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We prove that the metric space associated with a uniformly distributed planar quadrangulation with n faces
and no pendant vertices converges modulo a suitable rescaling to the Brownian map. This is a first step
towards the extension of recent convergence results for random planar maps to the case of graphs satisfying
local constraints.
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1. Introduction

Much recent work has been devoted to studying the convergence of rescaled planar graphs,
viewed as metric spaces for the graph distance, towards the universal limiting object called the
Brownian map. In the present article, we establish such a limit theorem in a particular instance
of planar maps satisfying local constraints, namely quadrangulations with no pendant vertices,
or equivalently with no vertices of degree 1.

Recall that a planar map is a proper embedding of a finite connected graph in the two-
dimensional sphere, considered up to orientation-preserving homeomorphisms of the sphere.
Loops and multiple edges are a priori allowed (however in the case of bipartite graphs that we
will consider, there cannot be any loop). The faces of the map are the connected components of
the complement of edges, and the degree of a face counts the number of edges that are incident
to it, with the convention that if both sides of an edge are incident to the same face, this edge
is counted twice in the degree of the face (alternatively, the degree of a face may be defined as
the number of corners to which it is incident). Let p ≥ 3 be an integer. Special cases of planar
maps are p-angulations (triangulations if p = 3, or quadrangulations if p = 4) where each face
has degree p. For technical reasons, one often considers rooted planar maps, meaning that there
is a distinguished oriented edge, whose tail vertex is called the root vertex. Planar maps have
been studied thoroughly in combinatorics, and they also arise in other areas of mathematics.
Large random planar graphs are of interest in theoretical physics, where they serve as models of
random geometry [2], in particular in the theory of two-dimensional quantum gravity.

The recent paper [10] has established a general convergence theorem for rescaled random
planar maps viewed as metric spaces. Let p ≥ 3 be such that either p = 3 or p is even. For every
integer n ≥ 1, let mn be a random planar map that is uniformly distributed over the set of all
rooted p-angulations with n faces (when p = 3 we need to restrict our attention to even values
of n so that this set is not empty). We denote the vertex set of mn by V (mn). We equip V (mn)
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with the graph distance dmn
gr , and we view (V (mn),dmn

gr ) as a random variable taking values
in the space K of isometry classes of compact metric spaces. We equip K with the Gromov–
Hausdorff distance dGH (see, e.g., [4]) and note that (K, dGH ) is a Polish space. The main result
of [10] states that there exists a random compact metric space (m∞,D∗) called the Brownian
map, which does not depend on p, and a constant cp > 0 depending on p, such that

(
V (mn), cpn−1/4dmn

gr

) (d)−→
n→∞

(
m∞,D∗) (1.1)

where the convergence holds in distribution in the space (K, dGH ). A precise description of
the Brownian map is given below at the beginning of Section 3. The constants cp are known
explicitly (see [10]) and in particular c4 = ( 9

8 )1/4. We observe that the case p = 4 of (1.1) has
been obtained independently by Miermont [14], and that the case p = 3 solves a question raised
by Schramm [15]. Note that the first limit theorem involving the Brownian map was given in
the case of quadrangulations by Marckert and Mokkadem [13], but in a weaker form than stated
in (1.1).

In this work, we are interested in planar maps that satisfy additional local regularity proper-
ties. Under such constraints, one may ask whether the scaling limit is still the Brownian map,
and, if it is, one expects to get different scaling constants cp . Note that the general strategy for
proving limiting results such as (1.1) involves coding the planar maps by certain labeled trees
and deriving asymptotics for these trees. If the map is subject to local constraints, say concerning
the degree of vertices, or the absence of multiple edges or of loops (in the case of triangulations),
this leads to certain conditionings of the trees, which often make the desired asymptotics much
harder to handle. In the present work, we consider quadrangulations with no pendant vertices, or
equivalently with no vertices of degree 1, which we call nice quadrangulations (see Figure 1).
We let Qnice

n be the set of all rooted nice quadrangulations with n faces. This set is nonempty for
every n ≥ 2.

Figure 1. Two quadrangulations with 8 faces. The one on the right is nice.
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Theorem 1.1. For every n ≥ 2, let qn be uniformly distributed over the set Qnice
n . Let V (qn) be

the vertex set of qn and let dqn
gr be the graph distance on V (qn). Then,

(
V (qn),

( 3
4

)3/8
n−1/4dqn

gr
) (d)−→

n→∞
(
m∞,D∗)

where (m∞,D∗) is the Brownian map, and the convergence holds in distribution in the space
(K, dGH ).

We observe that the limiting space is again the Brownian map, and so one may say that nice
quadrangulations have asymptotically the same “shape” as ordinary quadrangulations. On the
other hand, the scaling constant is different: Since ( 3

4 )3/8 < ( 9
8 )1/4, distances are typically larger

in nice quadrangulations, as one might have expected.
In relation with Theorem 1.1, we mention the recent work of Bouttier and Guitter [3], which

obtains detailed information about distances in large quadrangulations with no multiple edges.
Note that a quadrangulation with no multiple edges is always nice in our sense, but the converse
is not true (see the nice quadrangulation on the right side of Figure 1).

We view Theorem 1.1 as a first step towards the derivation of similar results in more difficult
cases. A particularly interesting problem is to derive the analog of (1.1) for triangulations with-
out loops or multiple edges (type III triangulations in the terminology of [2]). It is known that
such a triangulation can be represented as the tangency graph of a circle packing of the sphere,
and that this representation is unique up to the conformal transformations of the sphere (the
Möbius transformations). So assuming that the analog of (1.1) holds for type III triangulations,
one might expect to be able to pass to the limit n → ∞ in the associated circle packings, and
to get a canonical embedding of the Brownian map in the sphere that would satisfy remarkable
conformal invariance properties. One also conjectures that this canonical embedding would be
related to the recent approach to two-dimensional quantum gravity which has been developed by
Duplantier and Sheffield [6] via the Gaussian free field. The previous questions are among the
most fascinating open problems in the area.

As a final remark, our proofs rely on Schaeffer’s bijection between rooted quadrangulations
and well-labeled trees. One may be tempted to use the version of this bijection for rooted and
pointed quadrangulations, which avoids the positivity condition on labels (see, e.g., [11]). How-
ever, the use of this other version of the bijection in our setting would lead to certain conditionings
(involving the event that the minimal label on the tree is attained at two different corners), which
seem difficult to handle.

The paper is organized as follows. In Section 2, we recall Schaeffer’s bijection (we refer to [5]
for more details) and we identify those trees that correspond to nice triangulations. We then state
the key limit theorem for the coding functions of the random tree associated with a uniformly
distributed nice quadrangulation with n faces. This limit theorem is the main ingredient of our
proof of Theorem 1.1 in Section 3, which also uses some ideas introduced in [10] to deal with
triangulations. The proof of the limit theorem for coding functions is given in Section 4, which
is the most technical part of the paper.
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2. Trees and quadrangulations

2.1. Labeled trees

We set N = {1,2, . . .} and by convention N
0 = {∅}. We introduce the set

V =
∞⋃

n=0

N
n.

An element of V is thus a sequence u = (u1, . . . , un) of elements of N, and we set |u| = n,
so that |u| represents the “generation” of u. If u = (u1, . . . , um) and v = (v1, . . . , vn) belong
to U , we write uv = (u1, . . . , um, v1, . . . , vn) for the concatenation of u and v. In particular,
u∅ = ∅u = u.

If w ∈ V, we write V(w) for the set of all elements u ∈ V of the form u = wv for some v ∈ V.
We then set V

(w) = (V \ V(w)) ∪ {w}.
The mapping π : V \ {∅} −→ V is defined by π((u1, . . . , un)) = (u1, . . . , un−1) (π(u) is the

“parent” of u).
A plane tree τ is a finite subset of V such that:

(i) ∅ ∈ τ .
(ii) u ∈ τ \ {∅} ⇒ π(u) ∈ τ .

(iii) For every u ∈ τ , there exists an integer ku(τ ) ≥ 0 such that, for every j ∈ N, uj ∈ τ if and
only if 1 ≤ j ≤ ku(τ ).

Edges of τ are all pairs (u, v) where v ∈ τ \ {∅} and u = π(v). We write E(τ) for the set of
all edges of τ . Every e ∈ E(τ) can therefore be written as e = (e−, e+) where e− = π(e+). By
definition, the size |τ | of τ is the number of edges of τ , |τ | = #E(τ) = #τ − 1.

In what follows, we see each vertex of the tree τ as an individual of a population whose family
tree is the tree τ . In (iii) above, the individuals of the form uj , with j ∈ N, are interpreted as the
“children” of u, and they are ordered in the obvious way. The number ku(τ ) is the number of
children of u in τ . The notions of an ancestor and a descendant of a vertex u are defined similarly.

Let τ be a plane tree and n = |τ |. The contour exploration sequence of τ is the finite sequence
v0, v1, . . . , v2n which is defined inductively as follows. First v0 = ∅, and then, for every i ∈
{0, . . . ,2n − 1}, vi+1 is either the first child of vi that does not appear among v0, v1, . . . , vi , or,
if there is no such child, the parent of vi . Informally, if the tree is embedded in the plane as
suggested in Figure 2, we imagine the motion of a particle that starts from the root and traverses
the tree from the left to the right, in the way explained by the arrows of Figure 2, until all
edges have been explored and the particle has come back to the root. Then v0, v1, . . . , v2n are
the successive vertices visited by the particle. The contour function of the tree is defined by
Ci = |vi | for every i ∈ {0,1, . . . ,2n}. We extend the function Ct to the real interval [0,2n] by
linear interpolation, and by convention we set Ct = 0 for t ≥ 2n. Clearly the tree τ is determined
by its contour function (Ct )t≥0.

A labeled tree is a pair (τ, (U(v))v∈τ ) that consists of a plane tree τ and a collection (U(v))v∈τ

of integer labels assigned to the vertices of τ – in our formalism for plane trees, the tree τ coin-
cides with the set of all its vertices. We assume that labels satisfy the following three properties:
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Figure 2. A plane tree with n = 7 edges and its contour function.

(i) for every v ∈ τ , U(v) ∈ Z;
(ii) U(∅) = 0;

(iii) for every v ∈ τ \ {∅}, U(v) − U(π(v)) ∈ {−1,0,1},
where we recall that π(v) denotes the parent of v. Condition (iii) just means that when crossing
an edge of τ the label can change by at most 1 in absolute value. We write W for the set of all
labeled trees.

Let (τ, (U(v))v∈τ ) be a labeled tree with n edges. As we have just seen, the plane tree τ is
coded by its contour function (Ct )t≥0. We can similarly encode the labels by another function
(Vt )t≥0, which is defined as follows. As above, let v0, v1, v2, . . . , v2n be the contour exploration
sequence of τ . We set

Vi = U(vi) for every i = 0,1, . . . ,2n.

Notice that V0 = V2n = 0. We extend the function Vt to the real interval [0,2n] by linear inter-
polation, and we set Vt = 0 for t ≥ 2n. We will call (Vt )t≥0 the “label function” of the labeled
tree (τ, (U(v))v∈τ ). Clearly (τ, (U(v))v∈τ ) is determined by the pair (Ct ,Vt )t≥0.

We write W + for the set of all labeled trees with nonnegative labels (these are sometimes
called well-labeled trees), and for every n ≥ 0, we write W +

n for the set of all labeled trees with
n edges in W +.

2.2. Schaeffer’s bijection

In this section, we fix n ≥ 1 and we briefly recall Schaeffer’s bijection between the set Qn of all
rooted quadrangulations with n faces and the set W +

n . We refer to [5] for more details. We then
characterize those labeled trees that correspond to nice quadrangulations in this bijection.

To describe Schaeffer’s bijection, start from a labeled tree (τ, (U(v))v∈τ ) ∈ W +
n , and as above

write v0, v1, v2, . . . , v2n for the contour exploration sequence of the vertices of τ . Notice that
each index i ∈ {0,1, . . . ,2n − 1} corresponds to exactly one corner of the vertex vi (a corner of
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a vertex v of τ is an angular sector between two successive edges of τ around the vertex v). This
corner will be called the corner i in the tree τ .

We extend the contour exploration sequence periodically, in such a way that vi+2n = vi for
every integer i ≥ 0. Then, for every i ∈ {0,1, . . . ,2n− 1}, we define the successor of i by setting

succ(i) =
{

min
{
j ≥ i : U(vj ) = U(vi) − 1

}
, if U(vi) > 0,

∞, otherwise.

To construct the edges of the quadrangulation associated with (τ, (U(v))v∈τ ), we proceed in
the following way. We suppose that the tree τ is drawn in the plane in the way suggested in
Figure 2, and we add an extra vertex ∂ (outside the tree). Then, for every i ∈ {0,1, . . . ,2n − 1},

• Either U(vi) = 0, and we draw an edge between vi and ∂ , that starts from the corner i.
• Or U(vi) > 0, and we draw an edge between vi and vsucc(i), that starts from the corner i

and ends at the corner succ(i).

The construction can be made in such a way that the edges do not intersect, and do not intersect
the edges of the tree (see Figure 3 for an example). The resulting graph, whose vertex set consists
of all vertices of τ and the vertex ∂ , is a quadrangulation with n faces. It is rooted at the edge
drawn between the vertex ∅ of τ and the vertex ∂ , which is oriented in such a way that ∂ is
the root vertex. We have thus obtained a rooted quadrangulation with n faces, which is denoted
by q = �n(τ, (U(v))v∈τ ). The mapping �n is Schaeffer’s bijection from W +

n onto Qn. A key
property of this bijection is the fact that labels on the tree τ become distances from the root vertex
∂ in the quadrangulation: If dq

gr stands for the graph distance on the vertex set of q, we have

dq
gr(∂, v) = U(v) + 1,

for every vertex v of τ or equivalently for every vertex v of q other than the root vertex.

Figure 3. Illustration of Schaeffer’s bijection. The thin lines represent the edges of the tree, and the num-
bers 0,1, . . . are the labels assigned to the different vertices. The thick curves represent the edges of the
associated quadrangulation. The two pendant vertices are the leaves v such that U(v) ≥ U(π(v)).
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A leaf of the tree τ is a vertex with degree 1. If v ∈ τ \ {∅}, v is a leaf if and only if kv(τ ) = 0,
and ∅ is a leaf if and only if k∅(τ ) = 1.

Proposition 2.1. Let (τ, (U(v))v∈τ ) ∈ W +
n , and let v0, v1, . . . , v2n be the contour exploration

sequence of τ . Then the quadrangulation �n(τ, (U(v))v∈τ ) is nice if and only if the following
two conditions hold.

(i) For every leaf v of τ , if w is the (unique) vertex adjacent to v in the tree τ , we have
U(v) = U(w) − 1.

(ii) There exists at least one index i ∈ {1, . . . ,2n − 1} such that U(vi) = 0.

Notice that we have always U(v0) = U(∅) = 0. Condition (ii) can be restated by saying that
there are at least two corners of the tree τ with label 0. In particular this condition holds if
k∅(τ ) ≥ 2.

Proof of Proposition 2.1. Let us explain why conditions (i) and (ii) are necessary. If (ii) does
not hold, there is only one edge incident to ∂ . If there exists a leaf v for which the property stated
in (i) fails, then the only edge incident to v will be the edge connecting the unique corner of v

to its successor. Conversely, it is also very easy to check that if conditions (i) and (ii) hold then
every vertex of τ will be incident to at least 2 edges in the quadrangulation �n(τ, (U(v))v∈τ ): In
particular if v is a leaf of τ and if w is the vertex adjacent to v, then the successor of one of the
corners of w will be the (unique) corner of v. We leave the details to the reader. �

Remark 2.2. For a general quadrangulation, each leaf v 
= ∅ of the associated labeled tree such
that U(v) ≥ U(π(v)) corresponds to a pendant vertex (see Figure 3). Using this observation, it
is not hard to prove that a quadrangulation with n faces has typically about n/3 pendant vertices.

We write W nice
n for the set of all labeled trees in W +

n that satisfy both conditions in Proposi-
tion 2.1.

2.3. Scaling limits for coding functions

In this section, we state the key theorem giving scaling limits for the contour and label functions
of the labeled tree associated with a uniformly distributed nice quadrangulation with n faces. We
first need to introduce the limiting processes that will appear in this theorem.

We let e = (et )t∈[0,1] denote a normalized Brownian excursion. The process e is defined on a
probability space (�, A,P). We consider another real-valued process Z = (Zt )t∈[0,1] defined on
the same probability space and such that, conditionally on e, Z is a centered Gaussian process
with covariance

E[ZsZt | e] = min
r∈[s∧t,s∨t] er .

We may and will assume that Z has continuous sample paths. The process Z can be interpreted
as the head of the standard Brownian snake driven by e.
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It is not hard to verify that the distribution of

min
t∈[0,1]Zt

has no atoms, and that the topological support of this distribution is (−∞,0]. Consequently, we
can consider for every r > 0 a process (e(r),Z(r)) whose distribution is the conditional distribu-
tion of (e,Z) knowing that

min
t∈[0,1]Zt > −r,

and the distribution of (e(r),Z(r)) depends continuously on r > 0. Here the distribution of
(e(r),Z(r)) is a probability measure on the space C([0,1],R

2) of all continuous functions from
[0,1] into R

2, and “continuously” refers to the usual weak convergence of probability measures.
It is proved in [12], Theorem 1.1, that we can define a process (e(0),Z(0)) such that(

e(r),Z(r)
) (d)−→

r→0

(
e(0),Z(0)

)
where the convergence holds in distribution in the space C([0,1],R

2).
The following theorem is the key ingredient of the proof of our main result.

Theorem 2.3. Let C(n) and V (n) be, respectively, the contour function and the label function of
a random labeled tree distributed uniformly over W nice

n . Then,(
12−1/4n−1/2C

(n)
2nt ,

( 3
4

)3/8
n−1/4V

(n)
2nt

)
0≤t≤1

(d)−→
n→∞

(
e(0)
t ,Z

(0)
t

)
0≤t≤1,

where the convergence holds in distribution in C([0,1],R
2).

The proof of Theorem 2.3 is given in Section 4 below.

3. Proof of the main theorem

In this section, we explain how to derive Theorem 1.1 from the convergence of coding functions
stated in Theorem 2.3. Much of what follows is similar to the arguments of [9], Section 3, or
of [11], Section 6.2, but we will provide some details for the sake of completeness.

We start by recalling the definition of the Brownian map. The first ingredient is the Continuum
Random Tree or CRT, which is conveniently defined as the tree coded by the Brownian excursion
(Aldous [1]). Recall that if g : [0,1] −→ R+ is a continuous function such that g(0) = g(1) = 0,
one introduces the equivalence relation on [0,1] defined by

s ∼g t if and only if g(s) = g(t) = mg(s, t),

where mg(s, t) = min{g(r) : s ∧ t ≤ r ≤ s ∨ t}, and the tree coded by g is the quotient space
Tg := [0,1]/ ∼g , which is equipped with the distance induced by the pseudo-metric

δg(s, t) = g(s) + g(t) − 2mg(s, t), s, t ∈ [0,1].
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We write pg : [0,1] −→ Tg for the canonical projection. By convention, Tg is rooted at pg(0) =
pg(1). The CRT Te is then the (random) tree coded by the normalized Brownian excursion e.

From the definition of the process Z, one easily checks that E[(Zs − Zt)
2 | e] = δe(s, t), and

it follows that we have Zs = Zt for every s, t ∈ [0,1] such that s ∼e t , a.s. Hence we may and
sometimes will view Z as indexed by Te rather than by [0,1]. For a ∈ Te, we interpret Za as the
“label” of the vertex a.

We now explain how a trajectorial transformation of (e,Z) yields a pair (e,Z) having the
same distribution as (e(0),Z(0)). By [12], Proposition 2.5 (and an obvious scaling argument)
there exists an a.s. unique time s∗ ∈ [0,1] such that Zs∗ = min{Zs : s ∈ [0,1]}. We then set, for
every t ∈ [0,1],

et = δe(s∗, s∗ ⊕ t) = es∗ + es∗⊕t − 2me(s∗, s∗ ⊕ t),

Zt = Zs∗⊕t − Zs∗ ,

where s∗ ⊕ t = s + t if s∗ + t ≤ 1 and s∗ ⊕ t = s + t − 1 otherwise. By [12], Theorem 1.2, the
pair (e,Z) has the same distribution as (e(0),Z(0)).

One easily verifies that the property s∗ ⊕ t ∼e s∗ ⊕ t ′ holds if and only if t ∼e t ′, for every
t, t ′ ∈ [0,1], a.s., and it follows that we have Zt = Zt ′ if t ∼e t ′. Hence, we may again view Z as
indexed by the tree Te.

The mapping t −→ s∗ ⊕ t induces an isometry I from Te onto Te, that maps the root of Te to
the vertex pe(s∗) with minimal label in Te. Furthermore, we have Za = ZI(a) − minZ for every
a ∈ Te. To summarize the preceding discussion, Te can be viewed as Te “re-rooted” at the vertex
with minimal label, and the labels Z on Te are derived from the labels Z on Te by subtracting the
minimal label.

Next, for every s, t ∈ [0,1], we set

D◦(s, t) := Zs + Zt − 2 min
s∧t≤r≤s∨t

Zr

and, for every a, b ∈ Te,

D◦(a, b) := inf
{
D◦(s, t) : s, t ∈ [0,1],pe(s) = a,pe(t) = b

}
.

Finally, we define a pseudo-metric D∗ on Te by setting

D∗(a, b) := inf

{
k∑

i=1

D◦(ai−1, ai)

}

where the infimum is over all choices of the integer k ≥ 1 and of the finite sequence a0, a1, . . . , ak

such that a0 = a and ak = b. We set a ≈ b if and only if D∗(a, b) = 0 (according to [9], Theo-
rem 3.4, this holds if and only if D◦(a, b) = 0).

The Brownian map is the quotient space m∞ := Te/ ≈, which is equipped with the distance
induced by D∗. The reader may have noticed that our presentation is consistent with [9], but
slightly differs from the introduction of [10], where the Brownian map is constructed directly
from the pair (e,Z), rather than from (e,Z). The previous discussion about the relations between
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the trees Te and Te, and the labels on these trees, however shows that both presentations are
equivalent. In the present work, because our limit theorem for the coding functions of discrete
objects involves a pair distributed as (e,Z), it will be more convenient to use the presentation
above.

Let us turn to the proof of Theorem 1.1. We let (τn, (Un(v))v∈qn) be the labeled tree associated
with qn, which is uniformly distributed over W nice

n . As in Theorem 2.3, we denote the contour
function and the label function of (τn, (Un(v))v∈qn) by C(n) and V (n), respectively. We also
write un

0, un
1, . . . , un

2n for the contour exploration sequence of τn. We then set, for every i, j ∈
{0,1, . . . ,2n},

dn(i, j) = dqn
gr

(
un

i , u
n
j

)
where dqn

gr stands for the graph distance on V (qn) (here and in what follows, we use Schaeffer’s
bijection to view the vertices of τn as vertices of qn). We extend the definition of dn(i, j) to
noninteger values of i and j by setting, for every s, t ∈ [0,2n],

dn(s, t) = (
s − �s�)(t − �t�)dn

(�s�, �t�) + (
s − �s�)(�t� − t

)
dn

(�s�, �t�)
+ (�s� − s

)(
t − �t�)dn

(�s�, �t�) + (�s� − s
)(�t� − t

)
dn

(�s�, �t�),
where �t� := min{k ∈ Z : k > t}. The same arguments as in [9], Proposition 3.2, relying on the
bound

dn(i, j) ≤ V
(n)
i + V

(n)
i − 2 min

i∧i≤k≤i∨j
V

(n)
k + 2 (3.1)

(see [9], Lemma 3.1) and on Theorem 2.3 show that the sequence of the laws of the processes
(n−1/4dn(2ns,2nt))0≤s,t≤1 is tight in the space of all probability measures on C([0,1]2,R+).
Using this tightness property and Theorem 2.3, we can find a sequence of integers (nk)k≥1 con-
verging to +∞ and a continuous random process (D(s, t))0≤s≤t such that, along the sequence
(nk)k≥1, we have the joint convergence in distribution in C([0,1]2,R

3),(
12−1/4n−1/2C

(n)
2nt ,

( 3
4

)3/8
n−1/4V

(n)
2nt ,

( 3
4

)3/8
n−1/4dn(2ns,2nt)

)
0≤s,t≤1 (3.2)

(d)−→
n→∞

(
et ,Zt ,D(s, t)

)
0≤s,t≤1.

By Skorokhod’s representation theorem, we may assume that this convergence holds a.s. Passing
to the limit n → ∞ in (3.1), we get that D(s, t) ≤ D◦(s, t) for every s, t ∈ [0,1], a.s. Also, from
the fact that dqn

gr (∂, un
i ) = U(un

i ) + 1 = V
(n)
i + 1 we immediately obtain that D(0, t) = Zt for

every t ∈ [0,1], a.s.
Clearly, the function (s, t) −→ D(s, t) is symmetric, and it also satisfies the triangle inequality

because dn does. Furthermore, the fact that dn(i, j) = 0 if un
i = un

j easily implies that D(s, t) = 0
for every s, t ∈ [0,1] such that s ∼e t , a.s. (see the proof of Proposition 3.3(iii) in [9]). Hence,
we may view D as a random pseudo-metric on Te. Since D ≤ D◦ and D satisfies the triangle
inequality, the definition of D∗ immediately shows that D(a,b) ≤ D∗(a, b) for every a, b ∈ Te,
a.s.
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Lemma 3.1. We have D(a,b) = D∗(a, b) for every a, b ∈ Te, a.s.

We postpone the proof of Lemma 3.1 to the end of the section and complete the proof of The-
orem 1.1. We define a correspondence between the metric spaces (V (qn) \ {∂}, ( 3

4 )3/8n−1/4dqn
gr )

and (m∞,D∗) by setting

Rn := {(
un

�2nt�,�
(
pe(t)

)) : t ∈ [0,1]}
where � stands for the canonical projection from Te onto m∞. The distortion of this correspon-
dence is

sup
0≤s,t≤1

∣∣∣∣(3

4

)3/8

n−1/4dqn
gr

(
un

�2ns�, u
n
�2nt�

) − D∗(pe(s),pe(t)
)∣∣∣∣

= sup
0≤s,t≤1

∣∣∣∣(3

4

)3/8

n−1/4dn

(�2ns�, �2nt�) − D(s, t)

∣∣∣∣
using Lemma 3.1 to write D∗(pe(s),pe(t)) = D(pe(s),pe(t)) = D(s, t). From the (almost sure)
convergence (3.2), the quantity in the last display tends to 0 as n → ∞ along the sequence
(nk)k≥1. From the expression of the Gromov–Hausdorff distance in terms of correspondences [4],
Theorem 7.3.25, we conclude that(

V (qn) \ {∂}, ( 3
4

)3/8
n−1/4dqn

gr
) a.s.−→ (

m∞,D∗)
as n → ∞ along the sequence (nk)k≥1. Clearly, the latter convergence also holds if we replace
V (qn) \ {∂} by V (qn).

The preceding arguments show that from any sequence of integers converging to ∞ we can
extract a subsequence along which the convergence of Theorem 1.1 holds. This is enough to
prove Theorem 1.1.

Proof of Lemma 3.1. Here we follow the ideas of the treatment of triangulations in [10], Sec-
tion 8. By a continuity argument, it is enough to prove that if X and Y are independent and
uniformly distributed over [0,1], and independent of the sequence (qn)n≥1 (and therefore also
of (e,Z,D)), we have

D
(
pe(X),pe(Y )

) = D∗(pe(X),pe(Y )
)

a.s.

As we already know that D(pe(X),pe(Y )) ≤ D∗(pe(X),pe(Y )), it will be sufficient to prove
that these two random variables have the same distribution. The distribution of D∗(pe(X),pe(Y ))

is identified in Corollary 7.3 of [10]:

D∗(pe(X),pe(Y )
) (d)= ZX − minZ

(d)= ZX.

On the other hand, we can also derive the distribution of D(pe(X),pe(Y )) = D(X,Y ). For
every n ≥ 1, we set

in = �2nX�, jn = �2nY �,
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so that in and jn are independent (and independent of qn) and uniformly distributed over
{0,1, . . . ,2n − 1}. Recall that every integer i ∈ {0,1, . . . ,2n − 1} corresponds to a corner of
the tree τn and therefore via Schaeffer’s bijection to an edge of qn. We define q̃n by saying that
q̃n is the same planar map as qn but re-rooted at the edge associated with in, with each of the
two possible orientations chosen with probability 1

2 . Then q̃n is also uniformly distributed over
Qnice

n , and we let τ̃n be the associated tree in Schaeffer’s bijection. Write d̃n for the analog of dn

when qn is replaced by q̃n.
Let kn ∈ {0,1, . . . ,2n − 1} be the index of the corner of the tree τ̃n corresponding to the edge

of qn that starts from the corner jn of τn in Schaeffer’s bijection. Note that, conditionally on
the pair (qn, q̃n), the latter edge is uniformly distributed over all edges of qn, and is thus also
uniformly distributed over all edges of q̃n (recall that q̃n is the same quadrangulation as qn

with a different root). Hence, conditionally on the pair (qn, q̃n), kn is uniformly distributed over
{0,1, . . . ,2n−1}, and in particular the random variable kn is independent of q̃n. We next observe
that ∣∣dn(in, jn) − d̃n(0, kn)

∣∣ ≤ 2, (3.3)

because, with an obvious notation, the vertex un
in

is either equal or adjacent to ũn
0 , and similarly

un
jn

is either equal or adjacent to ũn
kn

.

Now we have d̃n(0, kn)
(d)= dn(0, in) and by (3.2),

( 3
4

)3/8
n−1/4dn(0, in)

a.s.−→
n→∞ D(0,X) = ZX

where the convergence holds a.s. along the sequence (nk)k≥1. Similarly, (3.2) implies that, along
the same sequence, ( 3

4

)3/8
n−1/4dn(in, jn)

a.s.−→
n→∞ D(X,Y ).

From the last two convergences and (3.3), we obtain that D(X,Y ) has the same distribution
as ZX . Since we already observed that this is also the distribution of D∗(pe(X),pe(Y )), the
proof of the lemma is complete. �

4. The convergence of coding functions

In this section, we prove our main technical result Theorem 2.3. We start by deriving an interme-
diate convergence theorem.

4.1. A preliminary convergence

If τ is a plane tree, we let ∂τ stand for the set of all leaves of τ different from the root vertex
(which may or may not be a leaf). Then, for every integer n ≥ 0, we define W ◦

n as the set of all



1162 J. Beltran and J.-F. Le Gall

labeled trees (τ,U) such that |τ | = n and the property U(e+) = U(e−) − 1 holds for every edge
e ∈ E(τ) such that e+ ∈ ∂τ . We also set

W ◦ =
∞⋃

n=0

W ◦
n.

Let β := 1
2 (

√
3 − 1) and let μ be the probability measure on {0,1,2, . . .} defined by

μ(0) := 1

zβ

1

3
, μ(k) := 1

zβ

βk for every k ≥ 1,

where zβ is the appropriate normalizing constant:

zβ = 1

3
+

∞∑
k=1

βk =
√

3 + 1

3
.

An easy calculation shows that μ is critical, meaning that

∞∑
k=0

kμ(k) = 1.

In fact, the value of β has been chosen so that this criticality property holds. We can also compute
the variance of μ,

σ 2 :=
∞∑

k=0

(k − 1)2μ(k) = 2√
3
.

Next, let T be a Galton–Watson tree with offspring distribution μ. Since μ is critical, T is
almost surely finite, and we can view T as a random variable with values in the space of all plane
trees. We then define random labels Ũ (v), v ∈ T in the following way. We set Ũ (∅) = 0 and
conditionally on T , we choose the other labels Ũ (v), v ∈ T \ {∅} in such a way that the random
variables Ũ (e+) − Ũ (e−), e ∈ E(T ), are independent and uniformly distributed over {−1,0,1}.
In this way, we obtain a (random) labeled tree (T , Ũ ), and we may assume that (T , Ũ ) is also
defined on the probability space (�, A,P).

There is of course no reason why the labeled tree (T , Ũ ) should belong to W ◦, and so we
modify it in the following way. We set U (v) = Ũ (v) for every vertex v ∈ T \ ∂T . On the other
hand, for every edge e ∈ E(T ) such that e+ ∈ ∂T , we set U (e+) = Ũ (e−) − 1. Then (T , U ) is a
random element of W ◦.

The motivation for the preceding construction comes from the following lemma.

Lemma 4.1. The conditional distribution of (T , U ) knowing that |T | = n is the uniform proba-
bility measure on W ◦

n .
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Proof. The case n = 0 is trivial and we exclude it in the following argument. Let (τ,U) ∈ W ◦
n .

We have

P
(
(T , U ) = (τ,U)

) = P(T = τ) × ( 1
3

)|τ |−#∂τ

since |τ | − #∂τ is the number of edges e ∈ E(τ) such that e+ /∈ ∂τ . On the other hand,

P(T = τ) =
∏
v∈τ

μ
(
kv(τ )

) =
(

1

zβ

)|τ |+1

×
(

1

3

)#∂τ

×
∏

v∈τ\∂τ

βkv(τ).

Since
∑

v∈τ\∂τ kv(τ ) = |τ | = n, we arrive at

P
(
(T , U ) = (τ,U)

) =
((

1

zβ

)n+1

×
(

1

3

)#∂τ

× βn

)
×

(
1

3

)n−#∂τ

=
(

1

zβ

)n+1

×
(

β

3

)n

.

This quantity does not depend on the choice of (τ,U) ∈ W ◦
n , and the statement of the lemma

follows. �

We write C = (Ct )t≥0 and V = (Vt )t≥0 for the contour function and the label function of the
labeled tree (T , U ). We define rescaled versions of C and V by setting for every n ≥ 1 and
t ∈ [0,1],

Cn
t := σ

2
n−1/2 C2nt , V n

t =
(

2

3

)−1/2(
σ

2

)1/2

n−1/4 V2nt (4.1)

where we recall that σ 2 = 2/
√

3 is the variance of μ (in the previous display, 2
3 corresponds to

the variance of the uniform distribution on {−1,0,1}). Note that

σ

2
= 12−1/4,

(
2

3

)−1/2(
σ

2

)1/2

=
(

3

4

)3/8

.

We write Pn = P(· | |T | = n) for the conditional probability knowing that |T | = n, and En for
the expectation under Pn.

Proposition 4.2. The law of (Cn
t , V n

t )0≤t≤1 under Pn converges as n → ∞ to the distribution of
(et ,Zt )0≤t≤1.

Proof. Let Ṽ stand for the label function of the labeled tree (T , Ũ ). By construction, we have
|U (v) − Ũ (v)| ≤ 2 for every v ∈ T , and it follows that for every t ≥ 0,

|Ṽt − Vt | ≤ 2.

Let Ṽ n be defined from Ṽ by the same scaling operation we used to define V n from V . From the
preceding bound, we have also, for every t ≥ 0,∣∣Ṽ n

t − V n
t

∣∣ ≤ √
3σ 1/2n−1/4. (4.2)
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By known results about the convergence of discrete snakes [7] (see Theorem 2.1 in [8]), we know
that the law of (Cn

t , Ṽ n
t )0≤t≤1 under Pn converges as n → ∞ to the distribution of (et ,Zt )0≤t≤1.

The statement of the proposition immediately follows from this convergence and the bound
(4.2). �

We will be interested in conditional versions of the convergence of Proposition 4.2. Let us start
by discussing a simple case. For every real x ≥ 0, we write P

x
n for the conditional probability

measure

P
x
n = Pn

(· | U (v) ≥ −x for every v ∈ T
)
.

We write Pn = P
0
n to simplify notation. We denote the expectation under P

x
n, respectively, under

Pn, by E
x
n, respectively, En.

Let (rn)n≥1 be a sequence of positive real numbers converging to r > 0, and let F be a bounded
continuous function on C([0,1],R

2). It follows from the preceding proposition (together with
the fact that the law of min0≤t≤1 Zt has no atoms) that

lim
n→∞ En

[
F

(
Cn, V n

)
1{min0≤t≤1 V n

t ≥−rn}
] = E

[
F(e,Z)1{min0≤t≤1 Zt≥−r}

]
.

Let κn := 2√
3
σ−1/2n1/4 be the inverse of the scaling factor in the definition of V n. The preceding

convergence implies that

lim
n→∞ E

κnrn
n

[
F

(
Cn, V n

)] = E
[
F

(
e(r),Z(r)

)]
.

Since this holds for any sequence (rn) converging to r > 0, we get that, for any compact subin-
terval I of (0,∞), we have also

lim
n→∞ sup

r∈I

∣∣Eκnr
n

[
F

(
Cn, V n

)] − E
[
F

(
e(r),Z(r)

)]∣∣ = 0. (4.3)

A labeled tree codes a nice quadrangulation with n faces if and only if it is a tree of W ◦
n with

nonnegative labels, and, in the case when the root is a leaf, if the label of the only child of the
root is 1 and if there is another vertex with label 0. Recalling Lemma 4.1, we see that scaling
limits for the contour and label functions of a labeled tree uniformly distributed over W ◦

n are
given by the preceding proposition. As in the previous discussion, Theorem 2.3 can thus be seen
as a conditional version of Proposition 4.2. Closely related conditionings are discussed in [8],
but we shall not be able to apply directly the results of [8] (though we use certain ideas of the
latter paper).

Let H be the set of all labeled trees (τ,U) such that:

• either k∅(τ ) ≥ 2;
• or k∅(τ ) = 1, U(1) = 1, and there exists v ∈ τ \ {∅} such that U(v) = 0.

By Proposition 2.1, the set of all labeled trees associated with nice quadrangulations with n faces
(in Schaeffer’s bijection) is

W nice
n = W ◦

n ∩ W +
n ∩ H. (4.4)

We write H for the event H := {(T , U ) ∈ H }.
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4.2. A spatial Markov property

We consider again the random labeled tree (T , U ) introduced in the previous subsection. A major
difficulty in the proof of Theorem 2.3 comes from the fact that conditioning the tree on having
nonnegative labels is not easy to handle. To remedy this problem, we will introduce a (large)
subtree of T , which in a sense will approximate T , but whose distribution will involve a less
degenerate conditioning (see Proposition 4.5 below).

Recall the notation V,V
(w),V(w) introduced in Section 2. Let w ∈ V, and first argue on the

event {w ∈ T }. We let

T (w) := T ∩ V
(w)

be the set of all vertices of T that are not strict descendants of w. Clearly, T (w) is a tree and we
equip it with labels by setting U (w)(v) = U (v) for every v ∈ T (w). We similarly define Ũ (w)(v) =
Ũ (v) for every v ∈ T (w). If w /∈ T , we just put T (w) = {∅} and Ũ (w)(∅) = U (w)(∅) = 0.

Next, on the event {w ∈ T }, we define

T(w) = {v ∈ V : wv ∈ T }.
Then T(w) is a tree (we may view it as the subtree of descendants of w). We assign labels to the
vertices of T(w) by setting, for v ∈ T(w),

U(w)(v) = U (wv) − U (w).

On the event {w /∈ T } we set T(w) = {∅} and U(w)(∅) = 0.
For every w ∈ V, let �(w) be the σ -field generated by (T (w), Ũ (w)).

Lemma 4.3. For every nonnegative function G on the space of all labeled trees, for every w ∈ V,

E
[
1{w∈T }G(T(w), U(w)) | �(w)

] = 1{w∈T }E
[
G(T , U )

]
.

Remark 4.4. It is essential that we define �(w) as the σ -field generated by the pair (T (w), Ũ (w)),
and not by the pair (T (w), U (w)): The knowledge of (T (w), U (w)) provides information about
the fact that w is or is not a leaf of T , and the statement of the lemma would not hold with this
alternative definition.

The proof of Lemma 4.3 is a simple application of properties of Galton–Watson trees and the
way labels are generated. We omit the details.

Let us introduce some notation. We fix an integer x ≥ 1 and define a subset x of T by setting

x = {
w ∈ T : U (w) ≥ x and U (v) < x for every v ∈ [∅,w] \ {w}},

where [∅,w] = {v ∈ V : w ∈ V(v)} stands for the set of all ancestors of w. Define ̃x similarly
by replacing U by Ũ .

Next fix r ∈ (1/2,1) and for every n ≥ 1, consider the event

Fr,x
n := {|T | = n and there exists w ∈ x such that |T(w)| ≥ rn

}
.
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If F
r,x
n holds, the vertex w ∈ x such that |T(w)| ≥ rn is clearly unique, and we denote it by wn.

We also set mn = |T(wn)| = n − |T (wn)| on the same event. If F
r,x
n does not hold, we set wn = ∅

and mn = n for definiteness.
The following technical result plays a major role in our proof of Theorem 2.3. Roughly speak-

ing, this result identifies the distribution, under the probability measure Pn restricted to the
event F

r,x
n , of the “large” subtree of T rooted at the vertex wn.

Proposition 4.5. Let G1,G2 be nonnegative functions on the space W . Then,

En

[
1F

r,x
n

G1
(

T (wn), U (wn)
)
G2(T(wn), U(wn))

]
= En

[
1F

r,x
n

G1
(

T (wn), U (wn)
)
E

x
mn

[
G2(T , U )

]]
.

Proof. We fix w ∈ V \ {∅} and m ∈ [rn,n] ∩ Z. On the event {w ∈ T }, we also set U (w)(v) =
U (w)(v) if v ∈ T (w) \ {w} and U (w)(w) = Ũ (w)(w). Then the quantity

1F
r,x
n ∩{U (v)≥0,∀v∈T }∩{(wn,mn)=(w,m)}G1

(
T (w), U (w)

)
G2(T(w), U(w))

is equal to the product of

R := 1{w∈̃x}∩{|T (w)|=n−m}∩{U (v)≥0,∀v∈T (w)\{w}}G1
(

T (w), U (w)
)

with

S := 1{|T(w)|=m}∩{U (v)≥0,∀v∈T ∩V(w)}G2(T(w), U(w)).

The point is that if |T(w)| = m > 0, w is a vertex of T that is not a leaf, so that Ũ (w)(w) =
U (w)(w), implying that G1(T (w), U (w)) = G1(T (w), U (w)) and that the property w ∈ x holds if
and only if w ∈ ̃x .

It is easy to verify that R is �(w)-measurable. Notice that 1{w∈T }G1(T (w), U (w)) is �(w)-
measurable, which would not be the case for 1{w∈T }G1(T (w), U (w)).

Next, notice that on the event {w ∈ ̃x} ∩ {|T(w)| = m} = {w ∈ x} ∩ {|T(w)| = m}, we have
necessarily U (w) = x and the property

U (v) ≥ 0 ∀v ∈ T ∩ V(w)

holds if and only if

U(w)(v) ≥ −x ∀v ∈ T(w).

This shows that, on the event {w ∈ ̃x}, S coincides with the variable

1{|T(w)|=m}∩{U(w)(v)≥−x,∀v∈T(w)}G2(T(w), U(w))

which is a function of the pair (T(w), U(w)).
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Recalling that R is �(w)-measurable and using Lemma 4.3, we get

E[RS] = E
[
R1{|T(w)|=m}∩{U(w)(v)≥−x,∀v∈T(w)}G2(T(w), U(w))

]
= E[R] × E

[
1{|T |=m}∩{U (v)≥−x,∀v∈T }G2(T , U )

]
= E[R] × P

[{|T | = m
} ∩ {

U (v) ≥ −x,∀v ∈ T
}] × E

x
m

[
G2(T , U )

]
by the definition of the conditional measure P

x
m.

From the case G2 = 1 in the equality between the two ends of the last display, we have also

E[R] × P
[{|T | = m

} ∩ {
U (v) ≥ −x,∀v ∈ T

}]
= E

[
1F

r,x
n ∩{U (v)≥0,∀v∈T }∩{(wn,mn)=(w,m)}G1

(
T (w), U (w)

)]
.

By substituting this into the preceding display, we arrive at

E
[
1F

r,x
n ∩{U (v)≥0,∀v∈T }∩{(wn,mn)=(w,m)}G1

(
T (w), U (w)

)
G2(T(w), U(w))

]
= E

[
1F

r,x
n ∩{U (v)≥0,∀v∈T }∩{(wn,mn)=(w,m)}G1

(
T (w), U (w)

)] × E
x
m

[
G2(T , U )

]
= E

[
1F

r,x
n ∩{U (v)≥0,∀v∈T }∩{(wn,mn)=(w,m)}G1

(
T (w), U (w)

)
E

x
mn

[
G2(T , U )

]]
.

Now we just have to sum over all possible choices of w and m and divide by the quantity
P({|T | = n} ∩ {U (v) ≥ 0,∀v ∈ T }) to get the statement of the proposition. �

4.3. Technical estimates

Recall from Section 4.1 the definition of the set H and of the rescaled processes Cn and V n. To
simplify notation, we write Pn,H for the conditional probability Pn(· | H). This makes sense as
soon as Pn(H) > 0, which holds for every n ≥ 2.

To simplify notation, we write kv instead of kv(T ) in the following.

Proposition 4.6. There exists a constant a0 > 0 such that Pn(H) ≥ a0 for every n ≥ 2. Moreover,
for any b > 0 and ε > 0, we can find δ,α ∈ (0, 1

4 ) such that, for every sufficiently large n,

Pn,H
(

inf
t∈[δ,1−δ] V n

t > α, sup
t∈[0,2δ]∩[1−2δ,1]

(
Cn

t + V n
t

) ≤ ε
)

≥ 1 − b.

Proof. We start by proving the first assertion. It is enough to find a constant a0 such that, for
every sufficiently large n,

Pn

(
k∅ ≥ 2; U (v) ≥ 0,∀v ∈ T

) ≥ a0Pn

(
U (v) ≥ 0,∀v ∈ T

)
. (4.5)

Now observe that, by construction,

min
v∈T

Ũ (v) ≥ min
v∈T

U (v) ≥ min
v∈T

Ũ (v) − 1. (4.6)
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In particular, it is immediate that

Pn

(
U (v) ≥ 0,∀v ∈ T

) ≤ Pn

(
Ũ (v) ≥ 0,∀v ∈ T

)
. (4.7)

On the other hand, we get a lower bound on Pn(k∅ ≥ 2; U (v) ≥ 0,∀v ∈ T ) by considering the
event where ∅ has (exactly) two children, who both have label 1, and the second child of ∅ has
one child, and this child is a leaf. We get, for n ≥ 4,

Pn

(
k∅ ≥ 2; U (v) ≥ 0,∀v ∈ T

)
= P(k∅ ≥ 2; U (v) ≥ 0,∀v ∈ T ; |T | = n)

P(|T | = n)

≥ P(k∅ = 2, k2 = 1, k21 = 0, U (1) = U (2) = 1; U (v) ≥ 0,∀v ∈ T ; |T | = n)

P(|T | = n)
(4.8)

= 1

P(|T | = n)

β2

zβ

× β

zβ

× 1

3zβ

×
(

1

3

)2

× P
(

U (v) ≥ −1,∀v ∈ T ; |T | = n − 3
)

≥ c

P(|T | = n)
P
(

Ũ (v) ≥ 0,∀v ∈ T ; |T | = n − 3
)

= c
P(|T | = n − 3)

P(|T | = n)
Pn−3

(
Ũ (v) ≥ 0,∀v ∈ T

)
where c = β3/(27z3

β). Proposition 4.2 in [8] gives the existence of two positive constants c1 and
c2 such that, for every sufficiently large n,

c1

n
≤ Pn

(
Ũ (v) ≥ 0,∀v ∈ T

) ≤ c2

n
. (4.9)

Moreover, standard asymptotics for the total progeny of a critical Galton–Watson tree show that

lim
n→∞

P(|T | = n − 3)

P(|T | = n)
= 1.

Our claim (4.5) follows from the preceding observations together with the bounds (4.7) and (4.8).
Let us turn to the proof of the second assertion. We start by observing that the first part of the

proof, and in particular (4.8) and (4.9) show that the bounds

c′
1

n
≤ Pn

(
min
v∈T

U (v) ≥ 0
)

≤ Pn

(
min
v∈T

Ũ (v) ≥ 0
)

≤ c2

n
(4.10)

hold for every sufficiently large n, with a positive constant c′
1. Then, thanks to the lower bound

Pn(H) ≥ a0, it is enough to verify that given b > 0 and ε > 0, we can find δ,α ∈ (0, ε ∧ 1
4 ) so

that

Pn

({
inf

t∈[δ,1−δ] V n
t ≤ α

}
∪

{
sup

t∈[0,2δ]∩[1−2δ,1]
(

Cn
t + V n

t

)
> ε

})
≤ b.
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Recall the notation Ṽ n introduced in the proof of Proposition 4.2 and the bound (4.2). Clearly, it
is enough to verify that the bound of the preceding display holds when V n is replaced by Ṽ n. To
simplify notation, set

Aδ,α
n =

{
inf

t∈[δ,1−δ] Ṽ n
t ≤ α

}
∪

{
sup

t∈[0,2δ]∩[1−2δ,1]
(

Cn
t + Ṽ n

t

)
> ε

}
.

We have then

Pn

(
Aδ,α

n

) = Pn(A
δ,α
n ∩ {minv∈T U (v) ≥ 0})

Pn(minv∈T U (v) ≥ 0)

≤ Pn(minv∈T Ũ (v) ≥ 0)

Pn(minv∈T U (v) ≥ 0)
× Pn

(
Aδ,α

n

∣∣ min
v∈T

Ũ (v) ≥ 0
)
,

using (4.6) in the last bound. On the one hand, the bounds from (4.10) imply that the ratio

Pn(minv∈T Ũ (v) ≥ 0)

Pn(minv∈T U (v) ≥ 0)

is bounded above by a constant. On the other hand Proposition 6.1 in [8] shows that the quantity

Pn

(
Aδ,α

n

∣∣ min
v∈T

Ũ (v) ≥ 0
)

can be made arbitrarily small (for all sufficiently large n) by choosing δ and α sufficiently small.
This completes the proof of the proposition. �

We write

�α,δ,ε
n := {|T | = n

} ∩
{

inf
t∈[δ,1−δ] V n

t > α, sup
t∈[0,2δ]∩[1−2δ,1]

(
Cn

t + V n
t

) ≤ ε
}

for the event considered in Proposition 4.6.
Now recall the notation F

r,x
n introduced before Proposition 4.5. Also recall the definition of

the constants κn a little before (4.3). For α > 0 and δ ∈ (0, 1
4 ), we set

Eα,δ
n = F 1−2δ,�ακn�

n

to simplify notation. We implicitly consider only values of n such that ακn ≥ 1. On the event
E

α,δ
n , there is a unique vertex w ∈ �ακn� such that |T(w)| ≥ (1 − 2δ)n and we denote this vertex

by w
α,δ
n (as previously, if E

α,δ
n does not hold, we take w

α,δ
n = ∅). We also set m

α,δ
n = |T

(w
α,δ
n )

|.

Lemma 4.7. For every α > 0, δ ∈ (0, 1
4 ) and ε > 0, we have �

α,δ,ε
n ⊂ E

α,δ
n .

Proof. Suppose that �
α,δ,ε
n holds. Then all vertices of T visited by the contour exploration at

integer times between 2δn and 2(1 − δ)n must have a label strictly greater than ακn. By the
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properties of the contour exploration, this implies that all these vertices share a common ancestor
vn belonging to �ακn�, which moreover is such that |T(vn)| ≥ (1 − 2δ)n. It follows that E

α,δ
n

holds. �

We set

Ẽα,δ
n = Eα,δ

n ∩ ({k∅ ≥ 2} ∪ {
k∅ = 1, U (1) = 1,∃v ∈ T (w

α,δ
n ) \ {∅} : U (v) = 0

})
.

Proposition 4.8. For any b > 0, we can find δ,α ∈ (0, 1
4 ) such that, for every sufficiently large n,

Pn,H
(
Ẽα,δ

n

) ≥ 1 − b.

Proof. By Proposition 4.6 and Lemma 4.7, it is enough to verify that Pn,H(E
α,δ
n \ Ẽ

α,δ
n ) tends to

0 as n → ∞, for any choice of δ,α ∈ (0, 1
4 ). By the first assertion of Proposition 4.6, it suffices

to verify that

lim
n→∞ Pn

(
H ∩ (

Eα,δ
n \ Ẽα,δ

n

)) = 0. (4.11)

Now observe that, on the event H ∩ (E
α,δ
n \ Ẽ

α,δ
n ), we have necessarily k∅ = 1 and moreover

there exists v ∈ T \ T (w
α,δ
n ) such that U (v) = 0. Consequently,

Pn

(
H ∩ (

Eα,δ
n \ Ẽα,δ

n

)) ≤ Pn

(
Eα,δ

n ∩ {∃v ∈ T
(w

α,δ
n )

: U (v) = 0
})

(4.12)
= En

[
1
E

α,δ
n

P
�ακn�
m

α,δ
n

(∃v ∈ T : U (v) = −�ακn�
)]

using Proposition 4.5 in the last equality.
By construction, we have n ≥ m

α,δ
n ≥ (1 − 2δ)n ≥ n/2 on the event E

α,δ
n . An easy application

of Proposition 4.2 shows that

min�n/2�≤m≤n
Pm

(
min
v∈T

U (v) ≥ −�ακn�
)

≥ c(α)

with a constant c(α) > 0 depending only on α. Again using Proposition 4.2 together with the fact
that the law of inft∈[0,1] Zt has no atoms, we get that

sup
�n/2�≤m≤n

Pm

(
min
v∈T

U (v) = −�ακn�
)

−→
n→∞ 0.

By combining the two preceding observations, we obtain that

sup
�n/2�≤m≤n

P
�ακn�
m

(
min
v∈T

U (v) = −�ακn�
)

−→
n→∞ 0.

Our claim (4.11) now follows from (4.12). �
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4.4. Proof of the convergence of coding functions

We now turn to the proof of Theorem 2.3. Let us briefly discuss the main idea of the proof. We
observe that, if α and δ are small enough, the tree associated with a nice quadrangulation with n

faces is well approximated by the subtree rooted at the vertex w
α,δ
n introduced before Lemma 4.7,

whose label is small but non-vanishing even after rescaling. Together with Proposition 4.5, the
convergence result (4.3) can then be used to relate the law of this subtree and its labels to a con-
ditioned pair (e(r),Z(r)). However, when r is small we know that the distribution of (e(r),Z(r))

is close to that of (e(0),Z(0)).
We equip the space C([0,1],R

2) with the norm ‖(g,h)‖ = ‖g‖∞ ∨‖h‖∞, where ‖g‖∞ stands
for the supremum norm of g. For every g ∈ C([0,1],R), and every s > 0, we set:

ωg(s) = sup
t1,t2∈[0,1],|t1−t2|≤s

∣∣g(t1) − g(t2)
∣∣.

We fix a Lipschitz function F on C([0,1],R
2), with Lipschitz constant less than 1 and such that

0 ≤ F ≤ 1. By Lemma 4.1 and (4.4), the uniform distribution on the space W nice
n of all labeled

trees asssociated with nice quadrangulations with n faces coincides with the law of (T , U ) under
Pn,H . Therefore, to prove Theorem 2.3, it is enough to show that

lim
n→∞ En,H

[
F

(
Cn, V n

)] = E
[
F

(
e(0),Z(0)

)]
.

In the remaining part of this section we establish this convergence. To this end, we fix b > 0.
For every ε ∈ (0, 1

4 ) and g ∈ C([0,1],R), we set

Gε(g) = (
ωg(3ε) + (

4 + 2‖g‖∞
)
ε
) ∧ 1.

For r > 0, recall our notation (e(r),Z(r)) for a process whose distribution is the conditional
distribution of (e,Z) knowing that min0≤t≤1 Zt > −r (see the discussion in Section 2.3). Since
the distribution of (e(r),Z(r)) depends continuously on r ∈ [0,1], a simple argument shows that
we can choose ε > 0 sufficiently small so that

sup
r∈[0,1]

E
[
Gε

(
e(r)

) + Gε

(
Z(r)

)]
<

a0b

2
, (4.13)

where we recall that the constant a0 was introduced in Proposition 4.6. By choosing ε even
smaller if necessary, we can also assume that, for every r ∈ (0,2ε),∣∣E[

F
(
e(r),Z(r)

)] − E
[
F

(
e(0),Z(0)

)]∣∣ < b. (4.14)

In the following, we fix ε ∈ (0, 1
4 ) so that the previous two bounds hold.
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If α, δ ∈ (0, 1
4 ), we let Ĉ(α,δ,n) and V̂ (α,δ,n) be respectively the contour and the label function

of the labeled tree (T
(w

α,δ
n )

, U
(w

α,δ
n )

).

First step. We verify that we can find α, δ ∈ (0, ε) such that, for all sufficiently large n, we have
both Pn,H(Ẽ

α,δ
n ) ≥ 1 − b, and∣∣En,H

[
F

(
Cn, V n

)] − En,H
[
1
Ẽ

α,δ
n

F
(

Ĉn, V̂ n
)]∣∣ ≤ b, (4.15)

where similarly as in (4.1), we have set, for every t ∈ [0,1],

Ĉn
t := σ

2

(
mα,δ

n

)−1/2
Ĉ

(α,δ,n)

2m
α,δ
n t

, V̂ n
t =

√
3

2
σ 1/2(mα,δ

n

)−1/4
V̂

(α,δ,n)

2m
α,δ
n t

.

To this end, we use Propositions 4.6 and 4.8 to choose α, δ ∈ (0, ε) such that, for all sufficiently
large n,

Pn,H
(
�α,δ,ε

n ∩ Ẽα,δ
n

) ≥ 1 − b/4.

We consider n such that this bound holds and argue on the event �
α,δ,ε
n ⊂ E

α,δ
n . On this event,

the first visit of the vertex w
α,δ
n by the contour exploration occurs before time 2δn and the last

visit of this vertex occurs after time 2(1 − δ)n. From the definition of the pair (Ĉn, V̂ n) we can
find two (random) times θ1 ∈ [0, δ] and θ2 ∈ [1 − δ,1], such that

Ĉn
t = Cn

θ1+(θ2−θ1)t
− Cn

θ1

(θ2 − θ1)1/2
, V̂ n

t = V n
θ1+(θ2−θ1)t

− V n
θ1

(θ2 − θ1)1/4
∀t ∈ [0,1]. (4.16)

It easily follows that

sup
t∈[0,δ]∪[1−δ,1]

∣∣Cn
t − Ĉn

t

∣∣ ≤ (
1 + 2(1 − 2δ)−1/2) sup

t∈[0,2δ]∪[1−2δ,1]
Cn

t ≤ 4ε

using the definition of �
α,δ,ε
n in the last inequality. Still using (4.16), we have also, for every

t ∈ [0,1],∣∣Cn
θ1+(θ2−θ1)t

− Ĉn
θ1+(θ2−θ1)t

∣∣ = ∣∣(θ2 − θ1)
1/2 Ĉn

t + Cn
θ1

− Ĉn
θ1+(θ2−θ1)t

∣∣
≤ ∣∣Ĉn

t − Ĉn
θ1+(θ2−θ1)t

∣∣ + (
1 − (θ2 − θ1)

1/2)∣∣Ĉn
t

∣∣ + ∣∣Cn
θ1

∣∣
and it follows that

sup
t∈[0,1]

∣∣Cn
θ1+(θ2−θ1)t

− Ĉn
θ1+(θ2−θ1)t

∣∣ ≤ ωĈn(3δ) + 2δ
∥∥Ĉn

∥∥∞ + ε.

By combining this with the bound on |Ĉn
t − Cn

t | when t ∈ [0, δ] ∪ [1 − δ,1], we get that∥∥Cn − Ĉn
∥∥∞ ≤ ωĈn(3δ) + 2δ

∥∥Ĉn
∥∥∞ + 4ε



Quadrangulations with no pendant vertices 1173

on the event �
α,δ,ε
n . By a similar argument, we have also∥∥V n − V̂ n

∥∥∞ ≤ ωV̂ n(3δ) + 2δ
∥∥V̂ n

∥∥∞ + 4ε

on the event �
α,δ,ε
n .

Now recall that Pn,H(�
α,δ,ε
n ∩ Ẽ

α,δ
n ) ≥ 1 − b/4. Since 0 ≤ F ≤ 1, it follows that∣∣En,H

[
F

(
Cn, V n

)] − En,H
[
1
Ẽ

α,δ
n

F
(

Ĉn, V̂ n
)]∣∣

(4.17)

≤ b

2
+ En,H

[∣∣F (
Cn, V n

) − F
(

Ĉn, V̂ n
)∣∣1

�
α,δ,ε
n ∩Ẽ

α,δ
n

]
.

From the Lipschitz assumption on F and the preceding bounds on ‖Cn − Ĉn‖∞ and ‖V n − V̂ n‖∞,
we see that the second term in the right-hand side is bounded above by

En,H
[(

Gε

(
Ĉn

) + Gε

(
V̂ n

))
1
�

α,δ,ε
n ∩Ẽ

α,δ
n

]
. (4.18)

The quantity (4.18) is bounded above by

a−1
0 En

[
1
E

α,δ
n

(
Gε

(
Ĉn

) + Gε

(
V̂ n

))] = a−1
0 En

[
1
E

α,δ
n

ψ
(
n,mα,δ

n

)]
where we have used Proposition 4.5, and for every integer m such that (1 − 2δ)n ≤ m ≤ n, we
have set

ψ(n,m) = E
�ακn�
m

[
Gε

(
Cm

) + Gε

(
V m

)]
.

We now let n tend to ∞. We note that the ratio ακn/κm is bounded above by α(1 − 2δ)−1/4 and
bounded below by α when m varies over [(1 − 2δ)n,n] ∩ Z. It thus follows from (4.3) that

lim sup
n→∞

(
sup

m∈[(1−2δ)n,n]∩Z

ψ(n,m)
)

≤ sup
r∈[α,α(1−2δ)−1/4]

E
[
Gε

(
e(r)

) + Gε

(
Z(r)

)]
<

a0b

2

by our choice of ε. Consequently the quantity (4.18) is bounded above by b/2 if n is large
enough, and the right-hand side of (4.17) is then bounded above by b, which gives the bound
(4.15).

Second step. We fix α and δ as in the first step above. We then observe that Ẽ
α,δ
n = E

α,δ
n ∩ An,

where the event An is measurable with respect to the pair (T (w
α,δ
n ), U (w

α,δ
n )). This measurability

property was indeed the motivation for introducing Ẽ
α,δ
n . Since the pair (Ĉn, V̂ n) is a function of

(T
(w

α,δ
n )

, U
(w

α,δ
n )

), and since Ẽ
α,δ
n ⊂ H, we can use Proposition 4.5 to write

En,H
[
1
Ẽ

α,δ
n

F
(

Ĉn, V̂ n
)] = 1

Pn(H)
En

[
1
E

α,δ
n

1AnF
(

Ĉn, V̂ n
)]

= 1

Pn(H)
En

[
1
E

α,δ
n

1An�
(
n,mα,δ

n

)]
= En,H

[
1
Ẽ

α,δ
n

�
(
n,mα,δ

n

)]
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where, for every integer m such that (1 − 2δ)n ≤ m ≤ n we have set

�(n,m) = E
�ακn�
m

[
F

(
Cm, V m

)]
.

If n is large enough, we get from (4.3) that

sup
(1−2δ)n≤m≤n

∣∣�(n,m) − E
[
F

(
e(�ακn�/κm),Z(�ακn�/κm)

)]∣∣ < b.

Then noting that �ακn�/κm ≤ 2ε if (1 − 2δ)n ≤ m ≤ n, and using (4.14), we obtain that

sup
(1−2δ)n≤m≤n

∣∣�(n,m) − E
[
F

(
e(0),Z(0)

)]∣∣ < 2b,

and we conclude that∣∣En,H
[
1
Ẽ

α,δ
n

F
(

Ĉn, V̂ n
)] − Pn,H

(
Ẽα,δ

n

)
E

[
F

(
e(0),Z(0)

)]∣∣ ≤ 2b.

By combining this with (4.15), we get∣∣En,H
[
F

(
Cn, V n

)] − Pn,H
(
Ẽα,δ

n

)
E

[
F

(
e(0),Z(0)

)]∣∣ ≤ 3b

and finally since Pn,H (Ẽ
α,δ
n ) ≥ 1 − b, we have∣∣En,H

[
F

(
Cn, V n

)] − E
[
F

(
e(0),Z(0)

)]∣∣ ≤ 4b,

which completes the proof of Theorem 2.3.
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