

(2π)3/2(5/2)
· |ξ |3 · 5

2
·Fη(ξ),

f2,n(x) = 1

(2π)3/2(5/2)

5

2
· 3

2
h4(|ξ |2 + λdh2)1/2 ·Fη(ξ),

respectively. It can be shown by a straightforward calculation that ξαfj ∈ W6+|α|(Rd) for
all α ∈ {0, . . . , d}d .

Remark 3. In the one-dimensional regression model (2.1), Birke et al. [5] assume that the ker-
nel K has exponentially decreasing tails in order to obtain asymptotic confidence bands, which,
in combination with the other assumptions only allows for kernels that are Fourier transforms
of C∞-functions with square integrable derivatives. Our Assumption B is already satisfied if K

is the Fourier transform of a once weakly differentiable function with square integrable weak
derivative, such that all indices of ill-posedness β that satisfy β > 1

2 are included if d = 1. More-
over, the assumptions regarding the bandwidths are less restrictive compared to Birke et al. [5].

Our final assumptions refer to the smoothness of the function f and to the decay of the con-
volution f ∗ ψ .
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Assumption C. We assume that

C1. There exist constants γ > 2, m > γ + d
2 such that f ∈ Wm(Rd).

C2. There exists a constant ν > 0 such that∫
R

∣∣(f ∗ ψ)(z)
∣∣2(1 + |z|2)ν dz < ∞.

3. Asymptotic confidence regions

In this section, we construct asymptotic confidence regions for the function f on the unit cube
[0,1]d . These results can easily be generalized to arbitrary rectangles ×d

j=1[aj , bj ] for fixed
constants aj < bj (j = 1, . . . , d) and the details are omitted for the sake of brevity. We investigate
the limiting distribution of the supremum of the process {Ỹn(x)|x ∈ [0,1]d}, where

Ỹn(x) = (2π)dhβ
√

hdndad
n

σ‖K‖L2(Rd )

[
f̂n(x) −Ef̂n(x)

]
(3.1)

= (2π)dhβ

σ‖K‖L2(Rd )

√
hdndad

n

∑
k∈Gn

Kn

(
(x − xk)

1

h

)
εk

and the kernel Kn is defined in (2.5). Note that

sup
x∈[0,1]d

∣∣Ỹn(x)
∣∣ = sup

x∈[0,h−1]d
∣∣Yn(x)

∣∣,
where the process

Yn(x) := (2π)dhβ

σ‖K‖L2(Rd )

√
hdndad

n

∑
k∈Gn

Kn

(
x − xk

1

h

)
εk (3.2)

can be approximated by a stationary Gaussian field uniformly with respect to [0, h−1]d . Thus
the desired limiting distribution corresponds to the limiting distribution of the supremum of a
stationary Gaussian process over a system of increasing smooth sets with sufficient similarity
of their speed of increase, and is therefore of Gumbel-type. The precise result is given in the
following theorem.

Theorem 1. Assume that for some fixed constant δ ∈ (0,1], δ < d and a constant r > 2d
d−δ

the
r th moment of the errors exists, that is, E|εk|r < ∞. If additionally Assumptions A and B are
satisfied and log(n)

nδaδ
nhd = o(1), then we have

lim
n→∞P

(
sup

x∈[0,1]d
(∣∣Ỹn(x)

∣∣ − Cn,3
) · Cn,3 < κ

)
= e−2e−κ

,
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where

C1 = det
([

(2π)2d

‖K‖2
2

∫
Rd

∣∣�(v)Fη(v)
∣∣2

vivj dv

]
, i, j = 1, . . . , d

)
,

Cn,2 =
√

C1

(2π)d+1

1

hd
,

Cn,3 = √
2 ln(Cn,2) + (d − 1) ln(2 ln(Cn,2))

2
√

2 ln(Cn,2)
.

The proof of this result is long and complicated and therefore deferred to Sections 6 and 7. In
the following, we apply Theorem 1 to construct uniform confidence regions for the function f

by choosing the bandwidth such that the bias decays to zero sufficiently fast. More precisely, if
the condition

log(n) sup
x∈[0,1]d

∣∣f (x) −Ef̂n(x)
∣∣ = o

((
hβ

√
hdndad

n

)−1)

is satisfied, it follows directly that the random quantities supx∈[0,1]d |Ỹn(x)| and

(2π)dhβ
√

hdndad
n

‖K‖L2(Rd )σ
sup

x∈[0,1]d
∣∣f (x) − f̂n(x)

∣∣
have the same limiting behavior.

Corollary 1. Assume that the conditions of Theorem 1, Assumption C and the condition

√
hdndad

n

√
log(n)

(
1

n3a3
nh

2
+ aν

n

n
+ a

ν+d/2
n + hγ+β

)
= o(1) for n → ∞

are satisfied. Then we have for any κ ∈R

lim
n→∞P

(
f̂n(x) − �n,κ ≤ f (x) ≤ f̂n(x) + �n,κ for all x ∈ [0,1]d) = e−2e−κ

,

where the sequence �n,κ is defined by

�n,κ = (κ/Cn,3 + Cn,3)σ‖K‖L2(Rd )

(2π)dhβ
√

hdndad
n

.

As a consequence of Corollary 1 an asymptotic uniform confidence region for the function f

with confidence level 1 − α is given by{[
f̂n(x) − �n,− ln(−0.5 ln(1−α)), f̂n(x) + �n,− ln(−0.5 ln(1−α))

]|x ∈ [0,1]d}
. (3.3)
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The corresponding (1−α)-band has a width of 2�n,− ln(−0.5 ln(1−α)). Here, the factor 1
hβ is due to

the ill-posedness of the inverse problem (see Assumption B). It does not appear in corresponding
results for the direct regression case. On the other hand, the factor a

−d/2
n arises from the design on

the growing system of sets {[−a−1
n , a−1

n ]d |n ∈ N}. In the case of a regression on a fixed interval
it does not appear as well. The width of the asymptotic point-wise confidence intervals in the
multivariate indirect regression case as obtained in Bissantz and Birke [6] is of order 1

hβ
√

Nhdad
n

,

where N is the total number of observations. Their point-wise confidence intervals are smaller
than the uniform ones obtained in Corollary 1. The price for uniformity is an additional factor of
logarithmic order, which is typical for results of this kind.

In applications the standard deviation is unknown but can be estimated easily from the data, be-
cause this does not require the estimation of the function f . In particular, (3.3) remains an asymp-
totic (1 −α)-confidence band, if σ is replaced by an estimator satisfying σ̂ −σ = oP (1/ log(n)).

4. Time dependent regression functions

In this section, we extend model (2.1) to include a time dependent regression function, that is

Yj,k,n = (Tψftj )(xk) + εk, k ∈ Gn, j = −m, . . . ,m, (4.1)

where xk = k
nan

and tj = j
mbm

, m = m(n), such that m(n) → ∞ and bm(n) ↘ 0 as n → ∞.
We assume that ψ does not depend on the time and the operator Tψ is defined by

(Tψft ) =
∫
Rd

ft (y)ψ(· − y)dy.

This assumption is reasonable in the context of imaging where the function ψ corresponds to the
point spread function (Bertero et al. [2]). If it is not satisfied, that is, the convolution operator
effects all coordinates, the problem can be modeled as in Section 2.

For a precise statement of the results, we will add an index to the Fourier operator F which
gives the dimension of the space under consideration. We will write Fd+1 if the Fourier transform
is taken over the whole space Rd+1 and Fd to denote Fourier transformation with respect to the
spatial dimensions. By the same considerations as given in Section 2, we obtain an estimator f̌

for the function ft

f̌n(x; t) = 1

(2π)(d+1)/2

∫
Rd+1

Fd+1(f̂ ∗ ψ)(ξ, τ )

(2π)d/2Fdψ(ξ)
Fd η̌(ξh, τht ) exp

(
itτ + ixT ξ

)
d(ξ, τ )

= 1

(2π)d+1/2ndmad
nbm

∑
(k,j)∈Gd+1

(n,m)

Yk,j Ǩn

(
x − xk

h
,
t − tj

ht

)
,

where Gd+1
(n,m) denotes the grid {−n, . . . , n}d × {−m, . . . ,m} and the kernel Ǩn is given by

Ǩn(x; t) = 1

(2π)(d+1)/2

∫
Rd+1

exp(iτ t + iξT x)

Fdψ(ξ/h)
Fd+1η̌(ξ, τ )d(ξ, τ ). (4.2)
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Here the function η̌ :Rd+1 → R satisfies condition A and ht = ht (n) is an additional sequence
of bandwidths referring to the time domain. For the asymptotic analysis, we require a modified
version of Assumption B.

Assumption B̌ . Let Assumptions B1 (with corresponding kernel Ǩ) and B2 hold and addition-
ally assume that

B̌3. log(n + m(n)) · hμM (a
−d/2
n h−d/2b

1/2
m(n)m(n)1/2) = o(1) and for p = 1, . . . ,M − 1

hμp
(
log(n + m)

)2 = o(1).

Theorem 2. Define

Y̌n(x; t) := (2π)d+1hβ
√

hdhtndmbmad
n

σ‖Ǩ‖L2(Rd+1)‖
[
f̌n(x; t) −Ef̌n(x; t)]

and let the moment condition of Theorem 1 and Assumptions A and B̌ be satisfied. We further
assume that the bandwidths ht and h, and the sequences (an)n∈N and (bm(n))n∈N satisfy

log(n + m)

(√
nan

mbm

1√
nδhtaδ

nh
d

+
(

mbm

nan

)d/2 1√
mδhthd

)
= o(1) for n → ∞,

ht + h ≤ L1 · hd(1−L2)h
(1−L2)
t

for some constants L1 < ∞ and L2 ∈ (0,1). Then we have for each κ ∈R,

lim
n→∞P

(
sup

x∈[0,1]d
(∣∣Y̌n(x; t)∣∣ − Dn,3

) · Dn,3 < κ
)

= e−2e−κ

,

where

D1 = det
([

(2π)2(d+1)

‖Ǩ‖2
L2(Rd+1)

∫
Rd+1

∣∣�(v1, . . . , vd)Fd+1η̌(v)
∣∣2

vivj dv

]
, i, j = 1, . . . , d + 1

)
,

Dn,2 =
√

D1

(2π)d+2

1

hdht

and

Dn,3 = √
2 ln(Dn,2) + (d − 1) ln(2 ln(Dn,2))

2
√

2 ln(Dn,2)
.

Corollary 2. If the assumptions of Theorem 2 are satisfied, the limit kernel Ǩ is defined by

Ǩ(x, t) = 1

(2π)(d+1)/2

∫
Rd+1

�(ξ)Fd+1η̌(ξ, τ ) exp
(
iξT x + iτ t

)
d(ξ, τ ) (4.3)
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and the function f(·)(·) :Rd+1 → R1 satisfies Assumption C, then it follows that

lim
n→∞P

(
f̌n(x; t) − �̌n,κ ≤ f (x; t) ≤ f̌n(x; t) + �̌n,κ for all (x, t) ∈ [0,1]d+1) = e−2e−κ

,

where the constant �̌n,κ is defined by

�̌n,κ = (κ/Dn,3 + Dn,3)σ‖Ǩ‖L2(Rd+1)

hβ
√

hdndad
nmbmht (2π)d+1

.

Asymptotic confidence bands for the function ft (x) at level 1 − α are hence given by{[
f̌n(x; t) − �̌n,− ln(−0.5 ln(1−α)), f̌n(x; t) + �̌n,− ln(−0.5 ln(1−α))

]|(x, t) ∈ [0,1]d+1}.
5. Finite sample properties

In this section, we investigate the finite sample properties of the proposed asymptotic confidence
bands by means of a small simulation study and illustrate the procedure in an example analyzing
the luminosity profile of the elliptical galaxy NGC5017.

5.1. Simulation study

All results are based on 5000 simulation runs. We simulate data from the bivariate regression
model (1.1) where the errors ε(k1,k2) are independent and N (0, σ 2)-distributed, where σ =
0.1, (k1, k2) ∈ {−n, . . . , n}2, n ∈ {150,250,350,500,650} and our dataset provides n = 150,
which corresponds to a grid of 301 × 301 data points. For the unknown regression function
we consider both, a unimodal function

f1(x, y) = 4 exp
(−(3.5x − 1.5)2 − (3.5y − 1.5)2)

and a bimodal function

f2(x, y) = 4 exp
(−(

3(x −0.1)
)2 −3.5(y −0.5)2)+3 exp

(−(
2(x −1)

)2 −3.5(y −0.5)2). (5.1)

As convolution function ψ we consider ψ(x, y) = 1
4 exp(−(|x| + |y|)) and the values for the

sequence (an)n∈N are chosen such that most of the signal considerably different from 0 is in-
cluded in the observations, that is (a150, a250, a350, a500, a650) = (0.29,0.28,0.27,0.26,0.25).
A difference-based variance estimator is used to estimate σ . Figure 1 shows exemplary one sim-
ulated dataset and the reconstruction of the bimodal regression function f2 from this dataset in
comparison to the function f2 itself and the convolution f2 ∗ ψ .

For computational feasibility, we determine at first for each scenario a bandwidth by a small
preliminary simulation study. For this purpose, we applied the L∞-motivated bandwidth selec-
tion method introduced in Bissantz et al. [7] and the estimated bandwidth is used in all 5000 runs.
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Figure 1. Upper panel: bimodal regression function f2 (left) and convolution f2 ∗ψ (right) defined in (5.1).
Lower panel: simulated data from f2 observations according to the model (1.1) (left) and the corresponding
reconstruction of f2 (right). (See Section 5.1 for details of the choice of the (slightly undermoothing)
bandwidth.)

Table 1 shows the simulated coverage probabilities and the average half-widths of the bands nor-
malized with respect to the maximum of the respective function. Figure 2 illustrates the decrease
of the normalized average half-widths of the confidence bands plotted against the sample sizes

Table 1. Simulated coverage probabilities and mean half-lengths of the corresponding confidence bands
for the bivariate Gaussian function f1 and the bimodal function f2

90% nominal coverage 95% nominal coverage 99% nominal coverage

n an f 100-Cov. (%) Length 100-Cov. (%) Length 100-Cov. (%) Length

150 0.29 f1 11.5 0.235 3.6 0.240 0.1 0.285
f2 9.0 1.219 4.4 0.324 0.8 0.368

250 0.28 f1 10.6 0.159 3.9 0.169 0.2 0.192
f2 9.7 0.265 4.8 0.290 0.6 0.319

350 0.27 f1 10.0 0.109 5.0 0.146 0.5 0.166
f2 10.4 0.240 5.9 0.254 0.6 0.287

500 0.26 f1 8.6 0.108 4.3 0.115 0.6 0.130
f2 9.1 0.191 5.4 0.203 0.8 0.229

650 0.25 f1 10.3 0.412 5.3 0.437 0.6 0.495
f2 9.7 0.648 4.8 0.687 0.6 0.775
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Figure 2. Confidence band average half-lengths for both regression functions, f1 (α = 0.01: �, α = 0.05:
�, α = 0.1: ") and f2 (α = 0.01: �, α = 0.05: �, α = 0.1: !).

for both, the unimodal and the bimodal function. We conclude that for larger sample sizes (note
that n = 150 corresponds to 301×301 observations) and relatively small variances the simulated
coverage probabilities are close to the nominal values. For n = 150 the bands are rather wide,
especially for the regression function f2, that requires a smaller bandwidth for the estimation
than the function f1, which results in considerably wider bands for the function f2 than for f1.
For increasing sample sizes, the widths of the bands decrease significantly. For illustrational pur-
poses, Figure 3 shows a cross-section of the bivariate function f2, estimators and a set of 90%
confidence bands for n = 150 and n = 650 respectively, where y = 0.5 and the corresponding
confidence bands have been obtained in the bivariate setting. This figure clearly demonstrates the
increase of precision of the bands for increasing sample size. Note that the sample size 301×301
in this example is rather small compared to the sample sizes which are usually available for astro-
nomical images. Moreover, in these applications the signal-to-noise ratio is often much smaller
and the point spread function is usually more sharply peaked than the one used in the simulations.

5.2. The luminosity profile of the galaxy NGC5017

In this section, we use the methodology derived in this paper to analyze the shape of luminosity
profiles of elliptical galaxies. Figure 4 shows a 301 × 301 pixel section of an HST/WFPC2 R-
band image of the elliptical galaxy NGC5017.

It is well known that images, taken with telescopes, are usually at least slightly blurry which
can be modelled as convolution of the sharp image with a so-called point spread function (PSF),
ψ , of the optical instrument. The detector used is a digital imaging device (CCD, charge-coupled
device). We use a dataset of the size 301 × 301, where each data point corresponds to a pixel on
an equally spaced grid. Hence, the two dimensional model (1.1) is suitable to describe the data.
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Figure 3. Cross-section of bivariate, bimodal regression function f2 (solid line), cross-section of recon-
structions of f2 (thin dashed lines) and corresponding 90%-confidence bands (thick dashed lines) for
n = 650 (left) and n = 150 (right).

In the analysis of elliptical galaxies the luminosity profile, that is, the decrease of the brightness
with increasing distance from the galactic centre, is of particular interest. We use the confidence
bands based on the nonparametric estimator (2.4) to narrow down the region for the parameter κ

in the Sérsic (1968) model for the luminosity profile of NGC5017. This model is defined as

f κ(r) = I0 · exp
(−bκ(r/re)

1/κ
)
, (5.2)

where r is the distance from the centre of the galaxy, I0 is the brightness in the centre (r = 0), re
is the scale radius (i.e., the half-light radius) and bκ is a normalization constant that is uniquely

Figure 4. Hubble Space Telescope/Wide Field Planetary Camera 2 [HST/WFPC2] R-band image of the
elliptical galaxy NGC5017. Image source: NASA/STScI, dataset U3CM1A01R.
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Figure 5. Upper and lower 90%-confidence bands for the luminosity profile of the galaxy (solid lines) and
corresponding data points (∗). The left plot shows the central region and the right plot the region in which
the profile is fitted with Sérsic-curves for κ = 4 (dotted line), κ = 5.11 (dashed-dotted line) and κ = 7
(dashed line).

determined by the choice of κ which is the shape parameter, controlling the curvature of the
profile. Note that I0 and re are model independent quantities that can be found in the literature.
For κ = 4, model (5.2) coincides with the famous de Vaucouleur-profile (1959). For details see,
for example, Trujillo et al. [31] who already classified the galaxy under consideration as Sérsic-
type galaxy with κ = 5.11. To analyse the data, we first fit the PSF, given by

ψ(x, y) = λ

2
exp

(−λ
(|x| + |y|))

to the (probably stellar) point source on the left middle of the image since the PSF is not com-
pletely known in advance. The bandwidth was chosen according to the procedure described in
Section 5.1. We compute the estimator and 90%-confidence bands for the unknown luminosity
profile which, in combination, suggest that the actual brightness gradient is clearly steeper in
the central region than the (convolved), unprocessed data tell us, see Figure 5, left panel, for a
cross-section. The oscillations are artifacts due to our use of a Fourier estimator whose severity
is partly caused by the use of one constant bandwidth for the reconstrucion of the whole image.
In order to reconstruct the central region of the galaxy with sufficient precision, the bandwidth is
chosen too small for the shallower regions of the image. For the analysis, we restrict ourselves
to the square [−0.55,0.45]2 and check for which parameters κ ∈ [4,8] the resulting profile f κ

according to formula (5.2) is completely contained in the 90%-confidence band. We find that
this is satisfied for the parameters κ ∈ [4.81,5.93], which suggests that the profile for κ = 4,
corresponding to the de Vaucouleur law is not appropriate to describe the data well. On the other
hand, the data do not provide evidence against κ = 5.11, as proposed by Trujillo et al. [31].
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6. Proofs of Theorem 1 and Corollary 1

6.1. Notation, preliminaries and remarks

First, we introduce some notation which is used extensively in the following proofs. Define
for a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ Rd the d-dimensional cube [a, b] :=×d

j=1[aj , bj ]. Let

k = (k1, . . . , kd) ∈ Zd , α = (α1, . . . , αd) ∈ {0,1}d be multi-indices, 0 := (0, . . . ,0)T ∈ Rd and
1 := (1, . . . ,1)T ∈ Rd and define Gk := Zd ∩ [−k,k]. For j ∈ {1, . . . , d} we denote by G

j

k the

canonical projection of Gk onto Zj , i.e., G
j

k is a j -dimensional grid of integers with possibly

different length in each direction. For j ∈ N let G
j,+
k := G

j

k ∩Nj denote the part of the grid G
j

k
whose vectors contain only positive components and write G+

k for G
d,+
k . We further introduce

the bijective map

Ed :

⎧⎪⎨
⎪⎩

{0,1}d → P
({1, . . . , d}),

(α1, . . . , αd) �→ v = {v1, . . . , v|α|}; αvj
= 1, j = 1, . . . , |α| =

d∑
i=1

αi,

that maps each α to the set v ⊂ {1, . . . , d} that contains the positions of its ones. For α ∈ {0,1}d
and {v1, . . . , v|α|} = Ed(α) let (x)α := (xv1, xv2, . . . , xv|α|) denote the projection of x ∈ Rd onto
the space spanned by the coordinate axes given by the positions of ones of the multi-index α.
For a, b ∈ Rd let (a)α : (b)1−α = (a :b)α := (a

α1
1 · b

1−α1
1 , . . . , a

αd

d · b
1−αd

d ) denote the vector of
the components of a and b specified by the index α. The following example illustrates these
notations.

Example 2. For d = 2 we have {0,1}2 = {(1,1), (1,0), (0,1), (0,0)} and the mapping E2 is
defined by

E2
(
(1,1)

) = {1,2}, E2
(
(1,0)

) = {1}, E2
(
(0,1)

) = {2} and E2
(
(0,0)

) = ∅.

For any x = (x1, x2) ∈ R2 we have

(x)(1,1) = x, (x)(1,0) = x1 and (x)(0,1) = x2.

For a = (a1, a2), b = (b1, b2) ∈ R2 we have

(a :b)(1,1) = (a1, a2) = a, (a :b)(1,0) = (a1, b2),

(a :b)(0,1) = (b1, a2), (a :b)(0,0) = (b1, b2) = b.

For the approximation of the integrals by Riemann sums we define for multi-indices α̃, α ∈
{0,1}d \ {0}

�α(f ;a, b) :=
∑

α̃∈{0,1}d ,α̃≤α

(−1)|α̃|f
(
(a :b)α̃

)
(6.1)

=
∑

α̃∈{0,1}d ,α̃≤α

(−1)d−|α̃|f
(
(a)1−α̃ : (b)α̃

)
,
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where the symbol α̃ ≤ α means α̃j ≤ αj for j = 1, . . . , d . Note that for α = 1 ∈ Rd we obtain
the special case of the d-fold alternating sum, that is,

�(f ;a, b) := �1(f ;a, b) =
∑

α∈{0,1}d
(−1)|α|f

(
(a :b)α

) =
∑

α∈{0,1}d
(−1)d−|α|f

(
(a :b)1−α

)
.

Note that �α(f ;a, b) can be regarded as the increment of the function fα((x)α) := f ((x :b)α)

over the interval [(a)α, (b)α] which also gives rise to the alternative notation

�α(f ;a, b) = �
(
fα, (a)α, (b)α

)
. (6.2)

6.2. Proof of Theorem 1

To prove the assertion of Theorem 1 we decompose the index set Gn = {−n, . . . , n}d of the sum
in (3.1) into 2d + 1 parts: the respective intersections with the 2d orthants of the origin in Rd

and the marginal intersections with the coordinate axes. Our first auxiliary result shows that the
contribution of the term representing the marginals is negligible (here and throughout the paper
we use the convention 00 = 1).

Lemma 1.

sup
x∈[0,h−1]d

∣∣∣∣ hβ√
hdndad

n

∑
α∈{0,1}d\{1}

∑
(k:0)α,k∈G+

n

Kn

(
x − 1

h
xk

)
εk

∣∣∣∣ = oP

(
1

log(n)

)
.

We obtain from its proof in Section 7 that Lemma 1 holds under the weaker condition log(n)√
nanh

=
o(1), which follows from the assumptions of Theorem 1. Next we consider the “positive” orthant
G+

n and show in three steps that

sup
x∈[0,h−1]d

∣∣Y (+)
n (x) − Y (+)(x)

∣∣ = op(1), (6.3)

where the processes Y
(+)
n and Y (+) are defined by

Y (+)
n (x) := (2π)dhβ

σ‖K‖L2

√
hdndad

n

∑
k∈G+

n

Kn

(
x − 1

h
xk

)
εk, (6.4)

Y (+)(x) := (2π)d

‖K‖L2

∫
R

d+
K(x − u)dB(u), (6.5)

respectively, B is a standard Brownian sheet on Rd (see the proof of Lemma 2 for details) and K

denotes the kernel defined in Assumption B. The final result is then derived using Theorem 14.1
in Piterbarg [27]. To be precise note that it can easily be shown that

lim
n→∞ndad

nhdh2β · Var
(
f̂n(x)

) = σ 2

(2π)2d

∫
Rd

∣∣∣∣K
(

x

h
− u

)∣∣∣∣
2

du = σ 2‖K‖2
L2

(2π)2d
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(in particular the limit is independent of the variable x, which is typical for kernel estimates in
homoscedastic regression models with equidistant design). We further obtain for the function
r(t) = (2π)2d‖K‖−2

L2

∫
Rd K(v + t)K(v)dv that

‖r‖L1 = (2π)2d

‖K‖2
L2

∫
Rd

∣∣∣∣
∫
Rd

K(v + t)K(v)dv

∣∣∣∣dt ≤ (2π)2d‖K‖2
L1

‖K‖2
L2

< ∞.

Therefore the conditions of Theorem 14.1 in Piterbarg [27] are satisfied and the assertion of
Theorem 1 follows.

The remaining proof of the uniform approximation (6.3) will be accomplished showing the
following auxiliary results. For this purpose we introduce the process

Y
(+)
n,1 (x) := (2π)dhβ√

ndad
nhd‖K‖L2(Rd )

∑
α∈{0,1}d

(−1)|α| ∑
j∈G

|α|,+
n

�α(Kn ◦ τx, Ij)B
(
j : (n)1−α

)
,

where the function τx is defined by τx(u) := x − u+1
nanh

,

Ij := [
(j − 1) : (n)1−α, j : (n)1−α

] ⊂Rd+ (6.6)

and we use the notation (6.2).

Lemma 2. There exists a Brownian sheet B on Rd such that

sup
x∈[0,h−1]d

∣∣Y (+)
n (x) − Y

(+)
n,1 (x)

∣∣ = o

(
1√

log(n)

)
a.s.

We obtain from the proof in Section 7.1 that Lemma 2 holds under the condition log(n)

nδ/2a
δ/2
n hd/2

=
o(1), which follows from the assumptions of Theorem 1. The next step consists of the replace-
ment of the kernel Kn in the process Yn,1 by its limit.

Lemma 3.

sup
x∈[0,h−1]

∣∣Yn,1(x) − Yn,2(x)
∣∣ = oP

(
1

log(n)

)
,

where the process Yn,2 is given by

Yn,2(x) := (2π)d√
ndad

nhd‖K‖L2

∑
α,γ∈{0,1}d

(−1)|α| ∑
j∈G

|α|,+
n

�α

(
K ◦ τx, (−1)γ Ij

)
B

(
(−1)γ j : (n)1−α

)
.

As described in Section 6.1 for fixed α ∈ {0,1}d, j ∈ G
|α|,+
n the quantity �α(K ◦ τx; Ij) can

be regarded as the increment of the function (Kn ◦ τx)α((u)α) = Kn ◦ τx((u :n)α) on the cube
[(j − 1), j]. This point of view is the basic step in the approximation by the Riemann–Stieltjes
integral of B(((·) : n)1−α) with respect to the function (Kn ◦ τx)α for each α ∈ {0,1}d .
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Lemma 4.

sup
x∈[0,h−1]d

∣∣Y (+)
n,2 (x) − Y

(+)
n,3 (x)

∣∣ = oP

(
1

log(n)

)
,

where the process Y
(+)
n,3 is defined by

Y
(+)
n,3 (x)

D= (2π)d

‖K‖L2

∫
[0,(anh)−1]d

K(x − u)dB(u). (6.7)

We obtain from its proof in Section 7.2 that Lemma 4 holds under the condition log(n)

nhd = o(1),
which follows from the assumptions of Theorem 1. In the final step we show that the difference

Y (+)(x) − Y
(+)
n,3 (x) = (2π)d

‖K‖L2

∫
R

d+
I
R

d+\[0,(anh)−1]d (u)K(x − u)dB(u)

is asymptotically negligible.

Lemma 5.

sup
x∈[0,h−1]d

∣∣Yn,3(x) − Y(x)
∣∣ = oP

(
(log(n)−1).

6.3. Proof of Corollary 1

The assertion follows from the estimate

sup
[0,1]d

∣∣f (x) −Ef̂n(x)
∣∣ = o

(
h−β

(
hdndad

n

)−1/2)
. (6.8)

To prove (6.8) we use the representation (2.6) and obtain by a straightforward calculation

Ef̂n(x) = 1

(2π)dndad
nhd

∑
k∈Gn

(f ∗ ψ)(xk) · Kn

(
(x − xk)

1

h

)

= 1

(2π)dhd

∫
[−1/an,1/an]d

(f ∗ ψ)(z) · Kn

(
(x − z)

1

h

)
dz + Rn,1(x)

= 1

(2π)d

∫
Rd

(f ∗ ψ)(z · h) · Kn

(
x

h
− z

)
dz + Rn,1(x) + Rn,2(x),

where the term

Rn,1(x) = 1

(2π)dhd

∑
k∈Gn−1

∫
[xk,xk+1]

{
(f ∗ ψ)(xk)Kn

(
x − xk

h

)
(6.9)

− (f ∗ ψ)(z)Kn

(
x − z

h

)}
dz
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denotes the “error” in the integral approximation and

Rn,2(x) := 1

(2π)dhd

∫
([−1/an,1/an]d )C

(f ∗ ψ)(z)Kn

(
(x − z)

1

h

)
dz.

An application of the Plancherel identity (see for example Folland [15], Theorem 8.29) gives
(observing Assumption A1 and A3)

Ef̂n(x) = 1

(2π)d/2hd

∫
Rd

Ff
(
h−1ξ

)
Fψ

(
h−1ξ

) Fη(ξ)

Fψ(ξ/h)
exp

(
ih−1xT ξ

)
dξ

+ Rn,1(x) + Rn,2(x)

= 1

(2π)d/2

∫
Rd

Ff (ξ) ·Fη(ξh) exp
(
ixT ξ

)
dξ + Rn,1(x) + Rn,2(x)

= f (x) + Rn,1(x) + Rn,2(x) + Rn,3(x) + Rn,4(x),

where

Rn,3(x) = 1

(2π)d/2

∫
([−D/h,D/h]d )C

Ff (ξ) exp(ixξ)dξ,

Rn,4(x) = 1

(2π)d/2

∫
[−1/h,1/h]d\[−D/h,D/h]d

Ff (ξ) ·Fη(ξh) exp(ixξ)dξ.

We further obtain from Assumption C∣∣∣∣
∫

{ξj >D/h}
Ff (ξ) exp(−ixξ)dξ

∣∣∣∣ ≤ 1

Dγ

∫
{ξj >D/h}

∣∣Ff (ξ)
∣∣(hξj )

γ dξ = o
(
hγ

)
,

and finally |Rn,3(x)| ≤ ∑d
j=1

∫
{ξj >D/h} |Ff (ξ)|dξ = o(hγ ). With the same arguments it follows

Rn,4(x) = o(hγ ), since |Fη(ξh)| ≤ 1 for all ξ ∈Rd . Define An = ([− 1
an

, 1
an

]d)C , then we obtain
from the representation (2.7) the estimate

∣∣Rn,2(x)
∣∣ ≤ 1

(2π)dhβ+d

(∫
An

∣∣(f ∗ ψ)(z)
∣∣2 dz

)1/2

×
[(∫

An

∣∣∣∣K
(

(x − z)
1

h

)∣∣∣∣
2

dz

)1/2

+
(∫

An

∣∣∣∣(hβKn − K
)(

(x − z)
1

h

)∣∣∣∣
2

dz

)1/2]

= 1

(2π)dhβ

(∫
An

∣∣(f ∗ ψ)(z)
∣∣2 dz

)1/2(
O

(
hda

d/2
n

) + O
(
hμ1+da

d/2
n

)) = O

(
a

ν+d/2
n

hβ

)

uniformly with respect to x ∈ [0,1]d . Note that by Assumption C we have f ∈ W�m�(Rd) and
since m > 2 + d

2 Sobolev’s Embedding Theorem (Folland [15], Theorem 8.54) implies the ex-
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istence of a function f̃ ∈ C2(Rd) with f = f̃ almost everywhere. Observing that the convo-
lution function ψ is integrable gives ∂α(f ∗ ψ) = (∂αf ) ∗ ψ ∈ C(Rd) for all α ∈ {0,1,2}
with |α| ≤ 2 (see for example Folland [15], Proposition 8.10), which justifies the application
of Taylor’s Theorem. Straightforward but tedious calculations give for the remaining term (6.9)
Rn,1(x) = O( 1

n3a3
nhβ+2 ) + O(

aν
n

nhβ ) uniformly with respect to x ∈ [0,1]d .

6.4. Proofs of Theorem 2 and Corollary 2

First we will show that the kernel Ǩn satisfies conditions B1 and B2, with the kernel Ǩ defined
(4.3). If Assumption B̌ holds we have∫

Rd

(
hβ

Fdψ(ξ/h)
− �(ξ)

)
Fd+1η̌(ξ, τ ) exp

(
ixT ξ

)
dξ

=
M−1∑
p=1

hμp

∫
Rd

�p(ξ)Fd+1η̌(ξ, τ ) exp
(
ixT ξ

)
dξ

+ hμM

∫
Rd

�M,n(ξ)Fd+1η̌(ξ, τ ) exp
(
ixT ξ

)
dξ,

which implies

hβǨn(x, t) − Ǩ(x, t) =
M−1∑
p=1

hμp

∫
Rd+1

�p(ξ)Fd+1η̌(ξ, τ ) exp
(
ixT ξ + itτ

)
d(ξ, τ )

+ hμM

∫
Rd+1

�M,n(ξ)Fd+1η̌(ξ, τ ) exp
(
ixT ξ + itτ

)
d(ξ, τ ).

A careful inspection of the proofs of Theorem 1 and Corollary 1 shows that the arguments can
be transferred to the time-dependent case if the increase of n and m(n) as well as the decrease
of an, bm(n), h and ht are balanced as given in the assumptions of the theorem. The details are
omitted for the sake of brevity.

7. Proof of auxiliary results

7.1. Proof Lemma 2

Define Sk := ∑
j∈G+

k
εj, set Sj ≡ 0 if min{j1, . . . , jd} = 0 and recall the definition of Y

(+)
n and

τx in (6.4) and before Lemma 2, respectively. In a first step we will replace the errors εk by
increments given in terms of partial sums Sk−α for α ∈ {0,1}d . To be precise, we use the repre-
sentation

εk =
∑

α∈{0,1}d
(−1)|α|S(k−α) =

∑
α∈{0,1}d

(−1)|α|S((k−1):k)α .
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A straightforward calculation gives

Y (+)
n (x) := hβ

σ‖K‖2
√

ndhdad
n

∑
k∈G+

n

Kn ◦ τx(k − 1)
∑

α∈{0,1}d
(−1)|α|Sk−α

= hβ

σ‖K‖2
√

ndhdad
n

∑
α∈{0,1}d

(−1)|α| ∑
k∈G+

n

Kn ◦ τx(k − 1)S((k−1):k)α

= hβ

σ‖K‖2
√

ndhdad
n

×
( ∑

α∈{0,1}d
(−1)|α| ∑

k∈G+
n

(
Kn ◦ τx(k − 1) − Kn ◦ τx

((
(k − 1) : k

)
α

))
S((k−1):k)α

+
∑

α∈{0,1}d
(−1)|α| ∑

k∈G+
n

Kn ◦ τx

((
(k − 1) : k

)
α

)
S((k−1):k)α

)
.

Now we can make use of Proposition 6 and Proposition 3 of Owen [25] to rewrite the sums, such
that the increments given in terms of partial sums can be expressed by increments given in terms
of the kernel Kn. We obtain

Y (+)
n (x) = hβ

σ‖K‖2
√

ndhdad
n

×
[
Kn ◦ τx(n)S(n)

+
∑

α∈{0,1}d
(−1)|α| ∑

k∈G+
n

∑
β∈{0,1}d\{0}

(−1)|β|�β

(
Kn ◦ τx;k − 1,

(
(k − 1) : k

)
α

)
S((k−1):k)α

]
.

The quantity �β(Kn ◦ τx;k − 1, ((k − 1) : k)α) can only take values different from zero if α ≤
1 − β . Note that for α ≤ 1 − β the equality (k)β = ((k − 1) : k)α)β holds which implies that in
this case we also have [(k − 1)β, (((k − 1) : k)α)β ] = [(k − 1)β, (k)β ]. We further obtain

Y (+)
n (x) = hβ

σ‖K‖2
√

ndhdad
n

×
[
Kn ◦ τx(n)S(n)

+
∑

β∈{0,1}d\{0}
(−1)|β| ∑

k∈G+
n

∑
α̃∈{0,1}d−|β|

(−1)|α̃|
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× �β

(
Kn ◦ τx;k − 1, (k)β :(
(k − 1)1−β : (k)1−β

)
α̃

)
× S(k)β :((k−1)1−β :(k)1−β)α̃

]
.

The alternating sum with respect to the index α̃ can be written as an increment � as defined
in (6.1) which then defines a telescope sum according to Owen [25], Proposition 2. Taking into
account that S(k) ≡ 0 if kj = 0 for at least one j ∈ {1, . . . , d} gives

Y (+)
n (x) = hβ

σ‖K‖2
√

ndhdad
n

∑
β∈{0,1}d

(−1)|β| ∑
j∈G

|β|,+
n

�β(Kn ◦ τx; Ij) · Sj:(n)1−β
.

With the definitions X(A) := ∑
k∈A⊂Zd Xk for any subset A ∈ Zd , we can rewrite these partial

sums as set-indexed partial sums with index class n · S , where S := {(0, γ ]|0 < γj ≤ 1,1 ≤
j ≤ d} and n · S := {n · S|S ∈ S }. It follows directly that S is a sufficiently smooth VC-class
of sets, which justifies the application of Theorem 1 in Rio [28]. Therefore there exists a version
of a Brownian sheet on [0,∞)d , say B1, such that

sup
k∈G+

n

∣∣∣∣Sk

σ
− B1(k)

∣∣∣∣ = O
((

log(n)
)1/2

n(d−δ)/2) a.s. (7.1)

Recalling the definition of Ij in (6.6) we further obtain

Y (+)
n (x) − Y

(+)
n,1 (x)

= hβ

‖K‖2
√

ndhdad
n

×
∑

β∈{0,1}d
(−1)|β| ∑

j∈G
|β|,+
n

�β(Kn ◦ τx; Ij) ·
(

1

σ
Sj:(n)1−β

− B1
(
j : (n)1−β

))
.

The estimate (7.1) implies the existence of a constant C ∈ R+ such that∣∣Y (+)
n (x) − Y

(+)
n,1 (x)

∣∣
≤ C ·

√
log(n)

nδhδaδ
n

hβ

[ ∑
γ∈{0,1}d ,|γ |=1

∫
[0,(anh)−1]d

(u)(d−δ)/2
γ

∣∣∂1Kn(x − u)
∣∣du

+
∑

β∈{0,1}d\{0,1}

∫
[0,(anh)−1]|β|

∣∣∂βKn

((
x − (

u : (anh)−11
))

β

)∣∣(du)β

+ ∣∣Kn

(
x − (anh)−11

)∣∣] a.s.
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It follows from Assumption B that the function u �→ (u)
|α|/2
γ ∂αK(u) is integrable on Rd for all

α ∈ {0,1}d such that∫
[0,(anh)−1]d

(u)(d−δ)/2
γ

∣∣∂1Kn(x − u)
∣∣du = O

(
h(δ−d)/2−β

)
and∫

[0,(anh)−1]|β|

∣∣∂βKn

((
x − (

u : (anh)−11
))

β

)∣∣(du)β + ∣∣Kn

(
x − (anh)−11

)∣∣ = O
(
(anh)d/2h−β

)
.

Note that for sufficiently large n such that an < 1
2 we obtain − 1

2anh
≥ xj − (anh)−1 = an−1

anh

uniformly with respect to j (note that xj ∈ [0, h−1]). Let B̃ be a continuous version of B1. We set
B̃(t) ≡ 0 if tj < 0 for at least one index j ∈ {1, . . . , d} and let {B̃α|α ∈ {0,1}d} be 2d mutually
independent copies of B̃ . For t ∈Rd define

Bα(t) := B̃α

(
(−1)α1 t1, (−1)α2 t2, . . . , (−1)αd td

)
,

then the process {B(t) := ∑
α∈{0,1}d Bα(t)|t ∈ Rd} is a Wiener field on Rd .

7.2. Proof of Lemma 4

Note that ∂αK exists and is integrable for each α ∈ {0,1}d . Consequently, the kernel K is of
bounded variation on [0, (anh)−1]d in the sense of Hardy Krause for each fixed n (see Owen
[25], Definition 2). Therefore an application of integration by parts for the Wiener integral (note
that the kernel K has not necessarily a compact support) and rescaling of the Brownian sheet
Y

(+)
n,3 yields

Y
(+)
n,3 (x)

D=
∑

α∈{0,1}d\{0}
(−1)|α|

∫
[0,(anh)−1]|α|

B
((

u : (anh)−11
)
α

)
dK

(
x − (

u : (anh)−11
)
α

)

+ �
(
K(x − ·) · B(·), [0, (anh)−1]d)

=
∑

α∈{0,1}d\{0}
(−1)|α|

∫
[0,(anh)−1]|α|

B
((

u : (anh)−11
)
α

)
∂αK

(
x − (

u : (anh)−11
)
α

)
(du)α

+ �
(
K(x − ·) · B(·), [0, (anh)−1]d)

.

Recalling the definition of Y
(+)
n,2 (x) and identity (15) in Owen [25] we can replace the increments

by the corresponding integrals, that is

Y
(+)
n,2 (x)

D=
∑

α∈{0,1}d\{0}
(−1)|α|

×
∑

k∈G
|α|,+
n−1

∫
[(nanh)−1(k−1)α,(nanh)−1(k)α]

∂αK
(
x − (

u : (anh)−11
)
α

)
(du)α
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× B
((

(nanh)−1k : (anh)−11
)
α

)
+ �

(
K(x − ·) · B(·), [0, (anh)−1]d)

= Y+
n,3(x) + Rn,SI(x),

where the remainder Rn,SI(x) is defined in an obvious manner. From the modulus of continuity
for the Brownian Sheet (see Khoshnevisan [20], Theorem 3.2.1) it follows that for a, b ∈Rd

lim sup
δ→0+

sup
s,t∈[a,b],‖s−t‖∞<δ

|B(s) − B(t)|√
δ log(1/δ)

≤ 24 · d‖b‖d/2∞ , (7.2)

which yields

∣∣Y (+)
n,2 (x) − Y

(+)
n,3 (x)

∣∣ = ∣∣Rn,SI(x)
∣∣

≤ sup
δ<1/n

sup
s,t∈[0,2]d :‖s−t‖∞≤δ

∣∣B(s) − B(t)
∣∣

×
√

log(n)

n

[∫
[0,(a−nh)−1]d

(
(u)1)1/2∣∣∂1K(x − u)

∣∣du + O
(
h−(d−1)/2)]

(note that the dominating term in Rn,SI(x) is given by the summand where |α| = d). With the
same arguments as in the proof of Lemma 2 we finally obtain

∣∣Y (+)
n,2 (x) − Y

(+)
n,3 (x)

∣∣ = OP

(√
ln(nanh)

nhd

)
,

where we used the estimate (7.2) for the modulus of continuity of the Brownian sheet (note that
this estimate is independent of x).

7.3. Proof of Lemma 5

Integration by parts gives

�n,3 := ∣∣Y (+)
n,3 (x) − Y (+)(x)

∣∣
≤

∣∣∣∣
∫

[0,∞)d\[0,1/(anh)]d
B(u)∂1K(x − u)du

∣∣∣∣
+

∣∣∣∣ ∑
α∈{0,1}d\{0,1}

(−1)|α|

(7.3)

×
∫

[0,1/(anh)]|α|
B

((
u : (anh)−11

)
α

)
∂αK

(
x − (

u : (anh)−11
)
α

)
(du)α

∣∣∣∣
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+ ∣∣�(
K(x − ·)B(·); [0, (anh)−1]d)∣∣

:= ∣∣�(1)
n,3(x)

∣∣ + ∣∣�(2)
n,3(x)

∣∣ + ∣∣�(3)
n,3(x)

∣∣,
where the processes �

(j)

n,3(x), j = 1,2,3 are defined in an obvious manner. Let n be sufficiently

large such that 1
anh

≥ 1 and an < 1
2 . Since B(u) = 0 if tj = 0 for at least one index j ∈ {1, . . . , d}

we have

∣∣�(3)
n,3(x)

∣∣ = ∣∣K(
x − (anh)−11

) · B(
(anh)−11

)∣∣
=

√
2d(anh)−d ln

(
d ln

(
(anh)−1

)) |K(x − (anh)−11)||B((anh)−11)|√
2d(anh)−d ln(d ln((anh)−1))

.

An application of the version of a law of the iterated logarithm given in Theorem 3 of Paranjape
and Park [26] yields the estimate

sup
x∈[0,h−1]

∣∣�(3)
n,3(x)

∣∣ = O(1) ·
√

2d(anh)−d ln
(
d ln

(
(anh)−1

))
sup

x∈[0,h−1]

∣∣K(
x − (anh)−11

)∣∣
≤ O(1) ·

√
2d(anh)−d ln

(
d ln

(
(anh)−1

))
sup

v≤an−1/(anh)

∣∣K(v)
∣∣

= o

(
1

log(n)

)
a.s.

uniformly with respect to x.
To show that �

(2)
n,3(x) and �

(1)
n,3(x) are asymptotically negligible we also apply the LIL for the

Brownian sheet. For each summand, say �
(2)
n,3,α , in �

(2)
n,3(x) (|α| < d) we have

�
(2)
n,3,α(x) :=

∣∣∣∣
∫

[0,1/(anh)]|α|
B

((
u : (anh)−11

)
α

)
∂αK

(
x − (

u : (anh)−11
)
α

)
(du)α

∣∣∣∣
= (anh)−|α|

∣∣∣∣
∫

[0,1]|α|
B

(
(u : 1)α(anh)−1) ∂αK

(
x − (u : 1)α(anh)−1)(du)α

∣∣∣∣.
Scaling of the Brownian sheet yields

�
(2)
n,3,α(x)

D= (anh)−(2|α|+d)/2
∣∣∣∣
∫

[0,1]|α|
B

(
(u : 1)α

)
∂αK

(
x − (u : 1)α(anh)−1)(du)α

∣∣∣∣
= O

(
(anh)−d/2)∣∣∣∣

∫
[0,1/(anh)]|α|

∂αK
(
x − (u : 1)α(anh)−1)(du)α

∣∣∣∣ a.s.
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With the same arguments as in the proof of Lemma 2 we conclude that the leading contributions
are given by the quantities �

(2)
n,3,α(x), where |α| = d − 1. For α = (0,1, . . . ,1) obtain

sup
x∈[0,h−1]d

∣∣�(2)
n,3,α(x)

∣∣ = OP

(
(anh)−d/2) sup

v≤−1/(2anh)

∫
Rd−1

∣∣∂αK(v,u2, . . . , ud)
∣∣d(u2, . . . , ud).

This gives supx∈[0,h−1]d |�(2)
n,3,(0,1,...,1)(x)| = o( 1

log(n)
). Applying the same argument to the other

terms yields �
(2)
n,3(x) = oP ( 1

log(n)
) uniformly with respect to x ∈ [0,1/h]d . Finally, a similar

argument gives for the remaining term in (7.3) �
(1)
n,3(x) = oP ( 1

log(n)
), which completes the proof

of Lemma 5.

7.4. Proof of Lemma 3

Note that we have

Y
(+)
n,1 (x)

D= hβ√
ndad

nhd‖K‖L2(Rd )

∑
α∈{0,1}d

(−1)|α| ∑
j∈G

|α|,+
n

�α(Ffp ◦ τx; Ij)B
(
j : (n)1−α

)
.

The representation (2.7) and the definition (6.6) yield

∣∣Y (+)
n,1 (x) − Y+

n,2(x)
∣∣

=
M−1∑
p=1

hμp√
ndad

nhd

∣∣∣∣ ∑
α∈{0,1}d

(−1)|α| ∑
j∈G

|α|,+
n

�α(Ffp ◦ τx; Ij)B
(
j : (n)1−α

)∣∣∣∣ + oP

(
1

log(n)

)
.

For each fixed p we can now perform the approximation steps of the previous lemmas and
obtain

log(n) sup
x∈[0,h−1]d

∣∣∣∣ 1√
ndad

nhd

∑
α∈{0,1}d

(−1)|α| ∑
j∈G

|α|,+
n

�α(Ffp ◦ τx; Ij)B
(
j : (n)1−α

)

−
∫
R

d+
Ffp(x − u)dB(u)

∣∣∣∣ = oP (1).

It can easily be shown that for all p = 1, . . . ,M − 1

lim
n→∞ndad

nhd Var

(
1

ndad
nhd

∑
k∈Gn

YkFfp

(
(x − xk)

1

h

))
= σ 2‖fp‖2

2,
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where the limit does not depend on x. We finally obtain, repeating the approximation steps given
in the previous lemmas for each of the 2d − 1 remaining orthants

log(n) sup
x∈[0,h−1]d

∣∣∣∣ 1√
ndad

nhd

∑
α,γ∈{0,1}d

(−1)|α| ∑
j∈G

|α|,+
n

�α

(
Ffp ◦ τx; (−1)γ Ij

)
B

(
(−1)γ j : (n)1−α

)

−
∫
Rd

Ffp(x − u)dB(u)

∣∣∣∣ = oP (1).

Note that

r(x − z) := E

(∫
Rd

Ffp(x − u)dB(u)

∫
Rd

Ffp(z − u)dB(u)

)
=

∫
Rd

fp(x − z + u)fp(u)du

and ‖r‖1 ≤ ‖fp‖2 < ∞. The system of sets {[0, h−1]d |n ∈ N} is a blowing up system of sets in
the sense of Definition 14.1 in Piterbarg [27]. If we define

Zp(x) = 1

‖fp‖L2(Rd )

∫
Rd

Ffp(x − u)dB(u),

then Theorem 1 in Bickel and Rosenblatt [3] gives the asymptotic independence of the scaled
minimum and maximum of the process Zp , which, with the observation that Zp and −Zp

have the same distribution and an application of Theorem 14.1 in Piterbarg [27] yields that for
G ∼ Gumbel(ln(2),1)

sup
x∈[0,h−1]d

((∣∣Zp(x)
∣∣ − C̃n,3

)
C̃n,3

) D→ G for n → ∞,

where the constants C̃1, C̃n,2 and C̃n,3 are given by

C̃1 = det
([

1

‖fp‖2
L2(Rd )

∫
Rd

∣∣fp(v)
∣∣2

vivj dv

]
, i, j = 1, . . . , d

)
,

C̃n,2 =
√

C̃1

(2π)d+1

1

hd
,

C̃n,3 =
√

2 ln(C̃n,2) + (d − 1) ln(2 ln(C̃n,2))

2
√

2 ln(C̃n,2)

.

Since hμp = o( 1
logn

) we obtain hμp supx∈[0,h−1] |Zp(x)| = oP ((logn)−1/2) for each p =
1, . . . ,M − 1, which justifies the replacement of hβKn by K . Since the outer sum does not
depend on n this gives the desired result.
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7.5. Proof of Lemma 1

With the same arguments as in the proof of the previous lemmas we can replace the errors by
combinations of partial sums and perform the same approximation steps. In each replacement we
obtain at most a d − 1-fold sum which yields the desired result right away.
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