
Bernoulli 19(4), 2013, 1268–1293
DOI: 10.3150/12-BEJSP02

Normal approximation and smoothness for
sums of means of lattice-valued random
variables
GEOFFREY DECROUEZ1 and PETER HALL2

1Department of Mathematics and Statistics, The University of Melbourne, VIC 3010, Australia.
E-mail: dgg@unimelb.edu.au
2Department of Mathematics and Statistics, The University of Melbourne, VIC 3010, Australia and Depart-
ment of Statistics, University of California Davis, Davis, CA 95616, USA.
E-mail: halpstat@ms.unimelb.edu.au

Motivated by a problem arising when analysing data from quarantine searches, we explore properties of
distributions of sums of independent means of independent lattice-valued random variables. The aim is to
determine the extent to which approximations to those sums require continuity corrections. We show that,
in cases where there are only two different means, the main effects of distribution smoothness can be un-
derstood in terms of the ratio ρ12 = (e2n1)/(e1n2), where e1 and e2 are the respective maximal lattice edge
widths of the two populations, and n1 and n2 are the respective sample sizes used to compute the means.
If ρ12 converges to an irrational number, or converges sufficiently slowly to a rational number; and in a
number of other cases too, for example those where ρ12 does not converge; the effects of the discontinuity
of lattice distributions are of smaller order than the effects of skewness. However, in other instances, for
example where ρ12 converges relatively quickly to a rational number, the effects of discontinuity and skew-
ness are of the same size. We also treat higher-order properties, arguing that cases where ρ12 converges
to an algebraic irrational number can be less prone to suffer the effects of discontinuity than cases where
the limiting irrational is transcendental. These results are extended to the case of three or more different
means, and also to problems where distributions are estimated using the bootstrap. The results have practi-
cal interpretation in terms of the accuracy of inference for, among other quantities, the sum or difference of
binomial proportions.

Keywords: algebraic irrational number; bootstrap; confidence interval; continuity correction; difference of
binomial proportions; discontinuity; irrational number; sum of binomial proportions; transcendental
number

1. Introduction

1.1. Background: The case of a single sample mean

Let θ̂ denote a statistical estimator of an unknown quantity θ , and assume that θ̂ − θ is asymp-
totically normally distributed with zero mean and variance n−1σ 2, where n is a measure of
the sample size from which θ̂ was computed. In particular, the statistic T = n1/2(θ̂ − θ)/σ is
asymptotically normal N(0,1). Under additional assumptions an Edgeworth expansion of the
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distribution of T can generally be formulated, having the form

P(T ≤ x) = �(x) + n−1/2P(x)φ(x) + o
(
n−1/2), (1.1)

uniformly in x, where � and φ are the standard normal distribution and density functions, re-
spectively, and P is an even, quadratic polynomial.

For example, if θ̂ denotes the mean of a sample of size n from a population with mean θ , and if
data from the population have finite third moment and a nonlattice distribution, then (1.1) holds
with P(x) = 1

6β(1 − x2), where β is the standardised skewness of the population. On the other
hand, still in the case of the mean of a population with finite third moment, if the population is
lattice then an extra, discontinuous term has to be added to (1.1).

This extra term reflects the discrete continuity correction that statisticians are often obliged to
introduce when approximating a lattice distribution, for example the binomial distribution or the
distribution of a sum of Poisson variates, using the smooth normal distribution:

P(T ≤ x) = �(x) + n−1/2P(x)φ(x) + n−1/2dn(x)φ(x) + o
(
n−1/2), (1.2)

where dn(x) = (e0/σ)ψn(x) denotes the discontinuous term in the Edgeworth expansion, e0 is
the maximal span of the lattice, σ 2 is the population variance,

ψn(x) = ψ
{
(x − ξn)σn1/2/e0

}
, ξn = (

e0/σn1/2){ 1
2 − ψ(nx0/e0)

}
,

ψ(x) = �x� − x + 1
2 , �x� is the largest integer not strictly exceeding x, and it is assumed that

all points of support in the distribution (of which θ is the mean) have the form x0 + νe0 for an
integer ν.

1.2. Contributions of this paper

We show that in multi-sample problems, where θ̂ is a sum of several independent means, the
discontinuous term can be ignored if sample sizes are chosen judiciously. For example, if there
are just two sample sizes (as in the case of a sum or difference of two binomial proportions), and
if the lattice edge widths are identical (this simplifies our discussion here, but is not essential),
then it is sufficient that the ratio of the two sample sizes converge to an irrational number, or
converge sufficiently slowly to a rational number. These results are corollaries of Theorem 1 in
Section 2.1, and they and other properties are discussed in Section 2.2.

We also show that the discontinuous term can be replaced by O(nδ−1), for all δ > 0, provided
that four moments are finite and the ratio of the two sample sizes converges sufficiently quickly
to an irrational number of “type” 1. (See Section 2.3 for a definition of the type of an irrational
number.) More generally, we explore the effect that type has on the size of the discontinuous
term. Theorem 2 also gives an explicit formula for the discontinuous term, up to a remainder of
order n−1. Sections 2.5 and 2.6 show how to bound the discontinuous remainder term, for two
different approaches to defining that quantity, and show how the effects of irrationals of different
types can be teased from the remainder. Applications to the bootstrap are straightforward, and in
fact Section 2.7 outlines a bootstrap version of Theorem 2 and discusses its implications.
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We do not treat in any detail cases where the differences between two lattice distributions arise
mainly in terms of their centres, rather than their lattice edge widths. For example, if two inde-
pendent sample means X̄j , for j = 1,2, are respectively averages of nj independent variables
and are distributed on lattices xj + νn−1

j ej ; and if the difference x1 − x2 between the lattice
translations equals an irrational multiple of the ratio ρ12 = (e2n1)/(e1n2); then the distribution
of X̄1 + X̄2 is non-lattice. While this problem and its implications are of mathematical interest,
they do not enjoy the practical motivation of problems where, say, x1 = x2 and ρ12 can be almost
arbitrary. For example, x1 = x2 in the problem of constructing confidence intervals for the sum
or difference of two binomial probabilities, based on samples of unequal size. Therefore, we ad-
dress cases where the focus of attention is ρ12 rather than x1 − x2. Differences between lattice
centres are permitted by our regularity conditions, but their role is not treated in detail.

1.3. Practical motivation

The extra term in (1.2), relative to (1.1), is of significant interest to a practitioner, since it causes
significant inaccuracy when the central limit theorem is used to approximate the distribution
of T . The presence of this extra term motivates the continuity correction, and also the fiducial
approach taken by Clopper and Pearson [6] and Sterne [21] to estimating a binomial proportion,
as well as a large, more recent literature discussing methodology for solving problems such as
constructing confidence intervals for the difference or sum of two binomial proportions. See, for
example, Hall [11], Duffy and Santer [7], Lee et al. [14], Agresti and Caffo [1], Brown et al.
[4,5], Zhou et al. [23], Price and Bonnett [16], Brown and Li [3], Borkowf [2], Roths and Tebbs
[19], Wang [22] and Zieliński [24].

The practical motivation for the work described in this paper came from data acquired during
quarantine searches, where the construction of confidence intervals for the sum, rather than dif-
ference, of two binomial proportions was of interest. In detail, shipping containers arriving at a
frontier contained a certain number, N say, of consignments. Some of the consignments might
be clean, but others could contain pests which needed to be detected and removed to prevent
their introduction to the environment. To reduce the costs associated with inspection, quarantine
services usually inspect only n1 < N consignments. Consignments are assumed to be contami-
nated with probability p1, and the number, n1X̄1 say, of contaminated consignments found after
routine (but incomplete) inspection of the items in each of n1 consignments is assumed to follow
a binomial distribution. Contaminated consignments are then “cleaned,” and the members of a
subsample of n2 of them are reinspected. (The data gathered in this way comprise a “leakage
survey.”) The number of items, n2X̄2, still found contaminated (for example, contaminated with
a different kind of pest) are assumed to follow a binomial distribution with parameters n2 and
p2, and typically it is argued that X̄1 and X̄2 are independent. An estimator of the proportion of
items that pass through this inspection process, and are still contaminated, is given by

X̄1

(
1 − n1

N

)
+ X̄2

(
1 − n2

N

)
, (1.3)

which can be viewed as a sum of means of lattice-valued random variables where the lattice edge
lengths are ej = 1 − N−1nj for j = 1,2.
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The quarantine inspection service aims to develop a strategy for choosing consignments, and
items, to inspect. This reduces the associated costs, and minimises, to at least some extent, the
number of contaminated items that cross the border. The performance of such a strategy is as-
sessed, by the quarantine service, using a variety of statistics based on sums of binomials; (1.3)
is just one example. Quarantine services are usually interested in providing confidence intervals
as well as point estimators, and hence there is significant interest in estimating the distributions
of statistics such as that at (1.3).

2. Main results

2.1. Edgeworth expansions with remainder equal to o(n−1/2)

Let Xji , for 1 ≤ i ≤ nj and j = 1, . . . , k, denote independent random variables. Assume that
each Xji has a nondegenerate lattice distribution, depending on j but not on i and with maximal
lattice edge width ej and finite third moment. Suppose too that k ≥ 2. Put X̄j = n−1

j

∑
i Xji ,

μj = E(Xji), σ 2
j = var(Xji) and

S =
k∑

j=1

X̄j . (2.1)

The model (2.1) includes cases of apparently greater generality, for example where signed
weights are incorporated in the series, since the absolute values of the weights can be incor-
porated into (2.1) by modifying the lattice edge widths, and negative signs can be addressed by
reflecting the summand distributions.

Since third moments are finite then, if the distributions of X11, . . . ,Xk1 were to satisfy a
smoothness condition, such as that of Cramér, we could express the distribution of S in a one-
term Edgeworth expansion:

P

{
S − E(S)

(varS)1/2
≤ x

}
= �(x) + n−1/2 1

6
β
(
1 − x2)φ(x) + o

(
n−1/2), (2.2)

where we take n = n1 + · · · + nk to be the asymptotic parameter, and

β = β(n) = n1/2E(S − ES)3

(varS)3/2
= n1/2 ∑

j n−2
j E(Xj1 − EXj1)

3

(
∑

j n−1
j varXj1)3/2

(2.3)

is a measure of standardised skewness and, under our assumptions, is bounded as n → ∞. Result
(2.2) is a version of (1.1) in a particular case.

However, in general (2.2) does not hold in the lattice-valued case that we are considering. For
example, if k ≥ 1 and the Xjis, for all i and j , have a common lattice distribution, then, as was
made clear by Esseen [9], any expansion of the distribution of X has to include a discontinuous
term of size n−1/2 (specifically, the term n−1/2dn(x)φ(x) in (1.2)) that reflects the “continuity
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correction” needed to approximate the discontinuous distribution of T = {S − E(S)}/(varS)1/2

by a continuous normal distribution.
When exploring this problem, we suppose that the sequence of values of n is strictly increas-

ing. Further, we assume that

min
1≤j≤k

lim inf
n→∞ (nj /n) > 0. (2.4)

In Theorem 1, below, we fix both k and the distributions of Xj1, for 1 ≤ j ≤ k. This means that
e1, . . . , ek are fixed too. However, for each n we consider there to be a potentially new sequence
of values n1, . . . , nk . In particular, the ratios nj1/nj2 can change considerably from one choice
of n to another, although, in view of (2.4), nj1/nj2 is bounded away from zero and infinity as
n → ∞.

In the first part of Theorem 1, below, we also impose the following condition on at least one
of the ratios ρj1j2 = (ej2nj1)/(ej1nj2):

for each integer � ≥ 1, n1/2| sin(�ρj1j2π)| → ∞ (2.5)

as n → ∞.

Theorem 1. Assume that E|Xj1|3 < ∞ for j = 1, . . . , k; that Xj1 is distributed on a lattice
xj + νej , for integers ν, where ej is the maximal lattice edge width; and that (2.4) holds. (i) If,
for some pair j1, j2 with 1 ≤ j1 < j2 ≤ k, ρj1j2 satisfies (2.5), then the one-term Edgeworth
expansion at (2.2) holds uniformly in x. (ii) However, if ρj1j2 equals a fixed rational number
(not depending on n) for each pair j1, j2, and if the points xj can all be taken equal, then the
expansion at (2.2) fails to hold because it does not include an appropriate discontinuous term of
size n−1/2.

2.2. Circumstances where (2.5) holds

If ρ0 is irrational, then | sin(�ρ0π)| > 0 for all integers �. Therefore, (2.5) holds if ρj1j2 converges
to an irrational number as n → ∞.

However, in many cases (2.5) holds without the sequence ρj1j2 converging. For example, as-
sume for simplicity that the lattice edge widths ej are all identical, let ρ1 and ρ2 be two distinct
irrational numbers, and let the sequence of values of the ratio nj1/nj2 be a sequence of conver-
gents of ρ1 and ρ2, chosen so that an infinite number of convergents come from each ρj . (For a
definition of convergents of irrational numbers, see, e.g., Leveque [15], p. 70.) Then (2.5) holds,
although the sequence ρj1j2 does not converge.

Importantly, (2.5) also holds in many cases where each ρj1j2 is close to a rational number,
indeed where each ρj1j2 converges to a rational number. For example, we claim that (2.5) obtains
if ρj1j2 = 1 + εj1j2 , where εj1j2 = εj1j2(n), which can be either positive or negative, converges
to zero strictly more slowly than n1/2:

εj1j2 → 0, n1/2|εj1j2 | → ∞. (2.6)
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In this case, for each fixed, positive integer �,

sin(�ρj1j2π) = sin(�π) + �πεj1j2 cos(�π) + O
(
ε2
j1j2

)
,

from which it follows that∣∣sin(�ρj1j2π)
∣∣ ∼

{
�π |εj1j2 | if � is an even integer
1 if � is an odd integer,

(2.7)

where an ∼ bn means that the ratio an/bn converges to 1. Assumption (2.5) follows from (2.6)
and (2.7).

A similar argument can be used to prove that if ρj1j2 = ρ0 + εj1j2 , where ρ0 is a fixed ratio-
nal number and εj1j2 = εj1j2(n) satisfies (2.6), then (2.5) is true. (The case ρ0 = 0 is excluded
by (2.4).) These examples make it clear that there is not a great deal of latitude in the assump-
tion, imposed in part (ii) of Theorem 1, that each ρj1j2 should equal a fixed rational number. In
particular, for (2.5) to fail it is not sufficient that each ρj1j2 converge to a rational.

2.3. Refinement of bound on remainder term in Edgeworth expansions

In Section 2.1, we showed that, if (2.5) holds, the discontinuous term of size n−1/2, in expansions
such as (1.2), is actually of smaller order than n−1/2. To obtain a more concise bound on the
discontinuous term, we shall investigate in detail cases where one or more of the ratios ρj1j2

converge to an irrational number as n diverges. However, this treatment requires a definition of
the “type” of an irrational, and we give that next.

If x is a real number, let 〈x〉 denote the distance from x to the nearest integer. (In particular,
if �x� is the integer part function, 〈x〉 = min{x − �x�,1 − (x − �x�)}.) We say that the irrational
number ρ is of type η if η equals the supremum of all ζ such that lim infp→∞ pζ 〈pρ〉 = 0, where
p → ∞ through integer values. Properties of convergents of irrational numbers (specifically,
Dirichlet’s Theorem) can be used to prove that the type of any given irrational number always
satisfies η ≥ 1. It follows from Roth’s Theorem (Roth [18]) that all algebraic irrationals (that
is, all irrational numbers that are roots of polynomials with rational coefficients) are of minimal
type, i.e., η = 1, which is one of the cases we consider below.

More generally, if a number is chosen randomly, for example as the value of a random variable
having a continuous distribution on the real line, then with probability 1 it is an irrational of
type 1. Irrationals that are not algebraic are said to be transcendental, and can have type strictly
greater than 1. (However, the transcendental number e is of type 1.) Known upper bounds to
the types of π , π2 and log 2 are 6.61, 4.45 and 2.58, respectively. Liouville numbers have type
η = ∞. The type of an irrational number is one less than its irrationality measure (or equivalently,
one less than its approximation exponent or Liouville-Roth constant). We refer the reader to
Ribenboim [17] for more information about types of irrational numbers.

Next, we introduce notation which helps us to define an approximation to the discontinuous
term, an analogue of dn(x) in (1.2), when k = 2. (Here, k is as in (2.1).) Assuming that the lattice,
on which the distribution of Xji is supported, consists of points xj + νej for integers ν, define
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ξjn = ej (σjn
1/2
j )−1{(njxj /ej ) − �njxj /ej �} and

ξn(x) = {
x − (c1ξ1n + c2ξ2n)

}σ1n
1/2
1

c1e1
, (2.8)

where, recalling that σ 2
j = var(Xji), we define cj for j = 1 and 2 by

cj =
(

n−1
j σ 2

j

n−1
1 σ 2

1 + n−1
2 σ 2

2

)1/2

. (2.9)

Let α ∈ (0, 1
2 ) and partition the set of all integers into adjacent blocks each comprised of

2�nα�+1 consecutive integers. Write ν̄� for the central integer in the �th block, which we denote
by N� where −∞ < � < ∞ and N�+1 is immediately to the right of N� on the number line. Given
ν ∈ N�, put ν� = ν − ν̄�.

Let c3 = e2n1/σ1n2 and c4 = (e1/σ2)(n1/n2)
1/2, and note that c1, . . . , c4 are strictly pos-

itive functions of n and are bounded away from zero and infinity as n diverges. Put γ =∏
j=1,2(ej /σj ), and, given an integer r0 ≥ 1, define

φ(u, x) = φ
{
(x/c1) − c3u

}
φ(c4u), φr(u, x) = (∂/∂u)rφ(u, x),

Kn(x) = γ

r0∑
r=0

∑
−∞<�<∞

φr(ν̄�/n
1/2
1 , x)

r!nr/2
1

∑
ν∈N�

νr
�ψ

{
ξn(x) − e2n1

e1n2
ν

}
, (2.10)

where, as in Section 1.1, ψ(x) = �x� − x + 1
2 .

We claim that the infinite series in the definition of Kn(x) is absolutely convergent, uniformly
in x. To appreciate why, note that

sup
−∞<x<∞

∣∣φr

(
ν̄�/n

1/2
1 , x

)∣∣ ≤ C1(r)φ
(
c4ν̄�/n

1/2
1

)
, (2.11)

where, here and below, the notation Cj (r) will denote a constant depending on r but not on n.
Using (2.4) and (2.11), we deduce that∑

−∞<�<∞

{
sup

−∞<x<∞
∣∣φr

(
ν̄�/n

1/2
1 , x

)∣∣} ≤ C2(r)n
(1/2)−α. (2.12)

(In more detail, without loss of generality the block N0 is centred at 0, in which case, when
bounding the series on the left-hand side of (2.12), ν̄� can be interpreted as 2�nα . Consequently
the left-hand side of (2.12) is bounded by a constant multiple of C1(r)

∫
φ(2unα/n

1/2
1 ) du, and

(2.12) follows.)
More simply, since (a) |ν�| ≤ nα , (b) |N�| ≤ (2nα + 1) (where we define |N�| = #N�), and (c)

|ψ | ≤ 1
2 , then

sup
−∞<x<∞

∣∣∣∣ ∑
ν∈N�

νr
�ψ

{
ξn(x) − e2n1

e1n2
ν

}∣∣∣∣ ≤ C3(r)n
(r+1)α. (2.13)
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Combining (2.10), (2.12) and (2.13), and replacing each summand on the right-hand side of
(2.10) by its absolute value, we obtain the bound: n−1/2|Kn(x)| ≤ C4(r0), uniformly in x. This
inequality demonstrates the claimed absolute convergence of the series in (2.10).

Recall the definition of S at (2.1), and that ρj1j2 = (ej2nj1)/(ej1nj2). Part (i) of Theo-
rem 2, below, captures the analogue of the discontinuous term, dn(x), in a multisample ver-
sion of (1.2), and part (ii) gives conditions under which the net contribution of that term equals
O(nδ−(1/2)−(1/2η)), for all δ > 0 when some ρj1j2 is sufficiently close to an irrational number of
type η.

Theorem 2. Assume that E|Xj1|4 < ∞ for j = 1, . . . , k; that Xj1 is distributed on a lattice
xj + νej , for integers ν, where ej is the maximal lattice edge width; and that (2.4) holds. Choose
r0 ≥ 4α/(1 − 2α) in (2.10). (i) If k = 2 and Kn is as defined at (2.10), then

P

{
S − E(S)

(varS)1/2
≤ x

}
= �(x) + n−1/2 1

6
β
(
1 − x2)φ(x) + (n1n2)

−1/2Kn(x) + O
(
n−1), (2.14)

uniformly in x. (ii) If, for some pair j1, j2 with 1 ≤ j1 < j2 ≤ k, the ratio ρj1j2 = (ej2nj1)/

(ej1nj2) satisfies

|ρj1j2 − ρ0| = O
(
n−(1/2){1+(1/η)+δ}) (2.15)

for some δ > 0, where ρ0 is an irrational number of type η, then, for each δ > 0,

P

{
S − E(S)

(varS)1/2
≤ x

}
= �(x) + n−1/2 1

6
β
(
1 − x2)φ(x) + O

(
nδ−(1/2)−(1/2η)

)
, (2.16)

uniformly in x.

Result (2.16) is of particular interest in the case η = 1, which encompasses almost all irrational
numbers (with respect to Lebesgue measure), including all the algebraic irrationals and some
transcendental numbers. When η = 1,

P

{
S − E(S)

(varS)1/2
≤ x

}
= �(x) + n−1/2 1

6
β
(
1 − x2)φ(x) + O

(
nδ−1), (2.17)

uniformly in x for each δ > 0. Result (2.17) implies that the lattice nature of the distribution of
Xji can be ignored, almost up to terms of second order in Edgeworth expansions, when consid-
ering the impact of latticeness on the accuracy of normal approximations.

2.4. Practical choice of n1 and n2

In practice it is not difficult to choose n1 and n2 so that (2.15) holds. To see how, assume for
simplicity that the lattice edge widths e1 and e2 are identical, as they would be if (for example)
S were equal to a sum or difference of estimators of binomial proportions. If ρ0 is an irrational
number then the convergents m1/m2 of ρ0 satisfy∣∣(m1/m2) − ρ0

∣∣ ≤ m−2
2 . (2.18)
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(See e.g. Leveque [15], equation (29), p. 180.) Therefore, if n1 and n2 are relatively prime and
n1/n2 is a convergent of ρ0, then (2.15), for each δ ∈ (0,3 − (1/η)], follows from (2.18). The
most difficult case, as far as (2.15) is concerned, is the one where the convergence rate in (2.15)
is fastest, and arises when η = 1. There we need to ensure that

|ρj1j2 − ρ0| = O
(
n−1−δ

)
(2.19)

for some δ > 0. Now, (2.19) holds whenever n1/n2 is a convergent of ρ0, and the Khinchin-
Lévy Theorem (see, e.g., pp. 82–83 of Einsiedler and Ward [8]) implies that the convergents
are reasonably closely spaced; the numerators and denominators generally increase by factors of
only π2/(12 log 2) ≈ 1.87. Moreover, there are many ratios n1/n2 on either side of convergents
for which (2.19) holds.

The pair (n1, n2) can be chosen from tables of, or formulae for, convergents for commonly
arising irrationals of type 1. See, for example, Griffiths [10] and references therein, and note that
e and any algebraic irrational is of type 1.

2.5. Alternative formula for Kn, and derivation of (2.16) from (2.14)
when η = 1

Part (i) of Theorem 2 can be stated for a version of Kn(x) simpler than that at (2.10):

Kn(x) = γ
∑

ν

φ

(
x

c1
− e2n

1/2
1

σ1n2
ν

)
φ
{
e2

(
σ2n

1/2
2

)−1
ν
}
ψ

{
ξn(x) − e2n1

e1n2
ν

}
. (2.20)

Indeed, the Kn(x) at (2.20) is just γ I4(x), where I4(x) is as defined at (4.17) in the proof of
Theorem 1, and in fact that formula provides a convenient point of access to a proof of (2.14)
with Kn(x) as at (2.20). However, in the case η > 1 it is not straightforward to pass from (2.20)
to (2.16), and that is why we used the definition of Kn(x) at (2.10).

To appreciate that (2.16) follows from (2.20) when η = 1, note that the definition of Kn(x) at
(2.20) is equivalent to:

γ −1Kn(x) =
∑

ν

�(x, ν)ψ

{
ξn(x) − e2n1

e1n2
ν

}
, (2.21)

where

�(x, ν) = φ

(
x

c1
− e2n

1/2
1

σ1n2
ν

)
φ
{
e2

(
σ2n

1/2
2

)−1
ν
}
.

If (2.15) holds with η = 1 then a standard argument for bounding discrepancies of sequences (see
p. 123 of Kuipers and Niederreiter [13]) can be used to prove that for all δ > 0,

sup
−∞<z<∞

∣∣∣∣∣
N∑

ν=1

ψ

(
z − e2n1

e1n2
ν

)∣∣∣∣∣ = O
(
Nδ

)
. (2.22)
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Note too that

sup
ν≥1

sup
−∞<x<∞

∣∣�(x, ν + 1) − �(x, ν)
∣∣ ≤ Cn−1/2. (2.23)

Taking aν = �(x, ν) and bν = ψ{ξn(x)− (e2n1/e1n2)ν}, and employing Abel’s method of sum-
mation, we can write:

N∑
ν=1

aνbν = aN

N∑
ν=1

bν −
N−1∑
ν=1

(aν+1 − aν)

ν∑
j=1

bj ,

which in company with (2.22) and (2.23) allows us to prove that, provided N = O(nC) for some
C > 0,

sup
−∞<x<∞

∣∣∣∣∣
N∑

ν=1

�(x, ν)ψ

{
ξn(x) − e2n1

e1n2
ν

}∣∣∣∣∣ = O
(
Nδ

)
(2.24)

for all δ > 0. More simply, if N ≥ n2 then

sup
−∞<x<∞

∣∣∣∣∣
∞∑

ν=N+1

�(x, ν)ψ

{
ξn(x) − e2n1

e1n2
ν

}∣∣∣∣∣
≤ 1

2
sup

−∞<x<∞

∞∑
ν=N+1

�(x, ν) = O(1). (2.25)

Combining (2.24) and (2.25), using a similar argument to treat series where ν ≤ 0, and noting
the definition of Kn(x) at (2.21), we deduce that supx |Kn(x)| = O(nδ) for all δ > 0. In the case
k = 2, and for η = 1, this gives (2.16) as a corollary of (2.14).

2.6. Derivation of (2.16) from (2.14) when η ≥ 1

Our proof of (2.16), in Section 4.2, will proceed by deriving implicitly a version of (2.14) in the
case k ≥ 2, and showing that, if (2.15) holds, then that version of (2.14) entails (2.16). The relative
complexity of a form of (2.14) for general k discouraged us from including it in Theorem 2,
but it is nevertheless instructive to show how, when k = 2, one can obtain (2.16) from (2.14).
We outline the proof below, highlighting the properties of irrational numbers, particularly the
differences between the case of irrationals of type η = 1 and the case of those of larger type, that
determine the bound for the remainder in (2.16).

Note that if q is a polynomial function then, applying Koksma’s inequality (see, e.g., Theo-
rem 5.1, p. 143 of [13]) and the Erdős-Turán inequality (see, e.g., formula (2.42), p. 114 of [13]),
it can be shown that

χ(N,q, τ ) ≡ sup
−∞<z<∞

∣∣∣∣∣
N∑

i=1

q(i/N)ψ(z − τ i)

∣∣∣∣∣ ≤ C1(q)

{
N

m
+

m∑
�=1

1

�| sin(�τπ)|

}
, (2.26)
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for all integers m ≥ 1. Here τ > 0 is permitted to vary with N , and the constant C1(q) depends
on the degree and the coefficients of q but not on the positive integer N or on m, z or τ .

We shall take τ = ρ12, a function of n, in which case, since∣∣∣∣sin(�τπ)
∣∣ − ∣∣sin(�ρ0π)

∣∣∣∣ ≤ �π |ρ12 − ρ0|,
we have:∣∣sin(�τπ)

∣∣ + �π |ρ12 − ρ0| ≥
∣∣sin(�ρ0π)

∣∣ = sin
(
π〈�ρ0〉

) ≥ 2〈�ρ0〉 ≥ 2C2(δ)�
−η−δ (2.27)

for any given δ > 0 and all � ≥ 1, where C2(δ) > 0 depends on δ but not on �, the last inequality
in (2.27) follows from the assumption that ρ0 is of type η, and the second-last inequality comes
from the fact that 0 ≤ 〈x〉 ≤ 1

2 for all real numbers x, and sin(πx) ≥ 2x whenever 0 ≤ x ≤ 1
2 . If

|ρ12 − ρ0| ≤ C2(δ)π
−1m−(1+η+δ) (2.28)

then it follows from (2.27) that | sin(�τπ)| ≥ 〈�ρ0〉 for 1 ≤ � ≤ m, and so

m∑
�=1

1

�| sin(�τπ)| ≤
m∑

�=1

1

�〈�ρ0〉 . (2.29)

A standard argument for bounding the discrepancy of a sequence (see, e.g., p. 123 of [13]) can
be used to show that, since ρ0 is an irrational number of type η,

m∑
�=1

1

�〈�ρ0〉 = O
(
mη−1+δ

)
(2.30)

for all δ > 0. Therefore, provided that (2.28) holds, we can deduce from (2.26) and (2.29) that

χ(N,q,ρ12) ≤ C3(q)m−1(N + mη+δ
) = O

(
N1−(1/η)+δ1

)
, (2.31)

where δ1 > 0 and the inequality holds for all m and the identity is true if m/N1/η is bounded
away from zero and infinity as N → ∞. When m has the latter property, (2.28) is satisfied, for
all sufficiently large N , if

|ρ12 − ρ0| = O
(
N−{1+(1/η)+δ2}) (2.32)

for some δ2 > δ1.
Note that it is at (2.30) that the type, η, of the irrational number ρ0 enters into consideration. In

the case η = 1 the exponent δ in (2.30) could not be removed or reduced, perhaps by replacing the
implicit factor mδ in (2.30) by (logm)C for some C > 0, without an analogous strengthening of
Roth’s Theorem. Formula (2.30) also marks the step at which it becomes apparent that a poorer
bound will be obtained for an irrational number of type 1, relative to one of type η > 1.

Applying the bound (2.31), for several versions of the polynomial q , in the case N = 2�nα� +
1, we deduce that

n−r/2 sup
−∞<z<∞

∣∣∣∣ ∑
ν∈N�

νr
�ψ

(
z − e2n1

e1n2
ν

)∣∣∣∣ = O
(
nr{α−(1/2)}+α{1−(1/η)+δ1}), (2.33)
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provided that (2.32) holds, i.e., |ρ12 − ρ0| = O(n−α{1+(1/η)+δ2}). Now, the only constraint on α

is 0 < α < 1
2 , and so we can choose α as close to 1

2 , but less than 1
2 , as we desire. In particular, if

δ3 > 0 is given, and we choose α = 1
2 − δ4 where δ4 > 0 is sufficiently small, then by taking δ1

in (2.33) to be small we obtain:

max
1≤r≤r0

n−r/2 sup
−∞<z<∞

∣∣∣∣ ∑
ν∈N�

νr
�ψ

(
z − e2n1

e1n2
ν

)∣∣∣∣ = O
(
n(1/2){1−(1/η)}+δ3

)
, (2.34)

provided that

|ρ12 − ρ0| = O
(
n−(1/2){1+(1/η)+δ5}), (2.35)

where δ5 > 0 can be made as small as we like simply by choosing δ4 small. Now, (2.35) follows
from (2.15). It therefore follows from (2.34), and the definition of Kn(x) at (2.10), that if (2.15)
holds for some δ > 0 then

sup
−∞<x<∞

(n1n2)
−1/2

∣∣Kn(x)
∣∣ = O

(
nδ−(1/2){1+(1/η)}) (2.36)

for all δ > 0. Results (2.14) and (2.36) imply (2.16), as had to be shown.

2.7. Expansions relating to the bootstrap

In this section we show that, despite the potential for problems arising from discreteness, the
bootstrap (including the double bootstrap) applied to inference based on the distribution of {S −
E(S)}/(varS)1/2, generally (when (2.15) holds and ρ0 is of type 1) produces confidence regions
and hypothesis tests with the same orders of magnitude of coverage or level accuracy, up to
terms of size nδ−1 for all δ > 0, as it would in the case of smooth sampling distributions. This
result is of practical importance, since standard percentile bootstrap methods applied to lattice
distributions are frustrated by the effects of discontinuities; see, e.g., Singh [20] and Hall [12].

For brevity, when establishing this property we treat only the context of Theorem 2. We begin
by stating an analogue of (2.14) there, valid when k = 2. The arguments used to prove part (i) of
Theorem 2 can be employed to show that

P

[
S∗ − E(S∗ | X )

{var(S | X )}1/2
≤ x

∣∣∣ X
]

= �(x) + n−1/2 1

6
β̂
(
1 − x2)φ(x)

+ (n1n2)
−1/2K̂n(x) + n−1�1(x), (2.37)

where, analogously to the definitions in Section 2.1, S∗ = ∑
j X̄∗

j ; X̄∗
j = n−1

j

∑
i X

∗
ji and

X∗
j1, . . . ,X

∗
jnj

are drawn by sampling randomly, with replacement, from Xj = (Xj1, . . . ,Xjnj
);

X = (X1, . . . , Xk);

β̂ = n1/2E[{S∗ − E(S∗ | X )}3 | X ]
{var(S∗ | X )}3/2

;
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using (2.10) or (2.20), respectively, as the model for Kn(x),

K̂n(x) = γ̂

r0∑
r=0

∑
−∞<�<∞

φ̂r (ν̄�/n
1/2
1 , x)

r!nr/2
1

∑
ν∈N�

νr
�ψ

{
ξ̂n(x) − e2n1

e1n2
ν

}
,

K̂n(x) = γ̂
∑
ν

φ

(
x

ĉ1
− e2n

1/2
1

σ̂1n2
ν

)
φ
{
e2

(
σ̂2n

1/2
2

)−1
ν
}
ψ

{
ξ̂n(x) − e2n1

e1n2
ν

}
,

where γ̂ = ∏
j=1,2(ej /σ̂j ), φ̂r (u, x) = (∂/∂u)r φ̂(u, x), φ̂(u, x) = φ{(x/ĉ1) − ĉ3u} × φ(ĉ4u),

ĉj =
(

n−1
j σ̂ 2

j

n−1
1 σ̂ 2

1 + n−1
2 σ̂ 2

2

)1/2

for j = 1 and 2, ĉ3 = e2n1/σ̂1n2, ĉ4 = (e1/σ̂2)(n1/n2)
1/2, and ξ̂n(x) is defined using the empir-

ical analogue of (2.8); and, for C1 > 0 sufficiently large and for some C2 > 0,

P
{

sup
−∞<x<∞

∣∣�1(x)
∣∣ > C1n

−1
}

= O
(
n−C2

)
. (2.38)

The assumptions needed for (2.37) are those imposed for part (i) of Theorem 2. The size of C2
in (2.38) depends to some extent on the distributions of X1i and X2i (recall that at this point we
are assuming that k = 2), but for distributions such as the Bernoulli or Poisson, which have all
moments finite, C2 can be taken arbitrarily large if C1 is sufficiently large. The connection to
moments here arises because the O(n−C2) bound in (2.38) is derived using a method related to
Markov’s inequality, which can be applied at a higher order if more moments are finite.

The methods used in Sections 2.5 and 2.6 to derive uniform bounds to Kn can also be employed
to bound K̂n, giving

P
{

sup
−∞<x<∞

∣∣K̂n(x)
∣∣ > nδ+(1/2){1−(1/η)}} = O

(
n−C3

)
(2.39)

for all δ > 0 and some C3 > 0, provided that (2.15) holds. In (2.39), η denotes the type of the
irrational number ρ0 appearing in (2.15), and for sampling distributions such as the Bernoulli or
Poisson (with all moments finite), C3 can be taken arbitrarily large. Therefore, treating the case
of irrationals of type 1, we deduce from (2.37)–(2.39) that

P

[
S∗ − E(S∗ | X )

{var(S∗ | X )}1/2
≤ x

∣∣∣ X
]

= �(x) + n−1/2 1

6
β̂
(
1 − x2)φ(x) + n−1�2(x), (2.40)

where

P
{

sup
−∞<x<∞

∣∣�2(x)
∣∣ > nδ

}
= O

(
n−C2

)
for all C2, δ > 0.

A similar argument, employing the methods introduced in Section 2.6, can be used to prove
that (2.40) continues to hold if k ≥ 2, provided that the assumptions imposed in part (ii) of
Theorem 2 hold. Therefore, the properties stated in the first paragraph of this section hold.
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3. Numerical properties

Throughout this section, we take k = 2 and let Xji be a Bernoulli random variable satisfying
P(Xji = 0) = 1 − P(Xji = 1) = pj for j = 1,2, where p1 = 0.4 and p2 = 0.6. Thus, ρ12 =
e2n1/(e1n2) = n1/n2, where n1 and n2 are the two sample sizes. We take n2 to be the integer
nearest to ρ0n1, and vary n1 between 10 and 80; n1 is plotted on the horizontal axes of each of
our graphs. The probability

P(x) = P
[{

S − E(S)
}
/(varS)1/2 ≤ x

]
(3.1)

was approximated by averaging over the results of 105 Monte Carlo simulations.
To illustrate the influence of ρ12 on the oscillatory behaviour of P(x), and in particular on

the accuracy of the normal approximation, each panel in Figure 1 plots P(x) against n1 for
x = �−1(α) = zα and α = 0.95, 0.85 and 0.75. The top left panel of Figure 1 shows results for
ρ0 = 1 (indicated by the lines with circles) and ρ0 = 2 (lines with dots), and it is clear that in
both cases there is significant oscillatory behaviour, arising principally from the term in Kn(x)

in (2.14). The top right panel of Figure 1 shows that these oscillations decline markedly, and the
accuracy of the normal approximation improves considerably, if ρ0 = 21/2. This property reflects
the results reported in Section 2.

Of course, ρ0 = 21/2 is an algebraic irrational. The bottom left panel of Figure 1 shows that
broadly similar values of P(x), although with somewhat more oscillation (reflecting the rela-
tively low upper bounds given in Theorem 1), are obtained for ρ0 = π/2, a transcendental irra-
tional whose type is bounded above by 6.61. The bottom right panel of Figure 1 addresses one of
the results reported in Section 2.2, specifically that there may be less oscillatory behaviour when
ρ12 converges slowly to a rational number than when it converges quickly. We consider the cases
n2 = n1 + [n1/5

1 ] and n2 = n1 + [n3/5
1 ], where [x] denotes the integer nearest to x. In the first

case, ρ12 converges relatively quickly to 1, and in the second case the convergence is relatively
slow. Figure 1 demonstrates that, as anticipated, the oscillatory behaviour is less pronounced, and
the normal approximation better, in the “slow” case.

Finally, Figure 2 shows that broadly similar results are obtained for coverage probabilities of
percentile bootstrap confidence intervals for E(S). Let sα denote the α-level quantile of the dis-
tribution of S −E(S), and let ŝα , the parametric bootstrap estimator of sα , be the α-level quantile
of the distribution of S∗ − S given X , i.e. ŝα = inf{s : P(S∗ − S ≤ s | X ) ≥ α}. A naive α-level
one-sided percentile-bootstrap confidence interval for E(S), with nominal coverage probability
1 − α, is given by

Iα = (−∞, S − ŝα]. (3.2)

In the figure, we give plots of estimates of the coverage probability P {E(S) ∈ Iα} of Iα against
n1, estimated using 105 Monte-Carlo simulations, for α = 0.95. We used B = 9999 simulations
in each bootstrap step. Each panel depicts the case ρ0 = 1, and successive panels also give re-
sults when ρ0 = 31/2, 51/2, e and φ = (1 + 51/2)/2, respectively. Each of these values of ρ0 is
an irrational of type 1, and in each instance the oscillations are markedly less, and the normal
approximation markedly improved, relative to the case ρ0 = 1.
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Figure 1. Plots of P(x) against n1. Plots are given for x = �−1(α) = zα and α = 0.95, 0.85, and 0.75,
and for n2 equal to the nearest integer to ρ0n1, with ρ0 = 1 or 2 (top left), ρ0= 1 or 21/2 (top right), ρ0= 1
or π /2 (bottom left) and ρ0 converges to 1 rapidly or slowly (bottom right; see text for details).

4. Proofs

4.1. Proof of Theorem 1

4.1.1. Proof of part (i) of Theorem 1

Here we show that if (2.5) holds for some ρj1j2 , where j1 �= j2, then (2.2) obtains. Some of the
asymptotic expansions in our argument are taken a little further than is necessary for (2.2); the
extra detail will be used in the proof of Theorem 2.
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Figure 2. Plots of estimates of P {E(S) ∈ Iα}, against n1; see text for details. Each panel shows the
case ρ0= 1 and also, in respective panels, the cases ρ0 = 31/2, ρ0 = 51/2, ρ0 = e and ρ0 = (1 + 51/2)/2.
Throughout, x = �−1(α) where α = 0.95.

Step 1: Proof that it is sufficient to consider the case k = 2. Without loss of generality, (2.5)
holds for ρ12, and in this case we write S − E(S) = S1 + S2, where S1 = (1 − E)(X̄1 + X̄2)

and S2 = (1 − E)(X̄3 + · · · + X̄k), where E denotes the expectation operator. Recall that S2 is
independent of X̄1 and X̄2. Suppose we can prove that, analogously to (2.2),

P

{
S1

(varS1)1/2
≤ x

}
= �(x) + n−1/2 1

6
β1

(
1 − x2)φ(x) + o

(
n−1/2), (4.1)

uniformly in x, where, reflecting (2.3),

β1 = β1(n) = n1/2E(S3
1)

(varS1)3/2
.
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If we prove that (2.2), in the case of general k, follows from (4.1), we shall have shown that it is
sufficient to derive Theorem 1 the case k = 2.

Since P(S ≤ x) = E{P(S1 ≤ x − S2 | S2)} then we can deduce from (4.1) that

P(S ≤ x) = E

(
�

{
x − S2

(varS1)1/2

}
+ β1

6n1/2

[
1 −

{
x − S2

(varS1)1/2

}2]
× φ

{
x − S2

(varS1)1/2

})
+ o

(
n−1/2), (4.2)

uniformly in x. Let R = S2/(varS1)
1/2, and put τ 2

1 = var(R), which is bounded away from zero
and infinity as n → ∞. It is straightforward to prove that, if N denotes a normally distributed
random variable with the same mean (i.e., zero mean) and variance as S2, then

E

([
1 −

{
x − S2

(varS1)1/2

}2]
φ

{
x − S2

(varS1)1/2

})

=
∫ [

1 −
{

x

(varS1)1/2
− t

}2]
φ

{
x

(varS1)1/2
− t

}
dP (R ≤ t) (4.3)

=
∫ [

1 −
{

x

(varS1)1/2
− t

}2]
φ

{
x

(varS1)1/2
− t

}
1

τ1
φ

(
t

τ1

)
dt + O

(
n−1/2) (4.4)

= E

([
1 −

{
x − N

(varS1)1/2

}2]
φ

{
x − N

(varS1)1/2

})
+ O

(
n−1/2), (4.5)

uniformly in x. The passage from (4.3) to (4.4) can be accomplished by integrating by parts in
(4.3), then using an Edgeworth expansion of the distribution of R, then separating out the term in
n−1/2 in that expansion, and finally, undoing the integration by parts as it applies to the leading
term in the Edgeworth expansion.

Let τ 2
2 = varS2 and β2 = β2(n) = n1/2E(S3

2)/τ 3
2 . If

�(r/τ2) + n−1/2 1
6β2

{
1 − (r/τ2)

2}φ(r/τ2)

represents the two-term Edgeworth approximation to P(S2 ≤ r) that would be employed if the
distribution of S2 were continuous, then it can be proved that, uniformly in x,

E

[
�

{
x − S2

(varS1)1/2

}]
=

∫
�

{
x − r

(varS1)1/2

}
dr

{
�(x/τ2)

+ n−1/2 1

6
β2

{
1 − (r/τ2)

2}φ(r/τ2)

}
+

{
o
(
n−1/2

)
if maxj E|Xj1|3 < ∞

O
(
n−1

)
if maxj E|Xj1|4 < ∞.

(4.6)
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To derive (4.6), first integrate by parts on the left-hand side, writing it as

1

(varS1)1/2

∫
φ

{
x − r

(varS1)1/2

}
P(S2 ≤ r) dr

=
∫

φ

{
x

(varS1)1/2
− t

}
P(R ≤ t) dt. (4.7)

Next, write down an Edgeworth expansion, (E) say, for the joint distribution of X̄3, . . . , X̄k ,
up to terms of o(n−1/2) when maxj E|Xj1|3 < ∞ and O(n−1) when maxj E|Xj1|4 < ∞. The
expansion will include the conventional discontinuous terms of size n−1/2. Use (E) to the derive
discontinuous term n−1/2D, say, up to a remainder of smaller order n−1/2, in an Edgeworth
expansion of the distribution of R. Since the function φ is smooth, the impact of n−1/2D on the
right-hand side of (4.7) equals O(n−1), this being obtained by multiplying together the factor
n−1/2 and another term of order n−1/2 that results from integrating D against a smooth function.
Therefore, (4.6) holds.

Combining (4.2), (4.5) and (4.6), we deduce that

P(S ≤ x) =
∫ (

�

{
x − r

(varS1)1/2

}
+ β1

6n1/2

[
1 −

{
x − r

(varS1)1/2

}2]
φ

{
x − r

(varS1)1/2

})
× dr

{
�(x/τ2) + n−1/2 1

6
β2

{
1 − (r/τ2)

2}φ(r/τ2)

}
+ o

(
n−1/2), (4.8)

uniformly in x. Result (4.8) is equivalent to (2.2), and so (4.2), representing (2.2) in the case
k = 2, implies (2.2) for general k ≥ 2, as had to be shown.

Step 2: Proof of (2.2) when k = 2. In this section, we shall show that, if k = 2 and (2.5) holds
for ρ12 = e2n1/(e1n2), then (2.2) holds.

To this end, define

T = (S − ES)/(varS)1/2 = X̄1 + X̄2 − μ1 − μ2

(n−1
1 σ 2

1 + n−1
2 σ 2

2 )1/2
= c1T1 + c2T2,

where Tj = (X̄j − μj )/(n
−1
j σ 2

j )1/2 and c1 and c2 are defined as at (2.9). In this notation,

P(T ≤ x) = P(c1T1 + c2T2 ≤ x) = E
{
P(c1T1 ≤ x − c2T2 | T2)

}
= E

{
�

(
x − c2T2

c1

)
+ n

−1/2
1 A1

(
x − c2T2

c1

)
+ n

−1/2
1 D1

(
x − c2T2

c1

)}
+

{
o
(
n−1/2

)
if maxj E|Xj1|3 < ∞

O
(
n−1

)
if maxj E|Xj1|4 < ∞,

(4.9)

where Aj and Dj will refer to the smooth and discontinuous terms, respectively, in the n
−1/2
j

component of an Edgeworth expansion of the distribution of Tj for j = 1,2. In particular,
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n
−1/2
j Aj and n

−1/2
j Dj are the counterparts of the second and third terms, respectively, on the

right-hand side of formula (35) p. 56 of Esseen [9].
Writing B for either � or A1, appearing on the right-hand side of (4.9), we have:

E

{
B

(
x − c2T2

c1

)}
=

∫
B

(
x − c2u

c1

)
dP (T2 ≤ u)

= c2

c1

∫
B ′

(
x − c2u

c1

)
P(T2 ≤ u)du.

As in the argument leading to (4.6) it can be shown that the discontinuous term n
−1/2
2 D2, in the

Edgeworth expansion of P(T2 ≤ x), contributes only O(n−1). Therefore, if we write E2(u) for
the Edgeworth approximation to P(T2 ≤ u) that includes the leading Gaussian term, plus the
continuous part of the component of order n

−1/2
2 , and neglects everything else, we deduce from

(4.9) that

P(T ≤ x) =
∫ {

�

(
x − c2u

c1

)
+ n

−1/2
1 A1

(
x − c2u

c1

)}
duE2(u)

+ n
−1/2
1 E

{
D1

(
x − c2T2

c1

)}
+

{
o
(
n−1/2

)
if maxj E|Xj1|3 < ∞

O
(
n−1

)
if maxj E|Xj1|4 < ∞.

(4.10)

Now we turn our attention to:

E

{
D1

(
x − c2T2

c1

)}
=

∫
D1

(
x − c2u

c1

)
dP (T2 ≤ u)

= −
∫

P(T2 ≤ u)duD1

(
x − c2u

c1

)
(4.11)

= I1(x) + n
−1/2
2 I2(x) +

{
o(1) if maxj E|Xj1|3 < ∞
O

(
n−1/2

)
if maxj E|Xj1|4 < ∞,

= n
−1/2
2 I2(x) +

{
o(1) if maxj E|Xj1|3 < ∞
O

(
n−1/2

)
if maxj E|Xj1|4 < ∞,

(4.12)

where

I1(x) =
∫

D1

(
x − c2u

c1

)
φ(u)du, I2(x) =

∫
D1

(
x − c2u

c1

)
dD2(u). (4.13)

To obtain the third identity in the string of formulae leading to (4.12), we used the integration
by parts step at (4.11), a short Taylor expansion of P(T2 ≤ u) with a remainder of o(n−1/2) if
maxj E|Xj1|3 < ∞ and O(n−1) if maxj E|Xj1|4, and the fact that

∫ |dD1| = O(n1/2) uniformly
in x. (This can be deduced either directly or by making use of (4.14) below.) Finally, it can be
shown, arguing as in the proof of (4.6), that I1(x) = O(n−1/2), from which (4.12) follows.
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Note too that, with σj defined as immediately above (2.1),

Dj(x) = ej

σj

ψ

{
(x − ξ1n)σjn

1/2
j

ej

}
φ(x)

= ej

σj

ψ

[
σjn

1/2
j x

ej

− {
(njxj /ej ) − �njxj /ej �

}]
φ(x), (4.14)

where, as in Sections 1 and 2, ψ(x) = �x�−x+ 1
2 , �x� is the largest integer not strictly exceeding

x, and ξjn = ej (σjn
1/2
j )−1{(njxj /ej ) − �njxj /ej �} if the lattice is located at points xj + νej

for integers ν, see Esseen [9], (29), (31) and (35) pp. 55/56. Defining γ = (e1e2/σ1σ2), as in
Section 2.3; putting

ψj(x) = ψ

{
σjn

1/2
j

ej

(x − ξjn)

}
;

and noting that, by (4.14), Dj(x) = (ej /σj )ψj (x)φ(x); we deduce that

I2(x)/γ = 1

γ

∫
D1

(
x − c2u

c1

)
dD2(u) =

∫
(ψ1φ)

(
x − c2u

c1

)
d
{
ψ2(u)φ(u)

}
=

∫
(ψ1φ)

(
x − c2u

c1

){
φ(u)dψ2(u) + ψ2(u) dφ(u)

}
=

∫
(ψ1φ)

(
x − c2u

c1

)
φ(u)dψ2(u) + 1

2

∫
(ψ1φ)

(
x − c2u

c1

)
ψ2(u) dφ(u).

The last-written integral equals O(1), uniformly in x, and so, with I2 as at (4.13),

I2(x) = γ I3(x) + O(1), (4.15)

uniformly in x, where

I3(x) =
∫

(ψ1φ)

(
x − c2u

c1

)
φ(u)dψ2(u).

Since ψ2 has jumps of size +1 at points u where (u − ξ2n)σ2n
1/2
2 /e2 is an integer, i.e. u =

uν ≡ ξ2n + e2(σ2n
1/2
2 )−1ν for an integer ν, then

I3(x) =
∑
ν

(ψ1φ)

(
x − c2uν

c1

)
φ(uν)

=
∑
ν

φ

(
x

c1
− c2

c1

{
ξ2n + e2

(
σ2n

1/2
2

)−1
ν
})

φ
{
ξ2n + e2

(
σ2n

1/2
2

)−1
ν
}

× ψ

{
ξn(x) − e2n1

e1n2
ν

}
, (4.16)
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where ξn is as at (2.8) and we have used the fact that

ψ1

(
x − c2uν

c1

)
= ψ

[
σ1n

1/2
1

e1

{
(x − c2uν)c

−1
1 − ξ1n

}]

= ψ

{
(x − c2uν − c1ξ1n)σ1n

1/2
1

c1e1

}

= ψ

[ {x − (c1ξ1n + c2ξ2n) − c2e2(σ2n
1/2
2 )−1ν}σ1n

1/2
1

c1e1

]
= ψ

{
ξn(x) − e2n1

e1n2
ν

}
,

with

ξn(x) = {
x − (c1ξ1n + c2ξ2n)

}σ1n
1/2
1

c1e1
.

Recall that ξjn = ej (σjn
1/2
j )−1{(njxj /ej ) − �njxj /ej �} if the lattice is located at points xj +

νej for integers ν. In particular, ξjn = O(n−1/2) for j = 1,2. Therefore, Taylor expanding the
arguments of the functions φ at (4.16), and defining

I4(x) =
∑
ν

φ

(
x

c1
− e2n

1/2
1

σ1n2
ν

)
φ
{
e2

(
σ2n

1/2
2

)−1
ν
}
ψ

{
ξn(x) − e2n1

e1n2
ν

}
, (4.17)

we deduce that

I3(x) = I4(x) + O(1), (4.18)

uniformly in x. Combining (4.10), (4.12), (4.15) and (4.18), we deduce that

P(T ≤ x) =
∫ {

�

(
x − c2u

c1

)
+ n

−1/2
1 A1

(
x − c2u

c1

)}
duE2(u)

+ (n1n2)
−1/2γ I4(x) +

{
o
(
n−1/2

)
if maxj E|Xj1|3 < ∞

O
(
n−1

)
if maxj E|Xj1|4 < ∞.

(4.19)

If we can show that

sup
−∞<x<∞

∣∣I4(x)
∣∣ = o

(
n1/2) (4.20)

then it will follow from (4.19), in cases where maxj E|Xj1|3 < ∞, that

P(T ≤ x) =
∫ {

�

(
x − c2u

c1

)
+ n

−1/2
1 A1

(
x − c2u

c1

)}
duE2(u) + o

(
n−1/2). (4.21)
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The right-hand side here is Edgeworth expansion we would expect the distribution of T to enjoy
if we were able to ignore the latticeness of the distributions of Xj1 for j = 1,2. That is, (4.21) is
just (2.2) in the particular case k = 2. Therefore, provided (4.20) holds then we shall have shown
that (2.2) holds whenever k = 2. It remains to derive (4.20).

Step 3: Proof of (4.20). Given ε > 0, partition the set of all integers into adjacent blocks N�,
for −∞ < � < ∞, where each block consists of just 2�n1/2ε� + 1 consecutive integers, and the
central integer is denoted by ν̄�. Recalling the definition of I4(x) at (4.17), we deduce that

I4 =
∑

−∞<�<∞
J1,�, (4.22)

where

J1,�(x) =
∑
ν∈N�

φ

(
x

c1
− e2n

1/2
1

σ1n2
ν

)
φ
{
e2

(
σ2n

1/2
2

)−1
ν
}
ψ

{
ξn(x) − e2n1

e1n2
ν

}
. (4.23)

Now,

J1,� = J2,� + R�, (4.24)

where

J2,�(x) = φ

(
x

c1
− e2n

1/2
1

σ1n2
ν̄�

)
φ
{
e2

(
σ2n

1/2
2

)−1
ν̄�

} ∑
ν∈N�

ψ

{
ξn(x) − e2n1

e1n2
ν

}
(4.25)

and R� is defined naively by (4.24). Given an integer r , let �(r) denote the unique value of � such
that r ∈ N�. Then, since |ψ | ≤ 1,∣∣∣∣ ∑

−∞<�<∞
R�

∣∣∣∣ ≤
∑

r

∣∣∣∣φ(
x

c1
− e2n

1/2
1

σ1n2
r

)
φ
{
e2

(
σ2n

1/2
2

)−1
r
}

− φ

(
x

c1
− e2n

1/2
1

σ1n2
ν̄�(r)

)
φ
{
e2

(
σ2n

1/2
2

)−1
ν̄�(r)

}∣∣∣∣
≤ C1εn

1/2, (4.26)

where the constant C1 does not depend on ε or n.
Let ρ = e2n1/(e1n2), and define

χN (z, ρ) ≡
∑
ν∈N

ψ(z − ρν).

In this notation,

J2,� = φ

(
x

c1
− e2n

1/2
1

σ1n2
ν̄�

)
φ
{
e2

(
σ2n

1/2
2

)−1
ν̄�

}
χN�

{
ξn(x), ρ

}
. (4.27)
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If we can prove that, whenever the set N consists of |N | consecutive integers and C2 < C3

are positive constants,

sup
C2n

1/2≤|N |≤C3n
1/2

sup
−∞<z<∞

∣∣χN (z, ρ)
∣∣ = o

(
n1/2) (4.28)

as |N | → ∞, then it will follow from (4.27) that∣∣∣∣ ∑
−∞<�<∞

J2,�

∣∣∣∣ = o

[
n1/2

∑
−∞<�<∞

φ

(
x

c1
− e2n

1/2
1

σ1n2
ν̄�

)
φ
{
e2

(
σ2n

1/2
2

)−1
ν̄�

}]
= o

(
n1/2), (4.29)

for each ε > 0, since the series on the first right-hand side of (4.29) is bounded uniformly in n.
(To appreciate why, observe that ν̄� is approximately an integer multiple of n1/2, plus a constant.)
Note that, since the left-hand side of (4.28) involves the supremum over z, then that quantity does
not depend on the location of the set N on the line, only on the number of consecutive integers
it contains.

The desired result (4.20) follows from (4.22), (4.24), the fact that (4.26) holds for each ε > 0,
and (4.29). To complete the proof of (4.20), we shall derive (4.28). Specifically, we shall prove
that, in cases where (2.5) is satisfied for ρ12 = ρ = e2n1/(e1n2), (4.28) obtains.

Assume that N consists of p consecutive integers, where C2n
1/2 ≤ p ≤ C3n

1/2. Koksma’s in-
equality (see, e.g., Theorems 1.3 and 5.1, pp. 91 and 143 of [13]), and the Erdős-Turán inequality
(see, e.g., formula (2.42), p. 114 of [13]), can be combined to prove that, for all integers m ≥ 1,

sup
z

∣∣χN (z, ρ12)
∣∣ ≤ C4

{
p

m
+

m∑
�=1

1

�
sup

z

∣∣∣∣∣
p∑

r=1

exp(2πi�rρ12)

∣∣∣∣∣
}

≤ C4

{
p

m
+

m∑
�=1

1

�| sin(�ρ12π)|

}
, (4.30)

where C4 is an absolute constant. Since (2.5) is assumed to hold with (j1, j2) = (1,2) then, for
each fixed m,

max
1≤�≤m

∣∣sin(�ρ12π)
∣∣−1 = o

(
n1/2).

Hence, by (4.30),

sup
z

∣∣χN (z, ρ12)
∣∣ ≤ C3C4n

1/2

m
+ o

(
n1/2), (4.31)

where the o(n1/2) term is of that order uniformly in N such that C2n
1/2 ≤ |N | ≤ C3n

1/2. How-
ever, m can be taken arbitrarily large, and none of C2, C3 and C4 depends on m or n. Therefore,
(4.31) implies (4.28).
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4.1.2. Proof of part (ii) of Theorem 1

We can write

X̄1 + · · · + X̄k = e1

n1
(Y1 + · · · + Yk) + μ,

where μ is deterministic and, for each j , Yj is the sum of nj random variables Yj1, . . . , Yjnj
,

each having a lattice distribution (not depending on n) supported on the set of points ρ1j � for
� ∈ Z, and with the Yjis being totally independent. Of course, ρ11 = 1. Since each ρj1j2 equals a
rational number, not depending on n, then the set

⋃
j {ρ1j �, � ∈ Z} can itself be represented as a

maximal lattice, L say, not depending on n. The distribution of

Y1 + · · · + Yk =
k∑

j=1

nj∑
i=1

Yji

can be viewed as the distribution of the sum of n = n1 + · · · + nk independent and identically
distributed random variables each having a mixture distribution, Dn say, with support confined
to L. Although Dn depends on n, since it is always supported on the same lattice, standard
methods can be used to derive an Edgeworth expansion of the distribution of Y1 + · · ·+Yk , from
which it can be seen that there is a nonvanishing discontinuous term, not present in (2.2).

4.2. Proof of Theorem 2

Step 1: Proof that it is sufficient to consider the case k = 2. We give the argument only in outline,
since it parallels that in step 1 of the derivation of Theorem 1. Suppose it is possible to derive
the version of (4.1) where the remainder o(n−1/2) is replaced by O(nξ−1), for all ξ > 0. Then,
as in the earlier proof, we have (4.2) where the remainder term is O(nξ−1), for all ξ > 0, instead
of o(n−1/2). The string of arguments leading to (4.5) holds without change, as too does (4.6).
Combining the revised (4.2) with the old (4.5) and (4.6) we deduce the following version of (4.8):

P(S ≤ x) =
∫ (

�

{
x − r

(varS1)1/2

}
+ β1

6n1/2

[
1 −

{
x − r

(varS1)1/2

}2]
φ

{
x − r

(varS1)1/2

})
× d

{
�(x/τ2) + n−1/2 1

6
β2

{
1 − (r/τ2)

2}φ(r/τ2)

}
+ O

(
nξ−1),

uniformly in x and for all ξ > 0. This formula is equivalent to (2.2), with the remainder there
replaced by O(nξ−1), and so we have shown that it suffices to consider k = 2.

Step 2: Completion of proof of Theorem 2. Combining (4.10) and (4.12) in the case
maxj E|Xj1|4 < ∞, and noting (4.15) and (4.18), we deduce the version of (4.19) when
maxj E|Xj1|4 < ∞.

Next we reintroduce the notation noted below (2.8), where α ∈ (0, 1
2 ), N� (for −∞ < � < ∞)

is a partition of the set of all integers into adjacent blocks each containing 2�nα�+ 1 consecutive
integers, ν̄� is the central integer in N�, and ν� = ν − ν̄� for ν ∈ N�. Property (4.22) continues to
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hold, with J1,� still given by (4.23). Again we define R� and J2,� by (4.24) and (4.25). However,
this time we give an expansion for, rather than an upper bound to, R�. As a first step, note that

R�(x) = J1,�(x) − J2,�(x)

=
∑
ν∈N�

[
φ

{
x

c1
− e2n

1/2
1

σ1n2
(ν̄� + ν�)

}
φ
{
e2

(
σ2n

1/2
2

)−1
(ν̄� + ν�)

}

− φ

(
x

c1
− e2n

1/2
1

σ1n2
ν̄�

)
φ
{
e2

(
σ2n

1/2
2

)−1
ν̄�

}]
ψ

{
ξn(x) − e2n1

e1n2
ν

}
.

Taylor-expanding, and using the argument in the paragraph immediately below that containing
(2.10), we deduce that

∑
−∞<�<∞

R�(x) =
r0∑

r=1

∑
−∞<�<∞

φr(ν̄�/n
1/2
1 , x)

r!nr/2
1

∑
ν∈N�

νr
�ψ

{
ξn(x) − e2n1

e1n2
ν

}
+ O

(
nα · n1/2 · n(r0+1){α−(1/2)}), (4.32)

uniformly in x. Adding
∑

� J2,� to either side of (4.32) has the effect, on the right-hand side, of
changing the range of summation of the first series to 0 ≤ r ≤ r0. Therefore,∑

−∞<�<∞

{
J2,�(x) + R�(x)

} = γ −1Kn(x) + O
(
nα · n1/2 · n(r0+1){α−(1/2)}), (4.33)

uniformly in x, where γ = ∏
j=1,2(ej /σj ) and Kn is at (2.10). If r0 ≥ 4α/(1 − 2α), as stipulated

in Theorem 2, then the “O” remainder in (4.33) is just O(1). In this case,

γ I4(x) = γ
∑

−∞<�<∞
J1,�(x) = γ

∑
−∞<�<∞

{
J2,�(x) + R�(x)

} = Kn(x) + O(1), (4.34)

uniformly in x. Part (i) of Theorem 2, which addresses only the case k = 2, follows from (4.19)
and (4.34). Part (ii) of Theorem 2, in the case k = 2, follows from (4.34) and (2.36). In view of
Part 1 of the proof of Theorem 2, this is sufficient to complete the proof of the theorem.
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