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We study weak convergence of empirical processes of dependent data (Xi)i≥0, indexed by classes of func-
tions. Our results are especially suitable for data arising from dynamical systems and Markov chains, where
the central limit theorem for partial sums of observables is commonly derived via the spectral gap technique.
We are specifically interested in situations where the index class F is different from the class of functions f

for which we have good properties of the observables (f (Xi))i≥0. We introduce a new bracketing number
to measure the size of the index class F which fits this setting. Our results apply to the empirical process of
data (Xi)i≥0 satisfying a multiple mixing condition. This includes dynamical systems and Markov chains,
if the Perron–Frobenius operator or the Markov operator has a spectral gap, but also extends beyond this
class, for example, to ergodic torus automorphisms.

Keywords: Empirical processes indexed by classes of functions; dependent data; Markov chains;
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1. Introduction

Let (Xi)i≥0 be a stationary stochastic process of R-valued random variables with marginal dis-
tribution μ. We denote the empirical measure of order n by μn = 1

n

∑n
i=1 δXi

. The classical
empirical process is defined by Un(t) = √

n(μn((−∞, t]) − μ((−∞, t])), t ∈ R. In the case of
i.i.d. processes, the limit behavior of the empirical process was first investigated by Donsker [15],
who proved that (Un(t))t∈R converges weakly to a Brownian bridge process. This result, known
as Donsker’s empirical process central limit theorem, confirmed a conjecture of Doob [16] who
had observed that certain functionals of the empirical process converge in distribution towards
the corresponding functionals of a Brownian bridge. Donsker’s empirical process CLT has been
generalized to dependent data by many authors. One of the earliest results is Billingsley [4], who
considered functions of mixing processes, with an application to the empirical distribution of the
remainders in a continued fraction expansion.

Empirical processes play a very important role in large sample statistical inference. Many
statistical estimators and test statistics can be expressed as functionals of the empirical distri-
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bution. As a result, their asymptotic distribution can often be derived from empirical process
limit theorems, combined with the continuous mapping theorem or a functional delta method.
A well-known example is the Kolmogorov–Smirnov goodness-of-fit test, which uses the test
statistic Dn := supt∈R

√
n|μn((−∞, t]) − μ0((−∞, t])| in order to test the null hypothesis that

μ0 is the marginal distribution of X1. Under the null hypothesis, the limit distribution of Dn is
given by the supremum of the Gaussian limit of the empirical process. Another example are Von-
Mises-statistics, also known as V-statistics. These are defined as Vn := 1

n2

∑
1≤i,j≤n h(Xi,Xj ),

where h(x, y) is a symmetric kernel function. Specific examples include the sample variance
and Gini’s mean difference, where the kernel functions are given by (x − y)2/2 and |x − y|,
respectively. V -statistics can be expressed as integrals with respect to the empirical distribution
function, namely Vn = ∫∫ h(x, y)dμn(x)dμn(y). The asymptotic distribution of Vn can then be
derived via a functional delta method from an empirical process central limit theorem; see, for
example, Beutner and Zähle [2] for some recent results.

Empirical process CLTs for Rd -valued i.i.d. data (Xi)i≥0 have first been studied by Dud-
ley [19], Neuhaus [27], Bickel and Wichura [3] and Straf [33]. These authors consider the
classical d-dimensional empirical process

√
n(μn((−∞, t]) − μ((−∞, t])), where (−∞, t] =

{x ∈ Rd : x1 ≤ t1, . . . , xd ≤ td}, t ∈ Rd , denotes the semi-infinite rectangle in Rd . Philipp and
Pinzur [31], Philipp [30] and Dhompongsa [13] studied weak convergence of the multivariate
empirical process in the case of mixing data.

Dudley [20] initiated the study of empirical processes indexed by classes of sets, or more gen-
erally by classes of functions. This approach allows the study of empirical processes for very
general data, not necessarily having values in Euclidean space. CLTs for empirical processes in-
dexed by classes of functions require entropy conditions on the size of the index set. For i.i.d.
data, Dudley [20] obtained the CLT for empirical processes indexed by classes of sets satisfying
an entropy condition with inclusion. Ossiander [29] used an entropy condition with bracketing to
obtain results for empirical processes indexed by classes of functions. For the theory of empirical
processes of i.i.d. data, indexed by classes of functions, see the book by van der Vaart and Well-
ner [34]. Limit theorems for more general empirical processes indexed by classes of functions
have also been studied under entropy conditions for general covering numbers, for example, by
Nolan and Pollard [28] who investigate empirical U -processes.

In the case of strongly mixing data, Andrews and Pollard [1] were the first to obtain CLTs
for empirical processes indexed by classes of functions. Doukhan, Massart and Rio [18] and Rio
[32] study empirical processes for absolutely regular data. Borovkova, Burton and Dehling [5]
investigate the empirical process and the empirical U -process for data that can be represented as
functionals of absolutely regular processes. For further results, see the survey article by Dehling
and Philipp [12], the book by Dedecker et al. [8], as well as the paper by Dedecker and Prieur [9].

A lot of research has been devoted to the study of statistical properties of data arising from
dynamical systems or from Markov chains. A very powerful technique to prove CLTs and other
limit theorems is the spectral gap method, using spectral properties of the Perron–Frobenius op-
erator or the Markov operator on an appropriate space of functions; see Hennion and Hervé [24].
When the space of functions under consideration contains the class of indicator functions of
intervals, standard tools can be used to establish the classical empirical process CLT. Finite-
dimensional convergence of the empirical process follows from the CLT for

∑n
i=1 1(−∞,t](Xi),
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and tightness can be established using moment bounds for
∑n

i=1 1(s,t](Xi). Collet, Martinez and
Schmitt [7] used this approach to establish the empirical process CLT for expanding maps of the
unit interval.

The situation differs markedly when the CLT and moment bounds are not directly available
for the index class of the empirical process, but only for a different class of functions. Recently,
Dehling, Durieu and Volný [11] developed techniques to cover such situations. They were able
to prove classical empirical process CLTs for R-valued data when the CLT and moment bounds
are only available for Lipschitz functions. Dehling and Durieu [10] extended these techniques to
Rd -valued data satisfying a multiple mixing condition for Hölder continuous functions. Under
this condition, they proved the CLT for the empirical process indexed by semi-infinite rectangles
(−∞, t], t ∈ Rd . The multiple mixing condition is strictly weaker than the spectral gap condition.
For example, ergodic torus automorphisms satisfy a multiple mixing condition, while generally
they do not have a spectral gap. Dehling and Durieu [10] proved the empirical process CLT for
ergodic torus automorphisms. Durieu and Tusche [23] provide very general conditions under
which the classical empirical process CLT for Rd -valued data holds.

The above mentioned papers study exclusively classical empirical processes, indexed by semi-
infinite intervals or rectangles. It is the goal of the present paper to extend the techniques devel-
oped by Dehling, Durieu and Volný [11] to empirical processes indexed by classes of functions.
Let (X , A) be a measurable space, let (Xi)i≥0 be a stationary process of X -valued random vari-
ables, and let F be a uniformly bounded class of real-valued functions on X . We consider the

F -indexed empirical process ( 1√
n

∑n
i=1(f (Xi)− Ef (X1)))f ∈F . As in the above mentioned pa-

pers, we will assume that there exists some Banach space B of functions on X such that the
CLT and a moment bound hold for partial sums

∑n
i=1 g(Xi), for all g in some subset of B; see

Assumptions 1 and 2. These conditions are satisfied, for example, when the Perron–Frobenius
operator or the Markov operator acting on B has a spectral gap. Again, if the index class F is
a subset of B, standard techniques for proving empirical process CLTs can be applied. In many
examples, however, B is some class of regular functions, while F is a class of indicators of sets.
It is the goal of the present paper to provide techniques suitable for this situation.

Empirical process invariance principles require a control on the size of the index class F , as
measured by covering or bracketing numbers; see, for example, van der Vaart and Wellner [34]. In
this paper, we will consider coverings of F by B-brackets, that is, brackets bounded by functions
l, u ∈ B. Because of the specific character of our moment bounds, we have to impose conditions
on the B-norms of l and u. We will thus introduce a notion of bracketing numbers by counting
how many B-brackets of a given Ls -size and with a given control on the B-norms of the upper
and lower functions are needed to cover F . The main theorem of the present paper establishes
an empirical process CLT under an integral condition on this bracketing number.

This paper is organized as follows: Section 2 contains precise definitions as well as the state-
ment of the main theorem. In Section 3, we will specifically consider the case when B is the
space of Hölder continuous functions. We will give examples of classes of functions which sat-
isfy the bracketing number assumption. In Section 4, we will give applications to ergodic torus
automorphisms which extend the empirical process CLT of Dehling and Durieu [10] to more gen-
eral classes of sets. Section 5 contains the proof of our main theorem, while proofs of technical
aspects of the examples can be found in the Appendix.
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2. Main result

Let (X , A) be a measurable space, and let (Xi)i∈N be an X -valued stationary stochastic process
with marginal distribution μ. Let F be a uniformly bounded class of real-valued measurable
functions defined on X . If Q is a signed measure on (X , A), we use the notation Qf = ∫X f dQ.
We define the map Fn : F → R, induced by the empirical measure,

Fn(f ) = 1

n

n∑
i=1

f (Xi).

The F -indexed empirical process of order n is given by

Un(f ) = √
n
(
Fn(f ) − μf

)= 1√
n

n∑
i=1

(
f (Xi) − μf

)
, f ∈ F .

We regard the empirical process (Un(f ))f ∈F as a random element on �∞(F ); this holds as
F is supposed to be uniformly bounded. �∞(F ) is equipped with the supremum norm and the
Borel σ -field generated by the open sets. It is well known that, in general, (Un(f ))f ∈F is not
measurable and thus the usual theory of weak convergence of random variables does not apply.
We use here the theory which is based on convergence of outer expectations; see van der Vaart
and Wellner [34]. Given a Borel probability measure L on �∞(F ), we say that (Un(f ))n≥1

converges in distribution to L if

E∗(ϕ(Un)
)→ ∫

ϕ(x)dL(x)

for all bounded and continuous functions ϕ :�∞(F ) → R. Here E∗ denotes the outer inte-
gral. Note that E∗(X) = E(X∗), where X∗ denotes the measurable cover function of X; see
Lemma 1.2.1 in van der Vaart and Wellner [34].

In what follows, we will frequently make two assumptions concerning the process (f (Xi))i∈N,
where f : X → R belongs to some Banach space (B,‖ · ‖B) of measurable functions on X ,
respectively, to some subset G ⊂ B. The precise choice of B, as well as of G , will depend on
the specific example. Often, we take B to be the space of all Lipschitz or Hölder continuous
functions, and G the intersection of B with an �∞(X )-ball.

Assumption 1 (CLT for B-observables). For all f ∈ B, there exists a σ 2
f ≥ 0 such that

1√
n

n∑
i=1

(
f (Xi) − μf

) D−→N
(
0, σ 2

f

)
, (2.1)

where N(0, σ 2) denotes the normal law with mean zero and variance σ 2.
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Assumption 2 (Moment bounds for G-observables). For some subset G ⊂ B, s ≥ 1, and a ∈ R,
for all p ≥ 1, there exists a constant Cp > 0 such that for all f ∈ G − G := {g1 −g2: g1, g2 ∈ G},

E

[(
n∑

i=1

(
f (Xi) − μf

))2p]
≤ Cp

p∑
i=1

ni‖f ‖i
s log2p+ai

(‖f ‖B + 1
)
, (2.2)

where ‖f ‖s = (
∫

X |f |s dμ)1/s denotes the Ls -norm of f .

Both Assumptions 1 and 2 have been established by many authors for a wide range of station-
ary processes. Concerning the CLT, see, for example, the three-volume monograph by Bradley
[6] for mixing processes, Dedecker et al. [8] for so-called weakly dependent processes in the
sense of Doukhan and Louhichi [17], and Hennion and Hervé [24] for many examples of Markov
chains and dynamical systems. Durieu [21] proved 4th moment bounds of the type (2.2) for
Markov chains or dynamical systems for which the Markov operator or the Perron–Frobenius
operator acting on B has a spectral gap. It was generalized to 2pth moment bounds by Dehling
and Durieu [10]. More generally, they gave similar moment bounds for processes satisfying a
multiple mixing condition, that is, assuming that there exist a θ ∈ (0,1) and an integer d0 ∈ N
such that for all integers p ≥ 1, there exist an integer � and a multivariate polynomial P of total
degree smaller than d0 such that∣∣Cov

(
f (Xi0) · · ·f (Xiq−1), f (Xiq ) · · ·f (Xip )

)∣∣
(2.3)

≤ ‖f ‖s‖f ‖�
BP(i1 − i0, . . . , ip − ip−1)θ

iq−iq−1

holds for all f ∈ B with μf = 0 and ‖f ‖∞ ≤ 1, all integers i0 ≤ i1 ≤ · · · ≤ ip and all q ∈
{1, . . . , p}. See Theorem 4 and the examples in Dehling and Durieu [10]. Note that this multiple
mixing condition implies the moment bound (2.2) with for G = {f ∈ B: ‖f ‖∞ ≤ 1} and a =
d0 − 1. Further, the spectral gap property leads to the multiple mixing condition with d0 = 0, and
thus to the moment bound (2.2) with a = −1, see Dehling and Durieu [10], Section 4.

We will derive a general statement about weak convergence of the empirical process
(Un(f ))f ∈F under the two assumptions (2.1) and (2.2). Empirical process central limit theo-
rems require bounds on the size of the class of functions F , usually measured by the number of
ε-balls required to cover F . Here we will introduce a covering number adapted to the fact that
(2.1) and (2.2) hold only for f ∈ B or f ∈ G , respectively, and that both the B-norm as well as the
Ls(μ)-norm enter on the right hand side of the bound (2.2). In our approach, we use B-brackets
to cover the class F , which leads to the following definition.

Definition. Let (X , A) be a measurable space, and let μ be a probability measure on (X , A).
Let B be some Banach space of measurable functions on X , G ⊂ B and s ≥ 1.

(i) Given two functions l, u : X → R satisfying l(x) ≤ u(x), for all x ∈ X , we define the
bracket

[l, u] := {f : X → R: l(x) ≤ f (x) ≤ u(x), for all x ∈ X
}
.
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Given ε,A > 0, we call [l, u] an (ε,A, G,Ls(μ))-bracket, if l, u ∈ G and

‖u − l‖s ≤ ε,

‖u‖B ≤ A, ‖l‖B ≤ A,

where ‖ · ‖s denotes the Ls(μ)-norm.
(ii) For a class of measurable functions F , defined on X , we define the bracketing number

N(ε,A, F , G,Ls(μ)) as the smallest number of (ε,A, G,Ls(μ))-brackets needed to cover F .

Our definition is close to the definition of bracketing numbers given by Ossiander [29], but
different. In Ossiander [29], no assumptions are made on the upper and lower functions of the
bracket other than that they are close in L2. Here, the moment bound (2.2) forces us to require
the extra condition that u and l belong to the space B and that their B-norms are controlled.
Obviously, our bracketing numbers are always larger than the ones defined in Ossiander [29],
and naturally our condition on the size of F are stronger. On the other hand, our results apply to
dependent data, while Ossiander [29] studies i.i.d. data.

We can now state the main theorem of the present paper. The proof will be given in Section 5.

Theorem 2.1. Let (X , A) be a measurable space, let (Xi)i≥1 be an X -valued stationary
stochastic process with marginal distribution μ, and let F be a uniformly bounded class of
measurable functions on X . Suppose that for some Banach space B of measurable functions on
X , some subset G ⊂ B, a ∈ R, and s ≥ 1, Assumptions 1 and 2 hold. Moreover, assume that there
exist constants r > −1, γ > max{2 + a,1} and C > 0 such that

∫ 1

0
εr sup

ε≤δ≤1
N2(δ, exp

(
Cδ−1/γ

)
, F , G,Ls(μ)

)
dε < ∞. (2.4)

Then the empirical process (Un(f ))f ∈F converges in distribution in �∞(F ) to a tight Gaussian
process (W(f ))f ∈F .

Remark 2.2. (i) Note that the bracketing number N(δ, exp(Cδ−1/γ ), F , G,Ls(μ)) might not be
a monotone function of δ. This is the reason why we take the supremum in the integral (2.4).

(ii) The proof of Theorem 2.1 shows that the statement also holds if condition (2.2) is only
satisfied for some integer p satisfying

p >
(r + 1)γ

γ − max{2 + a,1} .

(iii) If for some r ′ ≥ 0,

N
(
ε, exp

(
Cε−1/γ

)
, F , G,Ls(μ)

)= O
(
ε−r ′)

as ε → 0, condition (2.4) is satisfied for all r > 2r ′ − 1.
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In the next section, we will present examples of classes of functions satisfying condition (2.4).
Among the examples are indicators of multidimensional rectangles, of ellipsoids, and of balls of
arbitrary metrics, as well as a class of monotone functions. In Section 4, we give applications to
ergodic torus automorphisms, indexed by various classes of indicator functions.

3. Examples of classes of functions

In many examples that satisfy Assumptions 1 and 2, the Banach space B is the space of Lipschitz
or Hölder continuous functions, see examples in Dehling, Durieu and Volný [11], Dehling and
Durieu [10], or Durieu and Tusche [23]. Thus, in this section, we will restrict our attention to
the case where B is a space of Hölder functions and give several examples of classes F which
satisfy the entropy condition (2.4).

In this section, we consider a metric space (X , d). Let α ∈ (0,1] be fixed. We denote by
Hα(X ) the space of bounded α-Hölder continuous functions on X with values in R. This space
is equipped with the norm

‖f ‖α := sup
x∈X

∣∣f (x)
∣∣+ sup

x,y∈X
x �=y

|f (x) − f (y)|
d(x, y)α

.

For this section, we chose B = Hα(X ). As the approximating class we use the subclass G =
Hα(X , [0,1]) := {f ∈ Hα(X ): 0 ≤ f ≤ 1} of B. Except in Example 5, in all examples we will
consider the case where X is a subset of Rd equipped with the Euclidean norm denoted by | · |,
where d ≥ 1 is some fixed integer.

In most of the examples, we will use the transition function given in the following definition
which uses the notations

dA(x) := inf
a∈A

d(x, a) and d(A,B) := inf
a∈A,b∈B

d(a, b)

for any element x ∈ X and sets A, B ⊂ X , where we define inf ∅ = +∞.

Definition. Let A, B be subsets of X such that d(A,B) > 0. We define the transition function
T [A,B] : X → R by

T [A,B](x) := dB(x)

dB(x) + dA(x)
,

if A and B are non-empty, T [A,B] := 0 if A = ∅, and T [A,B] := 1 if B = ∅ but A �= ∅.

Observe, that we have T [A,B](X ) ⊂ [0,1], T [A,B](x) = 1 for all x ∈ A and T [A,B](x) = 0
for all x ∈ B .

Lemma 3.1. For any subsets A, B of X such that d(A,B) > 0, the transition function T [A,B]
is a bounded α-Hölder continuous function and we have

∥∥T [A,B]∥∥
α

≤ 1 +
(

3

d(A,B)

)α

.
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This lemma is proved in the Appendix.
We also use the following notations: For a non-decreasing function F from R to R,

F−1 denotes the pseudo-inverse function defined by F−1(t) := sup{x ∈ R: F(x) ≤ t} where
sup ∅ = −∞. The modulus of continuity of F is defined by

ωF (δ) = sup
{∣∣F(x) − F(y)

∣∣: |x − y| ≤ δ
}
.

Constants that only depend on fixed parameters p1, . . . , pk will be denoted with these parameters
in the subscript, such as cp1,...,pk

. Furthermore, the notation f (x) = Op1,...,pk
(g(x)) as x → 0

or x → ∞ means that there exists a constant cp1,...,pk
such that f (x) ≤ cp1,...,pk

g(x) for all x

sufficiently small or large, respectively.

3.1. Example 1: Indicators of rectangles

Here, we consider X = Rd . In its classical form, the empirical process is defined by the class of
indicator functions of left infinite rectangles, that is, the class {1(−∞,t]: t ∈ Rd}, where (−∞, t]
denotes the set of points x such that1 x ≤ t . Under similar assumptions as in the present paper,
this case was treated by Dehling and Durieu [10]. We will see that Theorem 2.1 covers the results
of that paper.

The following proposition gives an upper bound for the bracketing number of the larger class

F = {1(t,u]: t, u ∈ [−∞,+∞]d , t ≤ u
}
,

where (t, u] denotes the rectangle which consists of the points x such that t < x and x ≤ u.

Proposition 3.2. Let s ≥ 1, γ > 1, and let μ be a probability distribution on Rd whose distribu-
tion function F satisfies

ωF (x) = O
(∣∣log(x)

∣∣−sγ )
as x → 0. (3.1)

Then there exists a constant C = CF > 0 such that

N
(
ε, exp

(
Cε−1/γ

)
, F , G,Ls(μ)

)= Od

(
ε−2ds

)
as ε → 0,

where G = Hα(Rd , [0,1]).

Proof. Let ε ∈ (0,1) and m = 6dε−s + 1�. For all i ∈ {1, . . . , d} and j ∈ {0, . . . ,m}, we define
the quantiles

ti,j := F−1
i

(
j

m

)
,

1On Rd , we use the partial order: x ≤ t if and only if xi ≤ ti for all i = 1, . . . , d .
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where F−1
i is the pseudo-inverse of the marginal distribution function2 Fi . Now, if j =

(j1, . . . , jd) ∈ {0, . . . ,m}d , we write

tj = (t1,j1 , . . . , td,jd
).

In the following definitions, for convenience, we will also denote by ti,−1 or ti,−2 the points
ti,0 and by ti,m+1 the points ti,m. We introduce the brackets [lk,j , uk,j ], k ∈ {0, . . . ,m}d , j ∈
{0, . . . ,m}d , k ≤ j , given by the α-Hölder functions

lk,j (x) := T
[[tk+1, tj−2],Rd \ [tk, tj−1]

]
(x)

and

uk,j (x) := T
[[tk−1, tj ],Rd \ [tk−2, tj+1]

]
(x),

where we have used the convention that [s, t] = ∅ if s � t and that the addition of an integer to
a multi-index is the addition of the integer to every component of the multi-index.

For each k ≤ j , we have

‖lk,j − uk,j‖s
s ≤ μ

([tk−2, tj+1] \ [tk+1, tj−2]
)

≤
d∑

i=1

(∣∣Fi(ti,ki+1) − Fi(ti,ki−2)
∣∣+ ∣∣Fi(ti,ji+1) − Fi(ti,ji−2)

∣∣)

≤ 2
3d

m

and thus ‖lk,j − uk,j‖s ≤ ε. Moreover, since for a < b < b′ < a′,

d
([

b, b′],Rd \ [a, a′])= min
i=1,...,d

min
{|ai − bi |,

∣∣a′
i − b′

i

∣∣}
using Lemma 3.1 and (3.1), we have

‖lk,j‖α ≤ 1 + 3α
(

min
i=1,...,d

min
{|ti,ki

− ti,ki+1|, |ti,ji−1 − ti,ji−2|
})−α

≤ 1 + 3α

[
inf

{
x > 0: ∃i ∈ {1, . . . , d},∃t,Fi(t + x) − Fi(t) ≥ 1

m

}]−α

≤ 1 + 3α

[
inf

{
x > 0: cF

∣∣log(x)
∣∣−sγ ≥ 1

m

}]−α

≤ 1 + 3α exp
(
α(cF m)1/(sγ )

)
,

where cF is given by (3.1). The same bound holds for ‖uk,j‖α .

2Fi(t) = μ(R × · · · × R × (−∞, t] × R × · · · × R).
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Thus, there exists a new constant CF > 0 such that for all k ≤ j ∈ {0, . . . ,m}d , [lk,j , uk,j ]
is an (ε, exp(CF ε−1/γ ), G,Ls(μ))-bracket. It is clear that for each function f ∈ F there exists
a bracket of the form [lk,j , uk,j ] which contains f . Further, we have at most (m + 1)2d such
brackets, which proves the proposition. �

Notice that under the assumptions of the proposition, condition (2.4) is satisfied and there-
fore Theorem 2.1 may be applied to empirical processes indexed by the class of indicators of
rectangles, taking B to be the class of bounded Hölder functions.

Corollary 3.3. Let (Xi)i≥0 be an Rd -valued stationary process. Let F be the class of indicator
functions of rectangles in Rd and let G = Hα(Rd , [0,1]). Assume that, for some s ≥ 1, a ∈ R,
and γ > max{2 + a,1}, Assumptions 1 and 2 hold, and that the distribution function of the Xi

satisfies (3.1). Then the empirical process (Un(f ))f ∈F converges in distribution in �∞(F ) to a
tight Gaussian process.

Remark 3.4. By regarding the class of indicator functions of left infinite rectangles as a sub-
class of F , we obtain Theorem 1 of Dehling and Durieu [10] as a particular case of the preceding
corollary.

3.2. Example 2: Indicators of multidimensional balls in the unit cube

Here, we consider the class F of indicator functions of balls on X = [0,1]d , that is,

F := {1B(x,r): x ∈ [0,1]d , r ≥ 0
}
,

where B(x, r) = {y ∈ [0,1]d : |x − y| < r}. We have the following upper bound.

Proposition 3.5. Let μ be a probability distribution on [0,1]d with a density bounded by some
B > 0 and let s ≥ 1. Then there exists a constant C = Cd,B > 0 such that

N
(
ε,Cε−αs, F , G,Ls(μ)

)= Od,B

(
ε−(d+1)s

)
as ε → 0,

where G = Hα([0,1]d , [0,1]).

Note that the second argument in the bracketing number is different from the one appearing in
the condition (2.4). In this situation, we have a stronger type of bracketing number than in (2.4).

Proof of Proposition 3.5. Let ε > 0 be fixed and m = ε−s�. For all i = (i1, . . . , id ) ∈
{0, . . . ,m}d , we denote by ci the center of the rectangle [ i1−1

m
, i1

m
] × · · · × [ id−1

m
,

id
m

]. Then we
define, for i ∈ {1, . . . ,m}d and j ∈ {0, . . . ,m}, the functions

li,j (x) := T

[
B

(
ci,

j − 2

m

√
d

)
, [0,1]d

∖
B

(
ci,

j − 1

m

√
d

)]
(x)
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and

ui,j (x) := T

[
B

(
ci,

j + 2

m

√
d

)
, [0,1]d

∖
B

(
ci,

j + 3

m

√
d

)]
(x),

where we use the convention that a ball with negative radius is the empty set.
By Lemma 3.1, these functions are α-Hölder and, since d(B(x, r),Rd \ B(x, r ′)) = r ′ − r , we

have

‖li,j‖α ≤ 1 +
(

3m√
d

)α

≤ 1 + 3ε−sα.

The same bound holds for ‖ui,j‖α . Since μ has a bounded density with respect to Lebesgue
measure, we also have

‖li,j − ui,j‖s
s ≤ μ

(
B

(
ci,

j + 3

m

√
d

)∖
B

(
ci,

j − 2

m

√
d

))

≤ Bcd

((
j + 3

m

√
d

)d

−
(

j − 2

m

√
d

)d)
,

where cd is the constant πd/2

�(d/2+1)
(� is the gamma function). Hence,

‖li,j − ui,j‖s ≤ c
1/s
d,Bε

as ε → 0, where cd,B is a constant depending only on d and B .
Now, if f belongs to F , then f = 1B(x,r) for some x ∈ [0,1]d , and 0 ≤ r ≤ √

d . Thus, there
exist some i = (i1, . . . , id ) ∈ {0, . . . ,m}d and j ∈ {0, . . . ,m} such that

x ∈
[
i1 − 1

m
,
i1

m

)
× · · · ×

[
id − 1

m
,
id

m

)
and

j

m

√
d ≤ r ≤ j + 1

m

√
d.

We then have li,j ≤ f ≤ ui,j .
Thus, the (m + 1)md brackets [li,j , ui,j ], i ∈ {1, . . . ,m}d and j ∈ {0, . . . ,m}, cover the

class F . Therefore, N(c
1/s
d,Bε,4ε−αs, F , G,Ls(μ)) = Od,B(ε−(d+1)s) as ε → 0, which implies

that there exists a constant Cd,B > 0, for which N(ε,Cd,Bε−αs, F , G,Ls(μ)) = Od,B(ε−(d+1)s)

as ε → 0. �

3.3. Example 3: Indicators of uniformly bounded multidimensional
ellipsoids centered in the unit cube

Set X = Rd . Here, we consider the class of ellipsoids which are aligned with the coordinate axes,
have their center in [0,1]d , and their parameters bounded by some constant D > 0. Without loss
of generality, we assume that D ∈ N. For x = (x1, . . . , xd) ∈ [0,1]d and all r = (r1, . . . , rd) ∈
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[0,D]d , we set

E(x, r) :=
{

y ∈ Rd :
d∑

i=1

(yi − xi)
2

r2
i

≤ 1

}
.

We denote by F the class of indicator functions of these ellipsoids, that is,

F := {1E(x,r): x ∈ [0,1]d, r ∈ [0,D]d}.
We have the following upper bound.

Proposition 3.6. Let μ be a probability distribution on Rd with a density bounded by some
B > 0. Then there exists a constant C = Cd,B,D > 0 such that

N
(
ε,Cε−2αs, F , G,Ls(μ)

)= Od,B

(
ε−2ds

)
as ε → 0,

where G = Hα(Rd , [0,1]).
Proof. Let ε > 0 be fixed and m = ε−s�. For all i = (i1, . . . , id ) ∈ {0, . . . ,m}d , we denote by
Ii the rectangle [ i1−1

m
, i1

m
] × · · · × [ id−1

m
,

id
m

]. Then, for i ∈ {1, . . . ,m}d and j = (j1, . . . , jd) ∈
{0, . . . ,Dm − 1}d , we define the sets

Ui,j =
⋃
x∈Ii

E

(
x,

j

m

)
=
{

y ∈ Rd : min
x∈Ii

d∑
k=1

(yk − xk)
2

j2
k

≤ 1

m2

}

and

Li,j =
⋂
x∈Ii

E

(
x,

j

m

)
=
{

y ∈ Rd : max
x∈Ii

d∑
k=1

(yk − xk)
2

j2
k

≤ 1

m2

}
.

We introduce the bracket [li,j , ui,j ] given by

li,j (x) := T
[
Li,j−1,Rd \ Li,j

]
(x) and ui,j (x) := T

[
Ui,j+1,Rd \ Ui,j+2

]
(x),

where we use the convention that an ellipsoid with one negative parameter is the empty set. By
Lemma 3.1, these functions are α-Hölder. Further, we have the following lemma which is proved
in the Appendix.

Lemma 3.7. For all j ∈ {0, . . . ,Dm − 1}d , x ∈ Rd , we have

d

(
E

(
x,

j

m

)
,Rd
∖

E

(
x,

j + 1

m

))
≥ D−1m−2.

As a consequence, we infer that the distance between Ui,j and Rd \Ui,j+1 is at least D−1m−2

and the distance between Li,j and Rd \Li,j+1 is at least D−1m−2. Thus, by Lemma 3.1, we have

‖li,j‖α ≤ 1 + 3αDαm2α ≤ 1 + 3Dε−2αs,
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Figure 1. Ui,j in dimension 2.

and the same bound holds for ‖ui,j‖α .
Now, to bound ‖ui,j − li,j‖s we need to estimate the Lebesgue measures of Ui,j and Li,j .

Recall that, if j = (j1, . . . , jd) ∈ Rd+ and x ∈ Rd , the Lebesgue measure of the ellipsoid E(x, j)

is given by

λ
(
E(x, j)

)= cd

d∏
k=1

jk,

where cd is the constant πd/2

�(d/2+1)
. The set Ui,j can be seen as the set constructed as follows:

start from an ellipsoid of parameters j/m centered at the center of Ii , cut it along its hyperplanes
of symmetry, and shift each obtained component away from the center by a distance of 1/2m

in every direction; Ui,j is then the convex hull of these 2d components (see Figure 1 for the
dimension 2). Let us denote by Vi,j the set that has been added to the 2d components to obtain
the convex hull. We can bound the volume of Ui,j by the volume of the ellipsoid plus a bound
on the volume of Vi,j , that is,

λ(Ui,j ) ≤ cd

d∏
k=1

jk

m
+

d∑
k=1

1

m

∏
l �=k

2jl + 1

m
.

The set Li,j can be seen as the intersection of the 2d ellipsoids of parameters j/m centered at
each corner of the hypercube Ii (see Figure 2 for the dimension 2). Its volume is larger than the
volume of an ellipsoid of parameters j/m minus the volume of Vi,j . We thus have

λ(Li,j ) ≥ cd

d∏
k=1

jk

m
−

d∑
k=1

1

m

∏
l �=k

2jl + 1

m
.

Since μ has a bounded density with respect to Lebesgue measure, we have

‖li,j − ui,j‖s
s ≤ μ(Ui,j+2 \ Li,j−1)

≤ Bλ(Ui,j+2) − Bλ(Li,j−1).
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Figure 2. Li,j in dimension 2.

We infer ‖li,j − ui,j‖s = c
1/s
d,B(ε), as ε → 0, where the constant cd,B only depends on d and B .

Now, if f belongs to F , then f = 1E(x,r) for some x ∈ X , and r ∈ [0,D]d . Thus, there exist
some i = (i1, . . . , id ) ∈ {0, . . . ,m}d and j ∈ {0, . . . ,Dm − 1}d such that

x ∈
[
i1 − 1

m
,
i1

m

)
× · · · ×

[
id − 1

m
,
id

m

)

and for each k = 1, . . . , d ,

jk

m
≤ rk ≤ jk + 1

m
.

We then have li,j ≤ f ≤ ui,j .
Thus, the Ddm2d brackets [li,j , ui,j ], i ∈ {1, . . . ,m}d and j ∈ {0, . . . ,Dm − 1}d , cover the

class F . Therefore, there exists a Cd,B,D > 0, such that N(ε,Cd,B,Dε−αs, F , G,Ls(μ)) =
Od,B(ε−2ds), as ε → 0. �

3.4. Example 4: Indicators of uniformly bounded multidimensional
ellipsoids

In Example 3, we only considered indicators of ellipsoids centered in a compact subset of Rd ,
namely the unit square. The following lemma will allow us to extend such results to indicators
of sets in the whole Rd , at the cost of a moderate additional assumption and a marginal increase
of the bracketing numbers.

Lemma 3.8. Let μ be a measure with continuous distribution function F , and s ≥ 1. Further-
more let F := {1S : S ∈ S}, where S is a class of measurable sets of diameter not larger than
D ≥ 1, and G = Hα(Rd, [0,1]). Assume that there are constants p,q ∈ N, C > 0, and a function
f : R+ → R+, such that for any K > 0 we have

N
(
ε,f (ε), FK, G,Ls(μ)

)≤ CKpε−q (3.2)



1386 H. Dehling, O. Durieu and M. Tusche

for sufficiently small ε, where FK := {1S : S ∈ S, S ⊂ [−K,K]d }. If there are some constants
b,β > 0 such that

μ
({

x ∈ Rd : |x| > t
})≤ bt−1/β (3.3)

for all sufficiently large t , then

N
(
ε,max

{
f (ε),4

√
d
(
ω−1

F

(
2−(d+1)εs

))−α}
, F , G,Ls(μ)

)
= Oβ,b,C,D,p

(
ε−(βps+q)

)
as ε → 0,

where ωF is the modulus of continuity of F .

The proof is postponed to the Appendix.

Proposition 3.9. Let F denote the class of indicators of ellipsoids of diameter uniformly
bounded by D > 0, which are aligned with coordinate axes (and arbitrary centers in the whole
space Rd ). If μ is a measure on Rd with a density bounded by B > 0 and if furthermore (3.3)
holds for some β > 0 and b > 0, then there exists a constant C = Cd,B,D > 0 such that

N
(
ε,Cε−2αs, F , G,Ls(μ)

)= Oβ,b,d,B,D,s

(
ε−(βs+2)ds

)
as ε → 0,

where G = Hα(Rd , [0,1]).

Proof. In the situation of Example 3 change the set of the centers of the ellipsoids [0,1]d
to [−K,K]d and apply Lemma 3.8. Following the proof of Proposition 3.6, we can easily
see that condition (3.2) holds for p = ds, q = 2ds and f (ε) = Cd,B,Dε−2αs . Note that since
we have a bounded density, we have ωF (x) ≤ Bx and therefore 4

√
d(ω−1

F (2−(d+1)εs))−α ≤
4
√

d(2d+1B)αε−αs ≤ Cd,B,Dε−2αs for sufficiently small ε. �

Remark 3.10. In the situation of Proposition 3.9 for the class F ′ of indicators of balls in Rd with
uniformly bounded diameter, we can obtain the slightly sharper bound

N
(
ε,Cε−αs, F ′, G,Ls(μ)

)= Oβ,b,d,B,D,s

(
ε−((β+1)ds+1)s

)
as ε → 0

for some C = C′
d,B > 0 by applying Lemma 3.8 directly to the situation in Example 2 and using

the same arguments as in the previous example.

3.5. Example 5: Indicators of balls of an arbitrary metric with common
center

Let (X , d) be a metric space and fix x0 ∈ X . An x0-centered ball is given by

B(t) := {x ∈ X : d(x0, x) ≤ t
}
.

We have the following bound on the bracketing numbers of the class F := {1B(t): t > 0}.
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Proposition 3.11. Let s ≥ 1 and γ > 1. If for the probability measure μ on X the modulus of
continuity ωG of the function G(t) := μ(B(t)) satisfies

ωG(x) = O
(|logx|−sγ

)
as x → 0, (3.4)

then there is a constant C = CG > 0 such that

N
(
ε, exp

(
Cε−1/γ

)
, F , G,Ls(μ)

)= O
(
ε−s
)

as ε → 0,

where G = Hα(X , [0,1]).

Remark 3.12. Note that in the case that X = R2, dμ(t) = ρ(t)dt , the metric d is given by the
Euclidean norm, and x0 = 0, an equivalent condition to (3.4) is

sup
r≥0

∫ r+x

r

t

∫ 2π

0
ρ
(
teiϕ)dϕ dt = O

(|logx|−sγ
)

as x → 0.

Proof of Proposition 3.11. Fix ε > 0 and choose m = 3ε−s + 1�. Let G−1 denote the pseudo-
inverse of G and set for i ∈ {1, . . . ,m}

ri := G−1
(

i

m

)
, Bi := B(ri).

For convenience, set B−1,B0 := ∅ and Bm+1 = X . Define

li (x) := T [Bi−2, X \ Bi−1](x) and ui(x) := T [Bi , X \ Bi+1](x).

The system {[li , ui]: i ∈ {1, . . . ,m}} is a covering for F . Obviously

‖ui − li‖s
s ≤ μ(Bi+1 \ Bi−2) ≤ 3

m
≤ εs.

By Lemma 3.1, we have

‖ui‖α ≤ 1 + 3α

d(Bi , X \ Bi+1)α
≤ 1 + 3α

(ri+1 − ri)α
.

Since by condition (3.4)

ri+1 − ri ≥ inf

{
x > 0: ∃t ∈ R such that G(t + x) − G(t) ≥ 1

m

}

≥ inf

{
x > 0: ∃t ∈ R such that ωG(x) ≥ 1

m

}

≥ exp
(−cGm1/(sγ )

)
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for some constant cG > 0, there is a constant CG > 0 such that

‖ui‖α ≤ 1 + 3α exp
(
αcGm1/(sγ )

)≤ exp
(
CGm1/(sγ )

)
≤ exp

(
CGε−1/γ

)
.

Analogously, we can show that ‖li‖α ≤ exp(CGε−1/γ ). This implies that all [li , ui] are
(ε, exp(CGε−1/γ ), F , G,Ls(μ))-brackets and thus the proposition is proved. �

3.6. Example 6: A class of monotone functions

In this example, we choose X = R. We consider the case of a one-parameter class of functions
F = {ft : t ∈ [0,1]}, where ft are functions from R to R with the properties:

(i) for all t ∈ [0,1] and x ∈ R, 0 ≤ ft (x) ≤ 1;
(ii) for all 0 ≤ s ≤ t ≤ 1, fs ≤ ft ;

(iii) for all t ∈ [0,1], ft is non-decreasing on R.

Note that all the sequel remains true if in (iii), non-decreasing is replaced by non-increasing.
Further, for a probability measure μ on R, we define Gμ(t) = μft and we say that Gμ is Lipschitz
with Lipschitz constant λ > 0 if |Gμ(t) − Gμ(s)| ≤ λ|t − s|, for all s, t ∈ [0,1].

Empirical processes indexed by a 1-parameter class of functions arise, for example, in
the study of empirical U-processes; see Borovkova, Burton and Dehling [5]. The empirical
U-distribution function with kernel function g(x, y) is defined as

Un(t) = 1(
n
2

) ∑
1≤i<j≤n

1{g(Xi,Xj )≤t}.

Then, the first order term in the Hoeffding decomposition is given by

n∑
i=1

gt (Xi),

where gt (x) = P(g(x,X1) ≤ t). For this class of functions, conditions (i) and (ii) are automat-
ically satisfied. Condition (iii) holds, if g(x, y) is monotone in x. This is, for example, the case
for the kernel g(x, y) = y − x, which arises in the study of the empirical correlation integral; see
Borovkova, Burton and Dehling [5].

Proposition 3.13. Let s ≥ 1 and γ > 1. Let μ be a probability measure on R such that its
distribution function F satisfies

ωF (x) = O
(∣∣log(x)

∣∣−sγ )
as x → 0 (3.5)
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and such that Gμ is Lipschitz with Lipschitz constant λ > 0. Then there exists a C = CF > 0,
such that

N
(
ε, exp

(
Cε−1/γ

)
, F , G,Ls(μ)

)= Oλ

(
ε−s
)

as ε → 0,

where G = Hα(R, [0,1]).

Proof. Let ε > 0 and m = (λ + 4)ε−s + 1�. For i = 0, . . . ,m, we set

ti = i

m
and xi = F−1

(
i

m

)
.

We always have xm = +∞, but x0 could be finite or −∞. In order to simplify the notation, in
the first case, we change to x0 = −∞.

We define, for j ∈ {1, . . . ,m}, the functions lj and uj as follows. If k ∈ {1, . . . ,m − 1},
we set lj (xk) = ftj−1(xk−1) and uj (xk) = ftj (xk+1), where we have to understand f (±∞) as
limx→±∞ f (x). If k ∈ {0, . . . ,m−1} and x ∈ (xk, xk+1), we define lj (x) and uj (x) by the linear
interpolations,

lj (x) = lj (xk) + (x − xk)
lj (xk+1) − lj (xk)

xk+1 − xk

,

uj (x) = uj (xk) + (x − xk)
uj (xk+1) − uj (xk)

xk+1 − xk

with the exceptions that lj (x) = lj (x1) = ftj−1(−∞) if x ∈ (−∞, x1) and uj (x) = uj (xm−1) =
ftj (+∞) if x ∈ (xm−1,+∞). Then it is clear that for all tj−1 ≤ t ≤ tj , we have lj ≤ ft ≤ uj ,
that is, ft belongs to the bracket [lj , uj ].

Further, being piecewise affine functions, lj and uj are α-Hölder continuous functions with
Hölder norm

‖lj‖α ≤ 1 + max
k=1,...,m

lj (xk) − lj (xk−1)

(xk − xk−1)α
≤ 1 + max

k=1,...,m

1

(xk − xk−1)α
≤ 1 + exp

(
CF m1/(sγ )

)
.

Here we have used the condition (3.5) and the same computation as for the class of indicators of
rectangles. Analogously, the same bound holds for ‖uj‖α .

Now,

‖uj − lj‖s
s ≤ ‖uj − lj‖1 ≤ ‖uj − ftj ‖1 + ‖ftj − ftj−1‖1 + ‖lj − ftj−1‖1.

First, since Gμ is Lipschitz, we have

‖ftj − ftj−1‖1 ≤ G(tj ) − G(tj−1) ≤ λ(tj − tj−1) = λ

m
.
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For x ∈ [xk−1, xk], since ft is non-decreasing, we have uj (x) ≤ ftj (xk+1) and utj (x) ≥
ftj (xk−1), thus

‖uj − ftj ‖1 ≤
m−1∑
k=1

∣∣ftj (xk+1) − ftj (xk−1)
∣∣μ([xk, xk+1]

)

≤ 1

m

m−1∑
k=1

(∣∣ftj (xk+1) − ftj (xk)
∣∣+ ∣∣ftj (xk) − ftj (xk−1)

∣∣)

≤ 2

m

m−1∑
k=0

∣∣ftj (xk+1) − ftj (xk)
∣∣

≤ 2

m

since, by monotonicity,
∑m−1

k=0 |ftj (xk+1)−ftj (xk)| ≤ 1. In the same way, we get ‖lj −ftj−1‖1 ≤
2
m

and we infer

‖uj − lj‖s ≤
(

λ + 4

m

)1/s

≤ ε.

Thus, the number of (ε, exp(CF ε−1/γ ), G,Ls(μ))-brackets needed to cover the class F is
bounded by m, which proves the proposition. �

4. Application to ergodic torus automorphisms

We can apply Theorem 2.1 to the empirical process of ergodic torus automorphisms. Let Td =
Rd/Zd be the torus of dimension d > 1, which is identified with [0,1]d . If A is a square matrix of
dimension d with integer coefficients and determinant ±1, then the transformation T : Td −→ Td

defined by

T x = Ax mod 1

is an automorphism of Td that preserves the Lebesgue measure λ. Thus (Td , B(Td), λ,T ) is a
measure preserving dynamical system. It is ergodic if and only if the matrix A has no eigenvalue
which is a root of unity. A result of Kronecker shows that in this case, A always has at least
one eigenvalue which has modulus different than 1. The hyperbolic automorphisms (i.e., no
eigenvalue of modulus 1) are particular cases of Anosov diffeomorphisms. Their properties are
better understood than in the general case. However, the general case of ergodic automorphisms
is an example of a partially hyperbolic system for which strong results can be proved. The central
limit theorem for regular observables has been proved by Leonov [26], see also Le Borgne [25]
for refinements. Other limit theorems can be found in Dolgopyat [14]. The one-dimensional
empirical process, for R-valued regular observables, has been studied by Durieu and Jouan [22].
Dehling and Durieu [10] proved weak convergence of the classical empirical process (indexed
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by indicators of left infinite rectangles). We can now generalize this result to empirical processes
indexed by further classes of functions. We can get the following proposition, as a corollary of
Theorem 2.1 and the results of the preceding section.

Theorem 4.1. Let T be an ergodic d-torus automorphism and let F be one of the following
classes:

• the class of indicators of rectangles of Td ;
• the class of indicators of Euclidean balls of Td ;
• the class of indicators of ellipsoids of bounded diameter of Td ;

Then the empirical process

Un(f ) = 1√
n

n∑
i=1

(
f ◦ T i − λf

)
, f ∈ F ,

converges in distribution in �∞(F ) to a tight Gaussian process (W(f ))f ∈F .

Proof. Let F be one of the classes of functions and B be the class of α-Hölder functions for some
α ∈ (0,1]. We set G the subclass of B given by the functions bounded by 1. We consider the Td -
valued stationary process Xi = T i . Since the distribution of X0 is the Lebesgue measure on Td ,
Propositions 3.2, 3.5 and 3.6 show that the condition (2.4) holds for every possible choice of
class F . For all f ∈ B, the central limit theorem (2.1) holds; see Leonov [26] and Le Borgne [25].
Dehling and Durieu [10], Proposition 3, show that the ergodic automorphisms of the torus satisfy
the multiple mixing property (2.3) for functions of the class G , and with the constants � = 1 and
d0 the size of the biggest Jordan block of T restricted to its neutral subspace. Thus, the 2pth
moment bound (2.2) holds, and Theorem 2.1 can be applied to conclude. �

5. Proof of the main theorem

In the proof of Theorem 2.1, we need a generalization of Theorem 4.2 of Billingsley [4]. Billings-
ley considers random variables Xn, X

(m)
n , X(m), X, m,n ≥ 1, with values in a separable metric

space (S,ρ) satisfying (a) X
(m)
n

D−→X(m) as n → ∞, for all m ≥ 1, (b) X(m) D−→X as m → ∞
and (c) ∀δ > 0, lim supn→∞ P(ρ(X

(m)
n ,Xn) ≥ δ) → 0 as m → ∞. Theorem 4.2 of Billingsley

[4] states that then Xn
D−→X. Dehling, Durieu and Volný [11] proved that this result holds with-

out condition (b), provided that S is a complete separable metric space. More precisely, they
could show that in this situation (a) and (c) together imply the existence of a random variable X

satisfying (b), and thus by Billingsley’s theorem Xn
D−→X. Here, we will generalize this theorem

to possibly non-measurable random elements with values in non-separable spaces. Regarding
convergence in distribution of non-measurable random elements, we use the notation of van der
Vaart and Wellner [34]. In accordance with the terminology of van der Vaart and Wellner [34],
we will call a not necessarily measurable function with values in a measurable space a random
element.
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Theorem 5.1. Let Xn,X
(m)
n ,X(m), m,n ≥ 1, be random elements with values in a complete

metric space (S,ρ), and suppose that X(m) is measurable and separable, that is, there is a
separable set S(m) ⊂ S such that P(X(m) ∈ S(m)) = 1. If the conditions

X(m)
n

D−→ X(m) as n → ∞, for all m ≥ 1, (5.1)

lim sup
n→∞

P ∗(ρ(Xn,X
(m)
n

)≥ δ
) −→ 0 as m → ∞, for all δ > 0 (5.2)

are satisfied, then there exists an S-valued, separable random variable X such that X(m) D−→ X

as m → ∞, and

Xn
D−→ X as n → ∞.

The proof is postponed to the Appendix.

Proof of Theorem 2.1. For all q ≥ 1, there exist two sets of Nq := N(2−q, exp(C2q/γ ), F ,

G,Ls(μ)) functions {gq,1, . . . , gq,Nq } ⊂ G and {g′
q,1, . . . , g

′
q,Nq

} ⊂ G , such that ‖gq,i − g′
q,i‖s ≤

2−q , ‖gq,i‖B ≤ exp(C2q/γ ), ‖g′
q,i‖B ≤ exp(C2q/γ ) and for all f ∈ F , there exists an i such that

gq,i ≤ f ≤ g′
q,i . Further, by (2.4),

∑
q≥1

2−(r+1)qN2
q < +∞. (5.3)

For all q ≥ 1, we can build a partition F =⋃Nq

i=1 Fq,i of the class F into Nq subsets such that
for all f ∈ Fq,i , gq,i ≤ f ≤ g′

q,i . To see this, define Fq,1 = [gq,1, g
′
q,1] and Fq,i = [gq,i , g

′
q,i] \

(
⋃i−1

j=1 Fj ).
In the sequel, we will use the notation πqf = gq,i and π ′

qf = g′
q,i if f ∈ Fq,i . For each q ≥ 1,

we introduce the process

F
(q)
n (f ) := Fn(πqf ) = 1

n

n∑
i=1

πqf (Xi); f ∈ F ,

which is constant on each Fq,i . Further, if f ∈ Fq,i , we have

F
(q)
n (f ) ≤ Fn(f ) ≤ Fn

(
π ′

qf
)
.

We introduce

U
(q)
n (f ) := Un(πqf ) = √

n
(
F

(q)
n (f ) − μ(πqf )

); f ∈ F .

Proposition 5.2. For all q ≥ 1, the sequence (U
(q)
n (f ))f ∈F converges in distribution in �∞(F )

to a piecewise constant Gaussian process (U(q)(f ))f ∈F as n → ∞.
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Proof. Since πqf ∈ G and G is a subset of B, by assumption (2.1), the CLT holds and U
(q)
n (f )

converges to a Gaussian law for all f ∈ F . We can apply the Cramér–Wold device to get the
finite-dimensional convergence: for all k ≥ 1, for all f1, . . . , fk ∈ F , (U

(q)
n (f1), . . . ,U

(q)
n (fk))

converges in distribution to a Gaussian vector (U(q)(f1), . . . ,U
(q)(fk)) in Rk . Since U

(q)
n is

constant on each element Fq,i of the partition, the finite-dimensional convergence implies
the weak convergence of the process. Indeed, consider the function τq : RNq → �∞(F ) that
maps a vector x = (x1, . . . , xNq ) to the function F → R, f �→ xi such that f ∈ Fq,i . For

f1 ∈ Fq,1, . . . , fNq ∈ Fq,Nq we have U
(q)
n = τq(U

(q)
n (f1), . . . ,U

(q)
n (fNq )) and thus the contin-

uous mapping theorem guarantees that U
(q)
n converges weakly to the random variable U(q) =

τq(U(q)(f1), . . . ,U
(q)(fNq )) which is constant on each Fq,i . �

Proposition 5.3. For all ε > 0, η > 0 there exists a q0 such that for all q ≥ q0

lim sup
n→∞

P ∗( sup
f ∈F

∣∣Un(f ) − U
(q)
n (f )

∣∣> ε
)

≤ η.

Proof. For a random variable Y let Y denote its centering Y := Y − EY . If for arbitrary random
variables Yl, Y,Yu we have Yl ≤ Y ≤ Yu, then

|Y − Y l | ≤ |Yu − Y l | + E|Yu − Yl |.
Using F

(q+K)
n (f ) ≤ Fn(f ) ≤ Fn(π

′
q+Kf ) and E|Fn(π

′
q+Kf ) − F

(q+K)
n (f )| ≤ 2−(q+K) for all

f ∈ F , we obtain

∣∣Un(f ) − U
(q)
n (f )

∣∣ =
∣∣∣∣∣

K∑
k=1

(
U

(q+k)
n (f ) − U

(q+k−1)
n (f )

)+ Un(f ) − U
(q+K)
n (f )

∣∣∣∣∣
≤

K∑
k=1

∣∣U(q+k)
n (f ) − U

(q+k−1)
n (f )

∣∣+ ∣∣Un

(
π ′

q+Kf
)− U

(q+K)
n (f )

∣∣
+ √

n2−(q+K).

In order to assure ε
4 ≤ 2−(q+K)

√
n ≤ ε

2 , for fixed n and q , choose K = Kn,q , where

Kn,q :=
⌊

log

(
4
√

n

2qε

)
log(2)−1

⌋
.

For each i ∈ {1, . . . ,Nq}, we obtain

sup
f ∈Fq,i

∣∣Un(f ) − U
(q)
n (f )

∣∣ ≤ Kn,q∑
k=1

sup
f ∈Fq,i

∣∣U(q+k)
n (f ) − U

(q+k−1)
n (f )

∣∣
+ sup

f ∈Fq,i

∣∣Un

(
π ′

q+Kn,q
f
)− U

(q+Kn,q )
n (f )

∣∣+ ε

2
.
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By taking εk = ε
4k(k+1)

,
∑

k≥1 εk = ε
4 and we get for each i ∈ {1, . . . ,Nq},

P ∗( sup
f ∈Fq,i

∣∣Un(f ) − U
(q)
n (f )

∣∣≥ ε
)

≤
Kn,q∑
k=1

P ∗( sup
f ∈Fq,i

∣∣U(q+k)
n (f ) − U

(q+k−1)
n (f )

∣∣≥ εk

)

+ P ∗
(

sup
f ∈Fq,i

∣∣Un

(
π ′

q+Kn,q
f
)− U

(q+Kn,q )
n (f )

∣∣≥ ε

4

)
.

Notice that the suprema in the r.h.s. are in fact maxima over finite numbers of functions, since
the functionals πq and π ′

q (and thus U
(q)
n ) are constant on the Fq,i . Therefore, we can work

with standard probability theory from this point: the outer probabilities can be replaced by usual
probabilities on the right-hand side. For each k, choose a set Fk composed by at most Nk−1Nk

functions of F in such a way that Fk contains one function in each non-empty Fk−1,i ∩ Fk,j ,
i = 1, . . . ,Nk−1, j = 1, . . . ,Nk . Then, for each i ∈ {1, . . . ,Nq}, we have

P ∗( sup
f ∈Fq,i

∣∣Un(f ) − U
(q)
n (f )

∣∣≥ ε
)

≤
Kn,q∑
k=1

∑
f ∈Fq,i∩Fq+k

P
(∣∣U(q+k)

n (f ) − U
(q+k−1)
n (f )

∣∣≥ εk

)

+
∑

f ∈Fq,i∩Fq+Kn,q

P

(∣∣Un

(
π ′

q+Kn,q
f
)− U

(q+Kn,q )
n (f )

∣∣≥ ε

4

)
.

Now using Markov’s inequality at the order 2p (p will be chosen later) and assumption (2.2),
we infer

P ∗( sup
f ∈Fq,i

∣∣Un(f ) − U
(q)
n (f )

∣∣≥ ε
)

≤ Cp

Kn,q∑
k=1

∑
f ∈Fq,i∩Fq+k

1

ε
2p
k

p∑
j=1

nj−p‖πq+kf − πq+k−1f ‖j
s

× log2p+aj
(‖πq+kf − πq+k−1f ‖B + 1

)
+ Cp

∑
f ∈Fq,i∩Fq+Kn,q

(
4

ε

)2p p∑
j=1

nj−p
∥∥πq+Kn,q f − π ′

q+Kn,q
f
∥∥j

s

× log2p+aj
(∥∥πq+Kn,q f − π ′

q+Kn,q
f
∥∥

B + 1
)
.

At this point, without loss of generality, we can assume that a ≥ −1 (if not, take a larger a) and
thus the assumption on γ reduces to γ > 2 + a.
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Note that by construction, for each k ≥ 1,

‖πq+kf − πq+k−1f ‖s ≤ ‖πq+kf − f ‖s + ‖πq+k−1f − f ‖s ≤ 3 · 2−(q+k),∥∥πq+kf − π ′
q+kf

∥∥
s
≤ 2−(q+k),

‖πq+kf − πq+k−1f ‖B ≤ 2 exp
(
C2(q+k)/γ

)
,∥∥πq+kf − π ′

q+kf
∥∥

B ≤ 2 exp
(
C2(q+k)/γ

)
.

Thus,

P ∗( sup
f ∈Fq,i

∣∣Un(f ) − U
(q)
n (f )

∣∣≥ ε
)

≤ 22p+1Cp

p∑
j=1

Kn,q∑
k=1

#(Fq,i ∩ Fq+k)
(k(k + 1))2p

ε2p

× nj−p2−j (q+k) log2p+aj
(
2 exp

(
C2(q+k)/γ

)+ 1
)

and if q is large enough,

P ∗( sup
f ∈F

∣∣Un(f ) − U
(q)
n (f )

∣∣≥ ε
)

≤
Nq∑
i=1

P ∗( sup
f ∈Fq,i

∣∣Un(f ) − U
(q)
n (f )

∣∣≥ ε
)

≤ D

Nq∑
i=1

p∑
j=1

Kn,q∑
k=1

#(Fq,i ∩ Fq+k)
(k(k + 1))2p

ε2p
nj−p2−j (q+k)2(2p+aj)(q+k)/γ ,

where D is a new constant which depends on p, C, and Cp . Since (Fq,i)i=1,...,Nq is a partition
of F , we have

Nq∑
i=1

#(Fq,i ∩ Fq+k) = #(Fq+k) ≤ Nq+k−1Nq+k,

thus we have

P ∗( sup
f ∈F

∣∣Un(f ) − U
(q)
n (f )

∣∣≥ ε
)

≤ D′
p∑

j=1

nj−p

ε2p

Kn,q∑
k=1

Nq+k−1Nq+kk
4p2(2p+(a−γ )j)(q+k)/γ (5.4)
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≤ D′
p∑

j=1

nj−p

ε2p
2(p−j)(γ+2+a)(q+Kn,q )/γ

×
Kn,q∑
k=1

Nq+k−1Nq+kk
4p2((−a−γ )p+(2+2a)j)(q+k)/γ

≤ D′′
p−1∑
j=1

n(j−p)(γ−(2+a))/(2γ )

ε2p+(p−j)(γ+2+a)/γ

∞∑
k=1

Nq+k−1Nq+kk
4p2(2+a−γ )p(q+k)/γ

+ D′

ε2p

∞∑
k=1

Nq+k−1Nq+kk
4p2(2+a−γ )p(q+k)/γ ,

because a ≥ −1 and thus (2 + 2a)j ≤ (2 + 2a)p, and where D′ and D′′ are positive constants
also depending on p, C, and Cp . As p

2+a−γ
γ

→ −∞ when p tends to infinity, there exists some

p > 1 such that p
2+a−γ

γ
< −(r + 1) and thus by (5.3),

∞∑
k=2

Nk−1Nkk
4p2p(2+a−γ )k/γ ≤

∞∑
k=2

N2
k−1k

4p2p(2+a−γ )k/γ +
∞∑

k=2

N2
k k4p2p(2+a−γ )k/γ < +∞.

Therefore, the first summand of (5.4) goes to zero as n goes to infinity and the second summand
of (5.4) goes to zero as q goes to infinity. �

Propositions 5.2 and 5.3 establish for the random elements Un, U
(q)
n , U(q) with value in the

complete metric space �∞(F ) conditions (5.1) and (5.2) of Theorem 5.1, respectively. Thus,
Theorem 5.1 completes the proof of Theorem 2.1. �

Appendix

Proof of Lemma 3.1. By the triangle inequality, we have for all x, y ∈ X that∣∣dB(x) − dB(y)
∣∣ ≤ d(x, y),

dB(x) + dA(y) ≤ d(A,B).

Therefore,∣∣T [A,B](x) − T [A,B](y)
∣∣

=
∣∣∣∣ (dB(x) − dB(y))(dB(y) + dA(y)) + dB(y)(dB(y) + dA(y)) − dB(y)(dB(x) + dA(x))

(dB(x) + dA(x))(dB(y) + dA(y))

∣∣∣∣
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=
∣∣∣∣dB(x) − dB(y)

dB(x) + dA(x)

∣∣∣∣+ dB(y)

dB(y) + dA(y)

∣∣∣∣ (dB(y) − dB(x)) + (dA(y) − dA(x))

dB(x) + dA(x)

∣∣∣∣
≤ 3

d(x, y)

d(A,B)

and thus

∥∥T [A,B]∥∥
α

:= ∥∥T [A,B]∥∥∞ + sup
x �=y

|T [A,B](x) − T [A,B](y)|
d(x, y)α

≤ 1 + sup
x �=y

( |T [A,B](x) − T [A,B](y)|
d(x, y)

)α∣∣T [A,B](x) − T [A,B](y)
∣∣1−α

≤ 1 +
(

3

d(A,B)

)α

. �

Proof of Lemma 3.7. Without loss of generality, assume that x = 0. For v ∈ Rd , let Dv denote
the diagonal d × d-matrix with diagonal entries v1, . . . , vd . We define the operator norm of the
d × d-matrix A by |A|∗ := supy∈Rd\{0} |Ay|/|y|. Observe that |Dv|∗ = maxi=1,...,d |vi |. We can

characterize E(0,
j
m

) and Rd \ E(0,
j
m

+ 1
m

) by

E

(
0,

j

m

)
= {z ∈ Rd :

∣∣D−1
j/mz

∣∣≤ 1
}

and

Rd \ E

(
0,

j

m
+ 1

m

)
= {y ∈ Rd :

∣∣D−1
j/m+1/my

∣∣> 1
}
,

respectively. Thus, for any z ∈ E(0,
j
m

) and y ∈ Rd \ E(0,
j
m

+ 1
m

),

|y − z| ≥ ∣∣D−1
j/m+1/m

∣∣−1
∗
∣∣D−1

j/m+1/my − D−1
j/m+1/mDj/mD−1

j/mz
∣∣

≥ ∣∣D−1
j/m+1/m

∣∣−1
∗
(∣∣D−1

j/m+1/my
∣∣− ∣∣D−1

j/m+1/mDj/m

∣∣∗∣∣D−1
j/mz

∣∣)
>
∣∣D−1

j/m+1/m

∣∣−1
∗
(
1 − ∣∣D−1

j/m+1/mDj/m

∣∣∗)
= min

ji=1,...,d

{
j

m
+ 1

m

}(
1 − max

i=1,...,d

{
ji/m

ji/m + 1/m

})

≥ 1

Dm2

since ji ∈ {0, . . . ,Dm − 1}. �
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Proof of Lemma 3.8. For any ε > 0, set Kε = sup{K > 0: μ([−K,K]d) ≤ 1 − ε}. We will
denote the function (0,1) → R+, ε �→ Kε by K•. Now, introduce the bracket [L,Uε], given by

L ≡ 0 and Uε := T
[
Rd \ [−Kεs/2,Kεs/2]d , [−Kεs ,Kεs ]d].

Obviously, we have ‖Uε − L‖s ≤ ‖Uε − L‖1/s

1 ≤ ε.
To get a bound for the Hölder-norm of Uε , consider the distribution function

G(t) := μ
({

x ∈ Rd : |x|max ≤ t
})

on R, where |x|max = max{|xi |: i = 1, . . . , d}. Observe that the pseudo-inverse G−1 of G is
linked to K• by the equality Kε = G−1(1 − ε). With geometrical arguments, we infer

G(t) =
∑

j∈{−1,1}d
σ (j)F (tj),

where σ(j) :=∏d
i=1 ji ∈ {−1,1}. Therefore,

ωG(x) = sup
t∈R

{
G(t + x) − G(t)

}= sup
t∈R

∑
j∈{−1,1}d

σ (j)
(
F
(
(t + x)j

)− F(tj)
)

≤
∑

j∈{−1,1}d
sup
t∈R

∣∣F ((t + x)j
)− F(tj)

∣∣≤ ∑
j∈{−1,1}d

ωF (
√

dx)

≤ 2dωF (
√

dx).

Now by Lemma 3.1 we obtain

‖Uε‖α ≤ 1 + 3α

|G−1(1 − εs/2) − G−1(1 − εs)|α

≤ 1 + 3α

(
inf

{
x > 0: ∃t ∈ R such that G(t + x) − G(t) ≥ εs

2

})−α

≤ 1 + 3α

(
inf

{
x > 0: ωG(x) ≥ εs

2

})−α

≤ 1 + 3α

(
sup

{
x ≥ 0: ωF (

√
dx) ≤ εs

2d+1

})−α

= 1 + (3
√

d)α
(
ω−1

F

(
2−(d+1)εs

))−α
,

where we used that ωF is continuous here to replace the infimum by the supremum.
Then [L,Uε] is an (ε,4

√
d(ω−1

F (2−(d+1)εs))−α, G,Ls(μ))-bracket for sufficiently small ε.
Since [L,Uε] contains any f ∈ F \ FKε/2+D , by (3.2) we obtain for all those ε the bound

N
(
ε,max

{
f (ε),4

√
d
(
ω−1

F

(
2−(d+1)εs

))−α}
, F , G,Ls(μ)

)≤ C(Kεs/2 + D)pε−q + 1.
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Let us finally consider the growth rate of Kεs/2 as ε → 0. By assumption (3.3) and since
| · |max ≤ | · |, we have 1 − G(t) ≤ bt−1/β for sufficiently large t . Therefore,

G
(
(b/ε)β

)≥ 1 − ε.

By the definition of K•, we therefore obtain that Kεs/2 ≤ (2b/εs)β = Oβ,b(ε
−βs) which proves

the lemma. �

Proof of Theorem 5.1. (i) We will first show that X(m) converges in distribution to some random
variable X. We denote by L(m) the distribution of X(m); this is defined since X(m) is measurable.
Moreover, L(m) is a separable Borel probability measure on S. By Theorem 1.12.4 of van der
Vaart and Wellner [34], weak convergence of separable Borel measures on a metric space S can
be metrized by the bounded Lipschitz metric, defined by

dBL1(L1,L2) = sup
f ∈BL1

∣∣∣∣
∫

f (x)dL1(x) −
∫

f (x)dL2(x)

∣∣∣∣
for any Borel measures L1,L2 on S. Here, BL1 := {f :S −→ R: ‖f ‖BL1 ≤ 1}, where

‖f ‖BL1 := max

{
sup
x∈S

∣∣f (x)
∣∣, sup

x �=y∈S

f (x) − f (y)

ρ(x, y)

}
.

In addition, the theorem states that the space of all separable Borel measures on a complete space
is complete with respect to the bounded Lipschitz metric. Thus, it suffices to show that L(m) is a
dBL1 -Cauchy sequence. We obtain

dBL1

(
L(m),L(l)

) = sup
f ∈BL1

∣∣Ef
(
X(m)

)− Ef
(
X(l)
)∣∣

≤ sup
f ∈BL1

{∣∣Ef
(
X(m)

)− E∗f
(
X(m)

n

)∣∣+ ∣∣E∗f
(
X(m)

n

)− E∗f (Xn)
∣∣

+ ∣∣E∗f (Xn) − E∗f
(
X(l)

n

)∣∣+ ∣∣E∗f
(
X(l)

n

)− Ef
(
X(l)
)∣∣}

for all n ∈ N. For a Borel measurable separable random element X(m) weak convergence

X
(m)
n

D−→ X(m) as n → ∞ is equivalent to supf ∈BL1
|Ef (X(m)) − E∗f (X

(m)
n )| −→ 0; see van

der Vaart and Wellner [34], page 73. Hence by (5.1), we obtain

dBL1

(
L(m),L(l)

)≤ lim inf
n→∞ sup

f ∈BL1

∣∣E∗f
(
X(m)

n

)− E∗f (Xn)
∣∣+ ∣∣E∗f (Xn) − E∗f

(
X(l)

n

)∣∣.
Using Lemma 1.2.2(iii) in van der Vaart and Wellner [34], we obtain

∣∣E∗f
(
X(m)

n

)− E∗f (Xn)
∣∣≤ E

(∣∣f (Xn) − f
(
X(m)

n

)∣∣∗)
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and therefore

sup
f ∈BL1

∣∣E∗f
(
X(m)

n

)− E∗f (Xn)
∣∣ ≤ E

(
ρ
(
Xn,X

(m)
n

)∧ 2
)∗

(A.1)

=
∫ ∞

0
P ∗(ρ(Xn,X

(m)
n

)∧ 2 ≥ t
)

dt,

where we used the last statement of Lemma 1.2.2 in van der Vaart and Wellner [34]. Now, let
ε > 0 be given. By (5.2), there exists an m0 ∈ N such that for every m ≥ m0 there is some n0 ∈ N
such that for every n ≥ n0 we have P ∗(ρ(Xn,X

(m)
n ) ≥ ε/3) ≤ ε/3. Therefore,

P ∗(ρ(Xn,X
(m)
n

)∧ 2 ≥ t
)≤
⎧⎪⎪⎨
⎪⎪⎩

1, if t <
ε

3
,

ε

3
, if

ε

3
≤ t ≤ 2,

0, if 2 < t .

Applying this inequality to (A.1), we obtain

lim inf
n→∞ sup

f ∈BL1

∣∣E∗f
(
X(m)

n

)− E∗f (Xn)
∣∣≤ ∫ 2

0

ε

3
+ 1{t<ε/3} dt = ε

for all m ≥ m0. Hence for l,m ≥ m0 we have dBL1(L
(m),L(l)) ≤ 2ε; that is, (L(m))m∈N is a

dBL1 -Cauchy sequence in a complete metric space.
(ii) The remaining part of the proof follows closely the proof of Theorem 4.2 in Billingsley [4],

replacing the probability measure P by the outer measure P ∗ where necessary and making use
of the Portmanteau theorem; see van der Vaart and Wellner [34], Theorem 1.3.4(iii), and the
sub-additivity of outer measures. From part (i), we already know that there is some measurable

X such that X(m) D−→ X. Let F ⊂ S be closed. Given ε > 0, we define the ε-neighborhood
Fε := {s ∈ S: infx∈F ρ(s, x) ≤ ε}, and observe that Fε is also closed. Since {Xn ∈ F } ⊂ {X(m)

n ∈
Fε} ∪ {ρ(X

(m)
n ,Xn) ≥ ε}, we obtain

P ∗(Xn ∈ F) ≤ P ∗(X(m)
n ∈ Fε

)+ P ∗(ρ(X(m)
n ,Xn

)≥ ε
)

for all m ∈ N. By (5.2) we may choose m0 so large that for all m ≥ m0

lim sup
n→∞

P ∗(ρ(X(m)
n ,Xn

)≥ ε
)≤ ε/2.

As X(m) D−→ X, by the Portmanteau theorem we may choose m1 so large that for all m ≥ m1

P
(
X(m) ∈ Fε

)≤ P(X ∈ Fε) + ε/2.

We now fix m ≥ max(m0,m1). By (5.1) we have X
(m)
n

D−→ X(m) as n → ∞. Thus an application
of the Portmanteau theorem yields

lim sup
n→∞

P ∗(X(m)
n ∈ Fε

) ≤ P
(
X(m) ∈ Fε

)
,
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lim sup
n→∞

P ∗(Xn ∈ F) ≤ P(X ∈ Fε) + ε.

Since this holds for any ε > 0 and limε→0 P(X ∈ Fε) = P(X ∈ F), we get

lim sup
n→∞

P ∗(Xn ∈ F) ≤ P(X ∈ F)

for all closed sets F ⊂ S. By a final application of the Portmanteau theorem we infer

Xn
D−→ X. �
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