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In the present paper, we consider the problem of matrix completion with noise. Unlike previous works,
we consider quite general sampling distribution and we do not need to know or to estimate the variance
of the noise. Two new nuclear-norm penalized estimators are proposed, one of them of “square-root” type.
We analyse their performance under high-dimensional scaling and provide non-asymptotic bounds on the
Frobenius norm error. Up to a logarithmic factor, these performance guarantees are minimax optimal in a
number of circumstances.
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1. Introduction

This paper considers the problem of matrix recovery from a small set of noisy observations. Sup-
pose that we observe a small set of entries of a matrix. The problem of inferring the many missing
entries from this set of observations is the matrix completion problem. A usual assumption that
allows to succeed such a completion is to suppose that the unknown matrix has low rank or has
approximately low rank.

The problem of matrix completion comes up in many areas including collaborative filtering,
multi-class learning in data analysis, system identification in control, global positioning from
partial distance information and computer vision, to mention some of them. For instance, in
computer vision, this problem arises as many pixels may be missing in digital images. In col-
laborative filtering, one wants to make automatic predictions about the preferences of a user by
collecting information from many users. So, we have a data matrix where rows are users and
columns are items. For each user, we have a partial list of his preferences. We would like to
predict the missing rates in order to be able to recommend items that may interest each user.

The noiseless setting was first studied by Candès and Recht [5] using nuclear norm mini-
mization. A tighter analysis of the same convex relaxation was carried out in [6]. For a simpler
approach, see more recent papers of Recht [22] and Gross [10]. An alternative line of work was
developed by Keshavan et al. in [12]. A more common situation in applications corresponds to
the noisy setting in which the few available entries are corrupted by noise. This problem has
been extensively studied recently. The most popular methods rely on nuclear norm minimization
(see, e.g., [4,8,9,11,13,17,18,21,23]). One can also use rank penalization as it was done by Bunea
et al. [3] and Klopp [14]. Typically, in the matrix completion problem, the sampling scheme is
supposed to be uniform. However, in practice, the observed entries are not guaranteed to follow
the uniform scheme and its distribution is not known exactly.

1350-7265 © 2014 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/12-BEJ486
mailto:kloppolga@math.cnrs.fr


Noisy low-rank matrix completion 283

In the present paper, we consider nuclear norm penalized estimators and study the correspond-
ing estimation error in Frobenius norm. We consider both cases when the variance of the noise
is known or not. Our methods allow us to consider quite general sampling distribution: we only
assume that the sampling distribution satisfies some mild “regularity” conditions (see Assump-
tions 1 and 2).

Let A0 ∈ R
m1×m2 be the unknown matrix. Our main results, Theorems 10 and 7, show the

following bound on the normalized Frobenius error of the estimators Â that we propose in this
paper: with high probability

‖Â − A0‖2
2

m1m2
� log(m1 + m2)max(m1,m2) rank(A0)

n
,

where the symbol � means that the inequality holds up to a multiplicative numerical con-
stant. This theorem guarantees, that the prediction error of our estimator is small whenever
n � log(m1 + m2)max(m1,m2) rank(A0). This quantifies the sample size necessary for suc-
cessful matrix completion. Note that, when rank(A0) is small, this is considerably smaller than
m1m2, the total number of entries. For large m1,m2 and small r , this is also quite close to the
degree of freedom of a rank r matrix, which is (m1 + m2)r − r2.

An important feature of our estimator is that its construction requires only an upper bound on
the maximum absolute value of the entries of A0. This condition is very mild. A bound on the
maximum of the elements is often known in applications. For instance, if the entries of A0 are
some user’s ratings it corresponds to the maximal rating. Previously, the estimators proposed by
Koltchinskii et al. [18] and by Klopp [14] also require a bound on the maximum of the elements
of the unknown matrix but their constructions use the uniform sampling and additionally require
the knowledge of an upper bound on the variance of the noise. Other works on matrix completion
require more involved conditions on the unknown matrix. For more details, see Section 3.

Sampling schemes more general than the uniform one were previously considered in [7,19,21].
Lounici [19] considers a different estimator and measures the prediction error in the spectral
norm. In [7,21] the authors consider penalization using a weighted trace-norm, which was first
introduced by Srebro et al. [24]. Negahban et al. in [21] assume that the sampling distribution
is a product distribution, that is, the row index and the column index of the observed entries are
selected independently. This assumption does not seem realistic in many cases (see discussion
in [7]). An important advantage of our method is that the sampling distribution does not need to
be equal to a product distribution. Foygel et al. in [7] propose a method based on the “smoothing”
of the sampling distribution. This procedure may be applied to an arbitrary sampling distribution
but requires a priori information on the rank of the unknown matrix. Moreover, unlike in the
present paper, in [7] the prediction performances of the estimator are evaluated through a bound
on the expected l-Lipschitz loss (where the expectation is taken with respect to the sampling
distribution).

The weighted trace-norm, used in [7,21], corrects a specific situation where the standard
trace-norm fails. This situation corresponds to a non-uniform distribution where the row/column
marginal distribution is such that some columns or rows are sampled with very high probability
(for a more thorough discussion see [7,24]). Unlike [7,21], we use the standard trace-norm pe-
nalization and our assumption on the sampling distribution (Assumption 1) guarantees that no
row or column is sampled with very high probability.
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Most of the existing methods of matrix completion rely on the knowledge or a pre-estimation
of the standard deviation of the noise. The matrix completion problem with unknown variance
of the noise was previously considered in [13] using a different estimator which requires uni-
form sampling. Note also that in [13] the bound on the prediction error is obtained under some
additional condition on the rank and the “spikiness ratio” of the matrix. The construction of the
present paper is valid for more general sampling distributions and does not require such an extra
condition.

The remainder of this paper is organized as follows. In Section 2, we introduce our model
and the assumptions on the sampling scheme. For the reader’s convenience, we also collect no-
tation which we use throughout the paper. In Section 3 we consider matrix completion in the
case of known variance of the noise. We define our estimator and prove Theorem 3 which gives
a general bound on its Frobenius error conditionally on bounds for the stochastic terms. Theo-
rem 7, provides bounds on the Frobenius error of our estimator in closed form. Therefore, we
use bounds on the stochastic terms that we derive in Section 5. To obtain such bounds, we use a
non-commutative extension of the classical Bernstein inequality.

In Section 4, we consider the case when the variance of the noise is unknown. Our construction
uses the idea of “square-root” estimators, first introduced by Belloni et al. [1] in the case of the
square-root Lasso estimator. Theorem 10, shows that our estimator has the same performances
as previously considered estimators which require the knowledge of the standard deviation of the
noise and of the sampling distribution.

2. Preliminaries

2.1. Model and sampling scheme

Let A0 ∈ R
m1×m2 be an unknown matrix, and consider the observations (Xi, Yi) satisfying the

trace regression model

Yi = tr
(
XT

i A0
) + σξi, i = 1, . . . , n. (1)

The noise variables ξi are independent, with E(ξi) = 0 and E(ξ2
i ) = 1; Xi are random matrices of

dimension m1 ×m2 and tr(A) denotes the trace of the matrix A. Assume that the design matrices
Xi are i.i.d. copies of a random matrix X having distribution � on the set

X = {
ej (m1)e

T
k (m2),1 ≤ j ≤ m1,1 ≤ k ≤ m2

}
, (2)

where el(m) are the canonical basis vectors in R
m. Then, the problem of estimating A0 coincides

with the problem of matrix completion with random sampling distribution �.
One of the particular settings of this problem is the Uniform Sampling at Random (USR)

matrix completion which corresponds to the uniform distribution �. We consider a more general
weighted sampling model. More precisely, let πjk = P(X = ej (m1)e

T
k (m2)) be the probability to

observe the (j, k)th entry. Let us denote by Ck = ∑m1
j=1 πjk the probability to observe an element

from the kth column and by Rj = ∑m2
k=1 πjk the probability to observe an element from the j th

row. Observe that maxi,j (Ci,Rj ) ≥ 1/min(m1,m2).
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As it was shown in [24], the trace-norm penalization fails in the specific situation when the
row/column marginal distribution is such that some columns or rows are sampled with very
high probability (for more details, see [7,24]). To avoid such a situation, we need the following
assumption on the sampling distribution:

Assumption 1. There exists a positive constant L ≥ 1 such that

max
i,j

(Ci,Rj ) ≤ L/min(m1,m2).

In order to get bounds in the Frobenius norm, we suppose that each element is sampled with
positive probability:

Assumption 2. There exists a positive constant μ ≥ 1 such that

πjk ≥ (μm1m2)
−1.

In the case of uniform distribution L = μ = 1. Let us set ‖A‖2
L2(�)

= E(〈A,X〉2). Assump-
tion 2 implies that

‖A‖2
L2(�) ≥ (m1m2μ)−1‖A‖2

2. (3)

2.2. Notation

We provide a brief summary of the notation used throughout this paper. Let A,B be matrices in
R

m1×m2 .

• We define the scalar product 〈A,B〉 = tr(AT B).
• For 0 < q < ∞ the Schatten-q (quasi-)norm of the matrix A is defined by

‖A‖q =
(min(m1,m2)∑

j=1

σj (A)q

)1/q

and ‖A‖ = σ1(A),

where (σj (A))j are the singular values of A ordered decreasingly.
• ‖A‖∞ = maxi,j |aij | where A = (aij ).
• Let πi,j = P(X = ei(m1)e

T
j (m2)) be the probability to observe the (i, j)th element.

• For j = 1, . . . ,m2, Cj = ∑m1
i=1 πij and for i = 1, . . . ,m1, Ri = ∑m2

j=1 πij .
• R = diag(R1, . . . ,Rm1) and C = diag(C1, . . . ,Cm2).• Let M = max(m1,m2), m = min(m1,m2) and d = m1 + m2.
• ‖A‖2

L2(�) = E(〈A,X〉2).
• Let {εi}ni=1 be an i.i.d. Rademacher sequence and we define

�R = 1

n

n∑
i=1

εiXi and � = σ

n

n∑
i=1

ξiXi. (4)
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• Define the observation operator � : Rm1×m2 → R
n as (�(A))i = 〈Xi,A〉.

• Q(A) =
√

1
n

∑n
i=1(Yi − 〈Xi,A〉)2.

3. Matrix completion with known variance of the noise

In this section, we consider the matrix completion problem when the variance of the noise is
known. We define the following estimator of A0:

Â = arg min
‖A‖∞≤a

{
1

n

n∑
i=1

(
Yi − 〈Xi,A〉)2 + λ‖A‖1

}
, (5)

where λ > 0 is a regularization parameter and a is an upper bound on ‖A0‖∞. This is a restricted
version of the matrix LASSO estimator. The matrix LASSO estimator is based on a trade-off
between fitting the target matrix to the data using least squares and minimizing the nuclear norm
and it has been studied by a number of authors (see, e.g., [4,20,23]).

A restricted version of a slightly different estimator, penalised by a weighted nuclear norm
‖√RA

√
C‖1, was first considered by Negahban and Wainwright in [21]. Here R and C are di-

agonal matrices with diagonal entries {Rj , j = 1, . . . ,m1} and {Ck, k = 1, . . . ,m2}, respectively.
In [21], the domain of optimization is the following one{

A :‖A‖ω(∞) ≤ α∗
√

m1m2

}
, (6)

where α∗ is a bound on the “spikiness ratio” αsp =
√

m1m2‖A0‖ω(∞)

‖A0‖ω(2)
of the unknown matrix A0.

Here ‖A‖ω(∞) = ‖√RA
√

C‖∞ and ‖A‖ω(2) = ‖√RA
√

C‖2. In the particular setting of the
uniform sampling (6) gives {

A :‖A‖∞ ≤ α
}
,

where α is an upper bound on the “spikiness ratio”
√

m1m2‖A0‖∞
‖A0‖2

.

The following theorem gives a general upper bound on the prediction error of estimator Â

given by (5). Its proof is given in Appendix A. The stochastic terms ‖�‖ and ‖�R‖ play a key
role in what follows.

Theorem 3. Let Xi be i.i.d. with distribution � on X which satisfies Assumptions 1 and 2 and
λ > 3‖�‖. Assume that ‖A0‖∞ ≤ a for some constant a. Then, there exist numerical constants
(c1, c2) such that

‖Â − A0‖2
2

m1m2
≤ max

{
c1μ

2m1m2 rank(A0)
(
λ2 + a2(

E
(‖�R‖))2)

, c2a2μ

√
log(d)

n

}

with probability at least 1 − 2
d

, where d = m1 + m2.
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In order to get a bound in a closed form, we need to obtain suitable upper bounds on E(‖�R‖)
and, with probability close to 1, on ‖�‖. We will obtain such bounds in the case of sub-
exponential noise, that is, under the following assumption:

Assumption 4.

max
i=1,...,n

E exp
(|ξi |/K

)
< ∞.

Let K > 0 be a constant such that maxi=1,...,n E exp(|ξi |/K) ≤ e. The following two lemmas
give bounds on ‖�‖ and E(‖�R‖). We prove them in Section 5 using the non-commutative
Bernstein inequality.

Lemma 5. Let Xi be i.i.d. with distribution � on X which satisfies Assumptions 1 and 2. Assume
that (ζi)

n
i=1 are independent with E(ζi) = 0, E(ζ 2

i ) = 1 and satisfy Assumption 4. Then, there
exists an absolute constant C∗ > 0 that depends only on K and such that, for all t > 0 with
probability at least 1 − e−t we have∥∥∥∥∥1

n

n∑
i=1

ζiXi

∥∥∥∥∥ ≤ C∗ max

{√
L(t + log(d))

mn
,

log(m)(t + log(d))

n

}
, (7)

where d = m1 + m2.

Lemma 6. Let Xi be i.i.d. with distribution � on X which satisfies Assumptions 1 and 2. Assume
that (ζi)

n
i=1 are independent with E(ζi) = 0, E(ζ 2

i ) = 1 and satisfy Assumption 4. Then, for
n ≥ m log3(d)/L, there exists an absolute constant C∗ > 0 such that

E

∥∥∥∥∥1

n

n∑
i=1

ζiXi

∥∥∥∥∥ ≤ C∗
√

2eL log(d)

nm
,

where d = m1 + m2.

An optimal choice of the parameter t in these lemmas is t = log(d). Larger t leads to a slower
rate of convergence and a smaller t does not improve the rate but makes the concentration prob-
ability smaller. With this choice of t the second terms in the maximum in (7) is negligible for
n > n∗ where n∗ = 2 log2(d)m/L. Then, we can choose

λ = 3C∗σ
√

2L log(d)

mn
, (8)

where C∗ is an absolute numerical constant which depends only on K . If ξi are N(0,1), then
we can take C∗ = 6.5 (see Lemma 4 in [13]). With this choice of λ, we obtain the following
theorem.
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Theorem 7. Let Xi be i.i.d. with distribution � on X which satisfies Assumptions 1 and 2.
Assume that ‖A0‖∞ ≤ a for some constant a and that Assumption 4 holds. Consider the regular-
ization parameter λ satisfying (8). Then, there exist a numerical constant c′, that depends only
on K , such that

‖Â − A0‖2
2

m1m2
≤ c′ max

{
max

(
σ 2,a2)μ2L

log(d) rank(A0)M

n
,a2μ

√
log(d)

n

}
(9)

with probability greater than 1 − 3/d .

Remarks. Comparison to other works: An important feature of our estimator is that its construc-
tion requires only an upper bound on the maximum absolute value of the entries of A0 (and an
upper bound on the variance of the noise). This condition is very mild. Let us compare this matrix
condition and the bound we obtain with some of the previous works on noisy matrix completion.

We will start with the paper of Keshavan et al. [11]. Their method requires a priori information
on the rank of the unknown matrix as well as a matrix incoherence assumption (which is stated
in terms of the singular vectors of A0). Under a sampling scheme different from ours (uniform
sampling without replacement) and sub-Gaussian errors, the estimator proposed in [11] satisfies,
with high probability, the following bound

‖Â − A0‖2
2

m1m2
� k4√α

M

n
rank(A0) logn. (10)

The symbol � means that the inequality holds up to multiplicative numerical constants, k =
σmax(A0)/σmin(A0) is the condition number and α = (m1 ∨ m2)/(m1 ∧ m2) is the aspect ratio.
Comparing (10) and (9), we see that our bound is better: it does not involve the multiplicative
coefficient k4√α which can be big.

Wainwright et al. in [21] propose an estimator which uses a priori information on the “spiki-

ness ratio” αsp =
√

m1m2‖A0‖∞
‖A0‖2

of A0. This method requires αsp bounded by a constant, say α∗,
in which case the estimator proposed in [21] satisfies the following bound

‖Â − A0‖2
ω(2)

m1m2
� α2∗

M

n
rank(A0) logm. (11)

In the case of uniform sampling and bounded “spikiness ratio” this bound coincides with the
bound given by Theorem 7. An important advantage of our method is that the sampling distribu-
tion does not need to be equal to a product distribution (i.e., πij need not be equal to RiCj ) as is
required in [21].

The methods proposed in [13,14,18] use the uniform sampling. Similarly to our construction,
an a priori bound on ‖A0‖∞ is required. An important difference is that, in these papers, the
bound on ‖A0‖∞ is used in the choice of the regularization parameter λ. This implies that the
convex functional which is minimized in order to obtain Â depends on a. A too large bound
may jeopardize the exactness of the estimation. In our construction, a determines the ball over
which we are minimizing our convex functional, which itself is independent of a. Our estimator
achieves the same bound as the estimators proposed in these papers.
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Minimax optimality: If we consider the matrix completion setting (i.e., n ≤ m1m2), then, the
maximum in (9) is given by its first therm. In the case of Gaussian errors and under the additional
assumption that πjk ≤ μ1

m1m2
for some constant μ1 ≥ 1 this rate of convergence is minimax op-

timal (cf. Theorem 5 of [18]). This optimality holds for the class of matrices A(r, a) defined as
follows: for given r and a A0 ∈ A(r, a) if and only if the rank of A0 is not larger than r and all
the entries of A0 are bounded in absolute value by a.

Possible extensions: The techniques developed in this paper may also be used to analyse
weighted trace norm penalty similar to one used in [7,21].

4. Matrix completion with unknown variance of the noise

In this section, we propose a new estimator for the matrix completion problem in the case when
the variance of the noise σ is unknown. Our construction is inspired by the square-root Lasso
estimator proposed in [1]. We define the following estimator of A0:

ÂSQ = arg min
‖A‖∞≤a

{√√√√1

n

n∑
i=1

(
Yi − 〈Xi,A〉)2 + λ‖A‖1

}
, (12)

where λ > 0 is a regularization parameter and a is an upper bound on ‖A0‖∞. Note that the
first term of this estimator is the square root of the data-dependent term of the estimator that
we considered in Section 3. This is similar to the principle used to define the square-root Lasso
estimator for the usual vector regression model.

Let us set ρ = 1
16μm1m2 rank(A0)

. The following theorem gives a general upper bound on the

prediction error of the estimator ÂSQ. Its proof is given in Appendix D.

Theorem 8. Let Xi be i.i.d. with distribution � on X which satisfies Assumptions 1 and 2.
Assume that ‖A0‖∞ ≤ a for some constant a and

√
ρ ≥ λ ≥ 3‖�‖/Q(A0). Then, there exist

numerical constants c′
1, that depends only on K , such that with probability at least 1 − 2

d

‖ÂSQ − A0‖2
2

m1m2
≤ c′

1 max

{
μ2m1m2 rank(A0)

(
Q2(A0)λ

2 + a2(
E

(‖�R‖))2)
,

a2μ

√
log(d)

n

}
,

where Q(A0) = σ

√
1
n

∑n
i=1 ξ2

i .

In order to get a bound on the prediction risk in a closed form, we use the bounds on ‖�‖
and E(‖�R‖) given by Lemmas 5 and 6 taking t = log(d). It remains to bound Q(A0) =
σ

√
1
n

∑n
i=1 ξ2

i . We consider the case of sub-Gaussian noise:
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Assumption 9. There exists a constant K such that

E
[
exp(tξi)

] ≤ exp
(
t2/2K

)
for all t > 0.

Note that condition Eξ2
i = 1 implies that K ≤ 1. Under Assumption 9, ξ2

i are sub-exponential
random variables. Then, the Bernstein inequality for sub-exponential random variables implies
that, there exists a numerical constant c3 such that, with probability at least 1−2 exp{−c3n}, one
has

3σ/2 ≥ Q(A0) ≥ σ/2. (13)

Using Lemma 5 and the right-hand side of (13), for n ≥ 2 log2(d)m/L, we can take

λ = 6C∗
√

2L log(d)

mn
. (14)

Note that λ does not depend on σ and satisfies the two conditions required in Theorem 8. We
have that

λ ≥ 3‖�‖/Q(A0) (15)

with probability greater then 1 − 1/d − 2 exp{−c3n} and

λ2 ≤ 1

16μm1m2 rank(A0)
(16)

for n large enough, more precisely, for n such that

n ≥ c4μLM rank(A0) log(d), (17)

where c4 = 576(C∗)2. We obtain the following theorem.

Theorem 10. Let Xi be i.i.d. with distribution � on X which satisfies Assumptions 1 and 2.
Assume that ‖A0‖∞ ≤ a for some constant a and that Assumption 9 holds. Consider the regular-
ization parameter λ satisfying (14) and n satisfying (17). Then, there exist numerical constants
(c′′, c3) such that,

‖ÂSQ − A0‖2
2

m1m2
≤ c′′ max

{
max

(
σ 2,a2)μ2L

log(d) rank(A0)M

n
,a2μ

√
log(d)

n

}
(18)

with probability greater than 1 − 3/d − 2 exp{−c3n}.

Note that condition (17) is not restrictive: indeed the sampling sizes n satisfying condition
(17) are of the same order of magnitude as those for which the normalized Frobenius error of
our estimator is small. Thus, Theorem 10 shows, that ÂSQ has the same prediction performances
as previously proposed estimators which rely on the knowledge of the standard deviation of the
noise and of the sampling distribution.
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5. Bounds on the stochastic errors

In this section, we will obtain the upper bounds for the stochastic errors ‖�R‖ and E(‖�R‖)
defined in (4). In order to obtain such bounds, we use the matrix version of Bernstein’s inequal-
ity. The following proposition is obtained by an extension of Theorem 4 in [15] to rectangular
matrices via self-adjoint dilation (cf., for example, 2.6 in [25]). Let Z1, . . . ,Zn be independent
random matrices with dimensions m1 × m2. Define

σZ = max

{∥∥∥∥∥1

n

n∑
i=1

E
(
ZiZ

T
i

)∥∥∥∥∥
1/2

,

∥∥∥∥∥1

n

n∑
i=1

E
(
Z

T

i Zi

)∥∥∥∥∥
1/2}

and

Ui = inf
{
K > 0 : E exp

(‖Zi‖/K
) ≤ e

}
.

Proposition 11. Let Z1, . . . ,Zn be independent random matrices with dimensions m1 ×m2 that
satisfy E(Zi) = 0. Suppose that Ui < U for some constant U and all i = 1, . . . , n. Then, there
exists an absolute constant c∗, such that, for all t > 0, with probability at least 1 − e−t we have∥∥∥∥∥1

n

n∑
i=1

Zi

∥∥∥∥∥ ≤ c∗ max

{
σZ

√
t + log(d)

n
,U

(
log

U

σZ

)
t + log(d)

n

}
,

where d = m1 + m2.

5.1. Proof of Lemma 5

We apply Proposition 11 to Zi = ζiXi . We first estimate σZ and U . Note that Zi is a zero-mean
random matrix which satisfies

‖Zi‖ ≤ |ζi |.
Then, Assumption 4 implies that there exists a constant K such that Ui ≤ K for all i = 1, . . . , n.
We compute

E
(
ZiZ

T
i

) = R and E
(
ZT

i Zi

) = C,

where C (resp., R) is the diagonal matrix with Ck (resp., Rj ) on the diagonal. This and the fact
that the Xi are i.i.d. imply that

σ 2
Z = max

i,j
(Ci,Rj ) ≤ L/m.

Note that maxi,j (Ci,Rj ) ≥ 1/m which implies that log(K/σZ) ≤ log(Km) and the statement of
Lemma 5 follows.



292 O. Klopp

5.2. Proof of Lemma 6

The proof follows the lines of the proof of Lemma 7 in [14]. For sake of completeness, we give
it here. Set t∗ = Ln

m log2(m)
− log(d). t∗ is the value of t such that the two terms in (7) are equal.

Note that Lemma 5 implies that

P

(∥∥∥∥∥1

n

n∑
i=1

ζiXi

∥∥∥∥∥ > t

)
≤ d exp

{−t2nm/
((

C∗)2
L

)}
for t ≤ t∗ (19)

and

P

(∥∥∥∥∥1

n

n∑
i=1

ζiXi

∥∥∥∥∥ > t

)
≤ d exp

{−tn/
(
C∗ log(m)

)}
for t ≥ t∗. (20)

We set ν1 = nm/((C∗)2L), ν2 = n/(C∗ log(m)). By Hölder’s inequality, we get

E

∥∥∥∥∥1

n

n∑
i=1

ζiXi

∥∥∥∥∥ ≤
(

E

∥∥∥∥∥1

n

n∑
i=1

ζiXi

∥∥∥∥∥
2 log(d))1/(2 log(d))

.

The inequalities (19) and (20) imply that

(
E

∥∥∥∥∥1

n

n∑
i=1

ζiXi

∥∥∥∥∥
2 log(d))1/2 log(d)

=
(∫ +∞

0
P

(∥∥∥∥∥1

n

n∑
i=1

ζiXi

∥∥∥∥∥ > t1/(2 log(d))

)
dt

)1/2 log(d)

(21)

≤
(

d

∫ +∞

0
exp

{−t1/ log(d)ν1
}

dt + d

∫ +∞

0
exp

{−t1/(2 log(d)ν2
}

dt

)1/2 log(d)

≤ √
e
(
log(d)ν

− log(d)

1 �
(
log(d)

) + 2 log(d)ν
−2 log(d)

2 �
(
2 log(d)

))1/(2 log(d))
.

The Gamma-function satisfies the following bound:

for x ≥ 2 �(x) ≤
(

x

2

)x−1

(22)

(see, e.g., [14]). Plugging this into (21), we compute

E

∥∥∥∥∥1

n

n∑
i=1

ζiXi

∥∥∥∥∥
≤ √

e
((

log(d)
)log(d)

ν
− log(d)

1 21−log(d) + 2
(
log(d)

)2 log(d)
ν

−2 log(d)

2

)1/(2 log(d))
.
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Observe that n > n∗ implies ν1 log(d) ≤ ν2
2 and we obtain

E

∥∥∥∥∥1

n

n∑
i=1

ζiXi

∥∥∥∥∥ ≤
√

2e log(d)

ν1
. (23)

We conclude the proof by plugging ν1 = nm/((C∗)2L) into (23).

Appendix A: Proof of Theorem 3

It follows from the definition of the estimator Â that

1

n

n∑
i=1

(
Yi − 〈Xi, Â〉)2 + λ‖Â‖1 ≤ 1

n

n∑
i=1

(
Yi − 〈Xi,A0〉

)2 + λ‖A0‖1,

which, using (1), implies

1

n

n∑
i=1

(〈Xi,A0〉 + σξi − 〈Xi, Â〉)2 + λ‖Â‖1 ≤ σ 2

n

n∑
i=1

ξ2
i + λ‖A0‖1.

Hence,

1

n

n∑
i=1

〈Xi,A0 − Â〉2 + 2〈�,A0 − Â〉 + λ‖Â‖1 ≤ λ‖A0‖1,

where � = σ
n

∑n
i=1 ξiXi . Then, by the duality between the nuclear and the operator norms, we

obtain
1

n

∥∥�(A0 − Â)
∥∥2

2 + λ‖Â‖1 ≤ 2‖�‖‖A0 − Â‖1 + λ‖A0‖1. (24)

Let PS be the projector on the linear vector subspace S and let S⊥ be the orthogonal com-
plement of S. Let uj (A) and vj (A) denote, respectively, the left and right orthonormal singular
vectors of A. S1(A) is the linear span of {uj (A)}, S2(A) is the linear span of {vj (A)}. We set

P⊥
A(B) = PS⊥

1 (A)BPS⊥
2 (A) and PA(B) = B − P⊥

A(B). (25)

By definition of P⊥
A0

, for any matrix B , the singular vectors of P⊥
A0

(B) are orthogonal to

the space spanned by the singular vectors of A0. This implies that ‖A0 + P⊥
A0

(Â − A0)‖1 =
‖A0‖1 + ‖P⊥

A0
(Â − A0)‖1. Then

‖Â‖1 = ‖A0 + Â − A0‖1 = ∥∥A0 + P⊥
A0

(Â − A0) + PA0(Â − A0)
∥∥

1

≥ ∥∥A0 + P⊥
A0

(Â − A0)
∥∥

1 − ∥∥PA0(Â − A0)
∥∥

1 (26)

= ‖A0‖1 + ∥∥P⊥
A0

(Â − A0)
∥∥

1 − ∥∥PA0(Â − A0)
∥∥

1.
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Note that from (26), we get

‖A0‖1 − ‖Â‖1 ≤ ∥∥PA0(A0 − Â)
∥∥

1 − ∥∥P⊥
A0

(A0 − Â)
∥∥

1. (27)

This, the triangle inequality and λ ≥ 3‖�‖ lead to

1

n

∥∥�(A0 − Â)
∥∥2

2 ≤ 2‖�‖∥∥PA0(A0 − Â)
∥∥

1 + λ
∥∥PA0(A0 − Â)

∥∥
1

(28)

≤ 5

3
λ
∥∥PA0(A0 − Â)

∥∥
1.

Since PA(B) = PS⊥
1 (A)BPS2(A) + PS1(A)B and rank(PSi(A)B) ≤ rank(A) we have that

rank(PA(B)) ≤ 2 rank(A). From (28), we compute

1

n

∥∥�(A0 − Â)
∥∥2

2 ≤ 5

3
λ
√

2 rank(A0)‖Â − A0‖2. (29)

For a 0 < r ≤ m, we consider the following constrain set

C(r) =
{
A ∈ R

m1×m2 :‖A‖∞ = 1,‖A‖2
L2(�) ≥

√
64 log(d)

log(6/5)n
,‖A‖1 ≤ √

r‖A‖2

}
. (30)

Note that the condition ‖A‖1 ≤ √
r‖A‖2 is satisfied if rank(A) ≤ r .

The following lemma shows that for matrices A ∈ C(r) the observation operator � satisfies
some approximative restricted isometry. Its proof is given in Appendix B.

Lemma 12. Let Xi be i.i.d. with distribution � on X which satisfies Assumptions 1 and 2. Then,
for all A ∈ C(r)

1

n

∥∥�(A)
∥∥2

2 ≥ 1

2
‖A‖2

L2(�) − 44μrm1m2
(
E

(‖�R‖))2

with probability at least 1 − 2
d

.

We need the following auxiliary lemma which is proven in Appendix E.

Lemma 13. If λ > 3‖�‖ ∥∥P⊥
A0

(Â − A0)
∥∥

1 ≤ 5
∥∥PA0(Â − A0)

∥∥
1.

Lemma 13 implies that

‖Â − A0‖1 ≤ 6
∥∥PA0(Â − A0)

∥∥
1 ≤ √

72 rank(A0)‖Â − A0‖2. (31)

Set a = ‖Â − A0‖∞. By definition of Â, we have that a ≤ 2a. We now consider two cases,
depending on whether the matrix 1

a
(Â − A0) belongs to the set C(72 rank(A0)) or not.
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Case 1: Suppose first that ‖Â − A0‖2
L2(�) < a2

√
64 log(d)
log(6/5)n

, then (3) implies that

‖Â − A0‖2
2

m1m2
≤ 4a2μ

√
64 log(d)

log(6/5)n
(32)

and we get the statement of Theorem 3 in this case.

Case 2: It remains to consider the case ‖Â − A0‖2
L2(�) ≥ a2

√
64 log(d)
log(6/5)n

. Then (31) implies that
1
a
(Â−A0) ∈ C(72 rank(A0)) and we can apply Lemma 12. From Lemma 12 and (29), we obtain

that with probability at least 1 − 2
d

one has

1
2‖Â − A0‖2

L2(�) ≤ 5
3λ

√
2 rank(A0)‖Â − A0‖2 + 3168μa2 rank(A0)m1m2

(
E

(‖�R‖))2

≤ 6λ2μm1m2 rank(A0) + 1
4 (m1m2μ)−1‖Â − A0‖2

2

+ 3168μa2 rank(A0)m1m2
(
E

(‖�R‖))2
.

Now (3) and a ≤ 2a imply that, there exist numerical constants c1 such that

‖Â − A0‖2
2 ≤ c1(μm1m2)

2 rank(A0)
(
λ2 + a2(

E
(‖�R‖))2)

,

which, together with (32), leads to the statement of the Theorem 3.

Appendix B: Proof of Lemma 12

The main lines of this proof are close to those of the proof of Theorem 1 in [21]. Set E =
44μrm1m2(E(‖�R‖))2. We will show that the probability of the following “bad” event is small

B =
{
∃A ∈ C(r) such that

∣∣∣∣1

n

∥∥�(A)
∥∥2

2 − ‖A‖2
L2(�)

∣∣∣∣ >
1

2
‖A‖2

L2(�) + E
}
.

Note that B contains the complement of the event that we are interested in.
In order to estimate the probability of B, we use a standard peeling argument. Let ν =√
64 log(d)
log(6/5)n

and α = 6
5 . For l ∈ N set

Sl = {
A ∈ C(r) :αl−1ν ≤ ‖A‖2

L2(�) ≤ αlν
}
.

If the event B holds for some matrix A ∈ C(r), then A belongs to some Sl and∣∣∣∣1

n

∥∥�(A)
∥∥2

2 − ‖A‖2
L2(�)

∣∣∣∣ >
1

2
‖A‖2

L2(�) + E

>
1

2
αl−1ν + E (33)

= 5

12
αlν + E .
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For each T > ν consider the following set of matrices

C(r, T ) = {
A ∈ C(r) :‖A‖2

L2(�) ≤ T
}

and the following event

Bl =
{
∃A ∈ C

(
r,αlν

)
:

∣∣∣∣1

n

∥∥�(A)
∥∥2

2 − ‖A‖2
L2(�)

∣∣∣∣ >
5

12
αlν + E

}
.

Note that A ∈ Sl implies that A ∈ C(r, αlν). Then (33) implies that Bl holds and we get B ⊂ ⋃
Bl .

Thus, it is enough to estimate the probability of the simpler event Bl and then apply the union
bound. Such an estimation is given by the following lemma. Its proof is given in Appendix C.
Let

ZT = sup
A∈C(r,T )

∣∣∣∣1

n

∥∥�(A)
∥∥2

2 − ‖A‖2
L2(�)

∣∣∣∣.
Lemma 14. Let Xi be i.i.d. with distribution � on X which satisfies Assumptions 1 and 2. Then,

P
(
ZT > 5

12T + 44μrm1m2
(
E

(‖�R‖))2) ≤ exp
(−c5nT 2),

where c5 = 1
128 .

Lemma 14 implies that P(Bl ) ≤ exp(−c5nα2lν2). Using the union bound, we obtain

P(B) ≤
∞∑
l=1

P(Bl)

≤
∞∑
l=1

exp
(−c5nα2lν2)

≤
∞∑
l=1

exp
(−(

2c5n log(α)ν2)l),

where we used ex ≥ x. We finally compute for ν =
√

64 log(d)
log(6/5)n

P(B) ≤ exp(−2c5n log(α)ν2)

1 − exp(−2c5n log(α)ν2)
= exp(− log(d))

1 − exp(− log(d))
.

This completes the proof of Lemma 12.

Remark. As we mentioned in the beginning, the main lines of this proof are close to those of the
proof of Theorem 1 in [21]. Let us briefly discuss the main differences between these two proofs.
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Similarly to Theorem 1 in [21] we prove a kind of “restricted strong convexity” on a constrain
set. However, our constrain set defined by (30) is quite different from the one introduced in [21]:

C(n; c0) =
{
A ∈ R

m1×m2 :
√

m1m2‖A‖1‖A‖∞
‖A‖2

2

≤ 1

c0

√
n

d log(d)

}
.

The present proof is also less involved (e.g., we do not need use the covering argument used
in [21]). One important ingredient of our proof is a more efficient control of E‖�R‖ given by
Lemma 6 (compare with Lemma 6 in [21]).

Appendix C: Proof of Lemma 14

Our approach is standard: first we show that ZT concentrates around its expectation and then we
upper bound the expectation.

By definition, ZT = supA∈C(r,T ) | 1
n

∑n
i=1〈Xi,A〉2 − E(〈X,A〉2)|. Massart’s concentration in-

equality (see, e.g., [2], Theorem 14.2) implies that

P
(
ZT ≥ E(ZT ) + 1

9

( 5
12T

)) ≤ exp
(−c5nT 2), (34)

where c5 = 1
128 . Next, we bound the expectation E(ZT ). Using a standard symmetrization argu-

ment (see, e.g., [16], Theorem 2.1), we obtain

E(ZT ) = E

(
sup

A∈C(r,T )

∣∣∣∣∣1

n

n∑
i=1

〈Xi,A〉2 − E
(〈X,A〉2)∣∣∣∣∣

)

≤ 2E

(
sup

A∈C(r,T )

∣∣∣∣∣1

n

n∑
i=1

εi〈Xi,A〉2

∣∣∣∣∣
)

,

where {εi}ni=1 is an i.i.d. Rademacher sequence. The assumption ‖A‖∞ = 1 implies |〈Xi,A〉| ≤
1. Then, the contraction inequality (see, e.g., [16]) yields

E(ZT ) ≤ 8E

(
sup

A∈C(r,T )

∣∣∣∣∣1

n

n∑
i=1

εi〈Xi,A〉
∣∣∣∣∣
)

= 8E

(
sup

A∈C(r,T )

∣∣〈�R,A〉∣∣),

where �R = 1
n

∑n
i=1 εiXi . For A ∈ C(r, T ), we have that

‖A‖1 ≤ √
r‖A‖2

≤ √
μrm1m2‖A‖L2(�)

≤ √
μm1m2rT ,

where we have used (3). Then, by the duality between nuclear and operator norms, we compute

E(ZT ) ≤ 8E

(
sup

‖A‖1≤√
μm1m2rT

∣∣〈�R,A〉∣∣) ≤ 8
√

μm1m2rT E
(‖�R‖).
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Finally, using

1
9

( 5
12T

) + 8
√

μm1m2rT E
(‖�R‖) ≤ ( 1

9 + 8
9

) 5
12T + 44μrm1m2

(
E

(‖�R‖))2

and the concentration bound (34), we obtain that

P
(
ZT > 5

12T + 44μrm1m2
(
E

(‖�R‖))2) ≤ exp
(−c5nT 2)

with c5 = 1
128 as stated.

Appendix D: Proof of Theorem 8

Let us set � = A0 − ÂSQ and Q(A) =
√

1
n

∑n
i=1(Yi − 〈Xi,A〉)2. We have that

Q2(ÂSQ) − Q2(A0) = 1

n

∥∥�(�)
∥∥2

2 + 2

〈
σ

n

n∑
i=1

ξiXi,�

〉

= 1

n

∥∥�(�)
∥∥2

2 + 2〈�,�〉,

where � = σ
n

∑n
i=1 ξiXi . This implies

1

n

∥∥�(�)
∥∥2

2 = −2〈�,�〉 + (
Q(ÂSQ) − Q(A0)

)(
Q(ÂSQ) + Q(A0)

)
. (35)

We need the following auxiliary lemma which is proven in Appendix F (P⊥
A0

and PA0 are defined
in (25)).

Lemma 15. If λ > 3‖�‖/Q(A0), then∥∥P⊥
A0

(�)
∥∥

1 ≤ 2
∥∥PA0(�)

∥∥
1,

where � = ÂSQ − A0.

Note that from (26) we get

‖A0‖1 − ‖ÂSQ‖1 ≤ ∥∥PA0(�)
∥∥

1 − ∥∥P⊥
A0

(�)
∥∥

1. (36)

The definition of ÂSQ and (36) imply that

Q(A0) + Q(ÂSQ) ≤ 2Q(A0) + λ
(‖A0‖1 − ‖ÂSQ‖1

)
(37)

≤ 2Q(A0) + λ
(∥∥PA0(�)

∥∥
1 − ∥∥P⊥

A0
(�)

∥∥
1

)
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and

Q(ÂSQ) − Q(A0) ≤ λ
(‖A0‖1 − ‖ÂSQ‖1

)
≤ λ

(∥∥PA0(�)
∥∥

1 − ∥∥P⊥
A0

(�)
∥∥

1

)
(38)

≤ λ
(
2
∥∥PA0(�)

∥∥
1 − ∥∥P⊥

A0
(�)

∥∥
1

)
.

Lemma 15 implies that 2‖PA0(�)‖1 − ‖P⊥
A0

(�)‖1 ≥ 0. From (37) and (38), we compute

(
Q(ÂSQ) − Q(A0)

)(
Q(ÂSQ) + Q(A0)

)
≤ λ

(
2
∥∥PA0(�)

∥∥
1 − ∥∥P⊥

A0
(�)

∥∥
1

)(
2Q(A0) + λ

(∥∥PA0(�)
∥∥

1 − ∥∥P⊥
A0

(�)
∥∥

1

))
(39)

= λQ(A0)
∥∥PA0(�)

∥∥
1 − 2λQ(A0)

∥∥P⊥
A0

(�)
∥∥

1

+ 2λ2
∥∥PA0(�)

∥∥2
1 + λ2

∥∥P⊥
A0

(�)
∥∥2

1 − 3λ2
∥∥PA0(�)

∥∥
1

∥∥P⊥
A0

(�)
∥∥

1.

Lemma 15 implies that λ2‖P⊥
A0

(�)‖2
1 − 3λ2‖PA0(�)‖1‖P⊥

A0
(�)‖1 ≤ 0 and we obtain from (39)

(
Q(ÂSQ) − Q(A0)

)(
Q(ÂSQ) + Q(A0)

)
(40)

≤ 4λQ(A0)
∥∥PA0(�)

∥∥
1 − 2λQ(A0)

∥∥P⊥
A0

(�)
∥∥

1 + 2λ2
∥∥PA0(�)

∥∥2
1.

Plugging (40) into (35), we get

1

n

∥∥�(�)
∥∥2

2 ≤ −2〈�,�〉 + 4λQ(A0)
∥∥PA0(�)

∥∥
1

− 2λQ(A0)
∥∥P⊥

A0
(�)

∥∥
1 + 2λ2

∥∥PA0(�)
∥∥2

1.

Then, by the duality between the nuclear and the operator norms, we obtain

1

n

∥∥�(�)
∥∥2

2 ≤ 2‖�‖∥∥PA0(�)
∥∥

1 + 2‖�‖∥∥P⊥
A0

(�)
∥∥

1

+ 4λQ(A0)
∥∥PA0(�)

∥∥
1 − 2λQ(A0)

∥∥P⊥
A0

(�)
∥∥

1

+ 2λ2
∥∥PA0(�)

∥∥2
1.

Using λQ(A0) ≥ 3‖�‖ we compute

1

n

∥∥�(�)
∥∥2

2 ≤ 14

3
λQ(A0)

∥∥PA0(�)
∥∥

1 + 2λ2
∥∥PA0(�)

∥∥2
1,

which leads to

1

n

∥∥�(�)
∥∥2

2 ≤ 14

3
λQ(A0)

√
2 rank(A0)‖�‖2 + 4λ2 rank(A0)‖�‖2

2.
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The condition 4μm1m2λ
2 rank(A0) ≤ 1/4 implies that

1

n

∥∥�(�)
∥∥2

2 ≤ 14

3
λQ(A0)

√
2 rank(A0)‖�‖2 + ‖�‖2

2

4μm1m2
. (41)

Set a = ‖ÂSQ − A0‖∞. By the definition of ÂSQ we have that a ≤ 2a. We now consider two
cases, depending on whether the matrix 1

a
(ÂSQ − A0) belongs or not to the set C(18 rank(A0)).

Case 1: Suppose first that ‖ÂSQ − A0‖2
L2(�) < a2

√
64 log(d)
log(6/5)n

, then (3) implies that

‖ÂSQ − A0‖2
2

m1m2
≤ 4a2μ

√
64 log(d)

log(6/5)n
(42)

and we get the statement of the Theorem 8 in this case.

Case 2: It remains to consider the case ‖ÂSQ − A0‖2
L2(�) ≥ a2

√
64 log(d)
log(6/5)n

. Lemma 15 implies

that 1
a
(ÂSQ −A0) ∈ C(18 rank(A0)) and we can apply Lemma 12. From Lemma 12, (3) and (41)

we obtain that, with probability at least 1 − 2
d

one has

‖�‖2
2

2μm1m2
≤ 14

3
λQ(A0)

√
2 rank(A0)‖�‖2 + ‖�‖2

2

4μm1m2

+ 792a2μm1m2 rank(A0)
(
E

(‖�R‖))2
.

A simple calculation yields

( ‖�‖2

2
√

μm1m2
− 14

3
λQ(A0)

√
2 rank(A0)μm1m2

)2

≤
(

14

3
λQ(A0)

√
2 rank(A0)μm1m2

)2

+ 792a2μm1m2 rank(A0)
(
E

(‖�R‖))2

and

‖�‖2

2
√

μm1m2
≤ 28

3
λQ(A0)

√
2 rank(A0)μm1m2

(43)

+
√

792a2μm1m2 rank(A0)
(
E

(‖�R‖))2
.

This and a ≤ 2a imply that, there exist numerical constant c′
1 such that

‖ÂSQ − A0‖2
2

m1m2
≤ c′

1μ
2m1m2

(
Q2(A0)λ

2 rank(A0) + a2 rank(A0)
(
E

(‖�R‖))2)
,

which, together with (42), leads to the statement of the Theorem 8.
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Appendix E: Proof of Lemma 13

By the convexity of Q2(A) and using λ ≥ 3� we have

Q2(Â) − Q2(A0) ≥ −2

n

n∑
i=1

(
Yi − 〈Xi,A0〉

)〈Xi, Â − A0〉

= −2〈�, Â − A0〉
≥ −2‖�‖‖Â − A0‖1

≥ −2

3
λ‖Â − A0‖1.

Using the definition of Â, we compute

λ‖Â‖1 − λ‖A0‖1 ≤ Q2(A0) − Q2(Â)

≤ 2
3λ‖Â − A0‖1.

This and (26) implies that ∥∥P⊥
A0

(Â − A0)
∥∥

1 ≤ 5
∥∥PA0(Â − A0)

∥∥
1

as stated.

Appendix F: Proof of Lemma 15

By the convexity of Q(A), we have

Q(ÂSQ) − Q(A0) ≥ −(
∑n

i=1(Yi − 〈Xi,A0〉)〈Xi, ÂSQ − A0〉)/n

Q(A0)

= −〈�, ÂSQ − A0〉
Q(A0)

≥ − ‖�‖
Q(A0)

‖ÂSQ − A0‖1

≥ −1

3
λ‖ÂSQ − A0‖1.

Using the definition of ÂSQ, we compute

λ‖ÂSQ‖1 − λ‖A0‖1 ≤ Q(A0) − Q(ÂSQ)

≤ 1
3λ‖ÂSQ − A0‖1.



302 O. Klopp

Then (26) and the triangle inequality imply∥∥P⊥
A0

(Â − A0)
∥∥

1 − ∥∥PA0(Â − A0)
∥∥

1 ≤ 1
3

(∥∥P⊥
A0

(Â − A0)
∥∥

1 + ∥∥PA0(Â − A0)
∥∥

1

)
and the statement of Lemma 15 follows.
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