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We show that the empirical spectral distribution (ESD) of the sample autocovariance matrix (ACVM) con-
verges as the dimension increases, when the time series is a linear process with reasonable restriction on the
coefficients. The limit does not depend on the distribution of the underlying driving i.i.d. sequence and its
support is unbounded. This limit does not coincide with the spectral distribution of the theoretical ACVM.
However, it does so if we consider a suitably tapered version of the sample ACVM. For banded sample
ACVM the limit has unbounded support as long as the number of non-zero diagonals in proportion to the
dimension of the matrix is bounded away from zero. If this ratio tends to zero, then the limit exists and
again coincides with the spectral distribution of the theoretical ACVM. Finally, we also study the LSD of a
naturally modified version of the ACVM which is not non-negative definite.

Keywords: autocovariance function; autocovariance matrix; banded and tapered autocovariance matrix;
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1. Introduction

Let X = {Xt } be a stationary process with E(Xt ) = 0 and E(X2
t ) < ∞. The autocovariance

function (ACVF) γX(·) and the autocovariance matrix (ACVM) �n(X) of order n are defined
as:

γX(k) = cov(X0,Xk), k = 0,1, . . .

and

�n(X) = ((
γX(i − j)

))
1≤i,j≤n

.

To every ACVF, there corresponds a unique distribution, called the spectral distribution, FX(·)
which satisfies

γX(h) =
∫

(0,1]
exp(2πihx)dFX(x) for all h. (1.1)
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We shall assume that
∞∑

k=1

∣∣γX(k)
∣∣ < ∞. (1.2)

Then FX(·) has a density, known as the spectral density of X or of γX(·), which equals

fX(t) =
∞∑

k=−∞
exp (−2πitk)γX(k), t ∈ (0,1]. (1.3)

The non-negative definite estimate of �n(X) is the sample ACVM

�n(X) = ((
γ̂X(i − j)

))
1≤i,j≤n

where γ̂X(k) = n−1
n−|k|∑
i=1

XiXi+|k|. (1.4)

The matrix �n(X) is a random matrix. Study of the behavior of random matrices, when the di-
mension goes to ∞, have been inspired by both theory and applications. This is done by studying
the behavior of its eigenvalues. For instance a host of results are known for the related sample co-
variance matrix, in the i.i.d. set-up and its variations; results on its spectral distribution, spacings
of the eigenvalues, spectral statistics etc. encompasses a rich theory and a variety of applications.

The autocovariances are of course crucial objects in time series analysis. They are used in
estimation, prediction, model fitting and white noise tests. Under suitable assumptions on {Xt },
for every fixed k, γ̂X(k) → γX(k) almost surely (a.s.). There are also results on the asymptotic
distribution of specific functionals of the autocovariances. Recently, there has been growing in-
terest in the matrix �n(X) itself. For instance, the largest eigenvalue of �n(X) − �n(X) does
not converge to zero, even under reasonable assumptions (see Wu and Pourahmadi [17], Arcones
[14] and Xiao and Wu [18]).

In this article we study the behavior of �n(X), and a few other natural estimators of �n(X),
as n → ∞, through the behavior of its spectral distribution. We investigate the consistency (in an
appropriate sense) of these estimators.

For a real symmetric matrix An×n with eigenvalues λ1, λ2, . . . , λn the Empirical Spectral
Distribution (ESD) of An is defined as,

FAn(x) = n−1
n∑

i=1

I(λi ≤ x). (1.5)

If {FAn} converges weakly to F , we write FAn
w→ F . For X any random variable with distribu-

tion F , X or F will be called the Limiting Spectral Distribution (or measure) (LSD) of FAn . The
entries of An are allowed to be random. In that case, the limit is taken to be either in probability
or (as in this paper) in a.s. sense.

Any matrix Tn of the form ((ti−j ))1≤i,j≤n is a Toeplitz matrix and hence �n(X) and �n(X)

(with a triangular sequence of entries) are Toeplitz matrices. For Tn symmetric, from Szegö’s
theory of Toeplitz operators (see Böttcher and Silbermann [9]), we note that if

∑ |tk| < ∞,
then the LSD of Tn equals f (U) where U is uniformly distributed on (0,1] and f (x) =
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∑∞
k=−∞ tk exp (−2πixk), x ∈ (0,1]. In particular if (1.2) holds, then the LSD of �n(X) equals

fX(U) where fX(·) is as defined in (1.3).
We call a sequence of estimators {En} of �n(X) consistent if its LSD is fX(U) where U is

uniformly distributed on [0,1]. We show that {�n(X)} is inconsistent (see Theorem 2.1(c)). We
also show that if �n(X) is modified by suitable tapering or banding then the modified estimators
are indeed consistent (see Theorem 2.3(b) and (c)). This phenomenon is mainly due to the esti-
mation of a large number of autocovariances by �n(X). Such inconsistency of sample covariance
matrices has also been observed in the context of high-dimensional multivariate analysis, and is
now well understood, with the help the results from Random Matrix Theory.

To obtain the convergence of ESD of such estimators, we impose a reasonable condition on
the stationary process {Xt }; we assume it to be a linear process, that is,

Xt =
∞∑

k=0

θkεt−k, (1.6)

where {θk} satisfies a weak condition and {εt , t ∈ Z} is a sequence of independent random vari-
ables with appropriate conditions. The simulations of Sen [15] suggested that the LSD of �n(X)

exists and is independent of the distribution of {εt } as long as they are i.i.d. with mean zero and
variance one. Basak [4] and Sen [16] initially studied, respectively, the special cases where X is
an i.i.d. process or is an MA(1) process.

In Theorem 2.1, we prove that, if {Xt } satisfies (1.6) and
∑∞

k=0 |θk| < ∞ then the LSD of
�n(X) exists, and it is universal when {εt } are independent with mean zero and variance 1 and
are either uniformly bounded or identically distributed. We further show that LSD is unbounded
when θi ≥ 0 for all i, and thus {�n(X)} is inconsistent, since fX(U) is of bounded support.

When {Xt } is a finite order process, the limit moments can be written as multinomial type
sums of the autocovariances (see (2.4)). When X is of infinite order, the limit moments are the
limits of these sums as the order tends to infinity. Additional properties of the limit moments are
available in the companion report Basak, Bose and Sen [5].

Incidentally, �n(X) reminds us of the sample covariance matrix, S, for the i.i.d. set-up, whose
spectral properties are well known. See Bai [3] for the basic references on S. In particular, the
LSD of S (with i.i.d. entries) under suitable conditions is the Marčenko–Pastur law and is sup-
ported on the interval [0,4]. Thus, the LSD of �n(X) is in sharp contrast.

The proof of Theorem 2.1 is challenging, mainly because of the non-linear dependence, and
the Teoplitz structure of �n(X). Bai and Zhou [2] and Yao [19] study the LSD of the sample
covariance matrix of X1, . . . ,Xn where Xk are i.i.d. p-dimensional vectors with some depen-
dence structure. They establish the existence of the LSD by using Stieltjes transform method.
Here this approach fails completely due to the strong row column dependence. In fact no Stielt-
jes transform proof for even the Toeplitz matrix with i.i.d. input is known. Moreover one added
advantage in both the above articles is the existence of n independent columns, which we lack
here, because we have only one sample from the linear process {Xt }. The methods of Xiao and
Wu [18] is also not applicable in our set-up because they deal with only the maximum eigenvalue
of the difference of �n(X), and �n(X), not the ESD of �n(X).
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Now consider a sequence of integers m := mn → ∞, and a kernel function K(·). Define

f̂X(t) =
m∑

k=−m

K(k/m) exp (−2πitk)γ̂X(k), t ∈ (0,1] (1.7)

as the kernel density estimate of fX(·). Considering this as a spectral density, the corresponding
ACVF is given by (for −m ≤ h ≤ m):

γK(h) =
∫

(0,1]
exp(2πihx)f̂X(x)dx

=
m∑

k=−m

K(k/m)

∫
(0,1]

exp{2πihx − 2πixk}γ̂X(k)dx

= K(h/m)γ̂X(h)

and is 0 otherwise. This motivates the consideration of the tapered sample ACVM

�n,K(X) = ((
K

(
(i − j)/m

)
γ̂X(i − j)

))
1≤i,j≤n

. (1.8)

If K is a non-negative definite function then �n,K(X) is also non-negative definite. Among other
results, Xiao and Wu [18] also showed that under the growth condition mn = o(nγ ) for a suitable
γ and suitable conditions on K , the largest eigenvalue of �n,K(X) − �n(X) tends to zero a.s.
Theorem 2.3(c) states that under the minimal condition mn/n → 0, if K is bounded, symmetric
and continuous at 0 and K(0) = 1, then �n,K(X) is consistent. This is a reflection of the fact that
the consistency notion of Xiao and Wu [18] in terms of the maximum eigenvalue is stronger than
our notion and hence our consistency holds under weaker growth condition on mn.

The second approach is to use banding as in McMurry and Politis [14] who used it to develop
their bootstrap procedures. We study two such banded matrices. Let {mn}n∈N → ∞ be such
that αn := mn/n → α ∈ [0,1]. Then the type I banded sample autocovariance matrix �

α,I
n (X) is

same as �n(X) except that we substitute 0 for γ̂X(k) whenever |k| ≥ mn. This is the same as �n,K

with K(x) = I{|x|≤1}. The type II banded ACVM �
α,II
n (X) is the mn × mn principal sub matrix

of �n(X). Theorem 2.3(a) and (b) states our results on these banded ACVMs. In particular, the
LSD exists for all α and is unbounded when α �= 0. When α = 0, the LSD is fX(U) and thus
those estimate matrices are consistent.

A related matrix, which may be of interest, especially to probabilists, is,

�∗
n(X) = ((

γ ∗
X

(|i − j |)))1≤i,j≤n
where γ ∗

X(k) = n−1
n∑

i=1

XiXi+k, k = 0,1, . . . . (1.9)

�∗
n(X) does not have a “data” interpretation unless one assumes we have 2n − 1 observations

X1, . . . ,X2n−1. It is not non-negative definite and hence many of the techniques applied to �n(X)

are not available for it. Theorem 2.2 states that its LSD also exists but under stricter conditions
on {Xt }. Its moments dominate those of the LSD of �n(X) when θi ≥ 0 for all i (see Theo-
rem 2.2(c)) even though simulations show that the LSD of �∗

n(X) has significant positive mass
on the negative axis.
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2. Main results

We shall assume that X = {Xt }t∈Z is a linear (MA(∞)) process

Xt =
∞∑

k=0

θkεt−k, (2.1)

where {εt , t ∈ Z} is a sequence of independent random variables. A special case of this process
is the so called MA(d) where θk = 0 for all k > d . We denote this process by

X(d) = {Xt,d ≡ θ0εt + θ1εt−1 + · · · + θdεt−d , t ∈ Z} (θ0 �= 0).

Note that working with two sided moving average entails no difference. The conditions on {εt }
and on {θk} that will be used are:

Assumption A. (a) {εt } are i.i.d. with E[εt ] = 0 and E[ε2
t ] = 1.

(b) {εt } are independent, uniformly bounded with E[εt ] = 0 and E[ε2
t ] = 1.

Assumption B. (a) θj ≥ 0 for all j .
(b)

∑∞
j=0 |θj | < ∞.

The series in (2.1) converges a.s. under Assumptions A(a) (or (b)) and B(b). Further, X and
X(d) are strongly stationary and ergodic under Assumption A(a) and weakly (second order) sta-
tionary under Assumptions A(b) and B(b).

The ACVF of X(d) and X are given by

γX(d)(j) =
d−j∑
k=0

θkθj+k and γX(j) =
∞∑

k=0

θkθj+k. (2.2)

Let {ki} stand for suitable integers and let

k = (k0, . . . , kd), Sh,d = {k: k0, . . . , kd ≥ 0, k0 + · · · + kd = h}. (2.3)

Theorem 2.1 (Sample ACVM). Suppose Assumption A(a) or (b) holds.
(a) Then a.s., F�n(X(d)) w→ Fd which is non-random and does not depend on the distribution

of {εt }. Further,

βh,d =
∫

xh dFd(x) =
∑
Sh,d

p
(d)
k

d∏
i=0

[
γX(d)(i)

]ki , (2.4)

where {p(d)
k } are universal constants independent of the θi and the {εi}. They are defined by a

limiting process given in (3.11) and (3.25).
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(b) Under Assumption B(b), a.s., F�n(X) w→ F which is non-random and independent of the
distribution of {εt }. Further for every fixed h, as d → ∞,

Fd
w→ F and βh,d → βh =

∫
xh dF(x).

(c) Under Assumption B(a), Fd has unbounded support and βh,d−1 ≤ βh,d if d ≥ 1. Conse-
quently, if Assumption B(a) and (b) holds, then F has unbounded support. Therefore {�n(X)} is
inconsistent.

Theorem 2.2. Suppose Assumption A(b) holds. Then conclusions of Theorem 2.1 continue to
hold for �∗

n(X), d ≤ ∞, and (2.4) holds with modified universal constants {p∗(d)
k }.

Remark 2.1. (i) From the proofs, it will follow that the limit moments {βh,d} and {βh} of the

above LSDs are dominated by 4h(2h)!
h! (

∑∞
k=0 |θk|)2h which are the (2h)th moment of a Gaus-

sian variable with mean zero and variance 4((
∑∞

k=0 |θk|)2). Hence the limit moments uniquely
identify the LSDs.

(ii) All the above LSDs have unbounded support while fX(U) has support contained in
[−∑∞

−∞ |γX(k)|,∑∞
−∞ |γX(k)|]. Simulations show that the LSD of �∗

n(X) has positive mass
on the negative real axis.

(iii) Since �∗
n(X) is not non-negative definite, the proof of Theorem 2.2 for d = ∞ is different

from the proof of Theorem 2.1 and needs Assumption A(b). A detailed discussion on the different
assumptions is given in Remark 3.1 at the end of the proofs.

(iv) Unfortunately, the moments of the LSD of �n(X) has no easy description. There is no
easy description of the constants {p(d)

k } either. To explain briefly the complications involved in
providing explicit expressions for these quantities, consider the much simpler random Toeplitz
matrix n−1/2Tn,ε = n−1/2((ε|i−j |)) where {εt } is i.i.d. with mean zero variance 1. Bryc, Dembo
and Jiang [10] and Hammond and Miller [13] have showed that the LSD exists and is universal.
The limit moments are of the form

β2k(T ) =
∑

p(w),

where the sum is over the so called matched words w and for each w, p(w) is given as the vol-
ume of a suitable subset of a k-dimensional hypercube. These subsets are defined through the
intersection of k hyperplanes which arise from the function L(i, j) = |i − j |. Thus the value of
p(w) can be calculated by performing multiple integration but must be done only via numeri-
cal integration when k becomes large. For more details, see Bose and Sen [8]. For our set up,
definition of matched words is generalised and is given in Section 3 and p

(d)
k are given by more

complicated integrals. This is the main reason why the moments of the LSD cannot be obtained
in any closed form, even when X is the i.i.d. process.

Bose and Sen [8] considered the Toeplitz matrix Tn,X = ((X|i−j |)) and showed that its LSD
exists under suitable conditions. The moments β∗

2k of the LSD can be written in terms of {θj }
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and {β2k(T )}. This relation is given by

β∗
2k = E

∣∣∣∣∣
∞∑

j=0

θj exp(−2πijU)

∣∣∣∣∣
2k

β2k(T ), (2.5)

where U is uniformly distributed on (0,1).
Even a relation like (2.5) relating the i.i.d. process case to the linear process case eludes us for

the autocovariance matrix. This is primarily due to the non-linear dependence of the autocovari-
ances {γ̂X(k)} on the driving {εt }. One of the Referees has pointed out that in this context, the
so called “diagram formula” (see Arcones [1], Giraitis, Robinson and Surgailis [12] for details)
may be useful, presumably to obtain a formula relating the linear process case to the i.i.d. case.

It is also noteworthy that no limit moment formula or explicit description of the LSD is known
for the matrix n−1Hn,εH

′
n,ε where Hn,ε is the non-symmetric Toeplitz matrix defined using an

i.i.d. sequence (see Bose, Gangopadhyay and Sen [7]).

Theorem 2.3 (Banded and tapered sample ACVM). Suppose Assumption A(b) holds.
(a) Let 0 < α ≤ 1. Then all the conclusions of Theorem 2.1 hold for �

α,I
n (X(d)) and �

α,II
n (X(d))

with modified universal constants {pα,I,(d)
k } and {pα,II,(d)

k }, respectively, in (2.4). Same conclu-
sions continue to hold also for d = ∞.

(b) If α = 0, and Assumption B(b) holds, the LSD of �
α,I
n (X) and �

α,II
n (X) are fX(U).

(a) and (b) remain true for �
α,II
n (X(d)) and �

α,II
n (X) under Assumption A(a).

(c) Suppose Assumption B(b) holds. Let K be bounded, symmetric and continuous at 0,
K(0) = 1, K(x) = 0 for |x| > 1. Suppose mn → ∞ such that mn/n → 0. Then the LSD of
�n,K(X) is fX(U) for d ≤ ∞.

Remark 2.2. (i) When K is non-negative definite, Theorem 2.3(c) holds under Assumption A(a).
(ii) Xiao and Wu [18] show that under the assumption mn = o(nγ ) (for a suitable γ ) and other

conditions, the maximum eigenvalue of �n(X) − �n(X) tends to zero a.s.
(iii) Each of the LSDs above are identical for the combinations (θ0, θ1, θ2, . . .), (θ0,−θ1,

θ2, . . .) and (−θ0, θ1,−θ2, . . .). See Basak, Bose and Sen [5] for a proof which is based on
properties of the limit moments. The LSDs fX(U) of �n(X) are identical for processes with
autocovariances (γ0, γ1, . . . , γd) and (γ0,−γ1, . . . , (−1)dγd). The same is true of all the above
LSDs.

3. Proofs

Szegö’s theorem (or its triangular version) for non-random Toeplitz matrices needs summability
(or square summability) of the entries and that is absent (in the a.s. sense) for �n(X). As an an-
swer to a question raised by Bai [3], Bryc, Dembo and Jiang [10] and Hammond and Miller [13]
showed that for the random Toeplitz matrix n−1/2Tn,ε = n−1/2((ε|i−j |)) where {εt } is i.i.d. with
mean zero variance 1, the LSD exists and is universal (does not depend on the underlying distri-
bution of ε1). Bose and Sen [8] considered the Toeplitz matrix Tn,X = ((X|i−j |)) and showed that
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the LSD of n−1/2Tn,X exists under the following condition: X satisfies (1.6),
∑∞

j=0 |θj | < ∞;
further, {εj } are independent with mean zero and variance 1 and are (i) either uniformly bounded
or (ii) are identically distributed and

∑∞
j=0 jθ2

j < ∞. However, none of the above two results are
applicable to �n(X) due to the non-linear dependence of γ̂X(k) on {Xt }.

Our two main tools will be (i) the moment method to show convergence of distribution and (ii)
the bounded Lipschitz metric to reduce the unbounded case to the bounded case and also to prove
the results for the infinite order case from the finite order case. Suppose {An} is a sequence of
n×n symmetric random matrices. Let βh(An) be the hth moment of its ESD. It has the following
nice form:

βh(An) = 1

n

n∑
i=1

λh
i = 1

n
Tr

(
Ah

n

)
.

Then the LSD of {An} exists a.s. and is uniquely identified by its moments {βh} given below if
the following three conditions hold:

(C1) E[βh(An)] −→ βh for all h (convergence of the average ESD).
(C2)

∑∞
n=1 E[βh(An) − E[βh(An)]]4 < ∞.

(C3) {βh} satisfies Carleman’s condition:
∑∞

h=1 β
−1/2h

2h = ∞.
Let dBL denote the bounded Lipschitz metric on the space of probability measures on R, topol-

ogising the weak convergence of probability measures (see Dudley [11]). The following lemma
and its proof is given in Bai [3].

Lemma 1. (a) Suppose A and B are n × n real symmetric matrices. Then

d2
BL

(
FA,FB

) ≤ 1

n
Tr(A − B)2. (3.1)

(b) Suppose A and B are p × n real matrices. Let X = AAT and Y = BBT . Then

d2
BL

(
FX,FY

) ≤ 2

p2
Tr(X + Y)Tr

[
(A − B)(A − B)T

]
. (3.2)

When α = 1, then without loss of generality for asymptotic purposes, we assume that mn = n.
We visualise the full ACVM �n(X) as the case with α = 1. When {Xt } is a finite order moving
average process with bounded {εt }, we use the method of moments to establish Theorem 2.1(a).
The longest and hardest part of the proof is to verify (C1). We first develop a manageable ex-
pression for the moments of the ESD and then show that asymptotically only “matched” terms
survive. These moments are then written as an iterated sum, where one summation is over finitely
many terms (called “words”). Then we verify (C1) by showing that each one of these finitely
many terms has a limit. The dBL metric is used to remove the boundedness assumption as well
as to deal with the infinite order case. Easy modifications of these arguments yield the existence
of the LSD when 0 ≤ α ≤ 1 in Theorem 2.3(a) and (b). The proof of Theorem 2.2 is a byproduct
of the arguments in the proof of Theorem 2.1. However, due to the matrix now not being non-
negative definite, we impose Assumption A(b). The proof of Theorem 2.1(a) is given in details.
All other proofs are sketched and details are available in Basak, Bose and Sen [5].
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3.1. Proof of Theorem 2.1

The first step is to show that we can without loss of generality, assume that {εt } are uniformly
bounded so that we can use the moment method. For a standard proof of the following lemma,
see Basak, Bose and Sen [5]. For convenience, we will write

�n

(
X(d)

) = �n,d .

Lemma 2. If for every {εt } satisfying Assumption A(b), �n(X
(d)) has the same LSD a.s., then

this LSD continues to hold if {εt } satisfies Assumption A(a).

Thus from now on we assume that Assumption A(b) holds. Fix any arbitrary positive integer h

and consider the hth moment. Then

�n,d = 1

n

((
Y

(n)
i,j

))
i,j=1,...,n

where Y
(n)
i,j =

n∑
t=1

Xt,dXt+|i−j |,dI(t+|i−j |≤n),

βh(�n,d) = 1

n
Tr

(
�h

n,d

) = 1

nh+1

∑
1≤π0=πh,π1,...,πh−1≤n

Y (n)
π0,π1

· · ·Y (n)
πh−1,πh

(3.3)

= 1

nh+1

∑
1≤π0,...,πh≤n

πh=π0

[
h∏

j=1

(
n∑

tj =1

Xtj ,dXtj +|πj−1−πj |,dI(tj +|πj−1−πj |≤n)

)]
.

To express the above in a neater and more amenable form, define

t = (t1, . . . , th), π = (π0, . . . , πh−1),

A = {
(t,π): 1 ≤ t1, . . . , th,π0, . . . , πh−1 ≤ n,πh = π0

}
,

a(t,π) = (
t1, . . . , th, t1 + |π0 − π1|, . . . , th + |πh−1 − πh|

)
,

a = (a1, . . . , a2h) ∈ {1,2, . . . ,2n}2h,

Xa =
2h∏

j=1

(Xaj ,d ) and Ia(t,π) =
h∏

j=1

I(tj +|πj−1−πj |≤n).

Then using (3.3) we can write the so called trace formula,

E
[
βh(�n,d)

] = 1

nh+1
E

[ ∑
(t,π)∈A

Xa(t,π)Ia(t,π)

]
. (3.4)

3.1.1. Matching and negligibility of certain terms

By independence of {εt }, E[Xa(t,π)] = 0 if there is at least one component of the product that has
no εt common with any other component. Motivated by this, we introduce a notion of matching
and show that certain higher order terms can be asymptotically neglected in (3.4). We say:
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• a is d-matched (in short matched) if ∀i ≤ 2h,∃j �= i such that |ai − aj | ≤ d . When d = 0
this means ai = aj .

• a is minimal d-matched (in short minimal matched) if there is a partition P of {1, . . . ,2h},

{1, . . . ,2h} =
h⋃

k=1

{ik, jk}, ik < jk (3.5)

such that {ik} are in ascending order and

|ax − ay | ≤ d ⇔ {x, y} = {ik, jk} for some k.

For example, for d = 1, h = 3 (1,2,3,8,9,10) is matched but not minimal matched and
(1,2,5,6,9,10) is both matched and minimal matched.

Lemma 3. #{a: a is matched but not minimal matched} = O(nh−1).

Proof. Consider the graph with vertices {1,2, . . . ,2h}. Vertices i and j have an edge if |ai −
aj | ≤ d . Let k = # connected components. Consider a typical a. Let lj be the number of vertices
in the j th component. Since a is matched, lj ≥ 2 for all j and lj > 2 for at least one j . Hence,
2h = ∑k

j=1 lj > 2k. That implies k ≤ h−1. Also if i and j are in the same connected component
then |ai − aj | ≤ 2dh. Hence, the number of ai ’s such that i belongs to any given component is
O(n) and the result follows. �

Now we can rewrite (3.4) as

E
[
βh(�n,d)

] = 1

nh+1
E

[∑
1

Xa(t,π)Ia(t,π)

]
+ 1

nh+1
E

[∑
2

Xa(t,π)Ia(t,π)

]

+ 1

nh+1
E

[∑
3

Xa(t,π)Ia(t,π)

]
= T1 + T2 + T3 (say),

where the three summations are over (t,π) ∈ A such that a(t,π) is, respectively, (i) minimal
matched, (ii) matched but not minimal matched and (iii) not matched.

By mean zero assumption, T3 = 0. Since Xi ’s are uniformly bounded, by Lemma 3, T2 ≤ C
n

for some constant C. So provided the limit exists,

lim
n→∞ E

[
βh(�n,d)

] = lim
n→∞

1

nh+1
E

[ ∑
(t,π)∈A: a(t,π) is
minimal matched

Xa(t,π)Ia(t,π)

]
. (3.6)

Hence, from now our focus will be only on minimal matched words.
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3.1.2. Verification of (C1) for Theorem 2.1(a)

This is the hardest and lengthiest part of the proof. One can give a separate and easier proof for
the case d = 0. However, the proof for general d and for d = 0 are developed in parallel since
this helps to relate the limits in the two cases.

Our starting point is equation (3.6). We first define an equivalence relation on the set of min-
imal matched a = a(t,π). This yields finitely many equivalence classes. Then we can write the
sum in (3.6) as an iterated sum where the outer sum is over the equivalence classes. Then we
show that for every fixed equivalence class, the inner sum has a limit.

To define the equivalence relation, consider the collection of (2d + 1)h symbols (letters)

Wh = {
wk−d, . . . ,wk

0, . . . ,w
k
d : k = 1, . . . , h

}
.

Any minimal d matched a = (a1, . . . , a2h) induces a partition as given in (3.5). With this a,
associate the word w = w[1]w[2] · · ·w[2h] of length 2h where

w[ik] = wk
0, w[jk] = wk

l if aik − ajk
= l,1 ≤ k ≤ h. (3.7)

As an example, consider d = 1, h = 3 and a = (a1, . . . , a6) = (1,21,1,20,39,40). Then the
unique partition of {1,2, . . . ,6} and the unique word associated with a are {{1,3}, {2,4}, {5,6}}
and [w1

0w
2
0w

1
0w

2
1w

3
0w

3
−1], respectively.

Note that corresponding to any fixed partition P = {{ik, jk},1 ≤ k ≤ h}, there are several a
associated with it and there are exactly (2d + 1)h words that can arise from it. For example, with
d = 1, h = 2 consider the partition P = {{1,2}, {3,4}}. Then the nine words corresponding to P
are w1

0w
1
i w

2
0w

2
j where i, j = −1,0,1.

By a slight abuse of notation, we write w ∈ P if the partition corresponding to w is same as P .
We will say that:

• w[x] matches with w[y] (say w[x] ≈ w[y]) iff w[x] = wk
l and w[y] = wk

l′ for some k, l, l′.
• w is d pair matched if it is induced by a minimal d matched a (so w[x] matches with w[y]

iff |ax − ay | ≤ d).
This induces an equivalence relation on all d minimal matched a and the equivalence classes

can be indexed by d pair matched w. Given such a w, the corresponding equivalence class is
given by

�(w) = {
(t,π) ∈ A: w[ik] = wk

0,w[jk] = wk
l

(3.8)
⇔ a(t,π)ik − a(t,π)jk

= l and Ia(t,π) = 1
}
.

Then we rewrite (3.6) as (provided the second limit exists)

lim
n→∞ E

[
βh(�n,d)

] =
∑

P

∑
w∈P

lim
n→∞

1

nh+1

∑
(t,π)∈�(w)

E[Xa(t,π)Ia(t,π)]. (3.9)

By using the autocovariance structure, we further simplify the above as follows. Let

W (k) = {
w: #

{
s:

∣∣w[is] − w[js]
∣∣ = i

} = ki, i = 0,1, . . . , d
}
.
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Using the definitions of γX(d)(·) and of Sh,d given in (2.3), we rewrite (3.9) as (for any set Z, #Z

denotes the number of elements in Z)

lim
n→∞ E

[
βh(�n,d)

] =
∑

P

∑
Sh,d

∑
w∈P ∩W (k)

lim
n→∞

1

nh+1
#�(w)

d∏
i=0

[
γX(d) (i)

]ki (3.10)

provided the following limit exists for every word w of length 2h.

p(d)
w ≡ lim

n→∞
1

nh+1
#�(w). (3.11)

To show that this limit exists, it is convenient to work with �∗(w) ⊇ �(w) defined as

�∗(w) = {
(t,π) ∈ A: w[ik] = wk

0,w[jk] = wk
l

(3.12)
⇒ a(t,π)ik − a(t,π)jk

= l and Ia(t,π) = 1
}
.

By Lemma 3, we have for every w, n−(h+1)#(�∗(w) − �(w)) → 0. Thus, it is enough to show
that limn→∞ 1

nh+1 #�∗(w) exists.
For a pair matched w, we divide its coordinates according to the position of the matches as

follows. For 1 ≤ i < j ≤ h, let the sets Si be defined as

S1(w) = {
i: w[i] ≈ w[j ]}, S2(w) = {

j : w[i] ≈ w[j ]},
S3(w) = {

i: w[i] ≈ w[j + h]}, S4(w) = {
j : w[i] ≈ w[j + h]},

S5(w) = {
i: w[i + h] ≈ w[j + h]}, S6(w) = {

j : w[i + h] ≈ w[j + h]}.
Let E and G ⊂ E be defined as

E = {t1, . . . , th,π0, . . . , πh},
G = {

ti |i ∈ S1(w) ∪ S3(w)
} ∪ {π0} ∪ {

πi |i + h ∈ S5(w)
}
.

Elements in G are the indices where any matched letter appears for the first time and these will
be called the generating vertices. G has (h+ 1) elements say un

1, . . . , un
h+1 and for simplicity we

will write

G ≡ Un = (
un

1, . . . , un
h+1

)
and Nn = {1,2, . . . , n}.

Claim 1. Each element of E is a linear expression (say λi ) of the generating vertices that are
all to the left of the element.

Proof. Let the constants in the proposed linear expressions be {mj }.
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(a) For those elements of E that are generating vertices, we take the constants as mj = 0 and
the linear combination is taken as the identity mapping so that

for all i ∈ S1(w) ∪ S3(w) λi ≡ ti ,

λh+1 ≡ π0,

and for all

i + h ∈ S5(w), λi+h+1 ≡ πi.

(b) Using the relations between S1(w) and S2(w) induced by w, we can write

for all j ∈ S2(w) tj = λj + nj

for some nj such that |nj | ≤ d and define mj = nj for j ∈ S2(w) and λj ≡ λi .
(c) Note that for every π we can write

|πi−1 − πi | = bi(πi−1 − πi) for some bi ∈ {−1,1}.

Consider the vector b = (b1, b2, . . . , bh) ∈ {−1,1}h. It will be a valid choice if we have

bi(πi−1 − πi) ≥ 0 for all i. (3.13)

We then have the following two cases:
Case 1: w[i] matches with w[j + h], j + h ∈ S4(w) and i ∈ S3(w). Then we get

ti = tj + bj (πj−1 − πj ) + nj+h for some integer nj+h ∈ {−d, . . . ,0, . . . , d}. (3.14)

Case 2: w[i + h] matches with w[j + h], j + h ∈ S6(w) and i + h ∈ S5(w). Then we have

ti + |πi−1 − πi | = tj + |πj−1 − πj | + nj+h where nj+h ∈ {−d, . . . ,0, . . . , d}. (3.15)

So we note that inductively from left to right we can write

πj = λb
j+1+h + mj+1+h, j + h ∈ S4(w) ∪ S6(w). (3.16)

Hence, inductively, πj as a linear combination {λb
j } of the generating vertices up to an appropriate

constant. The superscript b emphasizes that {λb
j } depends on b. Further, {λb

j } depends only on
the vertices present to the left of it. �

Now we are almost ready to write down an expression for the limit. If λi were unique for
each b, then we could write #�∗(w) as a sum of all possible choices of b and we could tackle the
expression for each b separately. However, λi ’s may be same for several choices bi ∈ {−1,1}.
For example, for the word w1

0w
2
0w

1
0w

2
0, we can choose any b. We circumvent this problem as



Autocovariance matrix 1247

follows: Let

T = {
j + h ∈ S4(w) ∪ S6(w)|λb

j+h − λb
j+h−1 ≡ 0 ∀bj

}
.

Note that the definition of T depends on w only through the partition P it generates.
Suppose j + h ∈ T . Define

Lj (Un) := bj

(
λb

j+h−1

(
Un

) − λb
j+h

(
Un

)) + mj+h−1 − mj+h (3.17)

:= L̃j (Un) + mj+h−1 − mj+h. (3.18)

Then from (3.14) and (3.15) the region given by (3.13) is

{
Lj (Un) ≥ 0

} ≡ {
L̃j (Un) + mj+h−1 − mj+h ≥ 0

}
. (3.19)

Claim 2. The above expression is same for all choices of {bj }, for j + h ∈ T .

Proof. First, we show that if j + h ∈ T then we must have

tj = tj + |πj−1 − πj | + nj for some integer |nj | ≤ d. (3.20)

Suppose this is not true. So first assume that j + h ∈ S6(w). Then we will have a relation

ti + bi(πi−1 − πi) = tj + bj (πj−1 − πj ) + nj where i + h ∈ S5(w). (3.21)

Since λb
j depends only on the vertices present to the left of it, in (3.21), coefficient of πi would

be non-zero and hence we must have λb
j+h−1 − λb

j+h �≡ 0.
Now assume j + h ∈ S4(w) and w[i] matches with w[j + h] for i �= j . Then we can repeat

the argument above to arrive at a similar contradiction. This shows that if j + h ∈ T then our
relation must be like (3.20). Now a simple calculation shows that for such relations,

bj

(
λb

j+h−1(Un) − λb
j+h(Un)

) + mj+h−1 − mj+h = −nj ,

which is of course same across all choices of b. This proves our claim. �

Now note that if j + h ∈ T and if nj+h �= 0 then as we change bj it does change the value of
m2h+1. Further, we can have at most two choices for πj for every choices of πj−1 if nj+h �= 0
depending on bj .

However for j + h ∈ T and nj = 0, we have only one choice for πj given the choice for πj−1

for every choice of bj . On the other hand, we know b ∈ {−1,1}h must satisfy (3.13). Keeping
the above in view, let

B(w) = {
b ∈ {−1,1}h|bj = 1 if nj = 0 for j ∈ T

}
,
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where {nj } is as in Claim 2. For ease of writing, we introduce a few more notation:

Im,h(Un) := I
(
λb

2h+1(Un) + m2h+1 = λb
h+1(Un) + mh+1

)
,

Iλb,L(Un) :=
h∏

j=1

I
(
λb

j (Un) + Lj (Un) ≤ n
)
,

(3.22)

Iλb,m(Un) :=
2h∏

j=1

I
(
λb

j (Un) + mj ∈ Nn

)
and

IT (Un) :=
∏

1≤j≤h,j /∈T
I
(
Lj(Un) ≥ 0

) ×
∏
j∈T

I(nj ≤ 0).

Now we note that,

p(d)
w := lim

n

1

nh+1
#�∗(w)

= lim
n

1

nh+1

∑
b∈B(w)

∑
Un∈N h+1

n

Im,h(Un) × Iλb,m(Un) × Iλb,L(Un) × IT (Un)

= lim
n

∑
b∈B(w)

EUn

[
Im,h(Un) × Iλb,m(Un) × Iλb,L(Un) × IT (Un)

]
.

Now it only remains to identify the limit. To this end, first fix a partition P and b ∈ {−1,1}h.
If d = 0, then there is one and only one word corresponding to it. However, across any d and
any fixed k0, k1, . . . , kd , the linear functions λj ’s continue to remain same. The only possible
changes will be in the values of mj ’s.

We now identify the cases where the above limit is zero.

Claim 3. Suppose w is such that R := {λb
2h+1(Un) + m2h+1 = λb

h+1(Un) + mh+1} is a lower
dimensional subset of N h+1

n . Then the above limit is zero.

Proof. First, consider the case d = 0. Then mj = 0,∀j . Note that R lies in a hypercube. Hence,
the result follows by convergence of the Riemann sum to the corresponding Riemann integral.
For any general d , the corresponding region is just a translate of the region considered for mj = 0.
Hence, the result follows. �

Hence for a fixed w ∈ P , a positive limit contribution is possible only when R = N h+1
n . This

implies that we must have

λb
2h+1(Un) − λb

h+1(Un) ≡ 0 (for d = 0),

λb
2h+1(Un) − λb

h+1(Un) ≡ 0 and m2h+1 − mh+1 = 0 (for general d).
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Note that the first relation depends only the partition P but the second relation is determined by
the word w. Now λb

j being linear forms with integer coefficients

λb
j (Un) + mj ∈ {1, . . . , n} ⇐⇒ λb

j

(
Un

n

)
+ mj

n
∈ (0,1].

Define Im,h(U), Iλb,L̃
(U), Iλb(U) and ĨT (U) as in (3.22) with Un replaced by U , L replaced by

L̃, Nn replaced by (0,1), n replaced by 1, and dropping mj ’s in Iλb,m. Noting Un

n

w⇒ U following

uniform distribution on [0,1]h+1, 1
nh+1 lim #�∗(w) equals

p(d)
w =

∑
b∈B(w)

EU

[
Im,h(U) × Iλb,L̃

(U) × Iλb(U) × ĨT (U)
]
. (3.23)

Now the verification of (C1) is complete by observing that (3.10) becomes

lim
n→∞ E

[
βh(�n,d)

] =
∑

P

∑
k∈Sh,d

p
P ,d
k

d∏
i=0

[
γX(d)(i)

]ki

(3.24)

=
∑

k∈Sh,d

p
(d)
k

d∏
i=0

[
γX(d)(i)

]ki ,

where

p
P ,d
k =

∑
w∈P ∩W (k)

p(d)
w and p

(d)
k =

∑
P

p
P ,d
k . (3.25)

Since there is no explicit expression for the moments of the LSD, we provide in Table 3 the first
three moments of the LSD of �n(X), when the input sequence is i.i.d. and MA(1). To calculate
the moments, we need to find the contributions p

(d)
w for words w. The contributions of different

relevant words, are provided in Table 1, and in Table 2, for the i.i.d. case. For the MA(1), one can
work out the contributions from there.

Table 1. Contributions from words of
length 4 for i.i.d. case

Word w Contribution p
(0)
w

aabb 2/3
abab 1
abba 0



1250 A. Basak, A. Bose and S. Sen

Table 2. Contributions from words of length 6 for i.i.d. case

Word w Contribution p
(0)
w Word w Contribution p

(0)
w

aabccb 2/3 abbcac 1/6
aabbcc 1/6 abcabc 1
aabcbc 1/6 abcacb 0
ababcc 1/6 abcbac 0
abacbc 2/3 abcbca 0
abaccb 1/6 abccab 0
abbacc 2/3 abccba 0
abbcca 1/6

3.1.3. Verification of (C2) and (C3) for Theorem 2.1(a)

Lemma 4. (a) E[n−1 Tr(�h
n,d) − n−1

E[Tr(�h
n,d)]]4 = O(n−2). Hence 1

n
Tr(�h

n,d) converges to
βh,d a.s.

(b) {βh,d}h≥0 satisfies (C3) and hence defines a unique probability distribution on R.

Proof. Proof of part (a) uses ideas from Bryc, Dembo and Jiang [10] but the inputs of the matrix
are no longer independent, and therefore some modifications are needed. Details are available in
Basak, Bose and Sen [5].

(b) Using (3.24) and (2.4) and noting that the number of ways of choosing the partition

{1, . . . ,2h} = ⋃h
l=1{il , jl} for a(t,π) is (2h)!

2hh! , it easily follows that

|βh,d | ≤
∑
Sh,d

4h(2h)!
h!

h!
k0! · · · kd !

d∏
i=0

∣∣γX(d)(i)
∣∣ki

(3.26)

≤ 4h(2h)!
h!

(
d∑

j=0

d−j∑
k=0

|θkθk+j |
)h

≤ 4h(2h)!
h!

(
d∑

k=0

|θk|
)2h

.

This implies (C3) holds, proving the lemma. Proof of Theorem 2.1(a) is now complete. �

Table 3. First three moments for i.i.d. and MA(1) input sequence

i.i.d. MA(1)

Mean θ2
0 θ2

0 + θ2
1

Second moment 5
3θ4

0
5
3 (θ2

0 + θ2
1 )2 + 20

3 θ2
0 θ2

1

Third moment 4θ6
0 4(θ2

0 + θ2
1 )3 + 24(θ2

0 + θ2
1 )(2θ0θ1)2
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3.1.4. Proof of Theorem 2.1(b) (infinite order case)

First, we assume {εt } is i.i.d. Fix ε > 0. Choose d such that
∑

k≥d+1 |θk| ≤ ε. For convenience
we will write �n(X) = �n. Clearly, �n = AnA

T
n where

(An)i,j =
{

Xj−i , if 1 ≤ j − i ≤ n,
0, otherwise.

By ergodic theorem, a.s., we have the following two relations:

1

n

[
Tr(�n,d + �n)

] = 1

n

[
n∑

t=1

X2
t,d +

n∑
t=1

X2
t

]
→ E

[
X2

t,d + X2
t

] ≤ 2
∞∑

k=0

θ2
k .

1

n
Tr

[
(An,d − An)(An,d − An)

T
] = 1

n

n∑
t=1

(Xt,d − Xt)
2 → E[Xt,d − Xt ]2 ≤

∞∑
k=d+1

θ2
k ≤ ε2.

Hence using Lemma 1(b), a.s.

lim sup
n

d2
BL

(
F�n,d ,F�n

) ≤ 2

( ∞∑
k=0

|θk|
)2

ε2. (3.27)

Now F�n,d
w→ Fd a.s. Since dBL metrizes weak convergence of probability measures as n → ∞,

dBL(F�n,d ,Fd) → 0, a.s. Since {F�n,d }n≥1 is Cauchy with respect to dBL a.s., by triangle in-
equality, and (3.27), lim supm,n dBL(F�n,F�m) ≤ 2

√
2(

∑∞
k=0 |θk|)ε. Hence {F�n}n≥1 is Cauchy

with respect to dBL a.s. Since dBL is complete, there exists a probability measure F on R such
that F�n

w→ F a.s. Further

dBL(Fd,F ) = lim
n

dBL
(
F�n,d ,F�n

) ≤ √
2

( ∞∑
k=0

|θk|
)

ε

and hence Fd
w→ F as d → ∞. Since {Fd} are non-random, F is also non-random.

Now if {εt } is not i.i.d. but independent and uniformly bounded by some C > 0, then the above
proof is even simpler. We omit the details.

To show convergence of {βh,d}, we note that under Assumption B(b), (3.26) yields

sup
d

|βh,d | ≤ ch := 4h(2h)!
h!

( ∞∑
k=0

|θk|
)2h

< ∞ ∀h ≥ 0. (3.28)

Hence for every fixed h, {Ah
d} is uniformly integrable where Ad ∼ Fd . Since Fd

w→ F ,

βh =
∫

xh dF = lim
d

∫
xh dFd = lim

d→∞βh,d ,

completing the proof of (b). Since |βh| ≤ ch, it easily follows that {βh}h≥0 satisfies (C3) and
hence uniquely determines the distribution F .
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3.1.5. Proof of Theorem 2.1(c)

We first claim that for d ≥ 0 p
(d)
k0,...,kd

= p
(d+1)
k0,...,kd ,0. To see this, consider a graph G with 2h

vertices with h connected components and two vertices in each component. Let

M = {
a: a is minimal d matched, induces G and |ax − ay | = d + 1

for some x, y belonging to distinct components of G
}
.

Then one can easily argue that #M = O(nh−1) and consequently #{(t,π) ∈ A|a(t,π) ∈ M} =
O(nh). Hence,

p
(d)
k0,...,kd

= lim
n→∞

1

nh+1
#

{
(t,π) ∈ A|a(t,π) is minimal d matched

with partition {1, . . . ,2h} =
h⋃

l=1

{il , jl}

and there are exactly ks many l’s for which∣∣a(t,π)(il) − a(t,π)(jl)
∣∣ = s, s = 0, . . . , d, Ia(t,π) = 1 and∣∣a(t,π)(x) − a(t,π)(y)
∣∣ ≥ d + 2 if x, y belong to

different partition blocks

}

= p
(d+1)
k0,...,kd ,0.

Thus for θ0, . . . , θd ≥ 0 and d ≥ 1,

βh,d ≥
∑

Sh,d−1

p
(d)
k0,...,kd−1,0

d−1∏
i=0

[
γX(d)(i)

]ki

≥
∑

Sh,d−1

p
(d−1)
k0,...,kd−1

d−1∏
i=0

[
γX(d−1) (i)

]ki = βh,d−1,

proving the result.
Incidentally, if Assumption B(a) is violated, then the ordering need not hold. This can be

checked by considering an MA(2) and an MA(1) process with parameters θ0, θ1, θ2 and where
θ2 = −κθ0, θ0, θ1 > 0. Then β2,2 < β2,1 if we choose κ > 0 sufficiently small. The details are
available in Basak, Bose and Sen [5].
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3.1.6. Proof of unbounded support of Fd and F

For any word w, let |w| denote the length of the word. Let

W = {
w = w1w2: |w1| = 2h = |w2|;
w,w1,w2 are zero pair matched;w1[x] matches

with w1[y] iff w2[x] matches with w2[y]}.
Then

β2h,d ≥ [
γX(d)(0)

]2h
p2h,0,...,0 ≥ [

γX(d)(0)
]2h

∑
w∈W

lim
n

n−(2h+1)#�∗(w). (3.29)

For w = w1w2 ∈ W , let {1, . . . ,2h} = ⋃h
i=1(is , js) be the partition corresponding to w1. Then

lim
n

#�∗(w)

n2h+1
≥ lim

n

1

n2h+1
#
{
(t,π): tis = tjs and πis − πis−1 = πjs−1 − πjs

for 1 ≤ s ≤ h; tj + |πj − πj−1| ≤ n, for 1 ≤ j ≤ 2h
}
.

Now adapting the ideas of Bryc, Dembo and Jiang [10], we obtain that for each d finite Fd has
unbounded support. Since {βh,d} increases to βh, same conclusion is true for F . For details see
Basak, Bose and Sen [5].

3.2. Outline of the proof of Theorem 2.3

3.2.1. Proof of Theorem 2.3(a), (b) for the case 0 < α < 1

Let βh(�
α,I
n,d ) and βh(�

α,II
n,d ) be the hth moments, respectively, of the ESD of type I and type II

ACVMs with parameter α. We begin by noting that the expression for these contain an extra
indicator term I1 = ∏h

i=1 I(|πi−1 − πi | ≤ mn) and I2 = ∏h
i=1 I(1 ≤ πi ≤ mn), respectively. For

type II ACVMs since there are mn eigenvalues instead of n, the normalising denominator is
now mn. Hence,

βh

(
�

α,I
n,d

) = 1

nh+1

∑
1≤π0,...,πh≤n

πh=π0

[
h∏

j=1

(
n∑

tj =1

Xtj ,dXtj +|πj −πj−1|,dI(tj +|πj −πj−1|≤n)

)]
I1

and

mn

n
βh

(
�

α,II
n,d

) = 1

nh+1

∑
1≤π0,...,πh≤n

πh=π0

[
h∏

j=1

(
n∑

tj =1

Xtj ,dXtj +|πj −πj−1|,dI(tj +|πj −πj−1|≤n)

)]
I2.

It is thus enough to establish the limits on the right side of the above expressions. and we can
follow similar steps as in the proof of Theorem 2.1.
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Since there are only the extra indicator terms, the negligibility of higher order edges and veri-
fication of (C2) and (C3) needs no new arguments. Likewise, verification of (C1) is also similar
except that there is now an extra indicator term in the expression for p

(d)
w . This takes care of

the finite d case. For d = ∞, note that the type II ACVMs are mn × mn principal subminor of
the original sample ACVMs and hence are automatically non-negative definite. We can write
�

α,II
n (X(d)) = (A

α,II
n,d )(A

α,II
n,d )T where A

α,II
n,d is the first mn rows of An,d . Thus imitating the proof

of Theorem 2.1, we can move from finite d to d = ∞. However for type I ACVMs, we cannot
apply these arguments, as these matrices are not necessarily non-negative definite. Rather we
proceed as in the proof of Theorem 2.2. Previous proof of unbounded support now needs only
minor changes. We omit the details.

Since �
α,II
n,d is non-negative definite, the technique of proof of Theorem 2.1 can be adopted

under Assumption A(a).

3.2.2. Proof of Theorem 2.3(b) for type I band ACVM

Existence: Let p
(d),0,I
w be the limiting contribution of the word w for type I ACVM with band

parameter α = 0. Then

p(d),0,I
w := lim

n

1

nh+1

∑
b∈B(w)

EUn

[
Im,h(Un) × Iλb,m(Un) × Iλb,L(Un) × I

I
T (Un)

]
,

where

I
I
T (Un) = IT ,L(Un) × IT ,m :=

h∏
j=1
j /∈T

I
(
0 ≤ Lj (Un) ≤ mn

) ×
∏
j∈T

I(−mn ≤ nj ≤ 0).

If w, λb
j+h−1 �= λb

j+h for some j , then IT ,L(Un) → 0 as n → ∞ and thus limiting contri-

bution from that word will be 0. Thus, only those words w for which λb
h+1 = λb

j+h for all
j ∈ {1,2, . . . , h + 1} may contribute non-zero quantity in the limit. This condition also implies
that, for such words no πi belongs to the generating set except π0. This observation together with
Lemma 6 of Basak, Bose and Sen [5], and the expression for limiting moments for �n(X) shows
that w ∈ W h

0 may contribute non-zero quantity, where

W h
0 = {

w: |w| = 2h,w[i] matches with w[i + h], ni ≤ 0, i = 1,2, . . . , h
}
.

Further note that if w ∈ W h
0 then T = {h + 1, h + 2, . . . ,2h}, and thus IT ,L ≡ 1.

For d = 0 note that #W h
0 = 1 for every h and one can easily check that the contribution from

that word is 1. Thus β0
h,0 = θ2h

0 and as a consequence, the LSD is δθ2
0
.

Now let us consider any 0 < d < ∞. Note that for any d finite, and if mn ≥ d , then

Iλb,m × Iλb,L × IT ,m →
h∏

j=1

I(nj ≤ 0) as n → ∞.



Autocovariance matrix 1255

Combining the above arguments we get that for any w ∈ W h
0 , p

(d),0,I
w is the number of choices

of b ∈ B(w), and {n1, n2, . . . , nh;ni ≤ 0}, such that
∑

i nibi = 0.
Noting that type I ACVMs are not necessarily non-negative definite, we need to adapt the

proof of Theorem 2.2. Details are omitted.
Identification of the LSD: Now it remains to argue that the limit we obtained is same as fX(U).

For d = 0 LSD is δθ2
0

and it is trivial to check it is same as fX(U).
For 0 < d < ∞, note that the proof does not use the fact that mn → ∞ and we further note that

for any sequence {mn} the limit we obtained above will be same whenever lim infn→∞ mn ≥ d .
So in particular the limit will be same if we choose another sequence {m′

n} such that m′
n = d for

all n. Let �I
n′,d denote the type I ACVM where we put 0 instead of γ̂X(d) (k) whenever k > m′

n and
let �n,d be the n × n matrix whose (i, j)th entry is the population autocovariance γX(d) (|i − j |).
Now from Lemma 1(a), we get

d2
BL

(
F

�I
n′,d , F�n,d

) ≤ 1

n
Tr

(
�I

n′,d − �n,d

)2

≤ 2
(
γ̂X(d) (0) − γX(d) (0)

)2 + · · · + 2
(
γ̂X(d) (d) − γX(d)(d)

)2
.

For any j as n → ∞, γ̂X(d) (j) → γX(d)(j) a.s. Since d is finite, the right side of the above
expression goes to 0 a.s. This proves the claim for d finite.

To prove the result for the case d = ∞, first note that we already have

LSD
(
�

0,I
n,d

) = LSD(�n,d) := Gd and LSD
(
�

0,I
n,d

) w→ LSD
(
�0,I

n

)
as d → ∞.

Thus, it is enough to prove that Gd
w→ G(= LSD(�n)) as d → ∞ where �n is the n × n matrix

whose (i, j)th entry is γX(|i − j |). Define a sequence of n×n matrices �̄n,d whose (i, j)th entry
is γX(|i − j |) if |i − j | ≤ d and otherwise 0. By triangle inequality,

d2
BL

(
F�n,d ,F�n

) ≤ 2d2
BL

(
F�n,d ,F �̄n,d

) + 2d2
BL

(
F �̄n,d ,F�n

)
.

Fix any ε > 0. Fix d0 such that (
∑∞

j=0 |θj |)2(
∑∞

l=d+1 |θl |)2 ≤ ε2

32 for all d ≥ d0. Now again using
Lemma 1(a) we get the following two relations:

lim sup
n

d2
BL

(
F�n,d ,F �̄n,d

) ≤ 2
[(

γX(d)(0) − γX(0)
)2 + · · · + (

γX(d)(d) − γX(d)
)2]

= 2
d∑

j=0

( ∞∑
k=d−j+1

θkθj+k

)2

≤ ε2

16
,

d2
BL

(
F �̄n,d ,F�n

) ≤ lim sup
n

1

n
Tr(�̄n,d − �n)

2 ≤ ε2

16
.

Thus, lim supn dBL(F�n,d ,F�n) ≤ ε/2, for any d ≥ d0, and therefore by triangle inequality,
dBL(FGd ,FG) ≤ ε. This completes the proof.
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3.2.3. Proof of Theorem 2.3(b) for type II band autocovariance matrix

First, note that by Lemma 3 we need to consider only minimal matched terms. Let

Gt = {ti : ti ∈ G} and Gπ = {πi : πi ∈ G}.

Since 1 ≤ πi ≤ mn for all i, by similar arguments as in Lemma 3 we get

number of choices of a(t,π) = O
(
n#Gt m#Gπ

n

)
.

Thus, for any word w such that #Gt < h the limiting contribution will be 0. Hence only con-
tributing words e in this case are those for which #S3(w) = #S4(w) = h. and from Lemma 6
of Basak, Bose and Sen [5], the only contributing words are those belonging to W h

0 . Therefore
using same arguments as in the proof of Theorem 2.3, for type I ACVM, for α = 0 we obtain
the same limit. All the remaining conclusions here follow from the proof for type I ACVMs with
parameter α = 0.

Since type II ACVMs are non-negative definite, connection between the LSD for finite d and
d = ∞ is proved adapting the ideas from the proof of Theorem 2.1.

3.2.4. Proof of Theorem 2.3(c)

Since K is bounded, negligibility of higher order edges and verification of (C2) and (C3) is same
as before. Verification of (C1) is also same, with an extra indicator in the limiting expression.
Denoting p

(d),K
w to be the limiting contribution from a word w, we have,

p(d),K
w = lim

n
EUn

[
Im,h(Un) × Iλb,m(Un) × Iλb,L(Un) × I

I

T (Un) × IK(Un)
]
,

where

IK(Un) :=
h∏

j=1

K

(
Lj (Un)

mn

)
.

Since mn → ∞, and K(·) is continuous at 0, K(0) = 1, note that IK → 1. Now arguing as in
Section 3.2.2, we get p

(d),0,I
w = p

(d),K
w for every word w and thus the limiting distributions are

same in both the cases. For the case d = ∞ the arguments are similar as in Section 3.2.2 and the
details are omitted.

3.3. Proof of Theorem 2.2

Proceeding as earlier it is easy to see the limit exists, and for each word w, the limiting contribu-
tion is given by,

p∗,(d)
w =

∑
b∈B(w)

EU

[
Im,h(U) × Iλb(U) × ĨT (U)

]
.
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Comparing the above expression with the corresponding expression for the sequence �n,d ,

βh,d ≤ β∗
h,d if θj ≥ 0,0 ≤ j ≤ d.

Relation (3.26) holds with βh,d replaced by β∗
h,d . We can use this to prove tightness of {F ∗

d }
under Assumption B(a) and thus also Carleman’s condition is satisfied.

Since �∗
n and �∗

n,d are no longer positive definite matrices the ideas used in the proof of
Theorem 2.1(b) cannot be adapted here. We proceed as follows instead: Note that

E
[
βh

(
�∗

n

)] = 1

nh+1
E

[ ∑
(t,π)∈A

h∏
j=1

Xtj

h∏
j=1

Xtj +|πj−1−πj |

]
.

Write

Xtj =
∑
kj ≥0

θkj
εtj −kj

and Xtj +|πj−1−πj | =
∑
k′
j ≥0

θk′
j
εtj +|πj−1−πj |−k′

j
.

Then using the absolute summability Assumption B(b) and applying DCT, we get

E
[
βh

(
�∗

n

)] =
∑

kj ,k′
j ≥0

j=1,...,h

h∏
j=1

(θkj
θk′

j
)

1

nh+1
E

[ ∑
(t,π)∈A

h∏
j=1

εtj −kj
εtj +|πj −πj−1|−k′

j

]
.

Using the fact that {εt }∞t=1 are uniformly bounded and absolute summability of {θk}∞k=1 we note
that it is enough to show that the limit below exists.

lim
n

n−(h+1)
E

[ ∑
(t,π)∈A

h∏
j=1

(εtj −kj
εtj +|πj −πj−1|−k′

j
)

]
.

One can proceed as in the proof of Theorem 2.1 to show that only pair matched words contribute
and hence enough to argue that limn−(h+1)#{(t,π) ∈ A: {tj − kj , tj + |πj − πj−1| − k′

j , j =
1, . . . , h} is pair matched} exists, and which follows by adapting the ideas used in the proof of
Theorem 2.1. Note that appropriate compatibility is needed among {kj , k

′
j , j = 1, . . . , h}, the

word w and the signs bi (= ±1) to ensure that the condition π0 = πh is satisfied. So the above
limit will depend on {kj , k

′
j , j = 1, . . . , h}.

We also note that

lim
n

1

nh+1

∑
w pair matched,

|w|=2h

#
{
(t,π) ∈ A:

(
tj − kj , tj + |πj − πj−1| − k′

j

)
j=1,...,h

∈ �(w)
}

≤ 4h(2h)!
h! .

Hence, F ∗ is uniquely determined by its moments and using DCT, β∗
h,d → β∗

h . Whence it also

follows that F ∗
d

w→ F ∗. Proof of part (c) is similar to the proof of Theorem 2.1(c). �
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Remark 3.1. Theorem 2.2 has not been proved under Assumption A(a) because there is no
straightforward way to apply (3.1) or (3.2) since �∗

n(X) is not non-negative definite. Simula-
tion results indicate that the same LSD continues to hold under Assumption A(a).
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Supplementary Material

Simulations (DOI: 10.3150/13-BEJ520SUPP; .pdf). Recall that none of the LSDs have a nice
description. Following the suggestion of one of the Referees, we have collected some simulation
results in a supplementary file Basak, Bose and Sen [6].

The simulations are for the AR(1) and MA(1) models. These simulations provide evidence
that the limits are indeed universal and exhibit some mass on the negative axis for the ESD (and
hence the LSD) of �∗

n(X). They also show how the LSD of type I banded �n(X) changes with
the model as well as the value of the parameter α. The unbounded nature of the LSD is also
evident from these simulations.

For the banded matrices, the simulations demonstrate that for small values of α, the LSD
of �n(X) and �n(X) are virtually indistinguishable for large n, confirming that thinly banded
ACVMs are consistent for �n(X). As the value of α increases, the right tail of the LSD thickens,
and the probability of being near zero decreases. In general, there may be considerable amount
of mass in the negative axis. This mass reduces as the value of α decreases.

The LSD of �n(X) varies as the parameter of the models change. For both AR(1) and MA(1)
models, as θ increases from 0, the tail thickens, and the mass near zero decreases. For the AR(1)
model, when θ approaches 1, that is, when the process is near non-stationary the LSD becomes
very flat, and its tail becomes huge.
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