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Latent variable models have been widely applied in different fields of research in which the constructs of
interest are not directly observable, so that one or more latent variables are required to reduce the complexity
of the data. In these cases, problems related to the integration of the likelihood function of the model
arise since analytical solutions do not exist. In the recent literature, a numerical technique that has been
extensively applied to estimate latent variable models is the adaptive Gauss–Hermite quadrature. It provides
a good approximation of the integral, and it is more feasible than classical numerical techniques in presence
of many latent variables and/or random effects. In this paper, we formally investigate the properties of
maximum likelihood estimators based on adaptive quadratures used to perform inference in generalized
linear latent variable models.
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1. Introduction

Models based on latent variables are used in many scientific fields, particularly in social sci-
ences. For instance, in psychology, researchers often use concepts as intelligence and anxiety,
that are difficult to observe directly, but that can be indirectly measured by surrogate data based
on individual responses to a battery of tests. In economics, welfare and poverty cannot be mea-
sured directly; hence income, expenditure and various other indicators on households are used
as substitutes. Factor analysis is probably the best known latent variable model, based on the as-
sumption of multivariate normality for the distribution of the manifest and latent variables. It has
been extended by numerous researchers in order to deal with survey data that generally contain
variables measured on binary, categorical or metric scales, or combinations of the above. Mous-
taki and Knott [11] proposed a Generalized Linear Latent Variable Model (GLLVM) framework
that allows the distribution of the manifest variables to belong to the exponential family, that is
either continuous or discrete variables.

The purpose of GLLVM is to describe the relationship between a set of responses or items
y1, . . . , yp , and a set of latent variables or factors z1, . . . , zq , that are fewer in number than the
observed variables. The factors are supposed to account for the dependencies among the response
variables in the sense that if the factors are held fixed, then the observed variables are indepen-
dent. This is known as the assumption of conditional or local independence. The conditional
distribution of yj |z (z = [z1, . . . , zq ]T ) is taken from the exponential family (with canonical link
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functions)

gj (yj |z) = exp

{
yj (α0j + αT

j z) − bj (α0j + αT
j z)

φj

+ cj (yj ,φj )

}
, j = 1, . . . , p,

where α0j is the item-specific intercept, αj = [αj1, . . . , αjq ]T can be interpreted as factor load-
ings of the model, and φj is the scale parameter, that is of interest in the case of continuous
observed components. The functions bj (·) and cj (·, ·) are known and assume different forms
according to the different nature of yj .

Under the assumption of conditional independence, the joint marginal distribution of the ma-
nifest variables is

f (y; θ) =
∫
Rq

g(y|z; θ)h(z)dz =
∫
Rq

[
p∏

j=1

gj (yj |z; θ)

]
h(z)dz (1.1)

with y = [y1, . . . , yp]T , θ = [α01, . . . , α0p,αT
1 , . . . ,αT

p ,φ1, . . . , φp]T , and where z is generally
assumed to be multivariate standard normal, but the independence assumption of the latent vari-
ables could be relaxed.

GLLVMs are designed as a flexible modelling approach. As a consequence, they are rather
complex models, and their statistical analysis presents some difficulties due to the fact that the
latent variables are not observed. Maximum likelihood estimates in the GLLVM framework are
typically obtained by using standard maximization algorithms, such as the EM and the Newton–
Raphson algorithms (Moustaki and Knott [11], Huber, Ronchetti and Victoria-Feser [5]). In both
cases, the latent variables must be integrated out from the likelihood function, and numerical
techniques have to be applied. Moustaki and Knott [11] proposed the use of the Gauss–Hermite
(GH) quadrature as a numerical approximation method. Although this is feasible in fairly simple
models and tends to work well with moderate sample sizes, its application is often unfeasible
when the number of latent variables increases. Moreover, GH can completely miss the maxi-
mum for certain functions and can be inefficient in other cases. To overcome these limitations,
the Adaptive Gauss–Hermite (AGH) quadrature has become very popular in the latent variable
literature. It allows to get a better approximation of the integral by adjusting the quadrature loca-
tions with specific features of the posterior density of the latent variables given the observations.
Developed in the Bayesian context by Naylor and Smith [13], it has been extended by several
authors to deal with generalized linear mixed models. In particular, Schilling and Bock [23] ap-
plied the AGH quadrature to approximate marginal likelihoods in IRT models with binary data,
whereas Rabe-Hesketh, Skrondal and Pickles [18] analyzed its behavior for generalized linear
latent and mixed models. Furthermore, Joe [7] compared the AGH with the Laplace approxima-
tion for a variety of discrete response mixed models. He found that the Laplace approximation
becomes less adequate as the degree of discreteness increases and suggests using AGH with bi-
nary and ordinal data. On this regard, we recall that several approaches have been proposed to
overcome the main limitations of the Laplace approximation. In latent Gaussian models (Rue
and Held [21]), the Integrated Nested Laplace Approximation (INLA) has become very popular
to perform Bayesian inference with non-Gaussian observations (Rue, Martino and Chopin [22]).
This procedure combines Laplace approximations with numerical integration to provide a fast
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and accurate method for approximating the predictive density of the latent variables/random ef-
fects. It is also a valuable tool in practice via the R-package R-INLA (Martins et al. [10]).

The adaptive Gauss–Hermite quadrature is implemented in many statistical software used
to fit GLLVM, such as in the function gllamm in STATA (Rabe-Hesketh and Skrondal [17]),
in MPLUS (Muthen and Muthen [12]), and in the PROC NLMIXED in SAS (Lesaffre and
Spiessens [8]). However, to the best of our knowledge, inferential issues on the properties of
the estimators based on the adaptive quadrature have not been addressed in the literature. In this
paper, we formally investigate these theoretical properties as function of both the sample size and
the number of observed variables. Our results generalize those by Huber, Ronchetti and Victoria-
Feser [5], who analyzed the properties of classical Laplace-based estimators in GLLVM. Indeed,
we show that the adaptive Gauss–Hermite quadratures share the same error rate of the higher
(than one) order Laplace approximation.

The paper is organized as follows. In Section 2, we discuss the estimation of GLLVMs when
the adaptive Gauss–Hermite quadrature is applied to approximate integrals. In Section 3, the re-
lationship between AGH quadratures and the Laplace approximation is analyzed, and the asymp-
totic properties of the adaptive Maximum Likelihood (ML) estimators are derived. A simulation
study is implemented in Section 4 to analyze the finite sample properties of the estimators. Fi-
nally, in Section 5, a brief summary on the main findings of the paper is provided.

2. Estimation based on adaptive Gauss–Hermite quadrature

Maximum Likelihood (ML) estimates in the GLLVM framework are typically obtained by using
either the EM or the Newton–Raphson algorithms. The key component for applying both the
algorithms is the score vector of the observed data log-likelihood function. For a random sample
of size n, the latter is defined as

�(θ) =
n∑

l=1

logf (yl; θ)

=
n∑

l=1

log
∫
Rq

p∏
j=1

exp

[
yjl(α0j + αT

j zl) − bj (α0j + αT
j zl )

φj

+ cj (yjl, φj )

]
(2.1)

× (2π)−q/2 exp

[
−1

2
zT
l zl

]
dzl .

It is easily shown that the score vector corresponding to expression (2.1) equals

S(θ) = ∂�(θ)

∂θ
=

n∑
l=1

∂

∂θ
logf (yl; θ)

=
n∑

l=1

1

f (yl; θ)

∫
Rq

∂

∂θ

[
g(yl |zl; θ)h(zl )

]
dzl (2.2)
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=
n∑

l=1

∫
Rq Sl(θ; zl)g(yl |zl; θ)h(zl )dzl∫

Rq g(yl |zl; θ)h(zl )dzl

=
n∑

l=1

∫
Rq

Sl(θ; zl)h(zl |yl; θ)dzl =
n∑

l=1

Ez|y
[
Sl(θ; zl)

]
,

where Sl(θ; zl) denotes the complete-data score vector given by ∂ logf (yl , zl; θ)/∂θ =
∂[logg(yl |zl; θ) + logh(zl )]/∂θ . In words, the observed data score vector is expressed as the
expected value of the complete-data vector with respect to h(zl |yl; θ), that is the posterior distri-
bution of the latent variables given the observations. This implies that (2.2) plays a double role.
If the score equations are solved with respect to θ , with h(zl |yl; θ) fixed at the θ -value of the
previous iteration, then this corresponds to the EM algorithm, whereas, if the score equations are
solved with respect to θ considering h(zl |yl; θ) also as a function of θ , then this corresponds to a
direct maximization of the observed data log-likelihood �(θ). As we shall discuss further, based
on this appealing feature, the estimators derived by applying either of these two algorithms will
share the same theoretical properties.

Equation (2.2) involves ratios of multidimensional integrals which cannot be solved analyt-
ically, except when all the gj (yjl |zl; θ) are normal. Consequently, an approximation of these
integrals is needed, on which the bias and variance of resulting estimators will depend. In this
paper, we study the properties of ML estimators based on the adaptive Gauss–Hermite approx-
imation of integrals. This technique consists of adjusting the quadrature locations with specific
features of the posterior density of the latent variables given the observations. This provides
a better approximation of the function to be integrated. Naylor and Smith [13] took the mean
vector and covariance matrix of the normal density approximating the integrand to be the poste-
rior mean and covariance matrix. Unfortunately, these posterior moments are not known exactly,
but must themselves be obtained using adaptive quadratures. Integration is therefore iterative.
To overcome this limitation, Liu and Pierce [9] proposed an alternative procedure that consists
in computing the mode of the integrand and its curvature (inverse of the Hessian matrix) at
the mode, so that numerical integration is avoided. In this case, the adaptive quadrature, when
applied using one abscissa, is equivalent to the classical Laplace approximation, and its behav-
ior has been analyzed in several papers on generalized linear models (Pinhero and Bates [15],
Schilling and Bock [23], Skrondal and Rabe-Hesketh [26], Joe [7]).

The application of the adaptive quadrature requires to rewrite (1.1) as follows

f (yl; θ) =
∫
Rq

g(yl |zl; θ)h(zl )

h1(zl; ẑl ,� l)
h1(zl; ẑl ,� l )dzl , (2.3)

where h1(·; ẑl ,� l ) is a multivariate normal density with first and second moments

ẑl = arg max
zl∈Rq

[
logg(yl |zl; θ) + logh(zl )

]
, (2.4)

� l =
(

−∂2[logg(yl |zl; θ) + logh(zl )]
∂zT

l ∂zl

)∣∣∣∣
−1

zl=ẑl

. (2.5)
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A cartesian product rule based on the classical Gauss–Hermite quadrature is then applied so that
the integrals have to be defined with respect to uncorrelated variables z̃l . Based on the Cholesky
factorization of the covariance matrix � l = TlTT

l , expression (2.3) can be rewritten as

f (yl; θ) = 2q/2|Tl |
∫
Rq

g(yl |
√

2Tl z̃l + ẑl; θ)h(
√

2Tl z̃l + ẑl ) exp
[
z̃T
l z̃l

]
exp

[−z̃T
l z̃l

]
dz̃l ,

such that the AGH approximation of the density f (yl; θ), l = 1, . . . , n, is given by

f̃ (yl; θ) = 2q/2|Tl |
∑

t1,...,tq

g
(
yl |z∗

l,t1,...,tq
; θ)

h
(
z∗
l,t1,...,tq

)
w∗

t1
· · ·w∗

tq
, (2.6)

where
∑

t1,...,tq
= ∑k

t1=1 · · ·∑k
tq=1, being k the number of quadrature points selected for each

latent variable, z∗
l,t1,...,tq

= (z∗
l,t1

, . . . , z∗
l,tq

)T = √
2Tl (zt1 , . . . , ztq )

T + ẑl and w∗
tk

= wtk exp[z2
tk
]

are the AGH nodes and weights, respectively, with ztk being the classical GH nodes and wtk ,
k = 1, . . . , q , the corresponding weights.

From (2.6), we obtain the approximated log-likelihood function

�̃(θ) =
n∑

l=1

log

[
2q/2|Tl |

∑
t1,...,tq

p∏
j=1

exp

(yjl(α0j + αT
j z∗

l,t1,...,tq
) − bj (α0j + αT

j z∗
l,t1,...,tq

)

φj

+ cj (yjl, φj )

)
(2.7)

× (2π)−q/2 exp

(
−1

2
z∗T
l,t1,...,tq

z∗
l,t1,...,tq

)
w∗

t1
· · ·w∗

tq

]
.

The estimators of the model parameters are found by equating the corresponding derivatives of
(2.7) to zero, that is

S̃(θ) = ∂�̃(θ)

∂θ
=

n∑
l=1

1

f̃ (yl; θ)

∂f̃ (yl; θ)

∂θ

=
n∑

l=1

∑
t1,...,tq

Sl(θ; z∗
l,t1,...,tq

)g(yl |z∗
l,t1,...,tq

; θ)h(z∗
l,t1,...,tq

)w∗
t1

· · ·w∗
tq∑

t1,...,tq
g(yl |z∗

l,t1,...,tq
; θ)h(z∗

t1,...,tq
)w∗

t1
· · ·w∗

tq

(2.8)

=
n∑

l=1

Ẽz|y
[
Sl(θ; zl)

] = 0,

where, specifically,

Sl

(
α0j ; z∗

l,t1,...,tq

) = 1

φj

[
yjl −

∂bj (α0j + αT
j z∗

l,t1,...,tq
)

∂α0j

]
,
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Sl

(
αj ; z∗

l,t1,...,tq

) =
z∗
l,t1,...,tq

φj

[
yjl −

∂bj (α0j + αT
j z∗

l,t1,...,tq
)

∂αj

]

and

Sl

(
φj ; z∗

l,t1,...,tq

) = − 1

φ2
j

[
yjl

(
α0j + αT

j z∗
l,t1,...,tq

) − bj

(
α0j − αT

j z∗
l,t1,...,tq

)] + ∂cj (yjl, φj )

∂φj

.

Equations (2.8) provide a set of estimating equations defining the estimators for the model pa-
rameters. The same equations are derived in the E-step of the EM algorithm, in which the AGH
quadrature is applied to approximate the E-step expectations (2.2). In the M-step, as in the
direct maximization algorithm, improved estimates for the model parameters are obtained by
maximizing the approximated expected score functions (2.8). For the scale parameter φj , closed
form expressions can be derived, whereas, for the other parameters, a Newton Raphson iterative
scheme is used in order to solve the corresponding nonlinear maximum likelihood equations. In
the derivation of the estimating equations, the model has been kept as general as possible without
specifying the conditional distributions gj (yj |z; θ). In Appendix C, we give specific expressions
for the quantity that are used in the log-likelihood function (2.1) and in the score functions (2.8)
for binary manifest variables, whereas we refer to Bianconcini and Cagnone [2] for count and
categorical observed variables.

3. Statistical properties of the AGH-based estimators

To investigate the asymptotic properties of the maximum likelihood estimators based on the
adaptive Gauss–Hermite quadrature, the error rate associated to the approximation (2.8) has to
be determined. Liu and Pierce [9] analyzed the asymptotic behavior of the AGH when it is used
to approximate unidimensional integrals. Based on the fact that when applied with only one
node it results in the Laplace approximation to the integral (de Bruijn [3], Barndorff-Nielsen and
Cox [1]), they proved that the adaptive quadrature based on k points can be alternatively thought
as a higher (than one) order Laplace approximation. We now generalize this result to the multi-
dimensional integral (1.1) as well as to the ratio of integrals (2.2), and we analyze the asymptotic
accuracy of the corresponding Laplace approximations. The behavior of the latter for multidi-
mensional integrals was studied by Barndorff-Nielsen and Cox [1], Shun and McCullagh [25],
Shun [24], and recently by Evangelou, Zhu and Smith [4] for spatial generalized linear mixed
models. Similarly, Raudenbush, Yang and Yosef [19] considered improvements of the standard
Laplace approximation obtained by incorporating higher order derivatives of the integrand.

For the derivations illustrated here, we follow the notation of Shun and McCullagh [25] based
on summation convention. Hence, an index that appears as a subscript and as a superscript implies
a summation over all possible values of that index. We will denote the components of a vector
sometimes by subscripts and sometimes by superscripts. The (i, j )th component of a matrix A
will be written as aij and its inverse (when exists) will have components aij . For any real function
f (z), z ∈ R

q , its derivative with respect to the ith component of z is denoted by a subscript, that

is, fi(z) = ∂f (z)
∂zi

, fij (z) = ∂2f (z)
∂zi ∂zj

, and, more generally, fi1,...,i2m
(z) = ∂2mf (z)

∂zi1 ···∂zi2m
. In order to keep

the notation as light as possible, we omit the individual subscript l.



Adaptive ML estimators in GLLVM 1513

3.1. Relationship with the Laplace approximation

The AGH quadrature implemented here is based on a tensor product of q univariate Gaussian
quadratures based on the same number of quadrature points. In each dimension, the approxima-
tion (2.6) is exact for polynomials of degree 2k +1 or less. Hence, it provides a good approxima-
tion of the integral (1.1) if the ratio ν(z) = g(y|z;θ)h(z)

h1(z;ẑ,�)
can be approximated well by a q-variate

polynomial, where the maximum exponent of all the monomials is at most 2k + 1 (Tauchen and
Hussey [27]), in the region where the integrand is substantial. It follows that the effectiveness
of the adaptive Gauss–Hermite approximation (2.6) can be evaluated by considering the Taylor
series expansion of ν(z) around the mode ẑ, that is,

ν(z) = ν(ẑ)

[
1 +

∞∑
m=3

1

m!ci1,...,im(ẑ)(z − ẑ)i1,...,im
]
, (3.1)

where (i1, . . . , im) is a set of m indices, ci1,...,im(ẑ) = νi1,...,im (ẑ)
ν(ẑ) , νi1,...,im(ẑ) denotes the partial

derivatives of order m of ν with respect to zi1, . . . , zim evaluated at the mode ẑ, whereas (z −
ẑ)i1,...,im refers to specific components of the vector (z − ẑ). The coefficients ci1 and ci1,i2 are
zero due to the choice of h1(·; ẑ,�).

Substituting the expansion (3.1) into the integral (1.1), we obtain the exact solution

f (y; θ) = ν(ẑ)

[
1 +

∞∑
m=2

∑
Q

1

(2m)!ci1,...,i2m
(ẑ)νq1(ẑ) · · ·νqm(ẑ)

]
, (3.2)

where the second sum is over the partition Q = q1| · · · |qm of 2m indices into m blocks, each of
size 2, and νqk (ẑ), k = 1, . . . ,m, are components of the covariance matrix � . The Gauss–Hermite
quadrature, for which k quadrature points are selected for each dimension, would be exact if the
partial derivatives beyond the 2(k + 1) order in (3.2) are zero, that is,

f (y; θ) = ν(ẑ)

[
1 +

k∑
m=2

∑
Q

1

(2m)!ci1,...,i2m
(ẑ)νq1(ẑ) · · ·νqm(ẑ)

]
. (3.3)

To determine the asymptotic order of the approximation (3.3), its relationship with the higher
order Laplace approximation of multidimensional integrals has to be taken into account. At this
regard, the integral (1.1) has to be rewritten as

f (y; θ) =
∫
Rq

e[−L(z)] dz, (3.4)

where L(z) = −[logg(y|z; θ) + logh(z)], such that L(z) = O(p). Assuming that L(z) has a
unique minimum ẑ, Shun and McCullagh [25] suggested the following expansion around that
minimum

L(z) = L(ẑ) +
∞∑

m=2

1

m!Li1,...,im(ẑ)(z − ẑ)i1,...,im
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and applying the exponential function

e−L(z) = (2π)q/2|�|1/2e−L(ẑ)h1(z; ẑ,�) exp

[ ∞∑
m=3

(−1)

m! Li1,...,im(ẑ)(z − ẑ)i1,...,im
]
,

where h1(·; ẑ,�) is a multivariate normal density with moments given in (2.4) and (2.5). Based
on exlog relations, the higher order term can be expressed as follows

exp

[ ∞∑
m=3

(−1)

m! Li1,...,im(ẑ)(z − ẑ)i1,...,im
]

= 1 −
∞∑

m=3

∑
P

(−1)t

m! Lp1(ẑ) · · ·Lpt (ẑ)(z − ẑ)i1,...,im

such that the exact solution of the integral (3.4) is given by

(2π)q/2|�|1/2e−L(ẑ)

[
1 −

∞∑
m=2

∑
P,Q

(−1)t

(2m)!Lp1(ẑ) · · ·Lpt (ẑ)L
q1(ẑ) · · ·Lqm(ẑ)

]
, (3.5)

where the second sum is over all partitions P,Q, such that P = p1| · · · |pt is a partition of 2m

indices into t blocks, each of size 3 or more, and Q = q1| · · · |qm is a partition of 2m indices into
m blocks, each of size 2. Each component Lqk (ẑ), k = 1, . . . ,m, refers to specific elements of � .
As shown in the Appendix A, the exact solution (3.5) is equivalent to the one derived in (3.2).
It follows that the asymptotic order of the AGH approximation can be derived by truncating at
m = k the expansion (3.5), and by analyzing the asymptotic order associated to the bipartition
(P,Q) related to m = k + 1. For fixed q , the usual asymptotic order of the term corresponding to
the bipartition (P,Q) in (3.5) is O(pt−m). It follows that the asymptotic error of the AGH based
on k quadrature points is the same associated to the bipartition (P,Q) of 2(k + 1) indices, that
is, O(p−[k/3+1]) (see in Appendix A for more details).

It has to be noticed that when AGH quadratures are applied in the estimation of GLLVM,
we need to approximate ratios of integrals as shown in (2.2). The fully exponential solution
(3.5) cannot be applied to the integral at the numerator, since the score functions S(θ; z) are
not necessarily positive. The integral has to be written in the standard form (Tierney, Kass and
Kadane [28], Evangelou, Zhu and Smith [4])∫

Rq

e−L(z)S(θ; z)dz.

Beyond the Taylor series expansion of L(z) around its minimum ẑ, we have to consider a similar
expansion of S around the same point, that is,

S(θ; z) =
∞∑

m=0

Sj1,...,jm(θ; ẑ)(z − ẑ)j1,...,jm .
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Following Evangelou, Zhu and Smith [4], it can be shown that∫
Rq

S(θ; z)g(y|z; θ)h(z)dz

= (2π)q/2|�|1/2e−[L(ẑ)]

×
[ ∞∑

m=0

2m∑
s=0

∑
P,Q

(−1)t

(2m)!Sj1,...,js (θ; ẑ)Lp1(ẑ) · · ·Lpt (ẑ)L
q1(ẑ) · · ·Lqm(ẑ)

]
,

where P is a partition of 2m− s indices into t blocks, each of size 3 or more, and Q is a partition
of the same indices together with {j1, . . . , js} into m blocks of size 2. Note that P and Q do not
need to be connected. It follows that the exact Laplace solution of the expected score function
(2.2) results

∑∞
m=0

∑2m
s=0

∑
P,Q((−1)t /(2m!))Sj1,...,js (θ; ẑ)Lp1(ẑ) · · ·Lpt (ẑ)L

q1(ẑ) · · ·Lqm(ẑ)∑∞
m=0

∑
P,Q((−1)t /(2m!))Lp1(ẑ) · · ·Lpt (ẑ)Lq1(ẑ) · · ·Lqm(ẑ)

. (3.6)

It will be perfectly account for the AGH approximation in (2.8) if the partial derivatives, at both
the numerator and denominator, of order greater than 2k (maxm = k) are zero. The correspond-
ing Laplace approximation can be rewritten by regrouping in decreasing asymptotic order the
elements that appear in both the expansions, and by truncating the resulting series at an appro-
priate point. In symbols,

S(θ; ẑ) + c∗
1p−1 + · · · + c∗

r p
−r + · · · + c∗[k/3]p−[k/3] + O(p−[k/3+1])

1 + c1p−1 + · · · + crp−r + · · · + c[k/3]p−[k/3] + O(p−[k/3+1])
, (3.7)

where the coefficients cr , r = 1, . . . , [ k
3 ], are given by

cr =
3r∑

m=r+1

(−1)m−r

(2m)! Lp1(ẑ) · · ·Lpm−r (ẑ)L
q1(ẑ) · · ·Lqm(ẑ)

with p1| · · · |pt be a partition of 2m indices into m − r blocks, each of size 3 or more, and
q1| · · · |qm is a partition of 2m indices into m blocks, each of size 2. On the other hand, the
coefficients c∗

r , r = 1, . . . , [ k
3 ], results

c∗
r =

3r∑
m=r

3r−m∑
s=0

(−1)m−r

(2m)! Sj1,...,js (θ; ẑ)Lp1(ẑ) · · ·Lpm−r (ẑ)L
q1(ẑ) · · ·Lqm(ẑ),

where p1| · · · |pm−r is a partition of 2m− s indices into m− r blocks, each of size 3 or more, and
q1| · · · |qm is a partition of the same indices together with {j1, . . . , js} into m blocks of size 2.

Since Sj1,...,js (θ; ẑ) = ∂Lj1,...,js (ẑ)
∂θ , all the first derivatives of the score function will be zero due to

the choice of ẑ.
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Based on long polynomial division, the approximated expected score functions equivalent to
(2.8) are given by

n∑
l=1

Ẽz|y
[
Sl(θ; zl)

] =
n∑

l=1

[
Sl(θ; ẑl) + c∗∗

1 p−1 + · · · + c∗∗
r p−r + · · · + O

(
p−[k/3+1])], (3.8)

where the coefficients c∗∗
r , r = 1, . . . , [ k

3 ], can be determined as follows

c∗∗
r = [

c∗
r − S(θ; ẑ)cr

] − cr−1c
∗
1 − cr−2c

∗
2 − · · · − c1c

∗
r−1

being

c∗
r − S(θ; ẑ)cr =

3r∑
m=r

3r−m∑
s=2

(−1)m−r

(2m)! Sj1,...,js (θ; ẑ)Lp1(ẑ) · · ·Lpm−r (ẑ)L
q1(ẑ) · · ·Lqm(ẑ)

and, in particular, c∗
1 − S(θ; ẑ)c1 = 1

2Sj1,j2L
j1,j2(ẑ).

3.2. Asymptotic behavior of the AGH-based estimators

To investigate the properties of the AGH approximated maximum likelihood estimators θ̂ , we
analyze the asymptotic behavior of the corresponding Laplace-based estimators defined by (3.8).
Our arguments are similar to those of Huber, Ronchetti and Victoria-Feser [5], who discussed
classical Laplace estimators in GLLVM, and Rizopoulos, Verbeke and Lesaffre [20] who ana-
lyzed the consistency of fully exponential Laplace estimators in joint models for survival and
longitudinal data.

Proposition 3.2.1 (Consistency). Let θ0 ∈ � denote the true parameter value, then, under suit-
able regularity conditions,

(θ̂ − θ0) = Op

[
max

(
n−1/2,p−[k/3+1])]. (3.9)

Thus, θ̂ is consistent as long as both n and p grow to ∞. A formal proof of Proposition 3.2.1
is given in Appendix B. The n−1/2 term comes from the standard asymptotic theory, whereas
the p−[k/3+1] term derives from the AGH approximation. The requirement that p grows to in-
finity is consistent with the fact that we are trying to approximate the marginal density of each
individual, that is, f (yl; θ). However, in practical applications where p and k are both fixed, the
approximation error in the adaptive technique is O(p−[k/3+1]) as n → ∞, and the asymptotic
properties of the AGH-based estimators should be evaluated with respect to a perturbation of the
true parameter θ0.

For k ≥ 3, the AGH-based estimator is more accurate than the classical O(p−1) Laplace-based
estimators. Indeed, it shares the same accuracy of higher (than one) order Laplace estimators, but,
with respect to this latter, the adaptive Gauss–Hermite is easier to be implemented, since it avoids
derivative computations.
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Based on the derivation of (3.9) as presented in the Appendix B, we can deduce that, if
p = O(nρ) for ρ > 1

[k/3+1] , then the AGH-based estimators will be asymptotically equivalent
to the true maximum likelihood estimators that solve S(θ) = 0. However, in general, they are
not maximum likelihood estimators because of the approximation, but, as discussed by Huber,
Ronchetti and Victoria-Feser [5] for classical Laplace estimators in GLLVM, they belong to the
class of M-estimators. The latter are implicitly defined through a general 
-function as the so-
lution in θ of

n∑
l=1


(yl; θ) = 0.

The 
-function for the AGH-based estimators are given by (2.8).

Proposition 3.2.2 (Asymptotic normality). If θ0 is an interior point of the parameter space �

and B(θ0) = −E[ ∂
(yl;θ0)
∂θ ] = −E[ ∂2�̃(θ0)

∂θ ∂θT ] is nonsingular, the AGH-based estimators are asymp-
totically normal, that is,

√
n(θ̂ − θ0) →D MVN

(
0,B(θ0)

−1A(θ0)
[
B(θ0)

−1]T )
(3.10)

with A(θ0) = E[
(yl; θ0)

T (yl; θ0)] = E[ ∂�̃(θ0)

∂θ
∂�̃(θ0)

∂θ

T ].

The regularity conditions that ensure consistency and asymptotic normality of the AGH-based
M-estimators have to be checked for the particular conditional distribution of each yj (Huber,
Ronchetti and Victoria-Feser [5]). For classical Laplace-based estimators, Huber, Scaillet and
Victoria-Feser [6] analyzed these conditions for ordered multinomial distributed manifest vari-
ables. A formal derivation for the M-estimators discussed here in the case of binary observed
variables is provided in Appendix C.

4. Monte Carlo simulations

In this section, we investigate empirically the finite sample performance of the adaptive Gauss–
Hermite and related Laplace-based estimators. We focus on latent variable models for binary
data, since in this case the differences between numerical techniques should be better highlighted
(Joe [7]). We consider two simulation scenarios characterized by an increasing number of ob-
served and latent variables. In particular, we generate data from a population that consists of six
items satisfying a three factor model, and from a population based on ten observed variables that
satisfy a five factor model. In both cases, the population parameters have been chosen in such
a way that the item-specific intercepts and the factor loadings are drawn randomly from a log-
normal distribution, with some loadings fixed to 0 to get unique solutions. For each scenario, 100
random samples have been considered with 200 subjects.

A crucial choice in the application of the AGH quadrature is the number of points needed
to adequately approximate the likelihood function. In the simulation study, we follow Schilling
and Bock [23] who suggested to select, in presence of binary data, five and three quadrature
points for the three and five factor model, respectively. In both cases, the performance of AGH is



1518 S. Bianconcini

compared with that of the Laplace approximation of order O(p−2). The estimation is performed
through the direct maximization algorithm described in Section 2, whose mathematical details
for the case of binary observed items are provided in Appendix C. The algorithm is written in
the statistical language R (R Development Core Team [16]) and the program is available from
the authors on request.

In the case of each simulation, the true values used to generate the samples, the mean values
of the estimated parameters across simulations, together with their corresponding standard de-
viations obtained from the simulated results, the mean estimated standard errors obtained from
(3.10) and the Root Mean Square Error (RMSE) are reported. Furthermore, in order to better
highlight the computational burden of each technique under the different conditions of study, we
report the average (over all the generated samples) computational time in minutes (Avg min) and
the average number of iterations (Avg iter) required by the algorithm to get the convergence in a
sample (obtain on Intel Core i7 quad-core, 3.1 GHz CPU with 16 Gb RAM).

Table 1 studies the performance of the AGH based on five quadrature points and of the sec-
ond order Laplace approximation on the data generated by the three factor model. The results

Table 1. True values, mean, simulated standard deviations (S.D.), root mean square error (RMSE) and
estimated standard errors (S.E.) of the parameter estimates for AGH based on 5 quadrature points and for
second order Laplace (Lap2) approximation in data generated by a three factor model with six (p = 6)
items observed on n = 200 subjects

AGH Lap2

True Mean S.D. RMSE S.E. Mean S.D. RMSE S.E.

α11 = 1.01 0.72 0.37 0.47 0.19 1.32 0.70 0.77 0.19
α21 = 0.91 1.17 0.36 0.45 0.46 1.11 0.38 0.42 0.49
α31 = 0.50 0.39 0.31 0.34 0.16 0.35 0.34 0.37 0.36
α41 = 0.74 0.99 0.38 0.45 0.27 1.14 0.18 0.44 0.25
α51 = 1.16 1.39 0.37 0.44 0.57 1.68 0.37 0.64 0.66
α61 = 1.22 1.54 0.44 0.55 0.26 1.23 0.52 0.52 0.42
α12 = 0.00 – – – – – – – –
α22 = 0.83 0.45 0.30 0.49 0.32 0.21 0.69 0.93 0.54
α32 = 0.44 1.02 0.38 0.69 0.42 1.06 0.36 0.71 0.61
α42 = 0.88 1.15 0.42 0.50 0.57 1.13 0.48 0.54 0.53
α52 = 1.73 2.54 0.53 0.96 0.91 2.53 0.37 0.88 0.85
α62 = 1.46 1.43 0.52 0.52 0.46 1.36 0.73 0.73 0.53
α13 = 0.00 – – – – – – – –
α23 = 0.00 – – – – – – – –
α33 = 1.45 1.08 0.44 0.58 0.49 1.21 0.68 0.72 0.69
α43 = 1.05 1.52 0.42 0.64 0.62 1.49 0.36 0.57 0.47
α53 = 0.62 0.93 0.36 0.48 0.58 0.80 0.37 0.41 0.66
α63 = 0.91 0.98 0.42 0.43 0.42 0.53 0.34 0.51 0.41

Avg iter 9.21 324.94
Avg min 3′ 52′′ 24′ 26′′
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show that the two techniques provide similar RMSE values for almost all the model parameters.
Indeed, even if the Laplace seems to introduce a slightly larger bias in some estimates than the
AGH, the simulated standard deviations, that are a measure of the sampling variability of the
estimated parameters, are quite close. The estimated standard errors are generally larger than the
simulated standard deviations for both the techniques, and closer to the corresponding RMSE.
As expected, the main difference between the two techniques is computational. The algorithm
based on the adaptive quadrature achieves convergence for a sample, on average, in ten itera-
tions, that is in less than four minutes, whereas the second order Laplace requires, on average,
more than 300 iterations to get the convergence in a sample, that means almost thirty minutes.
This is more evident in Table 2 that shows the results for the five factor model. In this specific
case, the adaptive Gauss–Hermite has been applied with three quadrature points. For this latter,

Table 2. True values, mean, simulated standard deviations (S.D.), root mean square error (RMSE) and
estimated standard errors (S.E.) of the parameter estimates for AGH based on three quadrature points,
and for second order Laplace (Lap2) approximation in the data generated by a five factor model with ten
(p = 10) items observed on n = 200 individuals

AGH Lap2

True Mean S.D. RMSE S.E. Mean S.D. RMSE S.E.

α11 = 1.01 0.70 0.34 0.46 0.64 1.28 0.46 0.53 0.54
α21 = 0.91 1.27 0.27 0.45 0.56 1.33 0.51 0.66 0.56
α31 = 0.50 0.87 0.41 0.55 0.52 0.57 0.22 0.23 0.42
α41 = 0.74 1.14 0.39 0.56 0.61 0.85 0.33 0.35 0.58
α51 = 1.16 1.83 0.26 0.72 0.71 1.98 0.48 0.95 0.81
α61 = 1.22 1.22 0.39 0.39 0.42 0.66 0.23 0.60 0.62
α71 = 0.55 0.48 0.31 0.32 0.27 0.59 0.22 0.22 0.27
α81 = 0.83 1.10 0.35 0.44 0.45 0.90 0.26 0.27 0.35
α91 = 0.44 1.01 0.28 0.63 0.64 1.05 0.21 0.65 0.64
α101 = 0.88 1.05 0.30 0.35 0.36 1.17 0.18 0.34 0.43
α12 = 0.00 – – – – – – – –
α22 = 1.46 1.39 0.26 0.26 0.26 1.21 0.44 0.50 0.28
α32 = 0.89 0.59 0.50 0.58 0.57 0.80 0.38 0.39 0.53
α42 = 1.64 1.27 0.23 0.44 0.45 1.37 0.38 0.47 0.52
α52 = 1.45 0.60 0.35 0.92 0.91 0.59 0.46 0.98 0.91
α62 = 1.05 0.92 0.37 0.39 0.38 1.06 0.19 0.19 0.28
α72 = 0.62 0.68 0.42 0.42 0.43 0.80 0.34 0.39 0.43
α82 = 0.91 0.40 0.32 0.60 0.58 0.19 0.41 0.83 0.60
α92 = 1.59 1.22 0.31 0.48 0.48 2.02 0.59 0.73 0.52
α102 = 1.27 0.95 0.32 0.46 0.46 1.22 0.27 0.27 0.39
α13 = 0.00 – – – – – – – –
α23 = 0.00 – – – – – – – –
α33 = 0.71 1.10 0.45 0.59 0.62 1.13 0.51 0.66 0.65
α43 = 0.35 1.02 0.29 0.73 0.74 1.01 0.15 0.68 0.65
α53 = 0.53 1.46 0.28 0.97 0.98 1.46 0.16 0.95 0.98
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Table 2. (Continued)

AGH Lap2

True Mean S.D. RMSE S.E. Mean S.D. RMSE S.E.

α63 = 0.83 0.97 0.40 0.42 0.45 0.64 0.25 0.31 0.41
α73 = 0.71 1.12 0.36 0.55 0.56 1.52 0.37 0.69 0.59
α83 = 0.65 1.36 0.30 0.77 0.77 1.27 0.47 0.78 0.77
α93 = 0.95 1.19 0.30 0.39 0.41 0.84 0.17 0.21 0.39
α103 = 0.88 1.23 0.38 0.52 0.54 0.68 0.18 0.37 0.39
α14 = 0.00 – – – – – – – –
α24 = 0.00 – – – – – – – –
α34 = 0.00 – – – – – – – –
α44 = 1.10 1.42 0.37 0.49 0.51 1.95 0.40 0.65 0.54
α54 = 0.50 0.84 0.29 0.45 0.46 0.95 0.57 0.53 0.49
α64 = 0.49 0.93 0.42 0.61 0.62 0.05 0.61 0.56 0.62
α74 = 1.20 0.67 0.51 0.73 0.74 0.50 0.24 0.74 0.74
α84 = 0.41 0.43 0.36 0.36 0.36 0.11 0.31 0.43 0.38
α94 = 0.85 0.82 0.37 0.37 0.41 0.43 0.20 0.47 0.40
α104 = 0.72 1.03 0.37 0.48 0.48 1.11 0.21 0.44 0.42
α15 = 0.00 – – – – – – – –
α25 = 0.00 – – – – – – – –
α35 = 0.00 – – – – – – – –
α45 = 0.00 – – – – – – – –
α55 = 0.62 0.80 0.28 0.33 0.34 0.53 0.35 0.36 0.34
α65 = 0.99 1.32 0.32 0.47 0.48 1.23 0.62 0.57 0.52
α75 = 1.12 1.04 0.36 0.37 0.38 0.97 0.36 0.35 0.40
α85 = 0.86 1.05 0.40 0.45 0.46 1.42 0.52 0.37 0.43
α95 = 0.71 0.67 0.33 0.33 0.36 0.94 0.22 0.32 0.35
α105 = 1.39 1.32 0.35 0.36 0.35 1.73 0.54 0.25 0.35

Avg iter 9.15 344.27
Avg min 4′ 47′′ 239′ 16′′

the algorithm requires, on average, less than ten iterations to get convergence in a sample, that is
less than five minutes, whereas the algorithm based on the second order Laplace approximation
is much slower than in the case of the three factor model. As before, it reaches convergence, on
average, in almost 350 iterations, but now it requires almost four hours to obtain the solution for
one sample. However, the estimates derived by applying the two techniques are quite comparable
in terms of bias, standard deviations and RMSE, with similar conclusions to those drawn for the
first scenario.

To better investigate the properties of the adaptive ML estimators, a further simulation study
has been conducted in order to understand how much contribution is due to the approximation
error and how much is due to the term O(n1/2) in the rate of consistency (3.9). For the three factor
model, the performance of the adaptive quadrature based on five quadrature points (AGH5) has
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Table 3. True values, mean, simulated standard deviations (S.D.), root mean square error (RMSE) and
estimated standard errors (S.E.) of the parameter estimates for AGH based on 5 (AGH5), 9 (AGH9) and 15
(AGH15) quadrature points in data generated by a three factor model with six observed items (p = 6)

AGH5

n = 200 n = 1000

True Mean S.D. RMSE S.E. Mean S.D. RMSE S.E.

α11 = 1.01 0.72 0.37 0.47 0.19 0.89 0.12 0.17 0.17
α21 = 0.91 1.17 0.36 0.45 0.46 0.98 0.06 0.10 0.19
α31 = 0.50 0.39 0.31 0.34 0.16 0.53 0.00 0.03 0.08
α41 = 0.74 0.99 0.38 0.45 0.27 0.90 0.00 0.16 0.15
α51 = 1.16 1.39 0.37 0.44 0.57 1.35 0.00 0.19 0.19
α61 = 1.22 1.54 0.44 0.55 0.26 1.31 0.22 0.24 0.26
α12 = 0.00 – – – – – – – –
α22 = 0.83 0.45 0.30 0.49 0.32 0.73 0.00 0.11 0.12
α32 = 0.44 1.02 0.38 0.69 0.42 0.87 0.00 0.42 0.31
α42 = 0.88 1.15 0.42 0.50 0.57 1.07 0.00 0.19 0.17
α52 = 1.73 2.54 0.53 0.96 0.91 2.10 0.62 0.75 0.71
α62 = 1.46 1.43 0.52 0.52 0.46 1.45 0.28 0.28 0.26
α13 = 0.00 – – – – – – – –
α23 = 0.00 – – – – – – – –
α33 = 1.45 1.08 0.44 0.58 0.49 1.19 0.31 0.41 0.39
α43 = 1.05 1.52 0.42 0.64 0.62 1.27 0.38 0.45 0.44
α53 = 0.62 0.93 0.36 0.48 0.58 0.80 0.35 0.39 0.38
α63 = 0.91 0.98 0.42 0.43 0.42 0.90 0.29 0.35 0.32

Avg iter 9.21 11.66
Avg min 3′ 52′′ 41′ 28′′

been analyzed in presence of small (n = 200) and large (n = 1000) samples. Furthermore, for the
smallest sample size, the behavior of AGH has been studied by also considering nine (AGH9) and
fifteen (AGH15) quadrature points. All the results are illustrated in Table 3. We recall that AGH9
shares the same asymptotic properties of the Laplace estimator of order O(p−4), whereas when
fifteen quadrature points are used, the error rate is of order O(p−6). However, the performance
of these Laplace estimators is not analyzed since they require a lot of time just to run a simple
simulation example as the one considered here.

In Table 3, it can be noticed that AGH5 performs better in the largest sample than in the
smallest one in terms of both bias and RMSE. The estimated standard errors for all the parameters
become smaller and also closer to the root mean square error as the sample size increases.

On the other hand, increasing the number of quadrature points, the AGH performs better in
terms of bias and RMSE with slight differences between AGH9 and AGH15, mainly due to a
less variability in the estimates for the latter than for the former. However, the adaptive Gauss–
Hermite quadrature becomes more computational intensive as the number of quadrature points
increases. As shown in Table 3, the algorithm needs, on average, almost ten iterations to get
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Table 3. (Continued)

AGH9 AGH15

n = 200 n = 200

True Mean S.D. RMSE S.E. Mean S.D. RMSE S.E.

α11 = 1.01 0.82 0.32 0.37 0.17 0.83 0.28 0.31 0.29
α21 = 0.91 1.01 0.33 0.34 0.44 1.00 0.24 0.26 0.35
α31 = 0.50 0.39 0.32 0.34 0.38 0.60 0.24 0.25 0.28
α41 = 0.74 0.94 0.40 0.45 0.28 0.93 0.32 0.32 0.27
α51 = 1.16 1.29 0.36 0.38 0.54 1.38 0.32 0.39 0.39
α61 = 1.22 1.56 0.35 0.49 0.30 1.48 0.41 0.44 0.32
α12 = 0.00 – – – – – – – –
α22 = 0.83 0.55 0.31 0.42 0.43 0.63 0.24 0.27 0.32
α32 = 0.44 0.93 0.44 0.65 0.51 0.89 0.18 0.42 0.43
α42 = 0.88 1.04 0.42 0.45 0.41 1.06 0.25 0.26 0.31
α52 = 1.73 2.40 0.45 0.80 0.77 2.22 0.50 0.70 0.70
α62 = 1.46 1.43 0.50 0.50 0.33 1.43 0.48 0.48 0.43
α13 = 0.00 – – – – – – – –
α23 = 0.00 – – – – – – – –
α33 = 1.45 1.10 0.36 0.50 0.51 1.12 0.40 0.50 0.47
α43 = 1.05 1.46 0.37 0.56 0.52 1.42 0.33 0.49 0.46
α53 = 0.62 0.94 0.40 0.51 0.49 0.89 0.41 0.45 0.45
α63 = 0.91 0.99 0.43 0.43 0.42 0.95 0.45 0.46 0.46

Avg iter 9.40 12.74
Avg min 19′ 37′′ 107′ 11′′

convergence in presence of both five and nine quadrature points. However, whereas in the former
case, the solution for a sample is obtained, on average, in four minutes, more than fifteen minutes
are required in the latter case. This is more evident for AGH15, for which the algorithm gets
convergence, on average, in almost thirteen iterations, but requiring more than one hour and a
half to obtain the solution for one sample. It is also evident that to get the same accuracy in the
estimates observed for AGH5 in the largest sample, in presence of binary data, more than fifteen
quadrature points per dimension should be considered in small samples.

5. Conclusions

In this paper, we have investigated the theoretical properties of adaptive Gauss–Hermite based
estimators in the GLLVM framework. Recently, the adaptive quadrature has played a prominent
role in the latent variable model literature for approximating integrals defined over the latent
space. It allows to overcome the main limitations of the commonly used techniques, such as the
Gauss–Hermite quadrature and the standard Laplace approximation. Indeed, AGH is applicable
to problems involving high-dimensional integrals where the former becomes impractical or com-
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putationally intensive, and it provides more accurate estimates than the latter, particularly when
used for binary or ordinal data with small sample sizes (Joe [7]).

We have proved that, for multidimensional integrals, the AGH solution is asymptotically
equivalent to the Laplace approximation that involves specific higher (than two) order derivatives
of the integrand. Higher order Laplace approximations have been suggested in several papers on
generalized linear models (Raudenbush, Yang and Yosef [19], Evangelou, Zhu and Smith [4],
Bianconcini and Cagnone [2]) as an alternative to classical methods for improving the accuracy
of the estimates. This extension has been motivated by the well-known asymptotic properties
that characterize the Laplace method, and by the fact that the approach does not suffer from the
“curse of dimensionality”. However, the inclusion of higher order terms is computationally de-
manding as the order of the approximation increases. On the other hand, the AGH quadrature is
easier to be implemented, but of course its computational complexity increases as the number of
latent variables increases. Hence, AGH and higher order Laplace approximations can be seen as
complementary approaches that share the same asymptotic properties.

We have shown that the AGH-based estimators are consistent as the sample size and number
of observed variables grow to infinity. The convergence rate of these estimators depends also
on the number of quadrature points used for each dimension. In general, these estimators are
less efficient than maximum likelihood estimators because of the approximation, but belong to
the class of M-estimators, for which the asymptotic properties are well-known such that correct
inference can be performed.

Appendix A: Asymptotic behavior of the multivariate
AGH approximation

The higher order Laplace approximation of (1.1) is derived by considering

f (y; θ) =
∫
Rq

e−L(z) dz,

where L(z) = −[logg(y|z; θ) + logh(z)], being L(z) = O(p). It is based on the Taylor series
expansion of L around its minimum ẑ, that is,

L(z) = L(ẑ) + 1

2
Li1,i2(ẑ)(z − ẑ)i1,i2 +

∞∑
m=3

1

m!Li1,...,im(ẑ)(z − ẑ)i1,...,im . (A.1)

Substituting (A.1) into the integral, we obtain∫
Rq

exp
[−L(z)

]
dz

= (2π)q/2|�|1/2e−L(ẑ)
∫
Rq

h1(z; ẑ,�) exp

[ ∞∑
m=3

(−1)

m! Li1,...,im(ẑ)(z − ẑ)i1,...,im
]

dz

= (2π)q/2|�|1/2e−L(ẑ)

[
1 −

∞∑
m=2

∑
P,Q

(−1)t

(2m)!Lp1(ẑ) · · ·Lpt (ẑ)L
q1(ẑ) · · ·Lqm(ẑ)

]
,
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where the second sum is over all partitions P,Q, such that P = p1| · · · |pt is a partition of 2m

indices into t blocks, each of size 3 or more, and Q = q1| · · · |qm is a partition of 2m indices into
m blocks, each of size 2. Each component Lqk (ẑ), k = 1, . . . ,m, refers to specific elements of
the covariance matrix � .

We want here to show that the exact higher order Laplace solution for the integral (1.1) is
equivalent to the one based on the AGH quadrature given in (3.2). To do so, we need to show that

1 +
∞∑

m=3

∑
P

(−1)tLp1(ẑ) · · ·Lpt (ẑ)(z − ẑ)i1,...,im

(A.2)

=
∞∑

m=3

ci1,...,im(ẑ)(z − ẑ)i1,...,im .

At this regard, we can notice that, based on the exlog relations, the LHS term of (A.2) is equal to
exp[∑∞

m=3 Li1,...,im(ẑ)(z − ẑ)i1,...,im]. This higher order term can be rewritten as

π(z) = exp
[−L(z) + L(ẑ) + 1

2Li1,i2(ẑ)(z − ẑ)i1,i2
]

that it is equal to

(2π)−q/2|�|−1/2g(y|z; θ)h(z)
g(y|ẑ; θ)h(ẑ)h1(z; ẑ,�)

= ν(z)
ν(ẑ)

= c(z).

Hence, the Taylor series expansion of π(z) around the minimum ẑ can be written as

π(z) = 1 +
∞∑

m=3

1

m!πi1,...,im(ẑ)(z − ẑ)i1,...,im

= 1 +
∞∑

m=3

1

m!ci1,...,im(ẑ)(z − ẑ)i1,...,im .

It follows that the AGH solution (3.2) and the Laplace one (3.5) are equivalent. Based on this
relationship, it is possible to derive the asymptotic error associated with the AGH approximation
(3.3) evaluating the equivalent Laplace approximation obtained by truncating (3.5) at m = k.
Shun and McCullagh [25] proved that, for fixed q , the usual asymptotic order of the term corre-
sponding to the bipartition (P,Q) is O(pt−m). The error rate of the AGH based on k quadrature
points is the same associated to the bipartition (P,Q) of 2(k + 1) indices in the expansion (3.5).
In this case, the maximum number of blocks, each of size at least 3, for 2(k + 1) indices is
[ 2(k+1)

3 ], where [r] indicates the largest integer not exceeding r . Hence, being m = k + 1, the
AGH based on k quadrature points has associated asymptotic order equal to O(p−[k/3+1]).

Appendix B: Consistency of the AGH-based estimators

This section concerns with the consistency of the AGH-based estimators. All the following proofs
proceed along the lines of Vonesh [29], who derived the rate of convergence of the estimator
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based on the classical Laplace approximation for nonlinear mixed effect models, and of Ri-
zopoulos, Verbeke and Lesaffre [20], who derived that rate for fully exponential Laplace based
estimators in joint models for longitudinal and survival data. In particular, we work under the
following assumptions:

1. ẑ = arg maxz∈Rq [logg(y|z; θ) + logh(z)] exists for all l = 1, . . . , n.
2. �(θ) is a well-defined function under these regularity conditions:

R1. �(θ) has a unique maximum at θ0 ∈ �;
R2. � is compact;
R3. �(θ) is continuous;
R4. the empirical approximated log-likelihood function �̃(θ) converges uniformly in prob-

ability to �(θ).

It has to be noticed that, under concavity of the objective function �̃(θ), compactness (R2) can
be replaced by the assumption that

R2b . the true parameter value θ0 is an interior point of the parameter space, and the estimator
θ̂ is an interior point in a neighborhood containing θ0 (see, e.g., Theorem 2.7 of Newey
and McFadden [14]).

Let S̃(·) denote the approximated score vector according to the approximations (3.8); then we
obtain

n∑
l=1

Ez|y
[
Sl(θ̂; zl)

] = S(θ̂) =
n∑

l=1

{
Sl(θ̂ , ẑl ) + · · · + O

(
p−[k/3+1])}

(B.1)
⇒ n−1S(θ̂) = n−1S̃(θ̂) + O

(
p−[k/3+1])

since θ̂ is chosen such that
∑n

l=1 Ẽz|y[Sl(θ̂; zl)] = S̃(θ̂) = 0. Under the regularity conditions in
assumption 2 and provided that (θ̂ −θ0) = op(1), we can apply a Taylor series expansion in S(θ)

around the true parameter vector θ0:

S(θ̂) = S(θ0) + H
(
θ∗)(θ̂ − θ0), (B.2)

where θ∗ lies on the segment joining θ0 and θ̂ , and

H(θ∗) = ∂S(θ)

∂θ

∣∣∣∣
θ=θ∗

=
n∑

l=1

∂Sl(θ , ẑl )

∂θ

∣∣∣∣
θ=θ∗

=
n∑

l=1

Hl

(
θ∗, ẑl

)
.

From equations (B.1) and (B.2), we obtain

(θ̂ − θ0) = −
{

n−1
n∑

l=1

Hl

(
θ∗, ẑl

)}−1{
n−1[S(θ0) − S(θ̂)

]}

⇒ (θ̂ − θ0) = −
{

n−1
n∑

l=1

Hl

(
θ∗, ẑl

)}−1[
n−1S(θ0) + O

(
p−[k/3+1])].
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In addition, under assumption 2, we have that, as n → ∞, n−1H(θ∗) →p Ey[H(θ0)], where the
expectation is taken with respect to f (y; θ), and H(θ∗) = ∑n

l=1 Hl(θ
∗, ẑl ). By further assuming

that Ey{H(θ0)} is non-singular, we obtain

{
n−1H

(
θ∗)}−1 →p Ey

{
H(θ0)

}−1
.

It follows that

(θ̂ − θ0) = −Ey
[
H(θ0)

]−1[
n−1S(θ0) + O

(
p−[k/3+1])]

= Op

[
max

(
n−1/2,p−[k/3+1])],

where in the last step we use the fact that, under the regularity conditions 1, n−1S(θ0) =
Op(n−1/2), and Ey{H(θ0)} = Op(1).

Appendix C: Development of the adaptive ML estimators for
binary manifest variables

Let y = (y1, . . . , yp)T be a vector of observed binary variables, having a Bernoulli distribution
with expectation πj (z), j = 1, . . . , p. Using the canonical link function for Bernoulli distribu-
tion, we have

πj (z) = exp(α0j + αT
j z)

1 + exp(α0j + αT
j z)

.

The scale parameter φj = 1, such that the conditional distribution of each observed binary item
given the latent variables z is

gj (yj |z; θ) = exp
[
yj

(
α0j + αT

j z
) − log

(
1 + exp

(
α0j + αT

j z
))]

, j = 1, . . . , p.

It follows that the approximated log-likelihood function (2.7) results

�̃(θ) =
n∑

l=1

log

[
2q/2|Tl |

×
∑

t1,...,tq

exp

(
p∑

i=1

yjl

(
α0j + αT

j z∗
l,t1,...,tq

)

−
p∑

i=1

log
(
1 + exp

(
α0j + αT

j z∗
l,t1,...,tq

)))

× (2π)−q/2 exp

(
−1

2
z∗T
l,t1,...,tq

z∗
l,t1,...,tq

)
w∗

t1
· · ·w∗

tq

]
(C.1)
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=
n∑

l=1

{
−q

2
logπ

+ log |Tl | + log

[ ∑
t1,...,tq

exp

(
p∑

j=1

yjl

(
α0j + αT

j z∗
l,t1,...,tq

)

−
p∑

j=1

log
(
1 + exp

(
α0j + αT

j z∗
l,t1,...,tq

))

− 1

2
z∗T
l,t1,...,tq

z∗
l,t1,...,tq

)
w∗

t1
· · ·w∗

tq

]}
,

where the AGH nodes and weights are derived by the classical Gauss–Hermite nodes ztk and
weights wtk , k = 1, . . . , q , as follows

z∗
l,t1,...,tq

= (
z∗
l,t1

, . . . , z∗
l,tq

)T = √
2Tl (zt1 , . . . , ztq )

T + ẑl

and

w∗
tk

= wtk exp
[
z2
tk

]
with Tl derived by the Cholesky factorization of the matrix � l , that is, � l = TlTT

l . The modes
ẑl are obtained for each subject through the iterative scheme

ẑit+1
l = ẑit

l + � it
l L

(
ẑit
l

)
,

where “it” denotes the iteration counter,

L
(
ẑit
l

) = −∂[logg(yl |zl; θ) + logh(zl )]
∂zT

l

∣∣∣∣
zl=ẑit

l

= −
p∑

j=1

αj

[
yjl − exp(α0j + αT

j ẑit
l )

1 + exp(α0j + αT
j ẑit

l )

]
+ ẑit

l

and

�−1
l = −∂2[logg(yl |zl; θ) + logh(zl )]

∂zT
l ∂zl

∣∣∣∣
zl=ẑit

l

=
p∑

j=1

αjα
T
j

exp(α0j + αT
j ẑit

l )

1 + exp(α0j + αT
j ẑit

l )
+ I.

C.1. Regularity conditions for adaptive M-estimators in presence of
binary data

Since the general theory of the M-estimators is here applied to a particular family of GLLVM,
the regularity conditions on the log-likelihood function �(θ) given in Appendix B should be
checked for the particular distribution of each observed variable (Huber, Ronchetti and Victoria-
Feser [5]). For classical Laplace-based estimators, a formal proof of these conditions in presence
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of ordinal manifest variables is given by Huber, Scaillet and Victoria-Feser [6]. Following the
main lines of that paper, we now prove how the empirical approximated log-likelihood (C.1)
satisfies the regularity conditions for consistency and asymptotic normality of the corresponding
M-estimators.

At this regard, we make use of the Lemma 2.2 by Newey and McFadden [14], according to
which �(θ) has a unique maximum at θ0 ∈ � (condition R1) if:

a1. θ0 is identified, that is, if θ 
= θ0, θ ∈ �, then �(θ) 
= �(θ0), and
a2. E[|�̃(θ)|] < ∞.

[a1] Under our assumptions for the latent variables, θ0 is identified.
[a2] Let z∗ be z∗

l,t1,...,tq
and let K(z∗) denote log(1+exp(α0j +αT

j z∗)). We recall that | log(x)| ≤
k(|x| + 1) for a constant k ≥ 3 and for any x > 0, and that | exp(x)| ≤ exp(|x|) for any x ∈ R.
Hence, based on (C.1),

n∑
l=1

∣∣∣∣∣log

[ ∑
t1,...,tq

exp

(
p∑

j=1

yjl

(
α0j + αT

j z∗) −
p∑

j=1

K
(
z∗) − 1

2
z∗T z∗

)
w∗

t1
· · ·w∗

tq

]∣∣∣∣∣
(C.2)

≤
n∑

l=1

k

( ∑
t1,...,tq

exp

(
p∑

j=1

∣∣yjl

(
α0j + αT

j z∗)∣∣ +
p∑

j=1

∣∣K(
z∗)∣∣ + 1

2

∥∥z∗∥∥)
w∗

t1
· · ·w∗

tq
+ 1

)
.

It can be noticed that |K(z∗)| ≤ log 2 if (α0j + αT
j z∗) < 0, and |K(z∗)| ≤ |k1||αj |‖z∗‖ +

|k1||α0j | + |k2| = |k1||αj |‖z∗‖ + Const if (α0j + αT
j z∗) > 0 (using log(1 + x) ≤ k1 log(x) + k2

for any constant k1 ≥ 1
2 and k2 > 1). Furthermore, |yjl(α0j + αT

j z∗)| ≤ |yjl ||αj |‖z∗‖ +
|yjl ||α0j | = |yjl ||αj |‖z∗‖ + Const. Using the definition of z∗, we deduce that E‖z∗‖ =∑

t1,...,tq
z∗T
l,t1,...,tq

z∗
l,t1,...,tq

w∗
t1

· · ·w∗
tq

< ∞. Hence, based on log-normal moments, (C.2) is finite.

Besides |log det(Tl )| < Const, such that E[|�̃(θ)|] < ∞.
Since the data are i.i.d. and � is compact (condition R2), �̃(θ) is continuous at each θ with

probability one, and there is a function of the latent variables d(z∗) with |�̃(θ)| ≤ d(z∗) such
that E[d(z∗)] < ∞ (cf. proof of condition a2). So, we deduce that E[�̃(θ)] = �(θ) is continuous
(condition R3) and that �̃(θ) converges uniformly in probability to that quantity (condition R4)
(see Lemma 2.4 by Newey and McFadden [14]).

Asymptotic normality of the estimators imposes conditions on the Hessian of the empirical
approximated log-likelihood function, that should be verified. Based on (C.1), by the comput-

ing the explicit expression of ∂2�̃(θ)

∂θ ∂θT , it can be easily shown that there is a function d(z∗) with

| ∂2�̃(θ)

∂θ ∂θT | < d(z∗) such that E[d(z∗)] < ∞ (as in the proof of condition a2). As before, making use

of Lemma 2.4 by Newey and McFadden [14], since the data are i.i.d. and � is compact, ∂2�̃(θ)

∂θ ∂θT is

continuous at each θ with probability one, and we can deduce that E[ ∂2�̃(θ)

∂θ ∂θT ] is continuous and

the Hessian of the empirical approximated log-likelihood converges uniformly in probability to
that quantity.
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C.2. Score functions and second order Laplace estimators

In this specific case, the complete data score functions (2.8) are given by

Sl

(
α0j ; z∗

l,t1,...,tq

) =
[
yjl −

exp(α0j + αT
j z∗

l,t1,...,tq
)

1 + exp(α0j + αT
j z∗

l,t1,...,tq
)

]
,

Sl

(
αj ; z∗

l,t1,...,tq

) = z∗
l,t1,...,tq

[
yjl −

exp(α0j + αT
j z∗

l,t1,...,tq
)

1 + exp(α0j + αT
j z∗

l,t1,...,tq
)

]
.

The corresponding score equations have not closed form solutions, and a quasi-Newton proce-
dure is used to solve implicit equations.

In the simulation study, the performance of the adaptive-based estimators has been compared
with second order Laplace estimators. According to (3.5), the latter have been derived by maxi-
mizing the following approximated log-likelihood function

�̃(θ) =
n∑

l=1

log
{
(2π)q/2|�1/2

l exp
[−L(ẑl )

][
1 + c1p

−1 + O
(
p−2)]},

where the individual modes ẑl are obtained through the iterative scheme defined above, and

c1 =
3∑

m=2

(−1)m−1

(2m)! Lp1(ẑl ) · · ·Lpm−1(ẑl )L
q1(ẑl ) · · ·Lqm(ẑl )

with p1| · · · |pm−1 be a partition of 2m indices into m − 1 blocks, each of size 3 or more, and
q1| · · · |qm is a partition of 2m indices into m blocks, each of size 2. In particular, following the
notation by Raudenbush, Yang and Yosef [19],

c1 = − 1
8 vecT [� l ⊗ � l]vec

[
L(4)(ẑl )

] + 5
24 vecT [� l ⊗ � l ⊗ � l]vec

[
L(3)(ẑl ) ⊗ L(3)(ẑl )

]
,

where

L(3)(ẑl ) = −
p∑

j=1

vec
(
αjα

T
j

)
αT

j

exp(α0j + αT
j ẑl )[1 − exp(α0j + αT

j ẑl )]
[1 + exp(α0j + αT

j ẑl)]3

and

L(4)(ẑl ) = −
p∑

j=1

vec
[
vec

(
αjα

T
j

)
αT

j

]

× αT
j

exp(α0j + αT
j ẑl)[1 − 4 exp(α0j + αT

j ẑl ) + exp(α0j + αT
j ẑl)

2]
[1 + exp(α0j + αT

j ẑl)]4
.
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As for the adaptive-based estimators, the score equations of both the intercepts and factor load-
ings have not closed form solutions, and a quasi-Newton procedure has been used to solve im-
plicit equations.
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