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We prove that homogeneous sums inside a fixed discrete Poisson chaos are universal with respect to normal
approximations. This result parallels some recent findings, in a Gaussian context, by Nourdin, Peccati and
Reinert (Ann. Probab. 38 (2010) 1947–1985). As a by-product of our analysis, we provide some refinements
of the CLTs for random variables on the Poisson space proved by Peccati, Solé, Taqqu and Utzet (Ann.
Probab. 38 (2010) 443–478) and by Peccati and Zheng (Electron. J. Probab. 15 (2010) 1487–1527).
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1. Introduction

1.1. Overview

A universality result is a mathematical statement implying that the asymptotic behaviour of a
large random system does not depend on the distribution of its components. Universality results
are one of the leading themes of modern probability, distinguished examples being the Central
Limit Theorem (CLT), the Donsker Theorem, or the Semicircular and Circular Laws in random
matrix theory.

In this paper, we shall prove a new class of universality statements involving homogeneous
sums based on a sequence of centered independent Poisson random variables. Homogeneous
sums (see Definition 1.1) are almost ubiquitous probabilistic objects: for instance, they provide
archetypal examples of U -statistics, and they are the building blocks of such fundamental col-
lections of random variables as the Gaussian Wiener chaos, the Poisson Wiener chaos or the
Walsh chaos. See, for example, [10,11,14,21,24], as well as the forthcoming Section 1.2, for an
introduction to these concepts.

Our findings extend to the Poisson framework the results of [12], by Nourdin, Peccati and
Reinert, where the authors discovered a remarkable universality property involving the normal
approximation of homogeneous sums living inside a fixed Gaussian Wiener chaos. According to
[12], the following universal phenomenon takes indeed place:

Let {Fn} be a sequence of random variables such that each Fn is a homogeneous sum of a fixed order ≥ 2 based
on a sequence of i.i.d. standard Gaussian random variables, and assume that {Fn} verifies a CLT. Then, the CLT
continues to hold if one replaces the i.i.d. Gaussian sequence, inside the definition of each Fn, with a generic
collection of independent and identically distributed random variables with mean zero and unit variance. (See
Theorem 1.6 below for a precise statement).
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To describe this fact, one says that homogeneous sums inside the Gaussian Wiener chaos are
universal with respect to normal approximations.

In this paper, we shall address the following natural question: are there other examples of
homogeneous sums that enjoy the same universal property? As anticipated, our proof of the
universal character of homogeneous sums inside the Poisson Wiener chaos will yield a positive
answer. As discussed in Remark 3.5, and similarly to the Gaussian case, our conclusions do not
extend to sums of order 1.

It is important to note that [12] also contains an elementary counterexample, implying that ho-
mogeneous sums based on Rademacher sequences are not universal. This argument is reproduced
in the proof of Proposition 1.7 below.

The findings of the present work are a continuation of the theory developed in [19,23], respec-
tively by Peccati, Solé, Taqqu and Utzet and by Peccati and Zheng, where the authors combined
two probabilistic techniques, namely the Stein’s method for probabilistic approximations and
the Malliavin calculus of variations, in order to compute explicit bounds in (possibly multidi-
mensional) CLTs involving functionals of a given Poisson field. One of our main findings, see
Theorem 3.2 below, provides a substantial refinement these results, which is indeed an analogous
for Poisson homogeneous sums of the ‘fourth moment theorem’ proved by Nualart and Peccati in
[16]. One should note that the study of normal approximations on the Poisson space has recently
gained much relevance, specifically in connection with stochastic geometry – see [3,5,18,25,26].

Other relevant references are the paper by Mossel et al. [8], containing an invariance principle
on which [13] is based, and de Jong [1,2], where one can find remarkable CLTs for general
degenerate U -statistics.

The subsequent Section 1.2 contains a formal introduction to the objects studied in this paper.
From now on, we assume that every random element is defined on a common probability space
(�, F ,P).

1.2. Framework and motivation

The following three objects will play a crucial role in our discussion.

– G = {Gi : i ≥ 1} indicates a collection of independent and identically distributed (i.i.d.)
Gaussian random variables such that Gi ∼ N (0,1);

– E = {ei : i ≥ 1} denotes a Rademacher sequence, that is, the random variables ei are i.i.d.
and such that P(ei = 1) = P(ei = −1) = 1

2 for every i ≥ 1;
– P = {Pi : i ≥ 1} stands for a collection of independent random variables such that

Pi
law= P(λi) − λi√

λi

, i ≥ 1, (1.1)

where P(λi) indicates a Poisson random variable with parameter λi ∈ (0,∞).

We now formally introduce the notion of homogeneous sum.

Definition 1.1 (Homogeneous sums). Fix some integers 1 ≤ q ≤ N , and write [N ] for the set
{1,2, . . . ,N}. Let X = {Xi : i ≥ 1} be a collection of independent random variables, and let
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f : [N ]q → R be a symmetric function vanishing on diagonals (i.e., f (i1, . . . , iq) = 0 if ∃k 
=
l: ik = il). The random variable

Qq = Qq(N,f,X) =
∑

1≤i1,...,iq≤N

f (i1, . . . , iq)Xi1 · · ·Xiq

= q!
∑

1≤i1<···<iq≤N

f (i1, . . . , iq)Xi1 · · ·Xiq

is called the multilinear homogeneous sum, of order q , based on f and on the first N elements
of X. Plainly, a homogeneous sum of order 1 is a finite sum of the type

∑N
i=1 f (i)Xi .

Remark 1.2. If, for i = 1,2, . . . , E[Xi] = 0 and E[X2
i ] = 1 (as, e.g., for X = G,E or P), then

we deduce immediately that the mean and variance of Qq = Qq(N,f,X) are given by:

E[Qq ] = 0, E[Q2
q ] = q!2

∑
1≤i1<···<iq≤N

f 2(i1, . . . , iq) = q!
∑

1≤i1,...,iq≤N

f 2(i1, . . . , iq).

The next three examples show that homogeneous sums based on G, E and P can always be
represented as ‘chaotic random variables’. The reader is referred to [10,14] and [11], respec-
tively, for definitions and results concerning the Gaussian Wiener chaos and the Walsh chaos. An
introduction to the Poisson Wiener chaos is provided in Section 2 below.

Example 1.3 (Homogeneous sums based on G). Let G = {Gi : i ≥ 1} be defined as above.
Without loss of generality, we can always assume that Gi = IG

1 (hi) = G(hi), for some isonormal
Gaussian process G = {G(h): h ∈ H} based on a real separable Hilbert space H, where {hi : i ≥
1} is an orthonormal system in H, and IG

1 denotes a Wiener–Itô integral of order 1 with respect
to G. With this representation, one has that Qq(N,f,G) belongs to the so-called qth Gaussian
Wiener chaos of G. Indeed, we can write

Qq(N,f,G) = IG
q (h),

where

h =
N∑

i1,...,iq

f (i1, . . . , iq)hi1 ⊗ · · · ⊗ hiq , (1.2)

and the symbol ⊗ is a usual tensor product. It is a classic result that random variables of the type
IG
q (h), where h is as in (1.2), are dense in the qth Wiener chaos of G (see, e.g., [14], Chapter 1).

Example 1.4 (Homogeneous sums based on E). Fix q ≥ 1, let f : Nq → R be a symmetric
function vanishing on diagonals. We consider the Rademacher sequence E = {ei : i ≥ 1} defined
above. Random variables with the form

Jq =
∑

i1,...,iq

f (i1, . . . , iq)ei1 · · · eiq ,
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where the series converge in L2(P), compose the so-called qth Walsh chaos of E. (See [7],
Chapter IV, or Remark 2.7 in [11].) In particular, let f : [N ]q → R be a symmetric function
vanishing on diagonals, then homogeneous sums of the type

Qq(N,f,E) =
N∑

i1,...,iq

f (i1, . . . , iq)ei1 · · · eiq

are elements of qth Walsh chaos of E. Recall that the Walsh chaos enjoys the following decom-
position property: for every F ∈ L2(σ (E)) (i.e., the set of square integrable functional of the
sequence E), there exists a unique sequence of square-integrable symmetric functions vanishing
on diagonals {fq : q ≥ 1}, such that

F = E[F ] +
∑
q≥1

q!
∑

i1<i2<···<iq

fq(i1, . . . , iq)ei1 · · · eiq ,

where the double series converges in L2.

Example 1.5 (Homogeneous sums based on P). Let P = {Pi : i ≥ 1} be defined as above. With-
out loss of generality, we can always assume that, for every i ≥ 1, Pi = I1(gi) = I

η̂
1 (gi), where

I1 = I
η̂
1 indicates a single Wiener–Itô integral with respect to a compensated Poisson measure

η̂ on some measurable space (Z, Z), with σ -finite and non-atomic control measure μ. Here,
g = {gi : i ≥ 1} is a collection of functions in L2(Z, Z,μ) such that gi = 1Ai

/
√

λi , where
the {Ai : i ≥ 1} are disjoint measurable sets such that μ(Ai) = λi . For instance, one may take
Z = R+, μ = Lebesgue measure, gi = 1(λ1+···+λi−1,λ1+···+λi ] for i ≥ 2, and g1 = 1[0,λ1]. It fol-
lows that the homogeneous sum Qq(N,f,P) belongs to qth Poisson Wiener chaos of η̂, since

Qq(N,f,P) = Iq(g) = I η̂
q (g),

where

g =
N∑

i1,...,iq

f (i1, . . . , iq)gi1 ⊗ · · · ⊗ giq (1.3)

and Iq = I
η̂
q indicates a multiple Wiener–Itô of order q with respect to η̂. It is well known that

random variables of the type Iq(g), where g is as in (1.3), are dense in the qth Wiener chaos of
η̂ (see, e.g., [21], Chapter 5).

Concerning the ‘universal nature’ of homogeneous sum based on G, the following result was
proved in [12] (see also [10], Chapter 11).

Theorem 1.6 (Theorem 1.10 in [12]). Homogeneous sums based on G are universal with re-
spect to normal approximations, in the following sense: fix q ≥ 2, let {N(n): n ≥ 1} be a se-
quence of integers going to infinity, and let {f (n): n ≥ 1} be a sequence of mappings, such
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that each function f (n) : [N(n)]q → R is symmetric and vanishes on diagonals. Assume that
E[Qq(N(n), f (n),G)2] → 1 as n → ∞. Then, the following four properties are equivalent as
n → ∞.

(1) The sequence {Qq(N(n), f (n),G): n ≥ 1} converges in distribution to Y ∼ N (0,1);
(2) E[Qq(N(n), f (n),G)4] → 3;
(3) for every sequence X = {Xi : i ≥ 1} of independent centered random variables with unit

variance and such that supi E|Xi |2+ε < ∞, the sequence {Qq(N(n), f (n),X): n ≥ 1} con-
verge in distribution to Y ∼ N (0,1);

(4) for every sequence X = {Xi : i ≥ 1} of independent and identically distributed centered
random variables with unit variance, the sequence {Qq(N(n), f (n),X): n ≥ 1} converge
in distribution to Y ∼ N (0,1).

For several applications of Theorem 1.6 in random matrix theory, see [9]. The following neg-
ative result concerns homogeneous sums based on E.

Proposition 1.7. Homogeneous sums inside the Walsh chaos are not universal with respect to
normal approximations.

Proof. To show this assertion, we present the counterexample described in [12], page 1956. Let
G and E be defined as above. Fix q ≥ 2. For each N ≥ q , we set

fN(i1, i2, . . . , iq)

=
{

1/(q!√N − q + 1), if {i1, i2, . . . , iq} = {1,2, . . . , q − 1, s} for q ≤ s ≤ N;
0, otherwise.

The homogeneous sum thus defined is

Qq(N,fN,E) = e1e2 · · · eq−1

N∑
i=q

ei√
N − q + 1

,

with E[Qq(N,fN,E)] = 0 and Var[Qq(N,fN,E)] = 1. Since e1e2 · · · eq−1 is a random sign

independent of {ei : i ≥ q}, we have that Qq(N,fN,E)
law−→ N (0,1), as N → ∞, by virtue of

the usual CLT. However, for every N ≥ 2, one has that Qq(N,fN,G)
law= G1G2 · · ·Gq . Since

G1G2 · · ·Gq is not Gaussian for every q ≥ 2, we deduce that Qq(N,fN,G) does not converge
in distribution to a normal random variable. �

The principal aim of this paper is to provide a positive answer to the following question.

Problem 1. Are homogeneous sums based on P universal with respect to normal approxima-
tions? In other words: can we replace G with P inside the statement of Theorem 1.6?

We will see in Section 3 that the answer is positive both in the one-dimensional and multi-
dimensional cases. Our techniques are based on the tools developed in [19,23], that are in turn
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recent developments of the so-called ‘Malliavin–Stein method’ – given by the combination of
Stein’s method and Malliavin calculus.

As a by-product of our achievements, we will also prove some new CLTs on the Poisson
Wiener chaos. Indeed, in the forthcoming Theorem 3.2 and Theorem 3.8, we shall show that,
in the special case of elements of the Poisson Wiener chaos that are also homogeneous sums,
the sufficient conditions for normal approximations established in [19,23] turn out to be also
necessary. As anticipated, this yields some new examples of ‘fourth moment theorems’ – such as
the ones proved by Nualart and Peccati in [16] (see also Chapter 5 in [10]). Other ‘fourth moment
theorems’ in a Poisson setting can be found in [18].

The paper is organized as follows. In Section 2, we discuss some preliminaries, including
multiple Wiener–Itô integrals on the Poisson space, product formulae and star contractions. In
Section 3, we present the main results, in both the one-dimensional and multi-dimensional cases,
and demonstrate the universal nature of homogeneous sums inside the Poisson Wiener chaos.
Section 4 is devoted to an important technical proposition as well as to the proofs of our main
results.

2. Some preliminaries

2.1. Poisson measures and integrals

Let (Z, Z,μ) be a measure space such that Z is a Borel space and μ is a σ -finite non-atomic
Borel measure. We set Zμ = {B ∈ Z : μ(B) < ∞}. In what follows, we write η̂ = {η̂(B): B ∈

Zμ} to indicate a compensated Poisson measure on (Z, Z) with control μ. In other words, η̂

is a collection of random variables defined on some probability space (�, F ,P), indexed by the
elements of Zμ and such that: (i) for every B,C ∈ Zμ such that B ∩C = ∅, the random variables

η̂(B) and η̂(C) are independent; (ii) for every B ∈ Zμ, η̂(B)
law= η(B) − μ(B), where η(B) is

a Poisson random variable with paremeter μ(B). A random measure verifying property (i) is
customarily called ‘completely random’ or, equivalently, ‘independently scattered’ (see, e.g., the
monograph [21] for a detailed discussion of these concepts).

In order to simplify the forthcoming discussion, we shall make use of the following conven-
tions:

– We shall write interchangeably
∑

1≤i1,...,iq≤N and
∑N

i1,...,iq
.

– For every k ≥ 1 and f ∈ Lk(Zq, Z q,μq) := Lk(μq), we write ‖f ‖Lk to indicate the norm
‖f ‖Lk(μq).

– For every q ≥ 2, the class Lk
s (μ

q) as defined is the subspace of Lk(μq) of functions that
are μq -almost everywhere symmetric; also, one customarily writes Lk

s (μ
1) = Lk(μ1) =

Lk
s (μ) = Lk(μ).

– For any positive integer N , [N ] stands for the set {1,2, . . . ,N}.
– For any two functions f,g ∈ L2(μ), f ⊗ g is the tensor product of f and g, that is, f ⊗

g(x, y) = f (x)g(y). Iterated tensor products of the type f1 ⊗ f2 ⊗ · · · ⊗ fq(x1, . . . , xq) are
defined by recursion.
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Definition 2.1. For every deterministic function h ∈ L2(μ), we write

I1(h) = η̂(h) =
∫

Z

h(z)η̂(dz)

to indicate the Wiener–Itô integral of h with respect to η̂. For every q ≥ 2 and every f ∈ L2
s (μ

q),
we denote by Iq(f ) the multiple Wiener–Itô integral, of order q , of f with respect to η̂. We also
set Iq(f ) = Iq(f̃ ), for every f ∈ L2(μq), and I0(C) = C for every constant C. Here, f̃ is the
symmetrization of the function f . For every q ≥ 1, the collection of all random variables of the
type Iq(f ), f ∈ L2

s (μ
q), is denoted by Cq and is called the qth Wiener chaos of η̂.

We recall the following chaotic decomposition of L2(σ (η̂)) (i.e., the space of all square-
integrable functionals of η̂):

L2(σ(η̂)
) = R ⊕

∞⊕
q=1

Cq,

where the symbol ⊕ denotes a direct sum in L2(P). The reader is referred for example, to Peccati
and Taqqu [21], Privault [24] or Nualart and Vives [17] for a complete discussion of multiple
Wiener–Itô integrals and their properties. The following proposition contains two fundamental
properties that we will use in sequel.

Proposition 2.2. The following equalities hold for every q,m ≥ 1, every f ∈ L2
s (μ

q) and every
g ∈ L2

s (μ
m):

1. E[Iq(f )] = 0,
2. E[Iq(f )Im(g)] = q!〈f,g〉L2(μq)1(q=m) (isometric property).

Remark 2.3. For every q ≥ 1 and every f ∈ L2
s (μ

q), we shall also denote by IG
q (f ) the multiple

Wiener–Itô integral, of order q , of f with respect to an isonormal process G over the Hilbert
space H = L2(Z, Z,μ). A detailed introduction to these objects can be found in [10,14,21].

2.2. Product formulae

In order to give a simple description of the Product formulae for multiple Poisson integrals (see
formula (2.6)), we (formally) define a contraction kernel f �l

r g on Zp+q−r−l for functions f ∈
L2(μp) and g ∈ L2(μq), where p,q ≥ 1, r = 1, . . . , p ∧ q and l = 1, . . . , r , as follows (note that
f,g need not be symmetric):

f �l
r g(γ1, . . . , γr−l , t1, . . . , tp−r , s1, . . . , sq−r )

=
∫

Zl

μl(dz1, . . . ,dzl)f (z1, . . . , zl, γ1, . . . , γr−l , t1, . . . , tp−r ) (2.4)

× g(z1, . . . , zl, γ1, . . . , γr−l , s1, . . . , sq−r ).
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In other words, the star operator ‘�l
r ’ reduces the number of variables in the tensor product of f

and g from p + q to p + q − r − l: this operation is realized by first identifying r variables in f

and g, and then by integrating out l among them. We also use the notation

f ⊗r f = f �r
r g(t1, . . . , tp−r , s1, . . . , sq−r )

(2.5)

=
∫

Zr

μl(dz1, . . . ,dzr)f (t1, . . . , tp−r , z1, . . . , zr ) × g(s1, . . . , sq−r , z1, . . . , zr ).

The operator f ⊗r f and its symmetrization f ⊗̃rf play a fundamental role in the derivation of
limit theorems inside the Gaussian Wiener–Itô chaos, see, for example, [10,16].

We present here an important product formula for Poisson multiple integrals (see, e.g., [6,21,
27] for a proof).

Proposition 2.4 (Product formula). Let f ∈ L2
s (μ

p) and g ∈ L2
s (μ

q), p,q ≥ 1, and suppose
moreover that f �l

r g ∈ L2(μp+q−r−l) for every r = 1, . . . , p∧q and l = 1, . . . , r such that l 
= r .
Then,

Ip(f )Iq(g) =
p∧q∑
r=0

r!
(

p

r

)(
q

r

) r∑
l=0

(
r

l

)
Ip+q−r−l (f̃ �l

r g), (2.6)

with the tilde ∼ indicating a symmetrization, that is,

f̃ �l
r g(x1, . . . , xp+q−r−l) = 1

(p + q − r − l)!
∑
σ

f �l
r g(xσ(1), . . . , xσ(p+q−r−l)),

where σ runs over all (p + q − r − l)! permutations of the set {1, . . . , p + q − r − l}.

Fix integers p,q ≥ 0 and |q − p| ≤ k ≤ p + q , consider two kernels f ∈ L2
s (μ

p) and g ∈
L2

s (μ
q), and recall the multiplication formula (2.6). We will now introduce an operator G

p,q
k ,

transforming the function f , of p variables, and the function g, of q variables, into a func-
tion G

p,q
k (f, g), of k variables. More precisely, for p,q, k as above, we define the function

(z1, . . . , zk) �→ G
p,q
k (f, g)(z1, . . . , zk), from Zk into R, as follows:

G
p,q
k (f, g)(z1, . . . , zk) =

p∧q∑
r=0

r∑
l=0

1(p+q−r−l=k)r!
(

p

r

)(
q

r

)(
r

l

)
f̃ �l

r g(z1, . . . , zk), (2.7)

where the tilde ∼ means symmetrization, and the star contractions are defined in formula (2.4)
and the subsequent discussion. Observe the following three special cases: (i) when p = q =
k = 0, then f and g are both real constants, and G

0,0
0 (f, g) = f × g, (ii) when p = q ≥ 1 and

k = 0, then G
p,p

0 (f, g) = p!〈f,g〉L2(μp), (iii) when p = k = 0 and q > 0 (then, f is a constant),

G
0,p

0 (f, g)(z1, . . . , zq) = f × g(z1, . . . , zq). By using this notation, (2.6) becomes

Ip(f )Iq(g) =
p+q∑

k=|q−p|
Ik

(
G

p,q
k (f, g)

)
. (2.8)
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The advantage of representation (2.8) (as opposed to (2.6)) is that the RHS of (2.8) is an orthog-
onal sum, a feature that will simplify the computations to follow.

3. Main results

3.1. One-dimensional case: Fourth moments and universality

We recall the following theorem, first proved in [16], stating that the convergence in law of a
sequence of Gaussian Wiener integrals towards a normal distribution can be characterized by
their variances and fourth moments. See [10], Chapter 5, for a detailed discussion, as well as
examples and bibliographic remarks.

Theorem 3.1 (See [15,16]). Fix q ≥ 2, let h(n) ∈ L2
s (μ

q), n ≥ 1, and let

Z(n) = IG
q

(
h(n)

)
, n ≥ 1,

be a sequence of random variables having the form of a multiple Wiener–Itô integral of order
q , of h(n) with respect to an isonormal Gaussian process G over the Hilbert space H = L2(μ).
Assume that limn→∞ Var(Z(n)) = limn→∞ E[(Z(n))2] = 1. Then, the following three assertions
are equivalent as n → ∞:

(1) Z(n) law−→ Y ∼ N (0,1);
(2) E[(Z(n))4] → E[Y 4] = 3;
(3) ∀r = 1, . . . , q − 1, ‖h(n) ⊗r h(n)‖L2 → 0, where the contraction ⊗r = �r

r is defined ac-
cording to (2.5).

Extending Theorem 3.1 to multiple integrals with respect to a Poisson measure is a demanding
task, since the product formula (2.6) (which is more involved than in the Gaussian case) quickly
leads to some inextricable expressions for moments of order four. A partial ‘fourth moment
theorem’ can be found in [20], Theorem 2, in the special case of double Poisson integrals. We
now present an exact analogous of Theorem 3.1 for homogeneous sums inside a fixed Poisson
Wiener chaos. Its proof, together with the one of the subsequent Theorem 3.4, is deferred to
Section 4.

Theorem 3.2 (Fourth moment theorem for Poisson sums). Let {λi : i ≥ 1} be a collection of
positive real numbers, and assume that infi≥1 λi = α > 0. Let P = {Pi : i ≥ 1} be a collection of
independent random variables verifying (1.1). Fix an integer q ≥ 1. Let {N(n), f (n): n ≥ 1} be a
double sequence such that {N(n): n ≥ 1} is a sequence of integers diverging to infinity, and each
f (n) : [N(n)]q → R is symmetric and vanishes on diagonals. We set

F (n) = Qq

(
N(n), f (n),P

) =
N(n)∑

i1,...,iq

f (n)(i1, . . . , iq)Pi1 · · ·Piq = Iq

(
g(n)

)
,
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where

g(n) =
N(n)∑

i1,...,iq

f (n)(i1, . . . , iq)gi1 ⊗ · · · ⊗ giq , n ≥ 1,

and the representation of F (n) as a multiple Wiener–Itô integral is the same as in Example 1.5.
Suppose that E[(F (n))2] → σ 2 ∈ (0,∞). Then, the following two statements are equivalent, as
n → ∞:

(1) F (n) law−→ Y ∼ N (0, σ 2);
(2) E[(F (n))4] → E[Y 4] = 3σ 4.

When q = 1, either one of conditions (1)–(2) is equivalent to

(3a)
∑N(n)

i=1 f (n)(i)4 1
λi

→ 0.

Finally, when q ≥ 2, either one of conditions (1)–(2) is equivalent to either one of the following
two equivalent conditions (3b)–(3b′)

(3b)
∫
Zq (g

(n))4 → 0 and ∀r = 1, . . . , q , ∀l = 1, . . . , r ∧ (q −1), ‖g(n) �l
r g(n)‖L2 → 0, where

the star contractions �l
r are defined according to (2.4);

(3b′) ∀r = 1, . . . , q − 1, ‖g(n) �r
r g(n)‖L2 = ‖g(n) ⊗r g(n)‖L2 → 0.

Remark 3.3. The assumption infi≥1 λi > 0 is necessary for proving the two implications: (1) ⇒
(2) and (3b′) ⇒ (3b).

The next statement, that will be proved by means of Theorem 3.2, establishes the universal
nature of Poisson homogeneous sums of order q ≥ 2.

Theorem 3.4 (Universality of the Poisson Wiener chaos). Let the sequence P verify the same
assumptions as in Theorem 3.2. Fix q ≥ 2, let {N(n): n ≥ 1} be a sequence of integers going to in-
finity, and let {f (n): n ≥ 1} be a sequence of mappings, such that each function f (n) : [N(n)]q →
R is symmetric and vanishes on diagonals. Assume that E[Qq(N(n), f (n),P)2] → 1 as n → ∞.
Then, the following four properties are equivalent, as n → ∞.

(1) The sequence {Qq(N(n), f (n),P): n ≥ 1} converges in distribution to Y ∼ N (0,1);
(2) E[Qq(N(n), f (n),P)4] → 3;
(3) for every sequence X = {Xi : i ≥ 1} of independent centered random variables with unit

variance and such that supi E|Xi |2+ε < ∞, the sequence {Qq(N(n), f (n),X): n ≥ 1} con-
verge in distribution to Y ∼ N (0,1);

(4) for every sequence X = {Xi : i ≥ 1} of independent and identically distributed centered
random variables with unit variance, the sequence {Qq(N(n), f (n),X): n ≥ 1} converge
in distribution to Y ∼ N (0,1).

Remark 3.5. Theorem 3.4 is false in general for q = 1, as one can see by considering the case
N(n) = n, λi = i, and fn such that fn(n) = 1 and fn(i) = 0 for i 
= n. On the other hand, one can
prove an equivalent of Theorem 3.4 for q = 1, by assuming in addition that supi λi < ∞ and by
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applying the standard Lindberg’s CLT (see, e.g., [4], Theorem 9.6.1). The details are left to the
reader.

We conclude this section with a result implying that the Wasserstein distance metrizes the
convergence to Gaussian for any sequence of homogeneous sums based on a Poisson field. Recall
that, given random variables X,Y ∈ L1(P), the Wasserstein distance between the law of X and
the law of Y is defined as the quantity

dW (X,Y ) = sup
f ∈Lip(1)

∣∣E[
f (X)

] − E
[
f (Y )

]∣∣,
where Lip(1) indicates the class of Lipschitz real-valued function with Lipschitz constant ≤ 1. It
is well known that the topology induced by dW , on the class of probability measures on the real
line, is strictly stronger than the one induced by the convergence in distribution.

Proposition 3.6. Let the sequence of homogeneous sums {F (n): n ≥ 1} satisfy the assumptions
of Theorem 3.2. If F (n) converges in distribution to Y ∼ N (0,1), as n → ∞, then necessarily
dW (F (n), Y ) → 0.

Proof. Using Corollary 3.4 (for the case q = 1) and Theorem 4.1 (for the case q ≥ 2) in [19],
we see that, if conditions (3a)–(3b) are verified, then dW (F (n), Y ) → 0, so that the conclusion
follows from Theorem 3.2. �

3.2. Multi-dimensional case

We now present some multidimensional extensions of the results presented in the previous sec-
tion: the proofs are similar to those of the results in the previous section, and are mostly left to
the reader. Our starting point is the following multi-dimensional extension of Theorem 3.1, first
proved by Peccati and Tudor in [22]. For details and generalizations, see [13,15].

Theorem 3.7. Let G be an isonormal Gaussian process over the Hilbert space H = L2(μ). Fix
d ≥ 2 and let C = {C(i, j): i, j = 1, . . . , d} be a d × d positive definite matrix. Fix integers
1 ≤ q1 ≤ · · · ≤ qd . For any n ≥ 1 and i = 1, . . . , d , let h

(n)
i belong to L2

s (μ
qi ). Assume that

F (n) = (
F

(n)
1 , . . . ,F

(n)
d

) := (
IG
q1

(
h

(n)
1

)
, . . . , IG

qd

(
h

(n)
d

))
, n ≥ 1,

is such that

lim
n→∞ E

[
F

(n)
i F

(n)
j

] = C(i, j), 1 ≤ i, j ≤ d.

Then, as n → ∞, the following four assertions are equivalent:

(1) The vector F (n) converges in distribution to a d-dimensional Gaussian vector Nd(0,C);
(2) for every 1 ≤ i ≤ d , E[(F (n)

i )4] → 3C(i, i)2;

(3) for every 1 ≤ i ≤ d and every 1 ≤ r ≤ qi − 1, ‖h(n)
i ⊗r h

(n)
i ‖L2 → 0;
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(4) for every 1 ≤ i ≤ d , F (n)
i converges in distribution to a centered Gaussian random variable

with variance C(i, i).

Combining the previous Theorem 3.2 with [23], Theorem 5.8, we deduce the following ana-
logue of Theorem 3.7 for homogeneous sums inside the Poisson Wiener chaos.

Theorem 3.8. Let {λi : i ≥ 1} be a collection of positive real numbers, and assume that infi λi =
α > 0. Let P = {Pi : i ≥ 1} be a collection of independent random variables such that ∀i, Pi veri-
fies relation (1.1). Fix integers d ≥ 1 and qd ≥ · · · ≥ q1 ≥ 1. Let {N(n)

j , f
(n)
j : j = 1, . . . , d;n ≥ 1}

be such that for every fixed j , {N(n)
j : n ≥ 1} is a sequence of integers going to infinity, and each

f
(n)
j : [N(n)

j ]qj → R is symmetric and vanishes on diagonals. We consider a sequence of random

vectors F (n) = (F
(n)
1 , . . . ,F

(n)
d ), n ≥ 1, where for every 1 ≤ j ≤ d ,

F
(n)
j = Qqj

(
N

(n)
j , f

(n)
j ,P

) =
N

(n)
j∑

i1,...,iqj

f
(n)
j (i1, . . . , iqj

)Pi1 · · ·Piqj
= Iqj

(
g

(n)
j

)
with

g
(n)
j =

N
(n)
j∑

i1,...,iqj

f
(n)
j (i1, . . . , iqj

)gi1 ⊗ · · · ⊗ giqj
,

and the representation of F
(n)
j as a multiple integral is the same as in Example 1.5. Given a d ×d

positive definite matrix C = (C(i, j))i,j=1,...,d , suppose that limn→∞ E[F (n)
i F

(n)
j ] → C(i, j), for

every i, j = 1, . . . , d . Then, the following four statements are equivalent, as n → ∞:

(1) F (n) law−→ (Y1, . . . , Yd) ∼ Nd(0,C), where Nd(0,C) indicates a d-dimensional Gaussian
distribution with covariance matrix C;

(2) for each j = 1, . . . , d , E[(F (n)
j )4] → 3C(j, j)2;

(3) for each j = 1, . . . , d such that qj ≥ 2, ∀r = 1, . . . , qj − 1,∥∥g
(n)
j �r

r g
(n)
j

∥∥
L2 = ∥∥g

(n)
j ⊗r g

(n)
j

∥∥
L2 → 0,

and, for every j such that qj = 1,

N(n)∑
i=1

f
(n)
j (i)4 1

λi

→ 0;

(4) for each j = 1, . . . , d , F
(n)
j

law−→ N (0,C(j, j)).

Finally, we present a multi-dimensional analogous of the universality statement contained in
Theorem 3.4: it is deduced by combining Theorems 3.7 and 3.8 above with [12], Theorem 7.1.
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Theorem 3.9 (Multi-dimensional universality). Let the assumptions and notations of Theo-
rem 3.8 prevail. Then, the following two assertions are equivalent as n → ∞:

(1) The sequence {F (n): n ≥ 1} converges in distribution to (Y1, . . . , Yd) ∼ Nd(0,1);
(2) for every sequence X = {Xi : i ≥ 1} of independent centered random variables with unit

variance and such that supi E|Xi |3 < ∞, the sequence of d-dimensional vectors{
Qq

(
N

(n)
j , f

(n)
j ,X

)
: j = 1, . . . , d

}
, n ≥ 1,

converges in distribution to (Y1, . . . Yd).

4. Proofs

4.1. A technical result

The following technical statement is the key to our main results.

Proposition 4.1. Let the notation and assumptions of Theorem 3.2 prevail, and fix q ≥ 2. If
∀p = 1,2, . . . , q − 1, one has limn→∞ ‖g(n) �

p
p g(n)‖L2 = 0, then, as n → ∞:

(a)
∫
Zq (g

(n))4 → 0;
(b) ∀r = 1, . . . , q , ∀l = 1, . . . , r ∧ (q − 1), ‖g(n) �l

r g(n)‖L2 → 0.

Proof. In the following proof, we shall write
∑

i1,...,ip
to indicate

∑N(n)

i1,...,ip
.

For p = 1,2, . . . , q − 1, we use definition (2.4) (which applies to not necessarily symmetric
kernels) to deduce that

g(n) �
p
p g(n)

=
∑

i1,...,iq

∑
j1,...,jq

f (n)(i1, . . . , iq)f (n)(j1, . . . , jq)

× (gi1 ⊗ · · · ⊗ giq ) �
p
p (gj1 ⊗ · · · ⊗ gjq )

=
∑

a1,...,ap

( ∑
i1,...,iq−p

∑
j1,...,jq−p

p∏
l=1

‖gal
‖2
L2 × f (n)(a1, . . . , ap, i1, . . . , iq−p)

× f (n)(a1, . . . , ap, j1, . . . , jq−p)

× gi1 ⊗ · · · ⊗ giq−p ⊗ gj1 ⊗ · · · ⊗ gjq−p

)

=
∑

k1,...,k2q−2p

∑
a1,...,ap

f (n)(a1, . . . , ap, k1, . . . , kq−p)f (n)(a1, . . . , ap, kq−p+1, . . . , k2q−2p)
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×
p∏

l=1

‖gal
‖2
L2 × gk1 ⊗ · · · ⊗ gk2q−2p

=
∑

k1,...,k2q−2p

∑
a1,...,ap

f (n)(a1, . . . , ap, k1, . . . , kq−p)f (n)(a1, . . . , ap, kq−p+1, . . . , k2q−2p)

× gk1 ⊗ · · · ⊗ gk2q−2p
.

From these relations, we deduce that

∥∥g(n) �
p
p g(n)

∥∥2
L2 =

∑
k1,...,k2q−2p

( ∑
a1,...,ap

f (n)(a1, . . . , ap, k1, . . . , kq−p)

(4.9)

× f (n)(a1, . . . , ap, kq−p+1, . . . , k2q−2p)

)2

.

We first prove (a). Using the definition of the functions {gi : i ≥ 1},(
g(n)

)4 =
∑

i1,...,iq

∑
j1,...,jq

∑
k1,...,kq

∑
s1,...,sq

f (n)(i1, . . . , iq)f (n)(j1, . . . , jq)

× f (n)(k1, . . . , kq)f (n)(s1, . . . , sq)

× (gi1 ⊗ · · · ⊗ giq ) × (gj1 ⊗ · · · ⊗ gjq )

× (gk1 ⊗ · · · ⊗ gkq ) × (gs1 ⊗ · · · ⊗ gsq )

=
∑

i1,...,iq

(
f (n)

)4
(i1, . . . , iq)gi1 ⊗ · · · ⊗ giq ×

q∏
l=1

1

λ
3/2
il

,

yielding∫ (
g(n)

)4 dμq =
∑

i1,...,iq

(
f (n)

)4
(i1, . . . , iq)

q∏
l=1

1

λil

≤ 1

αq

∑
i1,...,iq

(
f (n)

)4
(i1, . . . , iq).

Now, specializing formula (4.9) to the case p = q − 1, we deduce

∥∥g(n) �
q−1
q−1 g(n)

∥∥2
L2 =

∑
k1,k2

( ∑
a1,...,aq−1

f (n)(a1, . . . , aq−1, k1)

× f (n)(a1, . . . , aq−1, k2)

)2

≥
∑

k

( ∑
a1,...,aq−1

(
f (n)

)2
(a1, . . . , aq−1, k)

)2
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=
∑

a1,...,aq−1

∑
b1,...,bq−1

(∑
k

(
f (n)

)2
(a1, . . . , aq−1, k)

(
f (n)

)2
(b1, . . . , bq−1, k)

)

≥
∑

a1,...,aq

(
f (n)

)4
(a1, . . . , aq)

≥
∫ (

g(n)
)4 dμq × αq,

which proves (a), since α = infi λi > 0 by assumption.
The proof of (b) consists of two steps.
(b1) Let r = q . For any l ∈ {1, . . . , q − 1}, we have,

g(n) �l
q g(n)

=
∑

i1,...,iq

∑
j1,...,jq

f (n)(i1, . . . , iq)f (n)(j1, . . . , jq)[gi1 ⊗ · · · ⊗ giq ] �l
q [gj1 ⊗ · · · ⊗ gjq ]

=
∑

a1,...,al

∑
b1,...,bq−l

gb1 ⊗ · · · ⊗ gbq−l
× f (n)(a1, . . . , al, b1, . . . , bq−l )

2
q−l∏
t=1

λ
−1/2
bt

=
∑

b1,...,bq−l

gb1 ⊗ · · · ⊗ gbq−l

q−l∏
t=1

λ
−1/2
bt

( ∑
a1,...,al

f (n)(a1, . . . , al, b1, . . . , bq−l )
2
)

.

These equalities lead to the estimate

∥∥g(n) �l
q g(n)

∥∥2
L2 =

∑
b1,...,bq−l

q−l∏
t=1

λ−1
bt

( ∑
a1,...,al

f (n)(a1, . . . , al, b1, . . . , bq−l )
2
)2

≤ 1

αq−l

∥∥g(n) �l
l g(n)

∥∥2
L2 ,

yielding (since α > 0) that ‖g(n) �l
l g(n)‖L2 → 0 implies ‖g(n) �l

q g(n)‖L2 → 0.
(b2) For any r = 1, . . . , q − 1, and l = 1, . . . , r , we see that

g(n) �l
r g(n)

=
∑

a1,...,al

[ ∑
b1,...,br−l

r−l∏
u=1

λ
−1/2
bu

gb1 ⊗ · · · ⊗ gbr−l

]

×
∑

i1,...,iq−r

∑
j1,...,jq−r

gi1 ⊗ · · · ⊗ giq−r ⊗ gj1 ⊗ · · · ⊗ gjq−r

× f (a1, . . . , al, b1, . . . , br−l , i1, . . . , iq−r )
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× f (a1, . . . , al, b1, . . . , br−l , j1, . . . , jq−r )

=
∑

b1,...,br−l

∑
i1,...,iq−r

∑
j1,...,jq−r

r−l∏
u=1

λ
−1/2
bu

gb1 ⊗ · · ·

⊗ gbr−l
⊗ gi1 ⊗ · · · ⊗ giq−r ⊗ gj1 ⊗ · · · ⊗ gjq−r

×
∑

a1,...,al

f (a1, . . . , al, b1, . . . , br−l , i1, . . . , iq−r )

× f (a1, . . . , al, b1, . . . , br−l , j1, . . . , jq−r ).

Consequently,∥∥g(n) �l
r g(n)

∥∥2
L2

=
∑

b1,...,br−l

∑
i1,...,iq−r

∑
j1,...,jq−r

r−l∏
u=1

λ−1
bu

×
[ ∑

a1,...,al

f (a1, . . . , al, b1, . . . , br−l , i1, . . . , iq−r )

× f (a1, . . . , al, b1, . . . , br−l , j1, . . . , jq−r )

]2

≤ 1

αr−l

∥∥g(n) �l
l g(n)

∥∥2
L2 .

Since α > 0, this relation yields the desired implication: if ‖g(n) �l
l g(n)‖L2 → 0, then ‖g(n) �l

r

g(n)‖L2 → 0. �

4.2. Proofs of the main results

Proof of Theorem 3.2. We shall first prove the implication (1) ⇒ (2) for a general q ≥ 1. For
every λ > 0, let P(λ) be a Poisson random variable with parameter λ. For every integer k ≥ 0,
we introduce the mapping

λ �→ T̃k(λ) = E
[(

P(λ) − λ
)k]

, λ > 0,

so that, for instance, T̃0(λ) = 1 and T̃1(λ) = 0. It is well-known (see, e.g., [21], Proposition 3.3.4)
that the following recursive relation takes place: for every k ≥ 1,

T̃k+1(λ) = λ

k−1∑
j=0

(
0
k

)
j T̃j (λ).
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Elementary considerations now yield that, for every k ≥ 1, the mapping T̃k(·) is a polynomial of
degree (k − 1)/2 if k is odd, and of degree k/2 if k is even. As a consequence, for every real
q ≥ 1 the mapping

λ �→ E[|P(λ) − λ|q ]
λq/2

is bounded on the set [α,∞). Using (1.1) together with the assumption α = infi λi > 0, we infer
that supi≥1 E[|Pi |q ] < ∞ for every q ≥ 1. Standard hypercontractivity estimates (see for instance
[12], Lemma 4.2) yield therefore that, since E[(F (n))2] → σ 2, then supn≥1 E[|F (n)|q ] < ∞, for
every q ≥ 1. As a consequence, if (1) is in order, then necessarily E[(F (n))k] → E[Y k] for every
integer k ≥ 1; in particular, (2) is verified.

Now assume that q = 1 and (2) is verified. A quick computation reveals that

E
[(

F (n)
)4] − 3E

[(
F (n)

)2]2 = ∥∥g(n)
∥∥4

L4 =
N(n)∑
i=1

fn(i)
4 1

λi

,

thus yielding the implication (2) ⇒ (3a). On the other hand, if (3a) is verified, then one has that
(by the Cauchy–Schwarz inequality)∥∥g(n)

∥∥3
L3 ≤ ∥∥g(n)

∥∥
L2

∥∥g(n)
∥∥1/2

L4 → 0, as n → ∞,

so that the implication (3a) ⇒ (1) follows from [19], Corollary 3.4, thus concluding the proof
for q = 1.

We now fix q ≥ 2. The implication (3b) ⇒ (1) is a direct consequence of [19], Theorem 5.1,
whereas the equivalence between (3b) and (3b′) follows from Proposition 4.1. In view of the first
part of the proof, we need only to show that (2) ⇒ (3b′). We start by exploiting formula (2.8) in
order to write the chaotic decomposition of Iq(h(n)), namely:

Iq

(
g(n)

)2 =
2q∑

k=0

Ik

(
G

q,q
k

(
g(n), g(n)

))
.

As a consequence, by exploiting the orthogonality of multiple integrals with different orders,

E
[
Iq

(
g(n)

)4] =
2q∑

k=0

k!∥∥G
q,q
k

(
g(n), g(n)

)∥∥2
L2

= ∥∥G
q,q

0

(
g(n), g(n)

)∥∥2
L2 + (2q)!∥∥G

q,q

2q

(
g(n), g(n)

)∥∥2
L2 (4.10)

+
2q−1∑
k=1

k!∥∥G
q,q
k

(
g(n), g(n)

)∥∥2
L2 ,

where ∥∥G
q,q

0

(
g(n), g(n)

)∥∥2
L2 = q!2∥∥g(n)

∥∥4
L2 ,
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and

(2q)!∥∥G
q,q

2q

(
g(n), g(n)

)∥∥2
L2 = (2q)!∥∥ ˜g(n) �0

0 g(n)
∥∥2

L2
(4.11)

= 2q!2∥∥g(n)
∥∥4 +

q−1∑
p=1

(q!)4

(p!(q − p)!)2

∥∥g(n) �
p
p g(n)

∥∥2
L2,

where we have used [21], formula (11.6.30). Since q!2‖g(n)‖4
L2 → σ 4 by assumption, we deduce

that, if (2) is verified, then ‖g(n) �
p
p g(n)‖L2 → 0 for every p = 1, . . . , q − 1, and the desired

implication follows from Proposition 4.1. �

Proof of Theorem 3.4. By virtue of Theorem 1.6, it suffices to show that, if condition (1) in
Theorem 3.4 is in order, then the sequence {Qq(N(n), f (n),G): n ≥ 1} converges in distribution
to Y . Using the same notation as in Example 1.3, with H = L2(μ) and hi = gi , one has that the
homogeneous sum Qq(N(n), f (n),G) can be represented as a multiple Wiener–Itô integral as
follows:

Qq

(
N(n), f (n),G

) =
N(n)∑

i1,...,iq

f (n)(i1, . . . , iq)Gi1 · · ·Giq = IG
q

(
h(n)

)
,

where

h(n) = g(n) =
N(n)∑

i1,...,iq

f (n)(i1, . . . , iq)gi1 ⊗ · · · ⊗ giq .

Now, if condition (1) in Theorem 3.4 holds, then for every r = 1, . . . , q −1, ‖g(n) �r
r g(n)‖L2 → 0,

and we immediately deduce the conclusion by combining Theorem 3.2 and Theorem 3.1. �
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