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It has been over 200 years since Gauss’s and Legendre’s famous priority dispute on who discovered the
method of least squares. Nevertheless, we argue that the normal equations are still relevant in many facets
of modern statistics, particularly in the domain of high-dimensional inference. Even today, we are still
learning new things about the law of large numbers, first described in Bernoulli’s Ars Conjectandi 300
years ago, as it applies to high dimensional inference.

The other insight the normal equations provide is the asymptotic Gaussianity of the least squares esti-
mators. The general form of the Gaussian distribution, Gaussian processes, are another tool used in modern
high-dimensional inference. The Gaussian distribution also arises via the central limit theorem in describing
weak convergence of the usual least squares estimators. In terms of high-dimensional inference, we are still
missing the right notion of weak convergence.

In this mostly expository work, we try to describe how both the normal equations and the theory of
Gaussian processes, what we refer to as the “geometry of least squares,” apply to many questions of current
interest.
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1. Basic tools in the geometry of least squares

The method of least squares has by now a long and well-trodden history, which we will not
attempt to address in this work. Toward the end of the 20th century, Stigler (1981) referred to the
method of least squares as the automobile of (then) modern statistical analysis. Today, 30 years
later, as automobiles have modernized, including technological and efficiency improvements, so
too have the methods of least squares changed.

Let us recall the classical least squares problem: given outcome vector y ∈ Rn and design
matrix X ∈ Rn×p , the least squares problem is typically posed as

minimize
β∈Rp

1

2
‖y − Xβ‖2

2. (1)

The related normal equations are

XT (Xβ̂ − y) = 0. (2)
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We could have almost equivalently written the equations above in terms of the metric projec-
tion problem

y �→ argmin
x∈A

1

2
‖y − x‖2

2
�= πA(y) (3)

with classical least squares by setting A = col(X) the column space of X. This metric projection
problem is the first of the basic tools in what we will refer to here as “the geometry of least
squares in the 21st century.”

While written as a function above, the map (3) is not always a function, there may be many
minimizers for a given y. For a set A, define the critical radius of A as

rc(A) = sup
{
r : inf

x∈A
‖y − x‖2 ≤ r �⇒ (3) has a unique solution

}
. (4)

Note that for convex A, rc(A) = +∞. The metric projection problem also makes sense for other
sets and other metrics. For instance, suppose A ⊂ S(Rn) = S�2(R

n), the unit �2 sphere in Rn

with distance d(x, y) = cos−1(xT y). One might also consider the spherical metric projection

S
(
Rn

) � y �→ argmax
x∈A

xT y (5)

with the critical radius (4) being similarly defined. We will see in Section 4 that the above critical
radius plays a part in the supremum of a class of Gaussian processes [Adler and Taylor (2007)],
one of the other important class of objects associated to Gauss’s name. Gaussian processes suffer
some of the same deficiencies identified in Stigler (1981): they make many assumptions and have
their limitations. Nevertheless, they are a crucial inferential tool in analyzing the behavior of (3).
Hence, we refer to these as the second of the basic tools in the geometry of least squares in the
21st century.

2. A canonical high-dimensional regression problem

In the classical setting n > p the system (2) often has a unique solution, the familiar

β̂ = (
XT X

)−1(
XT y

)
.

In many parametric models, the least squares model is of course too simple. In the exponential
family setting [Amari and Nagaoka (2000), Efron (1978)], the normal equations are similar, with
(XT X) replaced by the observed Fisher information. We have focused on squared error-loss for
its simplicity of exposition.

In high-dimensional settings, n is often less than p and there is of course no unique solution
to (2). Many modifications are possible, for instance, ridge or Tikhonov regularization which
adds a strongly convex quadratic term to (1). The addition of such quadratic terms changes the
quadratic part of the loss but does not fundamentally change much else until we begin to make
assumptions about whether or not the model is correct, and how much bias might be incurred by
such regularization.
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In modern high-dimensional settings the regularization term, or penalty, of choice is often a
norm, with the LASSO [Tibshirani (1996)] being the most popular. The lasso problem is

minimize
β∈Rp

1

2
‖y − Xβ‖2

2 + λ‖β‖1. (6)

The duality between norms allows us to write

‖β‖1 = sup
u:‖u‖∞≤1

uT β = hB∞(β)

with B∞ the �∞ ball of radius 1 in Rp and for any set K

hK(β) = sup
u∈K

uT β (7)

is the support function of the set K which we assume to be closed and containing 0. In this
notation, the LASSO problem can be expressed as

minimize
β∈Rp

1

2
‖y − Xβ‖2

2 + λhB∞(β). (8)

Our canonical problem is therefore

minimize
β∈Rp

1

2
‖y − Xβ‖2

2 + λhK(β) (9)

with K being a closed, convex set containing 0. For one of many possible infinite dimensional
formulations of this canonical problem, see Tsirel’son (1982) whose author is also associated to
one of the most famous tools in the theory of Gaussian process, the Borell TIS inequality [Adler
and Taylor (2007)].

The normal equations of the least squares problem are replaced with the KKT conditions
[Boyd and Vandenberghe (2004)] for (9). For our canonical problem, the KKT conditions are

XT (Xβ̂ − y) + û = 0, û ∈ λ · ∂hK(β̂), (10)

where the ∂ denotes the sub differential. In what follows, we denote a solution to this problem as
β̂λ,KX

to denote the dependence on the penalty KX and the penalty parameter λ.
As we can encode linear or cone constraints in the support function, it is safe to say that a huge

number of problems fit into this framework. Some examples include:

• LASSO [Tibshirani (1996)];
• compressed sensing [Candès, Romberg and Tao (2006), Donoho (2006)];
• group LASSO [Yuan and Lin (2006), Obozinski, Jacob and Vert (2011)];
• graphical LASSO [Friedman, Hastie and Tibshirani (2008), Bühlmann (2012)];
• matrix completion [Candès and Recht (2009), Mazumder, Hastie and Tibshirani (2010)];
• sign restricted regression [Meinshausen (2012)];
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• hierarchically constrained models [Bien, Taylor and Tibshirani (2013), Jenatton et al.
(2011)];

• generalized LASSO [Tibshirani and Taylor (2011)];
• total variation denoising [Becker, Bobin and Candès (2011)].

The relation between (9) and the metric projection map is through a particular dual function,
also developed by Legendre. The canonical dual problem is

minimize
u∈λ·row(X)∩K

1

2
(u − w)T

(
XT X

)†
(u − w) (11)

with row(X) the row space of the matrix X. This dual problem can be derived by minimizing the
following Lagrangian with respect to β,η

L(β,η;u) = 1
2‖y − Xβ‖2

2 + λhK(η) + uT (β − η). (12)

After a sign change, the problem in (11) is fairly easily seen to be equivalent to

maximize
u

[
inf
β,η

L(β,η;u)
]

(13)

with the constraints in (11) encoding the fact that

inf
β,η

L(β,η;u) = −∞

whenever u /∈ λ · row(X) ∩ K. Any pair β̂, û is related through
(
XT X

)
β̂ − w + û = 0. (14)

Choosing an orthonormal basis for row(X), we see that the dual problem can be phrased as
the metric projection problem of (XT X)−†/2w onto λ · row(X) ∩ K . Alternatively, if we are
interested only in the fitted values Xβ̂λ,K , the original problem (9) can be expressed as the
residual μ̂ = y − r̂ from

r̂ = argmin
r∈λ·KX

1

2
‖y − r‖2

2, (15)

where

KX = (
XT

)−1
K. (16)

Or, in another form,

μ̂(y) = y − πλ·KX
(y). (17)

We see that our canonical regression problem is in fact a metric projection problem.
Having posed the canonical high-dimensional regression problem as a metric projection prob-

lem, we now try to describe how metric projection is related to some fundamental issues in the
understanding of this problem both from an algorithmic view and an inferential view.
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2.1. Algorithms to solve the canonical problem

The general problem is phrased in terms of an arbitrary K . For many high-dimensional problems,
this K is chosen to emphasize expected structure in the data. For example, it is well known that
the LASSO yields sparse solutions, the group LASSO yields groups of nonzero coefficients, etc.

This special structure is based on a particular structure encoded in K . Further, for many canon-
ical choices of K used in high dimensional statistics, such as those cited in Section 2, the follow-
ing metric projection is simple

ν �→ argmin
u∈λ·K

1

2
‖ν − u‖2

2 = ν − argmin
β

[
1

2
‖ν − β‖2

2 + λhK(β)

]
.

Such optimization problems are referred to as problems in composite form [Becker, Bobin
and Candès (2011), Boyd and Vandenberghe (2004), Nesterov (2005)]. For such problems, many
modern first order solvers use a version of generalized gradient descent. The steps in generalized
gradient descent are essentially iterations of this metric projection map. Specifically, to solve the
canonical problem (9) for a given step-size α a simple generalized gradient algorithm reads as

β̂(k+1) = argmin
β

1

2α

∥∥ν(k)
α − β

∥∥2
2 + λhK(β)

= ν(k)
α − argmin

η∈λα·K
1

2

∥∥ν(k)
α − η

∥∥2
2, (18)

ν(k)
α = β(k) − α · XT

(
Xβ(k) − y

)
.

The first line in the update above is the usual form of updates for generalized gradient de-
scent, while the second line expresses this step as the residual after an application of the metric
projection map. Accelerated schemes can do much better with slightly different updates above,
see Becker, Bobin and Candès (2011), Nesterov (2005), Tseng (2013). With modern comput-
ing techniques, such simple algorithms can scale to huge problems, see Boyd, Parikh and Chu
(2011), Mazumder, Hastie and Tibshirani (2010).

3. Inference for the canonical problem

3.1. Law of large numbers

Having solved the canonical problem, what can we say about its solution? As this special issue
is devoted to the appearance of one of the first proofs of the law of large numbers, we should at
least hope to provide such an answer.

In the classical setting, assuming independence, and the usual linear regression model

y = μ + ε (19)
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with noise ε having scale σ , the central limit theorem can often be applied to (1) yielding the
usual result

∥∥X(β̂ − β0)
∥∥2

2

D
� σ 2 · χ2

p (20)

under the null H0 : μ = Xβ0 ∈ col(X). Of course, this forms the basis of much inference in
modern (and not so modern) applied statistics in the fixed p, n growing regime. In terms of the
parameters themselves, this implies the weaker statement

‖β̂ − β‖2 ≤ n−1/2σ · ζn (21)

for some random variable ζn = OP(1).
In the classical setting, assuming X is full rank, the bound (21) is a simple two line proof

followed by some assertions. If we write L(β) = 1
2‖y − Xβ‖2

2, then

0 ≥ L(β̂) − L(β0)

= ∇L(β0)
T (β̂ − β0) + 1

2
(β̂ − β0)

T
(
XT X

)
(β̂ − β0)

= (
XT ε

)T
(β̂ − β0) + 1

2
(β̂ − β0)

T
(
XT X

)
(β̂ − β0)

≥ −∥∥XT ε
∥∥

2‖β̂ − β0‖2 + λmin(X
T X)

2
‖β̂ − β0‖2

2

with λmin(X
T X) denoting the smallest eigenvalue of XT X. We see that we can take

ζn = σ−1/2n1/2 ‖XT ε‖2

λmin(XT X)
.

In the high-dimensional setting, of course this fails as λmin(X
T X) = 0. What, then, can we

say about our canonical estimator

β̂λ,KX
= argmin

β∈Rp

1

2
‖y − Xβ‖2

2 + λhK(β)?

Is there even a weak law of large numbers? Without any assumptions on K , the answer is clearly
no: if K = {0}, then this is the original ill-posed problem.

Under an assumption of decomposability of K recent progress has been made in providing
bounds on the estimation error in (9), see Negahban et al. (2012). The notion of decomposability
in Negahban et al. (2012) has a precise definition which we will not dwell on here. However, a
large set of examples of decomposable penalties are penalties of the form

K =
∏
i∈I

Ki. (22)

That is, convex sets that can be expressed as products of convex sets lead to decomposable
penalties. Every example of a decomposable norm in Negahban et al. (2012) has this form except
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the nuclear norm. For such penalties, the generalized gradient algorithms described in Section 2.1
decompose into many smaller subproblems. Many efficient coordinate descent algorithms exploit
this fact, see Friedman et al. (2007), Friedman, Hastie and Tibshirani (2009).

A similar notion of decomposability we refer to as additivity is explored in Taylor and Tib-
shirani (2013) in which case K can be expressed as K = A + I with the sum being Minkowski
addition of sets. In this case, the penalty has the form

hK(β) = hA(β) + hI (β). (23)

One concrete example of this is the �∞ ball in Rp . For A,I a partition of {1, . . . , p} into active
and inactive variables, we can write

B∞ = {
(uA,0) : ‖uA‖∞ ≤ 1

} + {
(0, uI ) : ‖uI‖∞ ≤ 1

}
.

Any penalty of the form (22) can be expressed in the form (23) in a similar fashion. If we are
allowed to introduce a linear constraint to (9), then any problem with a penalty of the form (23)
can be expressed as a problem with a penalty of the form (22) subject to an additional set of
linear constraints.

The weak law of large numbers presented in the literature follow a similar path to the argu-
ment above. Of course, for precise results, the specific penalty as well as the data generating
mechanism must be more precisely specified.

In the interest of space, we do not pursue such precise statements here. Rather, we will just
attempt to paraphrase these results, of which there exist many in the literature [cf. Negahban
et al. (2012), Bickel, Ritov and Tsybakov (2009), Obozinski, Wainwright and Jordan (2011),
Bühlmann and van de Geer (2011)] with Negahban et al. (2012) being a particularly nice place to
read in detail. Under various assumptions on the tails of ε, as well as the assumption hI (β0) = 0
and K◦ is bounded,1 the canonical result has the form for λ ≥ C1 · E(hK◦(−XT ε))

‖β̂λ,KX
− β0‖2 ≤ C2 · σ E(hK◦(−XT ε))ψ(A)

κ(A, I,X)
(25)

with high probability for some universal C1,C2 where ψ(A) is referred to as a compatibility
constant relating the �2 norm and the hA seminorm; the quantity κ(A,X) replaces λmin(X

T X)

and is referred to as a restricted strong convexity (RSC) constant.
The literature varies in their assumptions on the noise and the design matrix X. For instance, in

the fixed design case one might consider the above probability only with respect to noise, while
in a random design setting the dependence of the constants on X are typically expressed with
respect to the law that generates the design matrix X.

Having established a bound such as (25), if one considers problems indexed by n, then one
can obtain a law of large numbers for the problem (9) so long as the parameters are chosen so

1Recall the definition of the polar body of K

K◦ = {
ν ∈ Rp : uT ν ≤ 1,∀u ∈ K

}
. (24)

For any K , the seminorm hK◦ is the dual seminorm of hK .
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the right-hand side decays to 0 and the bound holds with sufficiently high probability. Again in
the interest of space, we refer readers to the literature for more precise statements for specific
versions of the problem such as the LASSO. We have tried to give a summary of some of the
results related to the canonical problem, though we have barely exposed the tip of the iceberg.
Under more specific assumptions much more can be said. For example, see Donoho, Maleki and
Montanari (2009).

3.2. Gaussian width and metric projection: Intrinsic volumes

For K◦
X = XT K◦ ⊂ Rn, the error (25) depends on the quantity

E
(
hK◦

(−XT ε
)) = E

(
hKX

(−ε)
)
. (26)

For fixed X, this quantity is referred to as the Gaussian width of KX and it also intimately related
to our first tool in the toolbox, the metric projection. Specifically, consider the tube of radius r

around K◦
X . That is,

Tube
(
K◦

X, r
) = {

z ∈ Rn : ∥∥z − πK◦
X
(z)

∥∥
2 ≤ r

}
. (27)

Then, a classical result of Steiner in the case of convex bodies and Weyl in the case of manifolds
says that the Lebesgue measure of the tube, assuming K◦

X is bounded, can be expressed as

∣∣Tube
(
K◦

X, r
)∣∣

Rn =
n∑

j=0

rjωj Ln−j

(
K◦

X

)
, r ≤ rc

(
K◦

X

) = ∞, (28)

where the Ll (K
◦
X) are referred to as the intrinsic volumes of K◦

X and ωl = |B2(1)|Rl is the
Lebesgue measure of the unit �2 ball in Rl . See Adler and Taylor (2007), Federer (1959),
Schneider (1993), Weyl (1939) for more details on such volume of tubes formulae. When K◦

X is
unbounded, Federer’s curvature measures [Federer (1959)] can be used to define the volume of
local tubular neighborhoods. Using Gaussian process techniques [Vitale (2001)], it can be shown
that

L1
(
K◦

X

) = (2π)−1/2E
(
hK◦

X
(ε)|X)

, (29)

where ε|X ∼ N(0, In×n).
For D = KX a smooth domain, that is convex set with non-empty interior bounded by a smooth

hypersurface and for j ≤ n − 1

Lj (D) ∝
∫

∂D

Pp−j−1(λ1,x , . . . , λp−1,x)Vol∂D(dx) (30)

with Pj the j th elementary symmetric polynomial of the so-called principal curvatures of ∂D at
x [Adler and Taylor (2007), Taylor and Worsley (2007)]. These are just the eigenvalues of the
second fundamental form in the unit inward normal direction. This formula can be derived by
considering the inverse of the metric projection map (3). The inverse takes (x, ηx) defined on the
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extended outward normal bundle of K◦. The inverse of the map is simply the exponential map
restricted to the outward normal bundle, or, more simply

x �→ x + ηx. (31)

A fairly straightforward calculation yields the relation (30).
The main take away message above is that the functionals in the tube formula, such as the

Gaussian width (26), are related to properties of the metric projection map onto KX .
As written above, the intrinsic volumes are defined implicitly through a volume calculation,

and it is not clear that they extend to the infinite dimensional setting. Under the right conditions
of course, such extensions are indeed possible. See Vitale (2001) for a nice discussion of this
problem. An alternative definition of intrinsic volumes specific to the Gaussian case was consid-
ered in Taylor and Vadlamani (2013), which were defined as coefficients in an expansion of the
Gaussian measure of Tube(K◦

X, r) as described in the Gaussian Kinematic Formula [Adler and
Taylor (2007), Taylor (2006)].

3.3. Risk estimation

Another quantity of interest for our problem (9) is an estimate of how much “fitting” we are
performing, as a function of λ. One quantitative measure of this is captured by Stein’s estimate
of risk [Stein (1981)], also known as SURE. Suppose now that y ∼ N(μ, I) and we estimate μ

by the estimator μ̂. The SURE estimate is an unbiased estimate of

Risk(μ̂) = E
(‖μ − μ̂‖2

2

)
.

The estimated degrees of freedom of this estimator is one part of the SURE estimate and is
defined as

̂Cov(y, μ̂) = div
(∇μ̂(y)

)
. (32)

Suppose y ∼ N(μ, I) and consider our residual form of the original estimation problem for
μ = E(y)

μ̂(y) = y − πλKX
(y). (33)

If K possesses a nice stratification, as do all the examples mentioned above, then, for almost
every y, πλKX

(y) is in the relative interior of some fixed stratum S of the normal bundle of
KX over which the dimension of the tangent space is constant, and the normal bundle has a
locally conic structure S = T × N of tangent and normal directions [Schneider (1993), Adler and
Taylor (2007)]. Having fixed this stratum, we can write y = x + ηx in (ortho)normal coordinates
centered at (y − μ̂(y), μ̂(y)). In these coordinates

μ̂
(
y(x, ηx)

) = ηx. (34)
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In order to relate the above to the problem (9), one should invert the above chart to find (x, ηx)

in terms of y. In the residual form (17) it is easy to show that

(
x(y), ηx(y)

) =
(

argmin
r∈λ·KX

1

2
‖y − r‖2

2, y − argmin
r∈λ·KX

1

2
‖y − r‖2

2

)

= (
y − μ̂(y), μ̂(y)

)
.

The derivatives along the normal directions yield a purely dimensional term, while directions in
the tangent directions yield curvature terms. This observation is enough to derive the following
form of the degrees of freedom

div
(∇μ̂(y)

) = n − dim(Ty) + Tr(S(y−μ̂(y),μ̂(y))). (35)

Above, Ty is the tangential part of the stratum containing x(y) and S(x,μx) is the second funda-
mental form of Ty in λ ·KX as described [Adler and Taylor (2007)]. When K is a polyhedral set,
the second term disappears and the degrees of freedom can be computed by computing the rank
of a certain matrix [Tibshirani and Taylor (2012), Bien, Taylor and Tibshirani (2013)].

3.4. Hypothesis testing: Weak convergence for high-dimensional inference?

Another fundamental tool in inference for least squares models is the ability to form hypothesis
tests, as well as confidence intervals for the “true” mean. Such concepts clearly need a model,
which we might take to be the usual model

y ∼ N(μ, I).

Under the assumption that μ = Xβ0, classical inference in linear models (assuming XT X is full
rank) yields confidence intervals and hypothesis tests for any linear functional νT μ based on the
coefficients β0.

What can we say about our canonical problem (9)? This is an area in which we still don’t know
all the answers. In some sense, we are in the situation analogous to Bernoulli having proved a
weak law of large numbers without the central limit theorem. Some progress has been made for
specific models of the design matrix X for the LASSO as well as group LASSO models, see
Meinshausen and Bühlmann (2010), Bühlmann (2012), Minnier, Tian and Cai (2011), Laber and
Murphy (2011), Wasserman and Roeder (2009), Donoho, Maleki and Montanari (2009).

Other recent work [Lockhart et al. (2013)] gives some hints at what inferential tools may prove
useful in this weak convergence theory. As described in the LARS algorithm [Efron et al. (2004),
Tibshirani (2012)], an entire path of solutions β̂λ,KX

can be formed for the LASSO, that is, when
K = B∞. These paths are piecewise linear, with knots at points where the active set changes.
The covariance statistic measures some change in the correlation of the fitted values between
two knots λk and λk+1 in the LASSO path. It has the form

Tk = Ckλk(λk − λk+1) (36)
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for some random scaling Ck related to the active set and the variable added to the active set at
λk+1. The form for k = 1 is particularly simple: suppose that ĵ1 and X is such the first variable
in the LARS path, that is,

ĵ1 ∈ argmax
j

∣∣XT
j y

∣∣.
Then,

T1 = 1

σ 2
yT Xβ̂λ2 = yT X

ĵ1
β̂

λ2,ĵ1
. (37)

For k ≥ 1, the form of the test statistic is slightly more complicated, though it can be expressed
in terms of A = Ak , the active set at step k as well as sAk

, the signs of the active variables at step
k as well as the active set Ak+1 and sAk+1 , see Section 2.3 of Lockhart et al. (2013) for the full
expression. For a wide range of (sequences) covariance matrices, if the active set at λk already
contains all the strong active variables, then it is shown in Lockhart et al. (2013) that

Tk
D→ Exp(1). (38)

In particular, under the global null y ∼ N(0, σ 2I ) as long as the design matrix satisfies some

minimum growth condition, T1
D→ Exp(1). The main tools used in the above proof relate to the

maxima of (discrete) Gaussian processes and the generalization of an argument previously ap-
plied to smooth Gaussian processes in Taylor, Takemura and Adler (2005) and Adler and Taylor
(2007). Ongoing work suggests that such a limiting distribution will hold for many (sequences)
of K and design matrices X.

As for confidence intervals for the parameters related to k strong variables, the relation to
extreme values of Gaussian processes suggest that the bias-corrected or relaxed LASSO estimate
of the active coefficients will have accurate coverage. This is ongoing work.

4. Smooth Gaussian processes: Relaxing convexity

In the special case that K is a cone, we saw that the distribution of a particular likelihood ratio
test could be expressed in terms of the supremum of a Gaussian process indexed by a subset
of the sphere. Equivalently, this supremum could be expressed in terms of the metric projection
onto the cone KX . It is well-known that the distribution of this likelihood ratio test statistic is a
mixture of χ2’s of varying degrees of freedom. This distribution is sometimes referred to as a χ̄2

distribution.
The mixture weights can be expressed in terms of the geometry of the set M = S(X,K) =

KX ∩ S(Rn). In particular, it is known [Adler and Taylor (2007), Takemura and Kuriki (1997,
2002)] that if ε ∼ N(0, I ) for u > 0

P

(
sup
ν∈M

(
νT ε

)+
> u

)
=

∞∑
j=0

Lj (M)ρj (u), (39)
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where

ρj (u) =

⎧⎪⎨
⎪⎩

∫ ∞

u

1√
2π

e−t2/2 dt, j = 0,

(2π)−(j+1)/2Hj−1(u)e−u2/2, j ≥ 1,

(40)

and

Hj(u) = (−1)j
∂j

∂uj
e−u2/2

are the standard Hermite polynomials. The functions (40) are known as the EC or Euler charac-
teristic densities for a Gaussian field, see Adler and Taylor (2007), Takemura and Kuriki (2002),
Worsley (1995), Worsley et al. (1996), Taylor and Worsley (2008). While the sum above is writ-
ten as an infinite sum it terminates at dim(M).

Note that this implies

E

(
sup
ν∈M

(
νT ε

)+)
= 1√

8π
L1(M)

which is an analogous way to derive Gaussian width (29).
One of the derivations of the above formula, the so-called volume of tubes approach [Siegmund

and Zhang (1993), Sun (1993), Takemura and Kuriki (1997)] involves studying the Jacobian of
the inverse of the spherical metric projection map (5), that is, the exponential map on S(Rn)

which sends a pair (x, ηx) to

cos
(‖ηx‖

) · x + sin
(‖ηx‖

) · ηx.

Another approach, the expected Euler characteristic approach [Adler and Taylor (2007), Worsley
(1995)] involves counting critical points of the Gaussian process above the level u according to
saddle type and applying Morse theory and the Rice–Kac formula [Azaïs and Wschebor (2008),
Adler and Taylor (2007)] to count the expected number of such points.

Neither of these approaches strictly require convexity of the cone generated by the parameter
set M . Rather, they depend on a notion of local or infinitesimal convexity referred to as positive
reach [Federer (1959)]. Hence, the parameter sets may have finite critical radius. They are both
approaches used to form an approximation

P

(
sup
ν∈M

f (ν) > u
)

�

∞∑
j=0

Lj (M)ρj (u) (41)

for some centered, smooth, Gaussian process f having constant variance 1 on a (possibly strat-
ified) manifold M . In the volume of tubes approach, the critical radius appears in a natural way
and enters into an estimate of the error of the volume of tubes approach. In both approaches,
though it is clearer in the expected Euler characteristic approach, the spherical critical radius
is in fact the spherical critical radius of �(M) where � : M → S(H) where S(H) is the unit
sphere in H , the reproducing kernel Hilbert space of f . Either approach yields roughly the same
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estimate of error: for u large enough

lim inf
u→∞ − 2

u2

∣∣∣∣∣P
(

sup
ν∈M

f (ν) > u
)

−
∞∑

j=0

Lj (M)ρj (u)

∣∣∣∣∣ = 1 + tan2(rc(M)
)
. (42)

The above says that the relative error in the approximation is exponentially small whenever
rc(M) > 0.

The critical radius of M in the expected Euler characteristic approach arises in terms of a func-
tional of the original process f . Specifically, if we assume M is a manifold without boundary,
then define for each x �= y the process introduced in Taylor, Takemura and Adler (2005)

f x(y) = f (y) − E(f (y)|f (x),∇f (x))

1 − E(f (x) · f (y))
. (43)

Then,

cot2
(
rc(M)

) = sup
x �=y

E
(
f x(y)2). (44)

Hence, the critical radius depends in an explicit way on the covariance function of the process f .
As mentioned previously, the argument related to derivation of (44) in the smooth case led

directly to the exponential limit in (38). Such a connection suggests a relation between the dis-
tribution of the maxima of smooth Gaussian processes, specifically the spacings of the extreme
values, can be used to derive weak convergence results for high-dimensional inference. This is
ongoing work.

5. Conclusion

We have described what we call the two basic tools of the geometry of least squares that are
just as relevant as when Gauss and Legendre disputed their original discovery over 200 years
ago. While these tools are not the most technically sophisticated tools, ceding that ground to
exponential families for the canonical model (9) and empirical processes for the fluctuation the-
ory in Section 3, they nevertheless provide guiding principles for these more precise tools. We
would argue that the Gaussian picture provided by the geometry of least squares, gets much of
the picture correct under sufficient moment conditions. For heavier tailed results, of course much
of Section 3 would have to be reframed and Section 4 paints quite a different picture [Adler,
Samorodnitsky and Taylor (2010, 2013)].

As Bernoulli found himself with just a law of large numbers, the field of statistics is roughly at
this same stage in high-dimensional inference. We are hopeful that the geometry of least squares
will eventually guide the field to weak convergence results in high-dimensional inference for the
canonical problem (9).
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