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We introduce a new variational estimator for the intensity function of an inhomogeneous spatial point
process with points in the d-dimensional Euclidean space and observed within a bounded region. The vari-
ational estimator applies in a simple and general setting when the intensity function is assumed to be of
log-linear form β + θ�z(u) where z is a spatial covariate function and the focus is on estimating θ . The
variational estimator is very simple to implement and quicker than alternative estimation procedures. We
establish its strong consistency and asymptotic normality. We also discuss its finite-sample properties in
comparison with the maximum first order composite likelihood estimator when considering various inho-
mogeneous spatial point process models and dimensions as well as settings were z is completely or only
partially known.
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1. Introduction

Intensity estimation for spatial point processes is of fundamental importance in many applica-
tions, see, for example, Diggle [10], Møller and Waagepetersen [28], Illian et al. [21], Bad-
deley [2], and Diggle [11]. While maximum likelihood and Bayesian methods are feasible for
parametric Poisson point process models (Berman and Turner [6]), computationally intensive
Markov chain Monte Carlo methods are needed otherwise (Møller and Waagepetersen [27]).
The Poisson likelihood has been used for intensity estimation in non-Poisson models (Schoen-
berg [31], Guan and Shen [16]) where it can be viewed as a composite likelihood based on
the intensity function (Møller and Waagepetersen [28] and Waagepetersen [34]); we refer to
this as a “first order composite likelihood”. For Cox and Poisson cluster point processes, which
form major classes of point process models for clustering or aggregation (Stoyan, Kendall and
Mecke [32]), the first and second order moment properties as expressed by the intensity function
ρ and pair correlation function g are often of an explicit form, and this has led to the develop-
ment of estimation procedures based on combinations of first and second order composite likeli-
hoods and minimum contrast estimation procedures (Guan [13], Møller and Waagepetersen [28],
Waagepetersen [34]) and to refinements of such methods (Guan and Shen [16], Guan, Jalilian
and Waagepetersen [14]). For Gibbs point processes, which form a major class of point process
models for repulsiveness, the (Papangelou) conditional intensity is of explicit form and has been
used for developing maximum pseudo-likelihood estimators (Besag [7], Jensen and Møller [24],
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Baddeley and Turner [4]) and variational estimators (Baddeley and Dereudre [3]). However, in
general for Gibbs point processes, the moment properties are not expressible in closed form and
it is therefore hard to estimate the intensity function.

The present paper considers a new variational estimator for the intensity function of a spa-
tial point process X, with points in the d-dimensional Euclidean space R

d and observed within a
bounded region W ⊂ R

d . It is to some extent derived along similar lines as the variational estima-
tor based on the conditional intensity (Baddeley and Dereudre [3]), which in turn is a counterpart
of the variational estimator for Markov random fields (Almeida and Gidas [1]). However, our
variational estimator applies in a much simpler and general setting. In analogy with the exponen-
tial form of the conditional intensity considered in Baddeley and Dereudre [3], we assume that
X has a log-linear intensity function

ρ(u) = exp
(
β + θ�z(u)

)
, u ∈ R

d . (1.1)

Here β is a real parameter, θ is a real p-dimensional parameter and θ� is its transpose, z is a real
p-dimensional function defined on R

d and referred to as the covariate function, and we view θ

and z(u) as column vectors. A log-linear intensity function is often assumed for Poisson point
processes (where it is the canonical link) and for Cox processes (see Møller and Waagepetersen
[28] and the references therein), while for Gibbs point process models it is hard to exhibit a
model with intensity function of the log-linear form. Further details are given in Sections 2–3.

As the variational estimator in Baddeley and Dereudre [3], our variational estimator con-
cerns θ , while β is treated as a nuisance parameter which is not estimated. Our variational estima-
tor is simple to implement, it requires only the computation of the solution of a system of p linear
equations involving certain sums over the points of X falling in W , and it is quicker to use than
the other estimation methods mentioned above. Moreover, our variational estimator is express-
ible in closed form while the maximum likelihood estimator for the Poisson likelihood and the
maximum first order composite likelihood estimator for non-Poisson models are not expressible
in closed form and the profile likelihood for θ involves the computation (or approximation) of
d(1 +p/2)(p + 1) integrals. On the one hand, as for the approach based on first order composite
likelihoods, an advantage of our variational estimator is its flexibility, since apart from (1.1) and
a few mild assumptions on z, we do not make any further assumptions. In particular, we do not
require that X is a grand canonical Gibbs process as assumed in Baddeley and Dereudre [3]. On
the other hand, a possible disadvantage of our variational approach is a loss in efficiency, since
we do not take into account spatial correlation, for example, through the modelling of the pair
correlation function as in Guan and Shen [16] and Guan, Jalilian and Waagepetersen [14], or in-
teraction, for example, through the modelling of the conditional intensity function as in Baddeley
and Dereudre [3].

The paper is organized as follows. Section 2 presents our general setting. Section 3 specifies
our variational estimator, establishes its asymptotic properties, and discusses the conditions we
impose. Section 4 reports on a simulation study of the finite-sample properties of our variational
estimator and the maximum first order composite likelihood estimator for various inhomoge-
neous spatial point process models in the planar case d = 2 as well as higher dimensions and
when z is known on an observation window as well as when z is known only on a finite set of
locations. The technical proofs of our results are deferred to Appendix A. Finally, Appendix B
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illustrates the simplicity of our variational estimator and the flexibility of the conditions given in
Section 3.

2. Preliminaries

This section introduces the assumptions and notation used throughout this paper.
Let W ⊂ R

d be a compact set of positive Lebesgue measure |W |. It will play the role of
an observation window. Without any danger of confusion, we also use the notation |A| for the
cardinality of a countable set A, and |u| = max{|ui |: i = 1, . . . , d} for the maximum norm of a
point u = (u1, . . . , ud) ∈ R

d . Further, we let ‖u‖ denote the Euclidean norm for a point u ∈ R
d ,

and ‖A‖ = sup‖u‖=1|Au| the supremum norm for a square matrix A, that is, its numerically
largest (right) eigenvalue. Moreover, for any real p-dimensional function k defined on R

d , we let

‖k‖∞ = sup
u∈Rd

∥∥k(u)
∥∥. (2.1)

Let X be a spatial point process on R
d , which we view as a random locally finite subset

of R
d . Let XW = X ∩ W . Then the number of points in XW is finite; we denote this number by

N(W) = n(XW) = |XW |; and a realization of XW is of the form x = {x1, . . . , xn} ⊂ W , where
n = n(x) and 0 ≤ n < ∞. If n = 0, then x = ∅ is the empty point pattern in W . For further
background material and measure theoretical details on spatial point process, see, for example,
Daley and Vere-Jones [9] and Møller and Waagepetersen [27].

We assume that X has a locally integrable intensity function ρ. By Campbell’s theorem (see,
e.g., Møller and Waagepetersen [27]), for any real Borel function k defined on R

d such that kρ

is absolutely integrable (with respect to the Lebesgue measure on R
d ),

E
∑
u∈X

k(u) =
∫

k(u)ρ(u)du. (2.2)

Furthermore, for any integer n ≥ 1, X is said to have an nth order product density ρ(n) if this is
a non-negative Borel function on R

dn such that for all non-negative Borel functions k defined
on R

dn,

E

=∑

u1,...,un∈X

k(u1, . . . , un) =
∫

· · ·
∫

k(u1, . . . , un)ρ
(n)(u1, . . . , un)du1 · · ·dun, (2.3)

where the 
= over the summation sign means that u1, . . . , un are pairwise distinct. Note that
ρ = ρ(1).

Throughout this paper except in Section 3.1, we assume that ρ is of the log-linear form (1.1),
where we view θ and z(u) as p-dimensional column vectors.

As for vectors, transposition of a matrix A is denoted A�. For convenience, we, for example,
write (β, θ) when we more precisely mean the (p+1)-dimensional column vector (β, θ�)�. If A

is a square matrix, we write A ≥ 0 if A is positive semi-definite, and A > 0 if A is (strictly) posi-
tive definite. When A and B are square matrices of the same size, we write A ≥ B if A − B ≥ 0.
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For k = 0,1, . . . , denote Ck
d,p the class of k-times continuous differentiable real p-dimensional

functions defined on R
d . For h ∈ C 1

d,1, denote its gradient

∇h(u) =
(

∂h

∂u1
(u), . . . ,

∂h

∂ud

(u)

)�
, u = (u1, . . . , ud)� ∈ R

d

and define the divergence operator div on C 1
d,1 by

divh(u) = ∂h

∂u1
(u) + · · · + ∂h

∂ud

(u), u = (u1, . . . , ud)� ∈ R
d .

Furthermore, for h = (h1, . . . , hp)� ∈ C 1
d,p , define the divergence operator div on C 1

d,p by

divh(u) = (
divh1(u), . . . ,divhp(u)

)�
, u ∈ R

d .

If z ∈ C 1
d,p , then by (1.1)

div logρ(u) = θ� div z(u) = div z(u)�θ, u ∈ R
d . (2.4)

Finally, we recall the classical definition of mixing coefficients (see, e.g., Politis, Paparoditis
and Romano [29]): for j, k ∈ N ∪ {∞} and m ≥ 1, define

αj,k(m) = sup
{∣∣P(A ∩ B) − P(A)P (B)

∣∣: A ∈ F (�1),B ∈ F (�2),

�1 ∈ B
(
R

d
)
,�2 ∈ B

(
R

d
)
, |�1| ≤ j, |�2| ≤ k, d(�1,�2) ≥ m

}
,

where F (�i) is the σ -algebra generated by X ∩ �i , i = 1,2, d(�1,�2) is the minimal distance
between the sets �1 and �2, and B(Rd) denotes the class of Borel sets in R

d .

3. The variational estimator

Section 3.1 establishes an identity which together with (2.4) is used in Section 3.2 for deriv-
ing an unbiased estimating equation which only involves θ , the parameter of interest, and from
which our variational estimator is derived. Section 3.3 discusses the asymptotic properties of the
variational estimator.

3.1. Basic identities

This section establishes some basic identities for a spatial point process X defined on R
d and

having a locally integrable intensity function ρ which is not necessarily of the log-linear form
(1.1). The results will be used later when defining our variational estimator.

Consider a real Borel function h defined on R
d and let f (u) = ρ(u)|h(u)|. For n = 1,2, . . . ,

let Ed
n = [−n,n]d and

μn(f ) = max
{
μn,j (f ): j = 1, . . . , d

}
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with

μn,j (f ) =
∫

Ed−1
n

f (u1, . . . , uj−1,−n,uj+1, . . . , ud)du1 · · ·duj−1 duj+1 · · ·dun

+
∫

Ed−1
n

f (u1, . . . , uj−1, n,uj+1, . . . , ud)du1 · · ·duj−1 duj+1 · · ·dun

provided the integrals exist. Note that μn(f ) depends only on the behaviour of f on the boundary
of Ed

n .

Proposition 3.1. Suppose that h,ρ ∈ C 1
d,1 such that limn→∞ μn(ρ|h|) = 0 and for j = 1, . . . , d ,

the function h(u) ∂ρ(u)/∂uj is absolutely integrable. Then the following relations hold where
the mean values exist and are finite:

E
∑
u∈X

h(u)∇ log
(
ρ(u)

) = −E
∑
u∈X

∇h(u) (3.1)

and

E
∑
u∈X

h(u)div log
(
ρ(u)

) = −E
∑
u∈X

divh(u). (3.2)

Proof. For j = 1, . . . , d and u = (u1, . . . , ud)� ∈ R
d , Campbell’s theorem (2.2) and the assump-

tion that h(u) ∂ρ(u)/∂uj is absolutely integrable imply that

E

(∑
u∈X

h(u)∇ log
(
ρ(u)

))
j

=
∫

h(u)
∂ρ

∂uj

(u)du

exist. Thereby,

E

(∑
u∈X

h(u)∇ log
(
ρ(u)

))
j

= lim
n→∞

∫
Ed

n

h(u)
∂ρ

∂uj

(u)du

= lim
n→∞

∫
Ed−1

n

([
ρ(u)h(u)

]uj =n

uj =−n
−

∫ n

−n

ρ(u)
∂h

∂uj

(u)duj

)
du1 · · ·duj−1 duj+1 · · ·dun

= − lim
n→∞

∫
Ed

n

∂h

∂uj

(u)ρ(u)du,

where the first identity follows from the dominated convergence theorem, the second from Fu-
bini’s theorem and integration by parts, and the third from Fubini’s theorem and the assumption
that limn→∞ μn(ρ|h|) = 0, since∣∣∣∣∫

Ed−1
n

[
ρ(u)h(u)

]uj =n

uj =−n

∣∣∣∣ ≤ μn,j

(
ρ|h|) ≤ μn

(
ρ|h|).
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Hence, using first the dominated convergence theorem and second Campbell’s theorem,

E

(∑
u∈X

h(u)∇ log
(
ρ(u)

))
j

= −
∫

∂h

∂uj

(u)ρ(u)du = −E

(∑
u∈X

∇h(u)

)
j

whereby (3.1) is verified and the mean values in (3.1) are seen to exist and are finite. Finally,
(3.1) implies (3.2) where the mean values exist and are finite. �

Proposition 3.1 becomes useful when ρ is of the log-linear form (1.1): if we omit the expecta-
tion signs in (3.1)–(3.5), we obtain unbiased estimating equations, where (3.1) gives a linear
system of p vectorial equation in dimension d , while (3.5) gives a linear system of p one-
dimensional equations for the estimation of the p-dimensional parameter θ ; the latter system
is simply obtained by summing over the d equations in each vectorial equation. A similar reduc-
tion of equations is obtained in Baddeley and Dereudre [3].

The conditions and the last result in Proposition 3.1 simplify as follows when h vanishes
outside W .

Corollary 3.2. Suppose that h,ρ ∈ C 1
d,1 such that h(u) = 0 whenever u /∈ W . Then

E
∑

u∈XW

h(u)div log
(
ρ(u)

) = −E
∑

u∈XW

divh(u). (3.3)

3.2. The variational estimator

Henceforth we consider the case of the log-linear intensity function (1.1), assuming that the
parameter space for (β, θ) is R × R

p . We specify below our variational estimator in terms of a
p-dimensional real test function

h = (h1, . . . , hp)�

defined on R
d . The test function is required not to depend on (β, θ) and to satisfy certain smooth-

ness conditions. The specific choice of test functions is discussed at the end of Section 3.2.2.
In the present section, to stress that the expectation of a functional f of X depends on (β, θ),

we write this as Eβ,θf (X). Furthermore, define the p × p matrix

A(XW) =
∑

u∈XW

h(u)div z(u)�

and the p-dimensional column vector

b(XW) =
∑

u∈XW

divh(u).
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3.2.1. Estimating equation and definition of the variational estimator

We consider first the case where the test function h vanishes outside W .

Corollary 3.3. Suppose that h, z ∈ C 1
d,p such that

h(u) = 0 whenever u /∈ W . (3.4)

Then, for any (β, θ) ∈ R × R
p ,

Eβ,θA(XW)θ = −Eβ,θ b(XW). (3.5)

Proof. The conditions of Corollary 3.2 are easily seen to be satisfied. Hence combining (2.4)
and (3.3) we obtain (3.5). �

Several remarks are in order.
Note that (3.5) is a linear system of p equations for the p-dimensional parameter θ . Under the

conditions in Corollary 3.3, (3.5) leads to the unbiased estimating equation

A(XW)θ = −b(XW). (3.6)

Theorem 3.5 below establishes that under certain conditions, where we do not necessarily require
h to vanish outside W , (3.6) is an asymptotically unbiased estimating equation as W extends
to R

d .
In the sequel we therefore do not necessarily assume (3.4). For instance, when div z(u) does

not vanish outside W , we may consider either h(u) = div z(u) or h(u) = ηW (u)div z(u), where
ηW is a smooth function which vanishes outside W . In the latter case, (3.6) is an unbiased esti-
mating equation, while in the former case it is an asymptotically unbiased estimating equation
(under the conditions imposed in Theorem 3.5).

When (3.6) is an (asymptotically) unbiased estimating equation and A(XW) is invertible, we
define the variational estimator by

θ̂ = −A(XW)−1b(XW). (3.7)

Theorem 3.5 below establishes under certain conditions the invertibility of A(XW) and the strong
consistency and asymptotic normality of θ̂ as W extends to R

d .
Finally, if h is allowed to depend on θ , (3.6) still provides an unbiased estimating equation but

the closed form expression (3.7) only applies when h is not depending on θ (as assumed in this
paper).

3.2.2. Choice of test function

The choice of test function should take into consideration the conditions introduced later in
Section 3.3.1. The test functions below are defined in terms of the covariate function so that it is
possible to check these conditions as discussed in Section 3.3.2.

Interesting choices of the test function include:
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• h(u) = div z(u) and the corresponding modification h(u) = ηW (u)div z(u),
• h(u) = z(u) and the corresponding modification h(u) = ηW (u)z(u).

In the first case, A(XW) becomes a covariance matrix. For example, if h(u) = div z(u), then

A(XW) =
∑

u∈XW

div z(u)div z(u)�

is invertible if and only if A(XW) > 0, meaning that if XW = {x1, . . . , xn} is observed, then the
p × n matrix with columns div z(x1), . . . ,div z(xn) has rank p. In the latter case, A(XW) is in
general not symmetric and we avoid the calculation of div div z(u).

3.2.3. Choice of smoothing function

We let henceforth the smoothing function ηW depend on a user-specified parameter ε > 0 and
define it as the convolution

ηW (u) = χW�ε ∗ ϕε(u) =
∫

1(u − v ∈ W�ε)ϕε(v)dv, u ∈ R
d , (3.8)

where the notation means the following:

W�ε = {
u ∈ W : b(u, ε) ⊆ W

}
is the observation window eroded by the d-dimensional closed ball b(u, ε) centered at u and with
radius ε; χW�ε (·) = 1(· ∈ W�ε) is the indicator function on W�ε; and

ϕε(u) = ε−dϕ(u/ε), u ∈ R
d,

where

ϕ(u) = c exp

(
− 1

1 − ‖u‖2

)
1
(‖u‖ ≤ 1

)
, u ∈ R

d,

where c is a normalizing constant such that ϕ is a density function (c ≈ 2.143 when d = 2).
Figure 1 shows the function ηW and its divergence when W = [−1,1]2, ε = 0.2, and ε = 0.4.
The construction (3.8) is quite standard in distribution theory when functions are regularized and
it can be found, though in a slightly different form, in Hörmander ([19], Theorem 1.4.1, page 25).

It is easily checked that ϕε ∈ C∞
d,1, and so ηW ∈ C∞

d,1. Note that

0 ≤ ηW ≤ 1, ηW (u) = 1 if u ∈ W�2ε, ηW (u) = 0 if u /∈ W. (3.9)

The following lemma states some properties for test functions of the modified form h(u) =
ηW (u)k(u), where we let κ = ∫

B(0,1)
|divϕ(v)|dv; if d = 2 then κ ≈ 1.256.

Lemma 3.4. Let k ∈ C 1
d,p and h(u) = ηW (u)k(u) where ηW is given by (3.8). Then h ∈ C 1

d,p and
its support is included in W . Further, h respective divh agrees with k respective divk on W�2ε .
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Figure 1. Plots of the functions ηW = χW ∗ ϕε and divηW when W = [−1,1]2 and ε = 0.2,0.4.

Moreover, for any u ∈ W ,∥∥h(u)
∥∥ ≤ ∥∥k(u)

∥∥,
∥∥divh(u) − divk(u)

∥∥ ≤ ∥∥divk(u)
∥∥ + ∥∥k(u)

∥∥κ/ε. (3.10)

Proof. We have h ∈ C 1
d,p since k ∈ C 1

d,p and ηW ∈ C∞
d,1, and the support of h is included in W

since ηW (u) = 0 if u /∈ W . From the last two statements of (3.9), we obtain that divh(u) agrees
with div k(u) on W�2ε . The first inequality in (3.10) follows immediately from the definition of h,
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since ‖h(u)‖ = ‖ηW (u)k(u)‖ ≤ ‖k(u)‖. Recall that (f ∗ g)′ = f ∗ g′ if g ∈ C1
d,p has compact

support and f is Lebesgue integrable on R
d , where in our case we let f = χW�ε and g = ϕε .

Therefore and since divϕε = (divϕ)/ε ∈ C∞
d,1, for any u ∈ W , we have

divh(u) = ηW (u)div k(u) + k(u)(χW�ε ∗ divϕε)(u)

= ηW (u)div k(u) + 1

ε
k(u)(χW�ε ∗ divϕ)(u).

Thereby, the second inequality in (3.10) follows from a straightforward calculation using again
the fact that ηW (u) ≤ 1. �

3.3. Asymptotic results

In this section, we present asymptotic results for the variational estimator when considering a
sequence of observation windows W = Wn, n = 1,2, . . . , which expands to R

d as n → ∞, and a
corresponding sequence of test functions h = h(n), n = 1,2, . . . . Corresponding to the two cases
of test functions considered in Section 3.2.1, we consider the following two cases:

(A) either h(n) = k does not depend on n,
(B) or h(n)(u) = ηWn(u)k(u), where ηWn is given by (3.8).

3.3.1. Conditions

Our asymptotic results require the following conditions.
We restrict attention to the spatial case d ≥ 2 (this is mainly for technical reasons as explained

in Section 3.3.3). We suppress in the notation that the intensity ρ and the higher order product
densities ρ(2), ρ(3), . . . depend on the “true parameters” (β, θ). Let

Sn =
∫

Wn

h(n)(u)div z(u)�ρ(u)du (3.11)

and

�n =
∫

Wn

f
(n)
θ (u)f

(n)
θ (u)�ρ(u)du +

∫
W 2

n

f
(n)
θ (u1)f

(n)
θ (u2)

�Q2(u1, u2)du1 du2, (3.12)

where Q2(u1, u2) = ρ(2)(u1, u2) − ρ(u1)ρ(u2) (assuming ρ(2) exists) and

f
(n)
θ (u) = h(n)(u)div z(u)�θ + divh(n)(u), u ∈ R

d .

It will follow from the proof of Theorem 3.5 below that under the conditions (i)–(vi) stated below,
with probability one, the integrals in (3.11)–(3.12) exist and are finite for all sufficiently large n.

We impose the following conditions, where o denotes the origin of R
d :

(i) For every n ≥ 1, Wn = nA = {na: a ∈ A}, where A ⊂ R
d is convex, compact, and con-

tains o in its interior.
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(ii) The test functions h(n), n = 1,2, . . . , and the covariate function z are elements of C 1
d,p ,

and satisfy for some constant K > 0,

‖z‖∞ ≤ K, ‖div z‖∞ ≤ K,
(3.13)

sup
n≥1

∥∥h(n)
∥∥∞ ≤ K, sup

n≥1

∥∥divh(n)
∥∥∞ ≤ K.

(iii) There exists a p × p matrix I0 such that for all sufficiently large n, we have Sn/|Wn| ≥
I0 > 0.

(iv) There exists an integer δ ≥ 1 such that for k = 1, . . . ,2+δ, the product density ρ(k) exists
and ρ(k) ≤ K ′, where K ′ < ∞ is a constant.

(v) For the strong mixing coefficients (Section 2), we assume that there exists some ν >

d(2 + δ)/δ such that a2,∞(m) = O(m−ν).
(vi) The second order product density ρ(2) exists, and there exists a p ×p matrix I ′

0 such that
for all sufficiently large n, �n/|Wn| ≥ I ′

0 > 0.

3.3.2. Discussion of the conditions

Some comments on conditions (i)–(vi) are in order.
In general in applications, the observation window has a non-empty interior. In (i), the as-

sumption that A contains o in its interior can be made without loss of generality; if instead u

was an interior point of A, then (i) could be modified to that any ball with centre u and radius
r > 0 is contained in Wn = nA for all sufficiently large n. We could also modify (i) to the case
where |A| > 0 and as n → ∞ the limit of Wn = nA exists and is given by W∞; then in (3.13) we
should redefine ‖ · ‖∞ = supu∈Rd ‖k(u)‖ (i.e., as defined in (2.1)) by ‖ · ‖∞ = supu∈W∞ ‖k(u)‖.
For either case, Theorem 3.5 in Section 3.3.3 will remain true, as the proof of the theorem (given
in Appendix A) can easily be modified to cover these cases.

In (ii), for both cases of (A) and (B) and for k(u) = div z(u), (3.13) simplifies to

‖z‖∞ ≤ K, ‖div z‖∞ ≤ K, ‖div div z‖∞ ≤ K. (3.14)

This follows immediately for the case (A), since then h(n) = h does not depend on n, while in the
case (B) where h(n)(u) = ηWn(u)k(u), Lemma 3.4 implies the equivalence of (3.13) and (3.14).

Note that in (ii) we do not require that h(n) vanishes outside Wn. Thus, in connection with the
unbiasedness result in Corollary 3.3, one of the difficulties to prove Theorem 3.5 below will be
to “approximate” h(n) by a function with support Wn, as detailed in Appendix A.

Conditions (iii) and (vi) are spatial average assumptions like when establishing asymptotic
normality of ordinary least square estimators for linear models. These conditions must be
checked for each choice of covariate function, since they depend strongly on z. Note that un-
der condition (ii), for any u ∈ R

d , ρ(u) ≥ exp(β − ‖θ‖∞‖z‖∞) = c > 0. Therefore, condi-
tion (iii) is satisfied if h(n)(u)div z(u)� ≥ 0 for any u and if |Wn|−1

∫
Wn

h(n)(u)div z(u)� du ≥
I0 for all sufficiently large n. In addition, if Q2(u1, u2) ≥ 0 for any u1, u2 ∈ R

d (this
is discussed above for specific point process models), then condition (vi) is satisfied if
|Wn|−1

∫
Wn

f (n)(u)f (n)(u)� du ≥ I ′
0 for all sufficiently large n.
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Condition (iv) is not very restrictive. It is fulfilled for any Gibbs point process with a Pa-
pangelou conditional intensity which is uniformly bounded from above (the so-called local sta-
bility condition, see, e.g., Møller and Waagepetersen [27]), and also for a log-Gaussian Cox
process where the mean and covariance functions of the underlying Gaussian process are uni-
formly bounded from above (see Møller, Syversveen and Waagepetersen [26] and Møller and
Waagepetersen [28]). Note that the larger we can choose δ, the weaker becomes condition (v).

Condition (v) combined with (iv) is also considered in Waagepetersen and Guan [33], and (iv)–
(v) are inspired by a central limit theorem obtained first by Bolthausen [8] and later extended to
non-stationary random fields in Guyon [17] and to triangular arrays of non-stationary random
fields (which is the requirement of our setting) in Karácsony [25]. We underline that we turned to
a central limit theorem using mixing conditions instead of one using martingale type assumptions
(e.g., Jensen and Künsch [23]) since for most of models considered in this paper (in particular
the two Cox processes discussed below) the “martingale” type assumption is not satisfied. Such
an assumption is more devoted to Gibbs point processes.

Other papers dealing with asymptotics for estimators based on estimating equations for spatial
point processes (e.g., Guan [13], Guan and Loh [15], Guan and Shen [16], Guan, Jalilian and
Waagepetersen [14], Prokešová and Jensen [30]) are assuming mixing properties expressed in
terms of a different definition of mixing coefficient (see, e.g., Equations (5.2)–(5.3) in Prokešová
and Jensen [30]). The mixing conditions in these papers are related to a central limit theorem by
Ibragimov and Linnik [20] obtained using blocking techniques, and the mixing conditions may
seem slightly less restrictive than our condition (v). However, rather than our condition (iv), it is
assumed in the papers that the first four reduced cumulants exist and have finite total variation. In
our opinion, this is an awkward assumption in the case of Gibbs point processes and many other
examples of spatial point process models, including Cox processes where the first four cumulants
are not (easily) expressible in a closed form (one exception being log-Gaussian Cox processes).

Condition (v) is also discussed in (Waagepetersen and Guan [33], Section 3.3 and Appendix E)
from which we obtain that (v) is satisfied in, for example, the following cases of a Cox process X.

• An inhomogeneous log-Gaussian Cox process (Møller and Waagepetersen [28]): Let Y be a
Gaussian process with mean function m(u) = β + θ�z(u) − σ 2/2, u ∈ R

2, and a stationary
covariance function c(u) = σ 2r(u), u ∈ R

2, where σ 2 > 0 is the variance and the correlation
function r decays at a rate faster than d + ν. This includes the case of the exponential
correlation function which is considered later in Section 4.1. If X conditional on Y is a
Poisson point process with intensity function exp(Y), then X is an inhomogeneous log-
Gaussian Cox process.

• An inhomogeneous Neyman–Scott process (Møller and Waagepetersen [28]): Let C be a
stationary Poisson point process with intensity κ > 0, and fσ a density function on R

d

satisfying

sup
w∈[−m/2,m/2]d

∫
Rd\[−m,m]d

fσ (v − w)dw = O
(
m−ν

)
.

This includes the case where fσ is the density function of N (0, σ 2Id), that is, the zero-mean
isotropic d-dimensional normal distribution with standard deviation σ > 0; we consider this
case later in Section 4.1. If X conditional on C is a Poisson point process with intensity



Spatial point processensity estimation 1109

function

exp
(
β + θ�z(u)

)∑
c∈C

fσ (u − c)/κ, u ∈ R
2, (3.15)

then X is an inhomogeneous Neyman–Scott process. When fσ is the density function of
N (0, σ 2Id), we refer to X as an inhomogeneous Thomas process.

Note that in any of these cases of Cox processes, ρ(u) = exp(β + θ�z(u)) is indeed an intensity
function of the log-linear form (1.1) and that for both cases the pair correlation function is greater
than 1 which implies that Q2(u1, u2) ≥ 0 for any u1, u2 ∈ R

d .
Moreover, for Gibbs point processes, (v) may be checked using results in Heinrich [18] and

Jensen [22], where in particular results for pairwise interaction point processes satisfying a hard-
core type condition may apply. However, as stressed in Section 1, the problem with Gibbs models
is that it is hard to exhibit a model with intensity function of the log-linear form (1.1).

Finally, if X is a Poisson point process many simplifications occur. First, for any integer k ≥ 1,
ρ(k)(u1, . . . , uk) = ρ(u1) · · ·ρ(uk), and hence (iv) follows from (ii). Second, since X�1 and X�2

are independent whenever �1 and �2 are disjoint Borel subsets of R
d , we obtain a2,∞(m) = 0,

and so (v) is satisfied. Third, �n reduces to

�n =
∫

Wn

f
(n)
θ (u)f

(n)
θ (u)�ρ(u)du.

3.3.3. Main result

We now state our main result concerning the asymptotics for the variational estimator based on
XWn , that is, the estimator

θ̂n = −An(X)−1bn(X) (3.16)

defined when An(X) = Ŝn given by

Ŝn =
∑

u∈XWn

h(n)(u)div z(u)�

is invertible, and where

bn(X) =
∑

u∈XWn

divh(n)(u).

Denote
d−→ convergence in distribution as n → ∞.

Theorem 3.5. For d ≥ 2 and under the conditions (i)–(vi), the variational estimator θ̂n defined
by (3.16) satisfies the following properties.

(a) With probability one, when n is sufficiently large, Ŝn is invertible (and hence θ̂n exists).
(b) θ̂n is a strongly consistent estimator of θ .
(c) We have

�
−1/2
n Sn(θ̂n − θ)

d−→ N (0, Ip), (3.17)
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where �
−1/2
n is the inverse of �

1/2
n , where �

1/2
n is any square matrix with �

1/2
n (�

1/2
n )� = �n.

Theorem 3.5 is verified in Appendix A, where, for example, in the proof of Lemma A.3 it
becomes convenient that d ≥ 2. We claim that the results of Theorem 3.5 remain valid when
d = 1, but other conditions and another proof are then needed, and we omit these technical
details.

4. Simulation study

4.1. Planar results with a modest number of points

In this section, we investigate the finite-sample properties of the variational estimator (VARE)
for the planar case d = 2 of an inhomogeneous Poisson point process, for an inhomogeneous
log-Gaussian Cox process, and for an inhomogeneous Thomas process. We compare VARE with
the maximum first-order composite likelihood estimator (MCLE) obtained by maximizing the
composite log-likelihood (discussed at the beginning of Section 1) and which is equivalent to the
Poisson log-likelihood ∑

u∈XW

logρ(u) −
∫

W

ρ(u)du. (4.1)

In contrast to the variational approach, this provides not only an estimator of θ but also of β .
It seems fair to compare the VARE and the MCLE since both estimators are based only on

the parametric model for the log-linear intensity function ρ. Guan and Shen [16] and Guan,
Jalilian and Waagepetersen [14] show that the MCLE can be improved if a parametric model for
the second order product density ρ(2) is included when constructing a second-order composite
log-likelihood based on both ρ and ρ(2). We leave it as an open problem how to improve our
variational approach by incorporating a parametric model for ρ(2).

We consider four different models for the log-linear intensity function given by (1.1), where
p = 1,2,1,3, respectively, and u = (u1, u2) ∈ [−2,2]2:

• Model 1: θ = −2, z(u) = u2
1u

2
2.

• Model 2: θ = (1,4)�, z(u) = (sin(4πu1), sin(4πu2))
�.

• Model 3: θ = 2, z(u) = sin(4πu1u2).
• Model 4: θ = (−1,−1,−0.5)�, z(u) = (u1, u

2
1, u

3
1)

�.

We assume that the covariate function z(u) is known to us for all u ∈ W so that we can evaluate its
first and second derivatives (Section 4.3 considers the case where z is only known at a finite set of
locations). Figure 2 shows the intensity functions and simulated point patterns under models 1–4
for a Poisson point process within the region W = [−1,1]2. The figure illustrates the different
types of inhomogeneity obtained by the different choices of ρ.

In addition to the Poisson point process, referred to as POISSON in the results to follow, two
cases of Cox process models are considered, where we are using the terminology and notation
introduced in Section 3.3.2:
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Figure 2. Intensity functions and examples of realizations of Poisson point processes with intensity func-
tions given by models 1–4 (defined in Section 4.1) and generated on the region [−1,1]2.

• An inhomogeneous log-Gaussian Cox process X where the underlying Gaussian process
has an exponential covariance function c(u, v) = σ 2 exp(−‖u − v‖/α). We refer then to X
as LGCP1 when σ 2 = 0.5 and α = 1/15, and as LGCP2 when σ 2 = 1.5 and α = 1/30.

• An inhomogeneous Thomas process X where κ is the intensity of the underlying Poisson
point process C and σ is the standard deviation of the normal density fσ , see (3.15). We
refer then to X as THOMAS1 when κ = 100 and σ = 0.05, and as THOMAS2 when κ = 300
and σ = 0.1.

In addition two observation windows are considered: W = W1 = [−1,1]2 and W = W2 =
[−2,2]2. For each choice of model and observation window, we adjusted the parameter β such
that the expected number of points, denoted by μ�, is 200 for the choice W = W1 and 800 for
the choice W = W2 (reflecting the fact that W2 is four times larger than W1), and then 1000
independent point patterns were simulated using the spatstat package of R Baddeley and
Turner [5].
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For each of such 1000 replications, we computed the MCLE, using the ppm() function of
spatstatwith a fixed deterministic grid of 80×80 points to discretize the integral in (4.1). We
also computed the VARE considering either the test function h(u) = div z(u) or its modification
h(u) = div z(u)ηW (u) for various values of ε > 0, where the former case can be viewed as a
limiting case of the latter one with ε = 0. For the other choices of test functions discussed in
Section 3.2.2 some preliminary experiments showed that the present choice of test functions led
to estimators with the smallest variances.

Among the different models for the intensity function, models 2 and 4 are indeed correctly
defined on R

d in the sense that they satisfy at least our condition (ii). To illustrate the simplicity
of the VARE and the flexibility of conditions (i)–(vi), we focus on model 2 in Appendix B, detail
the form of the VARE, and show that our asymptotic results are valid.

Figure 3 illustrates some general findings for any choice of point process model and observa-
tion window: When the smoothing parameter ε is at least 5% larger than the side-length of the
observation window, the VARE is effectively unbiased, and its variance increases as ε increases.
However, when the point process is too much aggregated on the boundary of the observation
window (as, e.g., in the case of (b) in Figure 2), a too small value of ε leads to biased estimates.
At the opposite, when the point process is not too much aggregated on the boundary of the ob-
servation window (see, e.g., in the case of (a) in Figure 2), the choice ε = 0 leads to the smallest
variance.

Table 1 concerns the situations with ε = 0, ε = 0.1 when W = W1 = [−1,1]2, and ε = 0.2
when W = W2 = [−2,2]2 (in the latter two cases, the choice of ε > 0 corresponds to 5% of

Figure 3. Box plots of MCLE and VARE for θ1 (the first coordinate of θ ) under models 2 and 4, when
using the test function h(u) = div z(u)ηW (u) for different values of ε, with ε = 0 corresponding to
h(u) = div z(u). The plots are based on simulations from Poisson point processes on the observation win-
dow [−2,2]2, when the expected number of points is 800. Similar results are obtained for the other cases
of point process models and choice of observation window.
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Table 1. Average of the p empirical mean squared errors (AMSE) of the estimates for the coordinates in
θ = (θ1, . . . , θp)� and based on independent realizations of Poisson, inhomogeneous log-Gaussian Cox
processes, and inhomogeneous Thomas point processes with different parameters, intensity functions, and
observation windows as described in Section 4.1

W1 = [−1,1]2 (μ� = 200) W2 = [−2,2]2 (μ� = 800)

VARE VARE

ε = 0 ε = 0.1 MCLE ε = 0 ε = 0.2 MCLE

Model 1: θ = −2, z(u) = u2
1u2

2

POISSON 0.109 0.124 0.085 0.027 0.030 0.022
LGCP1 0.152 0.181 0.143 0.035 0.040 0.032
LGCP2 0.170 0.203 0.143 0.035 0.041 0.033
THOMAS1 0.141 0.163 0.118 0.033 0.037 0.030
THOMAS2 0.118 0.147 0.095 0.026 0.027 0.025

Model 2: θ = (1,4)�, z(u) = (sin(4πu1), sin(4πu2))�

POISSON 0.104 0.126 0.089 0.028 0.033 0.033
LGCP1 0.131 0.159 0.117 0.041 0.047 0.066
LGCP2 0.180 0.213 0.144 0.055 0.062 0.067
THOMAS1 0.132 0.158 0.106 0.039 0.046 0.062
THOMAS2 0.106 0.130 0.098 0.035 0.039 0.061

Model 3: θ = 2, z(u) = sin(4πu1u2)

POISSON 0.087 0.105 0.037 0.023 0.026 0.010
LGCP1 0.122 0.137 0.052 0.038 0.036 0.023
LGCP2 0.149 0.174 0.057 0.038 0.038 0.023
THOMAS1 0.103 0.119 0.048 0.033 0.032 0.021
THOMAS2 0.096 0.109 0.042 0.034 0.031 0.021

Model 4: θ = (−1,−1,−0.5)�, z(u) = (u1, u2
1, u3

1)�

POISSON 0.420 0.410 0.216 1.819 0.027 0.010
LGCP1 0.463 0.556 0.332 1.835 0.035 0.015
LGCP2 0.471 0.588 0.327 1.841 0.035 0.016
THOMAS1 0.456 0.545 0.277 1.836 0.030 0.012
THOMAS2 0.427 0.445 0.246 1.805 0.026 0.010

the side-length of W ). The table shows the average of the p empirical mean squared errors
(abbreviated as AMSE) of the estimates for the coordinates in θ = (θ1, . . . , θp)� and based on the
1000 replications. In all except a few cases, the AMSE is smallest for the MCLE, the exception
being model 2 when W = W2. In most cases, the AMSE is smaller when ε = 0 than if ε > 0, the
exception being some cases of model 3 when W = W2 and all cases of model 4 when W = W2.
For models 1–2, the AMSE for the VARE with ε = 0 is rather close to the AMSE for the MCLE.
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For models 3–4, and in particular model 4 with W = W2, the difference is more pronounced, and
the AMSE for the MCLE is the smallest.

4.2. Results with a high number of points and varying dimension of space

In this section, we investigate the VARE and the MCLE when the observed number of points is
expected to be very high, when the dimension d varies from 2 to 6, and when the dimension p

of θ scales with d . Specifically, we let p = d and consider a Poisson point process with

logρ(u) = β +
d∑

i=1

θi sin(4πui)/d, u = (u1, . . . , ud)� ∈ R
d,

where θ1 = · · · = θd = 1, d = 2, . . . ,6, and β is chosen such that the expected number of points
in W = [−1,1]d is μ� = 10 000.

For d = 2, . . . ,6, we simulated 1000 independent realizations of such a Poisson point process
within W = [−1,1]d . For each realization, when calculating the MCLE we used a systematic grid
(i.e., a square, cubic, . . . grid when d = 2,3, . . .) for the discretization of the integral in (4.1),
where the number of dummy points nD is equal to τμ� with τ = 0.1,0.5,1,2,4,10.

Similar to Table 1, Table 2 shows ratios of AMSE’s for the two types of estimators, VARE and
MCLE, as the dimension d (and number of parameters) varies and as the number of dummy points
nD varies from 1000 to 100 000. In terms of the AMSE, the VARE outperforms the MCLE for the
smaller values of nD , and the two estimators are only equally good at the largest value of nD in
Table 2.

Table 3 presents the average time in seconds to get one estimate based on the VARE and as a
function of d , and also the average time in seconds to get one estimate based on the MCLE and as
a function of both d and τ . The table clearly shows how much faster the calculation of the VARE

than the MCLE is. In particular, when nD = 100 000, the average computation time of the MCLE

is around 1400 (d = 2) to 560 (d = 6) times slower than that of the VARE.

Table 2. Ratio of the AMSE of the MCLE over the AMSE of the VARE for θ = (θ1, . . . , θd ) ∈ R
d and based

on simulations from Poisson point processes as described in Section 4.2. The rows corresponds to the
dimension (and number of parameters) d , and the columns to the number of dummy points nD = 10 000τ

used to discretize the integral of (4.1) when calculating the MCLE

AMSEMCLE/AMSEVARE

τ = 0.1 τ = 0.5 τ = 1 τ = 2 τ = 4 τ = 10

d = 2 11.00 2.71 1.83 1.32 1.08 0.95
d = 3 11.20 2.77 1.88 1.36 1.15 0.99
d = 4 11.35 2.92 1.97 1.41 1.16 0.99
d = 5 11.67 3.00 2.00 1.43 1.21 1.03
d = 6 10.59 2.92 1.92 1.40 1.17 1.02
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Table 3. Average time (in seconds) for the computation of the VARE and of the MCLE as considered in
Table 2

MCLE

VARE τ = 0.1 τ = 0.5 τ = 1 τ = 2 τ = 4 τ = 10

d = 2 0.004 0.200 0.347 0.546 0.984 1.929 5.744
d = 3 0.005 0.178 0.298 0.450 0.779 1.483 4.087
d = 4 0.007 0.231 0.374 0.562 0.941 1.740 4.805
d = 5 0.009 0.272 0.432 0.650 1.082 1.994 5.493
d = 6 0.011 0.312 0.494 0.739 1.242 2.367 6.203

4.3. Results when z is known only on a finite set of locations

The calculation of the VARE based on a realization XW = x requires the knowledge of div z(u)

(and possibly also div div z(u)) for u ∈ x. In practice, z is often only known for a finite set of
points in W , which is usually given by a systematic grid imposed on W , and we propose then
to approximate div z and div div z using the finite-difference method. We discuss below some
interesting findings when such an approximation is used.

We focus on the planar case d = 2, and let h(u) = div z(u) for the VARE. For the two
choices of observation windows, W = W1 = [−1,1]2 or W = W2 = [−2,2]2, we simulated
1000 realizations of a Poisson point process with logρ(u) = β + sin(4πu1) + sin(4πu2) for
u = (u1, u2) ∈ R

2 (i.e., model 2 in Section 4.1 with θ1 = θ2 = 1), where β is chosen such that
the expected number of points is μ� = 200 if W = W1 and μ� = 800 if W = W2. For each repli-
cation, we calculated four types of estimators, namely VARE and MCLE which correspond to the
situation in Table 1 where z is assumed to be known on W , and two “local” versions VARE(loc)
and MCLE(loc) where only knowledge about z on a grid is used. In detail:

• Assuming the full information about z on W , VARE and MCLE were calculated, where for
the MCLE the integral in (4.1) is discretized over a quadratic grid G of n2

D points in W , with
nD = 20,40,80 if W = W1, and nD = 40,80,160 if W = W2.

• For each simulated point u of a replication, the 3 × 3 subgrid whose midpoint is closest
to u was used for approximating div z(u) and div div z(u) by the finite-difference method.
Thereby, a subgrid G0 ⊆ G was obtained as illustrated in Figure 4. Using only the knowl-
edge about z on G0, VARE(loc) as an approximation of VARE was obtained. Furthermore,
MCLE(loc) was calculated by discretizing the integral in (4.1) over the grid points in G0.

Table 4 shows that in terms of the AMSE, the VARE(loc) is effectively as good as the VARE if the
grid is sufficiently fine, cf. the results in the case of the 80×80 grid for W1 and the 160×160 grid
for W2. As expected the MCLE performs better than the other estimators, in particular as the grid
becomes finer, except for the coarsest grids (the 20×20 grid for W1 and the 40×40 grid for W2)
where the AMSE is equal for the MCLE and the MCLE(loc). As the grid gets finer, the AMSE for
the MCLE(loc) increases and becomes much larger than for any of the other estimators – only for
the coarsest grids, the MCLE(loc) and the MCLE perform equally good. Thus if the covariates are
observed only in a small neighborhood of the location points, it becomes advantageous to use the
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Figure 4. The crosses represent a realization of the Poisson point process under the model 2 and within
the observation window [−1,1]2. The empty circles represent the grid points where the spatial function
z is sampled and used to compute VARE(loc) and MCLE(loc). The grid points used to compute the MCLE

correspond to the empty and filled circles.

VARE as compared to the MCLE. This feature could be of relevance in practice if the covariates
are only determined at locations close to the points of XW .

Appendix A: Proofs

This Appendix verifies Theorem 3.5 and some accompanying lemmas assuming that d ≥ 2 and
conditions (i)–(vi) in Section 3.3.1 are satisfied.

To simplify the notation, when considering a mean value which possibly depends on (β, θ),
we suppress this and simply write E[· · ·].

Table 4. AMSE for the four types of estimators VARE, VARE(loc), MCLE, and MCLE(loc) obtained using
different grids as described in Section 4.3. The VARE is assuming that the spatial function z is known
and is used here as a reference; it does not depend on the refinement of the grid. The results are based
on 1000 independent realizations of a planar Poisson point process simulated on the observation window
W = [−1,1]2 or W = [−2,2]2

W = [−1,1]2 (μ� = 200) W = [−2,2]2 (μ� = 800)

20 × 20 40 × 40 80 × 80 40 × 40 80 × 80 160 × 160

VARE − 0.023 − − 0.006 −
VARE(loc) 0.072 0.029 0.025 0.035 0.008 0.006
MCLE 0.014 0.014 0.013 0.004 0.004 0.003
MCLE(loc) 0.014 0.166 0.628 0.004 0.164 0.623
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We start by showing that we can replace:

1. the domain Wn by a more convenient domain W�
n satisfying |Wn| ∼ |W�

n | as n → ∞ (mean-
ing that |Wn|/|W�

n | → 1 as n → ∞);

2. the function h(n) by a function h
(n)
ε with compact support on W�

n , where ε = εn depends on
n and should be distinct from the ε used in (3.8).

This will later allow us to apply Corollary 3.3.
Let Ci = i + (−1/2,1/2]d be the unit box centered at i ∈ Z

d . Define In = {i ∈ Z
d : Ci ⊂ Wn},

and let ∂In = {i ∈ Z
d \ In: Ci ∩ Wn 
= ∅} be the nearest neighbourhood of In on the integer

lattice Z
d . Set W∂In

= ⋃
i∈∂In

Ci and W�
n = ⋃

i∈In
Ci .

Lemma A.1. For any n = 1,2, . . . , we have W�
n ⊆ Wn ⊆ W�

n ∪ W∂In
. As n → ∞, then |Wn| =

|A|nd ∼ |W�
n | and |Wn \ W�

n | = O(nd−1). Moreover,
∑

n≥1 |In|−1 < ∞.

Proof. The first statement is clearly true. Thus, |W�
n | ≤ |Wn| ≤ |W�

n | + |∂In|.
By (i), Wn = nA is convex, so |∂In| ≤ Kdδ(A)d−1nd−1, where δ(A) denotes the diameter of

A and Kd > 0 is a constant. Consequently,

1 ≥ |W�
n |

|Wn| ≥ 1 − |∂In|
|Wn| ≥ 1 − δ(A)d−1

n

leading to |Wn| ∼ |W�
n | as n → ∞. Since |Wn \W�

n |/|Wn| ≤ Kdδ(A)d−1/n = O(1/n), we obtain
|Wn \ W�

n | = O(nd−1), whereby the second statement is verified.
The last statement follows from that |In| = |W�

n | ∼ |A|nd and d ≥ 2. �

Now, let ε = εn = nα for some given α ∈ [0,1). Define h
(n)
ε as the regularized function of h(n)

as described in Section 3.2 and given by

h(n)
ε (u) = h(n)(u)ηW�

n
(u), (A.1)

where ηW�
n

is defined by (3.8) (when W is replaced by W�
n and the ε in (3.8) is replaced by the

present ε = εn). By Lemma 3.4 and (i)–(ii), we have that h
(n)
ε respective divh

(n)
ε agrees with h(n)

respective divh(n) on W�
n�2ε , the support of h

(n)
ε is included in the bounded set W�

n , and there
exists K < ∞ such that

sup
n≥1

∥∥h(n)
ε

∥∥∞ ≤ K and sup
n≥1

∥∥divh(n)
ε − divh(n)

∥∥∞ ≤ K. (A.2)

The following lemma concerns the behavior of variance functionals computed on Wn or W�
n .

Lemma A.2. Let (ψ(n))n≥1 be a sequence of functions in C 0
d,1 such that

sup
n≥1

∥∥ψ(n)
∥∥∞ ≤ C (A.3)
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for some constant C < ∞, then for W̃n = Wn,W
�
n , the variance

VW̃n
= Var

( ∑
u∈XW̃n

ψ(n)(u)

)

is finite and is given by

VW̃n
=

∫
W̃n

ψ(n)(u)2ρ(u)du +
∫

W̃n

∫
W̃n

ψ(n)(u)ψ(n)(v)Q2(u, v)dudv = O
(
nd

)
. (A.4)

Proof. The finiteness of the variance follows from (iv), and the first identity in (A.4) is immedi-
ately derived from (2.2)–(2.3).

For the second identity, we consider first W̃n = W�
n . Define Y

(n)
i = ∑

u∈Ci
ψ(n)(u) for i ∈ In.

For δ ≥ 1 given in (iv), it is clear that E(|Y (n)
i |2+δ) is bounded by a linear combination of

s
(n)
k =

∫
Ci

· · ·
∫

Ci

∣∣ψ(n)(u1) · · ·ψ(n)(uk)
∣∣ρ(k)(u1, . . . , uk)du1 · · ·duk, k = 1, . . . ,2 + δ.

Using (A.3) and (iv), we obtain

sup
n≥1

s
(n)
k ≤ Ck sup

i∈Zd

∫
Ci

· · ·
∫

Ci

ρ(k)(u1, . . . , uk)du1 · · ·duk ≤ CkK ′ < ∞.

Therefore,

MY := sup
n≥1

sup
i∈In

E
(∣∣Y (n)

i

∣∣2+δ)
< ∞.

Further, we have the following bound for the covariance in terms of the mixing coefficients of X
(see Doukhan [12] or Guyon [17], remark, page 110),∣∣Cov

(
Y

(n)
i , Y

(n)
j

)∣∣ ≤ 8M2
Y α1,1

(|j − i|)δ/(2+δ)
.

Furthermore, since for any m ≥ 1, α1,1(m) ≤ α2,∞(m), and since |W�
n | = |In|, we obtain∣∣W�

n

∣∣−1
VW�

n
= |In|−1

∑
i,j∈In

Cov
(
Y

(n)
i , Y

(n)
j

)
≤ 8M2

Y |In|−1
∑

i,j∈In

α2,∞
(|j − i|)δ/(2+δ)

≤ 8M2
Y

∑
m≥0

∣∣{j ∈ Z
d : |j | = m

}∣∣α2,∞(m)δ/(2+δ)

≤ cd

∑
m≥1

md−1α2,∞(m)δ/(2+δ),
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where cd > 0 is a constant depending only on d . Combining this with (v) leads to |W�
n |−1VW�

n
=

O(1).
Second, let Jn = In ∪ ∂In. Then

VWn =
∑

i,j∈Jn

Cov
(
Z

(n)
i ,Z

(n)
j

)
where for i ∈ Jn, Z

(n)
i =

∑
u∈XCi∩Wn

ψ(n)(u).

Using (A.3), (iv), and similar arguments as above for the case W̃n = Wn, it is clear that

MZ := sup
n≥1

sup
i∈Jn

E
(∣∣Z(n)

i

∣∣2+δ)
< ∞.

Finally, using (v) and similar arguments as above, we obtain that |Jn|−1VWn = O(1). This com-
pletes the proof, since |Jn| ∼ |In| = O(nd). �

Similar to the definitions of An(X) and bn(X) in Section 3.2, we define

A�
n(X) =

∑
u∈XW�

n

h(n)
ε (u)div z(u)� and b�

n(X) =
∑

u∈XW�
n

divh(n)
ε (u).

We simplify the notation by suppressing the dependence on X for the random matrices An =
An(X) and A�

n = A�
n(X), and for the random vectors bn = bn(X) and b�

n = b�
n(X).

Lemma A.3. (I) For Zn = An,A
�
n, bn, b

�
n, we have |Wn|−1(Zn − EZn)

a.s.−→ 0 as n → ∞.
(II) |Wn|−1E(Anθ + bn) = O(nα−1).

(III) (An − A�
n)θ + bn − b�

n = oP (|Wn|1/2) = oP (nd/2).

Proof. (I): We have

An − EAn =
( ∑

u∈XWn

h(n)(u)div z(u)�
)

−
∫

Wn

h(n)(u)div z(u)�ρ(u)du,

A�
n − EA�

n =
( ∑

u∈XW�
n

h(n)
ε (u)div z(u)�

)
−

∫
W�

n

h(n)
ε (u)div z(u)�ρ(u)du,

bn − Ebn =
( ∑

u∈XWn

divh(n)(u)

)
−

∫
Wn

divh(n)(u)ρ(u)du,

b�
n − Eb�

n =
( ∑

u∈XW�
n

divh(n)
ε (u)

)
−

∫
W�

n

divh(n)
ε (u)ρ(u)du.

Let j, k ∈ {1, . . . , p}. From (ii) and (A.4), we obtain

E
(
(An − EAn)

2
jk

) = O
(
nd

)
, E

(
(bn − Ebn)

2
j

) = O
(
nd

)
,
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E
((

A�
n − EA�

n

)2
jk

) = O
(
nd

)
, E

((
b�
n − Eb�

n

)2
j

) = O
(
nd

)
.

Hence, for Zn = An,A
�
n, bn, b

�
n, we have (setting k = 1 for Zn = bn, b

�
n)

Var
(|Wn|−1(Zn)jk

) = O
(
n−d

)
,

which together with the Borel–Cantelli lemma and the fact that d ≥ 2 imply the result of (I).
(II): By Lemma 3.4 and (A.1)–(A.2), we have

An − A�
n =

∑
u∈XW�

n\W�
n�2ε

(
h(n)(u) − h(n)

ε (u)
)

div z(u)� +
∑

u∈XWn\W�
n

h(n)(u)div z(u)� (A.5)

and

bn − b�
n =

∑
u∈W�

n\W�
n �2ε

(
divh(n)(u) − divh(n)

ε (u)
) +

∑
u∈Wn\W�

n

divh(n)(u). (A.6)

We denote by T1 and T2 the two sums of the right-hand side of (A.5) and by T ′
1 and T ′

2 the
two sums of the right-hand side of (A.6). Using (ii), (2.2), and (A.2), we obtain ET1 = O(|W�

n \
W�

n�2ε|), ET2 = O(|Wn \ W�
n |), ET ′

1 = O(|W�
n \ W�

n�2ε|), and ET ′
2 = O(|Wn \ W�

n |). By Lem-
ma A.1, |Wn \ W�

n | = O(nd−1) and |W�
n \ W�

n�2ε| = O(nd−1+α), since α < 1. Hence,

E
((

An − A�
n

)
θ
) = O

(
nd−1+α

) + O
(
nd−1) = O

(
nd−1+α

)
(A.7)

and

E
(
bn − b�

n

) = O
(
nd−1+α

) + O
(
nd−1) = O

(
nd−1+α

)
. (A.8)

Since h
(n)
ε has support included in W�

n , Corollary 3.3 gives E(A�
nθ + b�

n) = 0. Combining this
with (A.7)–(A.8) gives the result of (II).

(III): From Lemmas A.1–A.2, (ii), and (A.2), we get

VarT1 = O
(∣∣W�

n \ W�
n�2ε

∣∣) = O
(
nd−1+α

)
and

VarT2 = O
(∣∣Wn \ W�

n

∣∣) = O
(
nd−1),

which leads to

Var
(|Wn|−1/2(An − A�

n

)
θ
) = O

(
nd−1+α

nd

)
= O

(
nα−1). (A.9)

In the same way, we derive

VarT ′
1 = O

(∣∣W�
n \ W�

n�2ε

∣∣) = O
(
nd−1+α

)
and

VarT ′
2 = O

(∣∣Wn \ W�
n

∣∣) = O
(
nd−1),
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which leads to

Var
(|Wn|−1/2(bn − b�

n

)) = O
(
nα−1). (A.10)

Combining (A.9)–(A.10) with Chebyshev’s inequality completes the proof of (III). �

Finally, we turn to the proof of (a)–(c) in Theorem 3.5.
(a): With probability one, by (I) in Lemma A.3, |Wn|−1(An − Sn) ≥ −|Wn|−1Sn/2 for all

sufficiently large n, and so by (iii),

An

|Wn| ≥ Sn

2|Wn| ≥ I0

2
(A.11)

for all sufficiently large n. Thereby, (a) is obtained.
(b): With probability one, for n large enough, we can write |Wn|−1An(θ̂n − θ) = −|Wn|−1 ×

(Anθ + bn), and by (A.11), ‖(|Wn|−1An)
−1‖ ≤ 2/μmin where μmin is the smallest eigenvalue

of I0. Combining this with (a) in Theorem 3.5, with probability one, for n large enough, we
obtain

‖θ̂n − θ‖ = ∥∥(|Wn|−1An

)−1|Wn|−1(Anθ + bn)
∥∥

≤ 2

μmin

∥∥|Wn|−1(Anθ + bn)
∥∥.

The right-hand side of this inequality converges almost surely to zero, cf. Lemma A.3. Thereby
(b) follows.

(c): For a function ψ : R
d → R and a bounded Borel set � ⊂ R

d , define

V�(ψ) =
∫

�

ψ(u)ψ(u)�ρ(u)du +
∫

�

∫
�

ψ(u1)ψ(u2)
�Q2(u1, u2)du1 du2 (A.12)

provided the integrals exist (are finite). Observe that �n = VWn(f
(n)
θ ) and ��

n = VW�
n
(f

(n)
θ,ε ) where

f
(n)
θ,ε (u) = h(n)

ε (u)div z(u)�θ + divh(n)
ε (u).

We decompose the proof of (c) into three steps.
Step 1. Assuming ��

n ≥ I0 > 0 for some positive definite matrix I0 and for all n large enough,
we prove that

��
n
−1/2(

A�
nθ + b�

n

) d−→ N (0, Ip) as n → ∞. (A.13)

We have

A�
nθ + b�

n =
∑
i∈In

Y
(n)
i with Y

(n)
i =

∑
u∈XCi

f
(n)
θ,ε (u).

For any n ≥ 1 and any i ∈ In, Y
(n)
i has zero mean, and by (iv),

sup
n≥1

sup
i∈In

E
(∥∥Y

(n)
i

∥∥2+δ) = O(1).
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This combined with (v) and the assumption on ��
n, allows us to invoke Karáczony ([25], Theo-

rem 4), which is a central limit theorem for a triangular array of random fields, which in turn is
based on Guyon ([17], Theorem 3.3.1). Thereby (A.13) is obtained.

Step 2. We prove that

|Wn|−1(�n − ��
n

) → 0 as n → ∞. (A.14)

Using the notation (A.12), we have

�n − ��
n = VW�

n �2ε

(
ζ (n)

) + VWn\W�
n �2ε

(
ζ (n)

)
, (A.15)

where

ζ (n)(u1, u2) = f
(n)
θ (u1)f

(n)
θ (u2)

� − f
(n)
θ,ε (u1)f

(n)
θ,ε (u2)

�, u1, u2 ∈ R
d . (A.16)

By (ii) and (A.2), every entry of ζ (n)(u1, u2) vanishes if u1, u2 ∈ W�
n�2ε , and its numeric value

is bounded by a constant if u1, u2 ∈ Wn. Therefore, we can apply similar arguments as used in
the proof of Lemma A.2 to conclude that

|Wn|−1
∣∣(�n − ��

n

)
jk

∣∣ = |Wn|−1(VWn\W�
n �2ε

(
ζ (n)

))
jk

= O
( |W�

n \ W�
n�2ε|

|Wn|
)

= O
(
nα−1),

which leads to the verification of (A.14).
Step 3. From (vi) and (A.14), we see that with probability one, ��

n is invertible for all suffi-
ciently large n, which allows us to write

�
−1/2
n Sn(θ̂n − θ) = −�

−1/2
n (Anθ + bn)

= −�
−1/2
n

((
An − A�

n

)
θ + bn − b�

n

)
(A.17)

+ (
�

−1/2
n − (

��
n

)−1/2)(
A�

nθ + b�
n

)
(A.18)

+ (
��

n

)−1/2(
A�

nθ + b�
n

)
.

From (A.13) and Slutsky’s lemma, we obtain that (3.17) will be true if we manage to prove that
the two terms (A.17) and (A.18) converge towards zero in probability as n → ∞. Let U1 and
U2 denote these two terms. Let Mn = ��

n/|Wn|. For n large enough, we have ‖M−1
n ‖ ≤ 2/λmin,

so ‖M−1/2
n ‖ ≤ 2/

√
λmin, where λmin is the smallest eigenvalue of I ′

0 in (vi), and there exists a

constant C such that max(‖M1/2
n ‖,‖Mn‖) ≤ C. On the first hand, we note that

‖U1‖ ≤ 2√
λmin

∥∥|Wn|1/2((An − A�
n

)
θ + bn − b�

n

)∥∥,

which from (III) in Lemma A.3 leads to U1
P−→ 0 as n → ∞. On the other hand, we have

U2 = (
�

−1/2
n

(
��

n

)1/2 − Ip

)(
��

n

)−1/2(
A�

nθ + b�
n

)
. (A.19)
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Since ‖(�n/|Wn|)−1‖ is bounded, we derive from (A.14) that(
�n

|Wn|
)−1(

�n − ��
n

|Wn|
)

= Ip − �−1
n ��

n → 0,

which also leads to �
−1/2
n (��

n)
1/2 → Ip . Combining (A.13) and (A.19) with Slutsky’s lemma,

convergence in probability to zero of U2 is deduced. The proof of Theorem 3.5 is thereby com-
pleted.

Appendix B: The VARE for model 2

For specificity and simplicity, consider the setting of Section 4.1 when h(u) = div z(u) and
model 2 is assumed. Then a straightforward calculation leads to the following simple expres-
sion for the VARE:

θ̂n =
( ∑

cos2(4πu1)
∑

cos(4πu1) cos(4πu2)∑
cos(4πu1) cos(4πu2)

∑
cos2(4πu2)

)−1 (∑
sin(4πu1)∑
sin(4πu1)

)
,

where u = (u1, u2) ∈ R
2 and

∑ = ∑
u∈XWn

. In the sequel, we discuss the conditions (i)–(vi)
specified in Section 3.3.1.

Conditions (i), (iv), and (v) are discussed in Section 3.3.2 and are satisfied under the setting of
Section 4.1. Condition (ii) is obviously satisfied for model 2. Below we focus on condition (iii)
as condition (vi) can be checked using similar ideas.

According to the discussion in Section 3.3.2, we only need to verify that |Wn|−1S̃n ≥ I0 where

S̃n =
∫

Wn

div z(u)div z(u)� du.

Let Ci denote the unit cube centered at i ∈ In where

In = {
(j, k): j, k ∈ {−n/2, . . . ,−1/2,1/2, . . . , n/2}}.

Then Wn = [−n,n]2 = ⋃
i∈In

Ci . Let η > 0. There exists a non-negative real-valued continuous
function f such that f (η) → 0 as η → 0, and such that for any i = (i1, i2) ∈ In and any u =
(u1, u2) ∈ b((i1, i1 − 3/8), η)∣∣cos(4πu1) − 1

∣∣ ≤ f (η) and
∣∣cos(4πu2)

∣∣ ≤ f (η).

Therefore, for any u ∈ b((i1, i1 − 3/8), η) and y ∈ R
2 \ {0}, whenever η is sufficiently small,

y� div z(u)div z(u)�y

= 16π2(y2
1 cos2(4πu1) + 2y1y2 cos(4πu1) cos(4πu2) + y2

2 cos2(4πu2)
)

≥ 16π2(y2
1

(
1 − f (η)

) − 2|y1y2|f (η)2 − y2
2f (η)

) ≥ 8π2y2
1 .
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Thus, for sufficiently small η,

y�S̃ny =
∑
i∈In

∫
Ci

y� div z(u)div z(u)�y du ≥ 8π2y2
1

(
πη2)|In| = c|Wn|

with c = 8π3y2
1η2 > 0. This implies that |Wn|−1S̃n ≥ cJ2 where J2 is the 2 × 2 identity matrix.
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