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We study prediction in the functional linear model with functional outputs, Y = SX + ε, where the covari-
ates X and Y belong to some functional space and S is a linear operator. We provide the asymptotic mean
square prediction error for a random input with exact constants for our estimator which is based on the
functional PCA of X. As a consequence we derive the optimal choice of the dimension kn of the projection
space. The rates we obtain are optimal in minimax sense and generalize those found when the output is
real. Our main results hold for class of inputs X(·) that may be either very irregular or very smooth. We
also prove a central limit theorem for the predictor. We show that, due to the underlying inverse problem,
the bare estimate cannot converge in distribution for the norm of the function space.

Keywords: functional data; functional output; linear regression model; optimality; prediction mean square
error; weak convergence

1. Introduction

1.1. The model

Functional data analysis has become these last years an important field in statistical research,
showing a lot of possibilities of applications in many domains (climatology, teledetection, lin-
guistics, economics, . . .). When one is interested on a phenomenon continuously indexed by time,
for instance, it seems appropriate to consider this phenomenon as a whole curve. Practical as-
pects also go in this direction, since actual technologies allow to collect data on thin discretized
grids. The paper by Ramsay and Dalzell [18] began to pave the way in favour of this idea of
taking into account the functional nature of these data, and highlighted the drawbacks of consid-
ering a multivariate point of view. A major reference in this domain is the monograph by Ramsay
and Silverman [19] which gives an overview about the philosophy and the basic models involv-
ing functional data. Important nonparametric issues are treated in the monograph by Ferraty and
Vieu [13].

A particular problem in statistics is to predict the value of an interest variable Y knowing a
covariate X. An underlying model can then write:

Y = r(X) + ε,

where r is an operator representing the link between the variables X and Y and ε is a noise
random variable. In our functional data context, we want to consider that both variables X and
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Y are of functional nature, that is, are random functions taking values on an interval I = [a, b]
of R. We assume that X and Y take values in the space L2(I ) of square integrable on I . In the
following and in order to simplify, we assume that I = [0,1], which is not restrictive since the
simple transformation x �−→ (x − a)/(b − a) allows to come back to that case.

We assume as well that X and Y are centered. The issue of estimating the means E(X) and
E(Y ) in order to center the data was exhaustively treated in the literature and is of minor interest
in our setting. The objective of this paper is to consider the model with functional input and
output:

Y(t) =
∫ 1

0
S(s, t)X(s)ds + ε(t), E(ε|X) = 0, E(ε ⊗ ε|X) = E(ε ⊗ ε) = �ε, (1)

where S(·, ·) is an integrable kernel:
∫∫ |S(s, t)|ds dt < +∞ and �ε is the covariance operator

of ε (the homoskedasticity of the errors is assumed). The kernel S may be represented on a
3D-plot by a surface. The functional historical model (Malfait and Ramsay [17]) is

Y(t) =
∫ t

0
Shist(s, t)X(s)ds + ε(t)

and may be recovered from the first model be setting S(s, t) = Shist(s, t)1{s≤t}, the surface defin-
ing S being null when (s, t) is located in the triangle above the first diagonal of the unit square.

Model (1) may be viewed as a random Fredholm equation where both the input an the output
are random (or noisy). This model has already been the subject of some studies, as, for instance,
Chiou, Müller and Wang [8] or Yao, Müller and Wang [23], which propose an estimation of the
functional parameter S using functional PCAs of the curves X and Y . One of the first studies
about this model is due to Cuevas, Febrero and Fraiman [10] which considered the case of a
fixed design. In this somewhat different context, they study an estimation of the functional co-
efficient of the model and give consistency results for this estimator. Recently, Antoch et al. [2]
proposed a spline estimator of the functional coefficient in the functional linear model with a
functional response, while Aguilera, Ocaña and Valderrama [1] proposed a wavelet estimation of
this coefficient.

We start with a sample (Yi,Xi)1≤i≤n with the same law as (Y,X), and we consider a new
observation Xn+1. In all the paper, our goal will be to predict the value of the conditional expec-
tation evaluated at a new random input E[Y |Xn+1].

The model (1) may be revisited if one acknowledges that
∫ 1

0 S(s, t)X(s)ds is the image of X

through a general linear integral operator. Denoting S the operator defined on and with values in
L2([0,1]) by (Sf )(t) = ∫ 1

0 S(s, t)f (s)ds we obtain from (1) that Y(t) = S(X)(t) + ε(t) or

Y = SX + ε where S(X)(t) =
∫

S(s, t)X(s)ds.

This fact motivates a more general framework: it may be interesting to consider Sobolev spaces
Wm,p instead of L2([0,1]) in order to allow some intrinsic smoothness for the data. It turns out
that, amongst this class of spaces, we choose to work with Hilbert spaces. Indeed the unknown
parameter is a linear operator and spectral theory of these operators acting on Hilbert space
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allows enough generality, intuitive approaches and easier practical implementation. That is why
in all the sequel we consider a sample (Yi,Xi)1≤i≤n where Y and X are independent, identically
distributed and take values in the same Hilbert space H endowed with inner product 〈·, ·〉 and
associated norm ‖ · ‖.

Obviously the model we consider generalizes the regression model with a real output y:

y =
∫ 1

0
β(s)X(s)ds + ε = 〈β,X〉 + ε, (2)

and all our results hold in this direction. The literature is wide about (2) but we picked articles
which are close to our present concerns and will be cited again later in this work: Yao, Müller
and Wang [23], Hall and Horowitz [14], Crambes, Kneip and Sarda [9].

Since the unknown parameter is here an operator, the infinite-dimensional equivalence of a
matrix, it is worth giving some basic information about operator theory on Hilbert spaces. The
interested reader can find basics and complements about this topic in the monograph Dunford
and Schwartz [11]. We denote by L the space of bounded – hence continuous – operators on a
Hilbert space H . For our statistical or probabilistic purposes, we restrain this space to the space
of compact operators Lc. Then, any compact and symmetric operator T belonging to Lc admits
a unique Schmidt decomposition of the form T = ∑

j∈N
μjφj ⊗ φj where the (μj ,φj )’s are

called the eigenelements of T , and the tensor product notation ⊗ is defined in the following way:
for any function f , g and h belonging to H , we define f ⊗ g = 〈g, ·〉f . Finally, we mention
two subclasses of Lc one of which will be our parameter space. The space of Hilbert–Schmidt
operators and trace class operators are defined, respectively, by L2 = {T ∈ Lc :

∑
j∈N

μ2
j < +∞}

and L1 = {T ∈ Lc :
∑

j∈N
μj < +∞}. It is well known that if S is the linear operator associated

to the kernel S like in line (1) then if
∫∫ |S(s, t)|ds dt < +∞, S is Hilbert–Schmidt and S is trace

class if S(s, t) is continuous as a function of (s, t). The Hilbert–Schmidt norm is denoted ‖ · ‖2.

1.2. Estimation

Our purpose here is first to introduce the estimator. This estimate looks basically like the one
studied in Yao, Müller and Wang [23]. Our second goal is to justify from a more theoretical
position the choice of such a candidate.

Two strategies may be carried out to propose an estimate of S. They join finally, like in the
finite-dimensional framework. One could consider the theoretical mean square program (convex
in S) that minimize E‖Y − SX‖2 over S ∈ L2, whose solution S∗ is defined by the equation
E[Y ⊗ X] = S∗E[X ⊗ X]. On the other hand it is plain that the moment equation:

E[Y ⊗ X] = E
[
S(X) ⊗ X

]+ E[ε ⊗ X]
leads to the same solution. Finally denoting � = E[Y ⊗ X],� = E[X ⊗ X] we get � = S�.
Turning to empirical counterparts with

�n = 1

n

n∑
i=1

Yi ⊗ Xi, �n = 1

n

n∑
i=1

Xi ⊗ Xi,
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the estimate Ŝn of S should naturally be defined by �n = Ŝn�n. Once again the moment method
and the minimization of the mean square program coincide. By the way, note that �n = S�n +Un

with Un = 1
n

∑n
i=1 εi ⊗ Xi . The trouble is that, from �n = Sn�n we cannot directly derive an

explicit form for Sn. Indeed �n is not invertible on the whole H since it has finite rank. The next
section proposes solutions to solve this inverse problem by classical methods.

As a last point, we note that if Ŝn is an estimate of S, a statistical predictor given a new input
Xn+1 is:

Ŷn+1(t) = Ŝn(Xn+1)(t) =
∫

Ŝ(s, t)Xn+1(s)ds. (3)

1.3. Identifiability, inverse problem and regularization issues

We turn again to the equation which defines the operator S: � = S�. Taking a one-to-one �

is a first and basic requirement for identifiability. It is simple to check that if v ∈ ker� �= {0},
� = S� = (S+v⊗v)�, for instance, and the unicity of S is no more ensured. More precisely, the
inference based on the equation � = S� does not ensure the identifiability of the model. From
now on, we assume that ker� = {0}. At this point, some more theoretical concerns should be
mentioned. Indeed, writing S = ��−1 is untrue. The operator �−1 exists whenever ker� = {0}
but is unbounded, that is, not continuous. We refer once again to Dunford and Schwartz [11],
for instance, for developments on unbounded operators. It turns out that �−1 is a linear mapping
defined on a dense domain D of H which is measurable but continuous at no point of its domain.
Let us denote (λj , ej ) the eigenelements of �. Elementary facts of functional analysis show
that S|D = ��−1 where D is the domain of �−1, that is, the range of � and is defined by

D = {x =∑
j xj ej ∈ H :

∑
j

x2
j

λ2
j

< +∞}.
An illustrative example is the Gaussian case. If � is the covariance operator of a Gaussian ran-

dom element X on H (a process, a random function, etc.), then the Reproducing Kernel Hilbert
Space of X coincides with the domain of �−1/2 and the range of �1/2 : {x ∈ H :

∑
j x2

j /λj <

+∞}.
The last stumbling stone comes from switching population parameters to empirical ones. We

construct our estimate from the equation �n = S�n + Un as seen above and setting �n = Ŝn�n.
Here the inverse of �n does not even exist since this covariance operator is finite-rank. If �n was
invertible, we could set Sn = �n�

−1
n but we have to regularize �n first. We carry out techniques

which are classical in inverse problems theory. Indeed, the spectral decomposition of �n is �n =∑
j λ̂j (̂ej ⊗ êj ) where (̂λj , êj ) are the empirical eigenelements of �n (the λ̂j ’s are sorted in a

decreasing order and some of them may be null) derived from the functional PCA. The spectral
cut regularized inverse is given for some integer k by

�†
n =

k∑
j=1

λ̂−1
j (̂ej ⊗ êj ). (4)

The choice of k = kn is crucial; all the λ̂j ’s cannot be null and one should stress that λ̂−1
j

tends to infinity when j increases. The reader will note that we could define equivalently



Functional linear regression with functional outputs 2631

�† =∑k
j=1 λ−1

j (ej ⊗ ej ). From the definition of the regularized inverse above, we can derive a

useful equation. Indeed, let �̂k denote the projection of the k first eigenvectors of �n, that is the
projection on span(̂e1, . . . , êk). Then �

†
n�n = �n�

†
n = �̂k . For further purpose, we define as well

�k to be the projection operator on (the space spanned by) the k first eigenvectors of �.
Other regularizations are possible by replacing λ̂−1

j in (4) by a smooth function of it, which

converges to λ̂−1
j . See Section 3 of Cardot, Mas and Sarda [7] for more details and the books by

Tikhonov and Arsenin [22] and Engl, Hanke and Neubauer [12] on the general topic of inverse
problems.

1.4. Assumptions

The assumptions we need are classically of three types: regularity of the regression parameter S,
moment assumptions on X and regularity assumptions on X which are often expressed in terms
of spectral properties of � (especially the rate of decrease to zero of its eigenvalues).

Assumption on S. We assume that S is Hilbert–Schmidt which may be rewritten: for any basis
(φj )j∈N of H ∑

j,	

〈
S(φ	),φj

〉2
< +∞. (5)

This assumption finally echoes assumption
∑

j β2
j < +∞ in the functional linear model (2) with

real outputs. We already underlined that (5) is equivalent to assuming that S is doubly integrable
if H is L2([0, T ]). Finally, no continuity or smoothness is required for the kernel S at this point.

Moment assumptions on X. In order to better understand the moment assumptions on X, we
recall the Karhunen–Loeve development, which is nothing but the decomposition of X in the
basis of the eigenvectors of �, X =∑+∞

j=1

√
λj ξj ej a.s. where the ξj ’s are independent centered

real random variables with unit variance. We need higher moment assumptions because we need
to apply Bernstein’s exponential inequality to functionals of � − �n. We assume that for all
j, 	 ∈ N there exists a constant b such that

E
(|ξj |	

)≤ 	!
2

b	−2 · E
(|ξj |2

)
, (6)

which echoes the assumption (2.19), page 49, in Bosq [4]. As a consequence, we see that

E〈X,ej 〉4 ≤ C
(
E〈X,ej 〉2)2

. (7)

This requirement already appears in several papers. It assesses that the sequence of the fourth
moment of the margins of X tends to 0 quickly enough. The assumptions above always hold for
a Gaussian X. These assumptions are close to the moment assumptions usually required when
rates of convergence are addressed.

Assumptions on the spectrum of �. The covariance operator � is assumed to be injective hence
with strictly positive eigenvalues arranged in a decreasing order. Let the function λ : R+ → R

+∗
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be defined by λ(j) = λj for any j ∈ N (the λj ’s are continuously interpolated between j and
j + 1. From the assumption above, we already know that

∑
j λj < +∞. Indeed the summability

of the eigenvalues of � is ensured whenever E‖X‖2 < +∞. Besides, assume that for x large
enough

x → λ(x) is convex. (8)

These last conditions are mild and match a very large class of eigenvalues: with arithmetic
decay λj = Cj−1−α where α > 0 (like in Hall and Horowitz [14]), with exponential decay
λj = Cj−β exp(−αj), Laurent series λj = Cj−1−α(log j)−β or even λj = Cj−1(log j)−1−α .
Such a rate of decay occurs for extremely irregular processes, even more irregular than the Brow-
nian motion for which λj = Cj−2. In fact, our framework initially relaxes prior assumptions on
the rate of decay of the eigenvalues, hence on the regularity of X. These eigenvalues play the
role of Fourier coefficients in Fourier analysis (and are indeed these coefficients when the eigen-
basis is cosine). A regular or smoothly reconstructed X will feature rapidly decaying λ’s. It will
be seen later that exact risk and optimality are obtained when considering specific classes of
eigenvalues. Assumption (8) is crucial however since the most general lemmas rely on convex
inequalities for the eigenvalues.

2. Asymptotic results

We are now in a position to introduce our estimate.

Definition 1. The estimate Ŝn of S is defined by: Ŝn = �n�
†
n, the associated predictor is Ŷn+1 =

Ŝn(Xn+1) = �n�
†
n(Xn+1). It is possible to provide a kernel form. We deduce from Sn = �n�

†
n

that

Sn(s, t) = 1

n

n∑
i=1

k∑
j=1

∫
Xiêj

λ̂j

· Yi(t )̂ej (s).

Though distinct, this estimate remains close from the one proposed in Yao, Müller and
Wang [23], the difference consisting in the fact that we do not consider a Karhunen–Loeve de-
velopment of Y . In the sequel, our main results are usually given in term of Ŝn but we frequently
switch to the ‘kernel’ viewpoint since it may be sometimes more illustrative. Then we implicitly
assume that H = L2([0,1]).

2.1. Mean square prediction error and optimality

From now on, all our results are stated when assumptions of the Section 1.4 hold. We start
with an upper bound from which we deduce, as a corollary, the exact asymptotic risk of the
predictor. What is considered here is the prediction of the regression function E(Yn+1|Xn+1) =
S(Xn+1) based on the estimate Ŝn. Evaluating Ŝn at a random input with the same distribution as
X averages in a way the predictor and unfortunately prevents from considering specific design
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points. But conversely prediction at a fixed x will converge at a rate depending on x. If x is
outside the support of X one may be mistaken on the validity and the sharpness of the result.
This approach may gain some kind of robustness and lose some kind of pliancy. In the following,
we denote σ 2

ε = tr�ε , which we assume to be finite.

Theorem 2. The mean square prediction error of our estimate has the following exact asymptotic
development:

E
∥∥Ŝn(Xn+1) − S(Xn+1)

∥∥2 = σ 2
ε

k

n
+

+∞∑
j=k+1

λj

∥∥S(ej )
∥∥2 + An + Bn, (9)

where An ≤ CA‖S‖2k
2λk/n and Bn ≤ CBk2 log2 k/n2 where CA and CB are constants which

do not depend on k, n or S.

The two first terms determine the convergence rate: the variance effect appears through σ 2
ε k/n

and the bias (related to smoothness) through
∑+∞

j=k+1 λj‖S(ej )‖2. Several comments are needed
at this point. The term An comes from bias decomposition and Bn is a residue from variance.
Both are negligible with respect to the first two terms. Indeed, kλk → 0 since

∑
k λk < +∞

and An = o(k/n). Turning to Bn is a little bit more tricky. It can be seen that necessarily
(k logk)2/n → 0 which ensures that Bn = o(k/n). A second interesting property arises from
Theorem 2. Rewriting λj‖S(ej )‖2 = ‖S�1/2(ej )‖2 we see that the only regularity assumptions
needed may be made from the spectral decomposition of the operator S�1/2 itself and not from
X (or � as well) and S separately.

Before turning to optimality, we introduce the class of parameters S over which optimality
will be obtained.

Definition 3. Let ϕ : R+ → R
+ be a C1 decreasing function such that

∑+∞
j=1 ϕ(j) = 1 and set

L2(ϕ,L) be the class of linear operator from H to H be defined by

L2(ϕ,L) = {
T ∈ L2,‖T ‖2 ≤ L :

∥∥T (ej )
∥∥≤ L

√
ϕ(j)

}
.

The set L2(ϕ,L) is entirely determined by the bounding constant L and the function ϕ. Hall
and Horowitz [14] consider the case when ϕ(j) = Cj−(α+2β) where α > 1 and β > 1/2. As
mentioned earlier, we are free here to take any ϕ such that

∫ +∞
ϕ(s)ds < +∞ and which leaves

assumption (8) unchanged.
As an easy consequence, we derive the uniform bound with exact constants below.

Theorem 4. Set L = ‖S�1/2‖2, ϕ(j) = λj‖S(ej )‖2/L2 and k∗
n as the integer part of the unique

solution of the integral equation (in x):

1

x

∫ +∞

x

ϕ(x)dx = 1

n

σ 2
ε

L2
. (10)
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Let Rn(ϕ,L) be the uniform prediction risk of the estimate Ŝn over the class L2(ϕ,L):

Rn(ϕ,L) = sup
S�1/2∈L2(ϕ,L)

E
∥∥Ŝn(Xn+1) − S(Xn+1)

∥∥2
,

then

lim sup
n→+∞

n

k∗
n

Rn(ϕ,L) = 2σ 2
ε .

Equation (10) has a unique solution because the function of x on the left-hand side is strictly
decreasing. The integer k∗

n is the optimal dimension: the parameter which minimizes the predic-
tion risk. It plays the same role as the optimal bandwidth in nonparametric regression. The upper
bound in the line above is obvious from (9). This upper bound is attained when taking for S the
diagonal operator defined in the basis of eigenvectors by Sej = Lϕ1/2(j)λ

−1/2
j ej . The proof of

this theorem is an easy consequence of Theorem 2, hence omitted.
The next corollary is an attempt to illustrate the consequences of the previous theorem by tak-

ing explicit sequences (ϕ(j))j∈N. We chose to treat the case of general Laurent series (including
very irregular input and parameter when α = 0) and the case of exponential decay.

Corollary 5. Set ϕa(j) = Cα,β(j2+α(log j)β)−1 and ϕb(j) = C′
α exp(−αj) where either α > 0

and β ∈ R or α = 0 and β > 1, Cα,β and C′
α are normalizing constants, then

Rn(ϕa,L) ∼ (logn)β/(2+α)

n(1+α)/(2+α)

(
Cα,βL2

2σ 2
ε

)1/(2+α)

, Rn(ϕb,L) ≤ logn

αn
.

For Rn(ϕb,L) we could not compute an exact bound because equation (10) has no explicit
solution. But the term (logn)/αn is obviously sharp since parametric up to logn. The special
case β = 0 and α > 1 matches the optimal rate derived in Hall and Horowitz [14] with a slight
damage due to the fact that the model shows more complexity (S is a function of two variables
whereas β the slope parameter in the latter article and in model (2) was a function of a single
variable). We also refer the reader to Stone [21] who underlines this effect of dimension on the
convergence rates in order to check that our result matches the ones announced by Stone.

In our setting, the data Y are infinite dimensional. Obtaining lower bound for optimality in
minimax version is slightly different than in the case studied in Hall and Horowitz [14], Crambes,
Kneip and Sarda [9]. In order to get a lower bound, our method is close to the one carried out
by Cardot and Johannes [6], based on a variant of Assouad’s lemma. We consider Gaussian
observations under 2kn distinct models.

Theorem 6. The following bound on the minimax asymptotic risk up to constants proves that
our estimator is optimal in minimax sense:

inf
Ŝn

sup
S∈L2(ϕ,L)

E
∥∥Ŝn(Xn+1) − S(Xn+1)

∥∥2 � k∗
n

n
.
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Remark 7. The bound above holds with highly irregular data (e.g., λj � Cj−1(log j)−1−α with
α > 0) or with very regular data featuring a flat spectrum with λj � Cj−γ exp(−αj) or even the
intermediate situation like λj � Cj−1−β(log j)1+α . The same remarks are valid when turning
to the regularity of the kernel S or of the operator S expressed through the sequence ‖S(ej )‖2.
Our method of proof shows that smooth, regular processes (with rapid decay of λj ) have good

approximation properties but ill-conditioned �
†
n (i.e., with rapidly increasing norm) damaging the

rate of convergence of Ŝn which depends on it. But we readily see that irregular processes (with
slowly decreasing λj ), despite their poor approximation properties, lead to a slowly increasing

�
†
n and to solving an easier inverse problem.

2.2. Weak convergence

The next and last result deals with weak convergence. We start with a negative result which shows
that due to the underlying inverse problem, the issue of weak convergence cannot be addressed
under too strong topologies.

Theorem 8. It is impossible for Sn to converge in distribution for the Hilbert–Schmidt norm.

Once again turning to the predictor, hence smoothing the estimated operator, will produce a
positive result. We improve twofold the results by Cardot, Mas and Sarda [7] since, first, the
model is more general and, second, we remove the bias term. Weak convergence (convergence
in distribution) is denoted

w→. The reader should pay attention to the fact that the following
theorem holds in space of functions (here H ). Within this theorem, two results are proved. The
first assesses weak convergence for the predictor with a bias term. The second removes this bias
at the expense of a more specific assumption on the sequence kn.

Theorem 9. If the condition (k logk)2/n → 0 holds, then√
n

k

[
Ŝn(Xn+1) − S�k(Xn+1)

] w→ Gε,

where Gε is a centered Gaussian random element with values in H and covariance operator �ε .
Besides, denoting γk = supj≥k{j log j‖S(ej )‖

√
λj } (it is plain that γk → 0) and choosing k such

that n ≤ (k logk)2/γk (which means that (k logk)2/n should not decay too quickly to zero), the
bias term can be removed and we obtain√

n

k

[
Ŝn(Xn+1) − S(Xn+1)

] w→ Gε.

From Theorem 9, we deduce general prediction intervals for the predictor: let K be a con-
tinuous set for the measure induced by Gε , that is, P(Gε ∈ ∂K) = 0 where ∂K =K \ int(K) is

the frontier of K then P(Ŝn(Xn+1) ∈ S(Xn+1) +
√

k
n

K) → P(Gε ∈ K) when n → +∞. As an

application, we propose the two following corollaries of Theorem 9. The notation Y ∗
n+1 stands
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for S(Xn+1) = E(Yn+1|Xn+1). The first corollary deals with asymptotic prediction intervals for
general functionals of the theoretical predictor such as weighted integrals.

Corollary 10. Let m be a fixed function in the space H = L2([0,1]). We have the following
asymptotic confidence interval for

∫
Y ∗

n+1(t)m(t)dt at level 1 − α:

P

(∫ 1

0
Y ∗

n+1(t)m(t)dt ∈
[∫ 1

0
Ŷn+1(t)m(t)dt ±

√
k

n
σmq1−α/2

])
= 1 − α,

where σ 2
m = 〈m,�εm〉 = ∫∫

�ε(s, t)m(t)m(s)dt ds rewritten in ‘kernel’ form and q1−α/2 is the
quantile of order 1 − α/2 of the N (0,1) distribution.

Theorem 9 holds for the Hilbert norm. In order to derive a prediction interval for Y ∗
n+1(t0)

(where t0 is fixed in [0,1]), we have to make sure that the evaluation (linear) functional f ∈
H �−→ f (t0) is continuous for the norm ‖ · ‖. This functional is always continuous in the space
(C([0,1]), | · |∞) but is not in the space L2([0,1]). A slight change in H will yield the desired
result, stated in the next corollary.

Corollary 11. When H = W
2,1
0 ([0,1]) = {f ∈ L2([0,1]) :f (0) = 0, f ′ ∈ L2([0,1])} endowed

with the inner product 〈u,v〉 = ∫ 1
0 u′v′, the evaluation functional is continuous with respect to

the norm of H and we can derive from Theorem 9:

P

(
Y ∗

n+1(t0) ∈
[
Ŷn+1(t0) ±

√
k

n
σt0q1−α/2

])
= 1 − α,

where σ 2
t0

= �ε(t0, t0).

Note that data (Yi)1≤i≤n reconstructed by cubic splines and correctly rescaled to match the
condition [f (0) = 0] belong to the space W

2,1
0 ([0,1]) mentioned in the corollary.

2.3. Comparison with existing results – Conclusion

The literature on linear models for functional data gave birth to impressive and brilliant recent
works. We discuss briefly here our contribution with respect to some articles, close in spirit to
this present paper.

We consider exactly the same model (with functional outputs) as Yao, Müller and Wang [23]
and our estimate is particularly close to the one they propose. In their work, the case of lon-
gitudinal data was studied with care with possibly sparse and irregular data. They introduce a
very interesting functional version of the R2 and prove convergence in probability of their esti-
mates in Hilbert–Schmidt norm. We complete their work by providing the rates and optimality
for convergence in mean square.
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Our initial philosophy is close to the article by Crambes, Kneip and Sarda [9]. Like these
authors we consider the prediction with random design. We think that this way seems to be
justified from a statistical point of view. The case of a fixed design gives birth to several situations
and different rates (with possible oversmoothing which entails parametric rates of convergence
which are odd in this truly nonparametric model) and does not necessarily correspond to the
statistical reality. The main differences rely in the fact that our results hold in mean square norm
rather than in probability for a larger class of data and parameter at the expense of more restricted
moment assumptions.

Our methodology is closer to the articles by Hall and Horowitz [14]. They studied the pre-
diction risk at a fixed design in the model with real outputs (2) but with specified eigenvalues
namely λj ∼ Cj−1−α and parameter spectral decomposition 〈β, ej 〉 ∼ Cj−1−γ with α,γ > 0.
The comparisons may be simpler with these works since we share the approach through spectral
decomposition of operators or Karhunen–Loeve development for the design X.

The problem of weak convergence is considered only in Yao, Müller and Wang [23]: they
provide very useful and practical pointwise confidence sets which imply estimation of the co-
variance of the noise. Our result may allow to consider a larger class of testing issues through
delta-methods (we have in mind testing of hypotheses like S = S0 versus S(n) = S0 + ηnv where
ηn → 0 and v belongs to a well-chosen set in H ).

The contribution of this article essentially deals with a linear regression model – the con-
cerns related to the functional outputs concentrate on lower bounds in optimality results and
in proving weak convergence with specific techniques adapted to functional data. We hope that
our methods will demonstrate that optimal results are possible in a general framework and that
regularity assumptions can often be relaxed thanks to the compensation (or regularity/inverse
problem trade-off) phenomenon mentioned within Remark 7. The Hilbert space framework is
necessary at least in the section devoted to weak convergence. Generalizations to Banach spaces
of functions could be investigated, for instance, in C([0,1]), Hölder or Besov spaces.

3. Practical implementation

In order to illustrate our theoretical results, we made a short simulation study. In practice, it is
worth noticing that all the curves are observed on a grid of points of the interval [0,1], while
our theoretical results do not take the discretization into account. From now on, we consider that
we observe the Xi ’s at the values s1 < · · · < sp of [0,1] and the Yi ’s at the values t1 < · · · < tq .
Moreover, we implicitly assume that the Xi ’s are observed without error. There are some possible
approaches to deal with covariates contaminated with measurement errors (see, e.g., in Cardot
et al., [5]), but it is not in the scope of this paper, and would damage the clarity of the work.
The number of discretization points in our simulations are p = 100 for the Xi ’s and q = 100 for
the Yi ’s. The objective of this simulation is simply to see how our theoretical results behave in
practice, especially the smoothing parameter k (number of principal components).

We simulate the Xi ’s using the Karhunen–Loeve decomposition, with kreal = 8 principal com-
ponents. In other words, we write Xi(t) =∑kreal

j=1 λj ξij ej (t), where λj = 1
π2(j−0.5)2 , ξij are stan-

dard Gaussian random variables and ej (t) = √
2 sin((j − 0.5)πt). The functional parameter is
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the function S(s, t) = s2 + t2. The noise of the model is simulated as a Brownian motion with
σ 2

ε = 0.127.

3.1. Estimation of the variance of the noise

In order to see the behavior of our theoretical results, especially the result of Theorem 9, we first
have to estimate the variance of the noise σ 2

ε . This problem is not trivial. Indeed, given a new
curve Xn+1, an estimator of εn+1 is ε̂n+1 = Yn+1 − Ŷn+1. However, we can see that

ε̂n+1 ⊗ ε̂n+1 = (
Ŝ(Xn+1) − S(Xn+1)

)⊗ (
Ŝ(Xn+1) − S(Xn+1)

)
− 2εn+1 ⊗ (

Ŝ(Xn+1) − S(Xn+1)
)

+ εn+1 ⊗ εn+1.

This proves that the naive estimator of σ 2
ε given by σ̃ 2

ε = tr �̂ε is biased: it overestimates the
true value σ 2

ε . In order to remove bias, we adopt the following procedure. We split our sample
into three parts. With the first part of the sample, we compute an estimator Ŝ[1] of S. With
the second part of the sample, we compute another estimator Ŝ[2] of S and with the last part
of the sample, we approximate the term (Ŝ(Xn+1) − S(Xn+1)) ⊗ (Ŝ(Xn+1) − S(Xn+1)), with
1
2 (Ŝ[1](Xn+1) − Ŝ[2](Xn+1)) ⊗ (Ŝ[1](Xn+1) − Ŝ[2](Xn+1)) which allows to build an unbiased
estimator of σ 2

ε , given by σ̂ 2
ε = tr �̂ε − 1

2 tr�Ŝ[1](Xn+1)−Ŝ[2](Xn+1)
, where ε̂ is computed on the

third part of the sample. This procedure has been tested on an initial sample with length n = 600,
divided into three samples with sizes 200 each. The results are synthesized in Table 1 with the
means and the standard deviations of σ̂ 2

ε and σ̃ 2
ε , computed on N = 500 repeated simulations.

We can see that the unbiasing procedure works quite well on our simulations, since the objective
value σ 2

ε = 0.127 is correctly approximated by σ̂ 2
ε . Simulations also give a confirmation that the

estimator σ̃ 2
ε is biaised.

3.2. Empirical illustration of a theoretical result

We analyse in this subsection how our theoretical result given in Theorem 9 behaves in practice.
In order to do that, we compare an empirical estimation of the term E‖Ŝn(Xn+1) − S(Xn+1)‖2

Table 1. Means and standard deviations of σ̂ 2
ε and σ̃ 2

ε ,
computed on N = 500 repeated simulations, for a sam-
ple size n = 600

σ̂ 2
ε σ̃ 2

ε

Mean 0.127133 0.131461
Standard deviation 0.012293 0.012171
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Table 2. Means and standard deviations of kemp, kth
and kth,est (optimal values of k), computed on N = 500
repeated simulations

kemp kth kth,est

Mean 7.725 7.655 7.691
Standard deviation 1.077 1.169 1.193

with the theoretical value MSEth := σ 2
ε

k
n

+∑+∞
j=k+1 λj‖S(ej )‖2, and with the estimated theo-

retical value MSEth,est := σ̂ 2
ε

k
n

+∑+∞
j=k+1 λ̂j‖Ŝ(̂ej )‖2. For that aim, we approximate the value

of E‖Ŝn(Xn+1) − S(Xn+1)‖2 with an empirical version of it, which consists in computing the
mean of the error ‖Ŝn(Xn+1) − S(Xn+1)‖2 on M = 1000 simulated curves Xn+1. We denote it
MSEemp. The second term, MSEth, is computed using the theoretical values (unknown in real
applications, but known in the simulation study). The third term, MSEth,est, is computed using
the unbiased estimation of σ 2

ε , presented in the previous subsection. These risks MSEemp, MSEth

and MSEth,est have been computed for several values of k, on the basis of a sample with length
n = 600, divided into three samples with sizes 200 each. The two first samples are used for the
procedure to compute the unbiased estimator σ̂ 2

ε . The third sample is used to compute the values
of MSEemp, MSEth and MSEth,est, as explained in Section 3.1.

We give on Table 2 the mean values and standard deviations for the optimal chosen values of
k with respect to the risks MSEemp, MSEth and MSEth,est. We denote these optimal values by
kemp, kth and kth,est. We can see that the optimal values chosen by the three risks are close. All
these values remain close to the real value kreal = 8, even if they seem to slightly underestimate
it. Hence, the theoretical criterion given in Theorem 9 can bring a possible solution in practice
to select the number of eigenvalues of the covariance operator. We have collected on Table 3 the
mean values of MSEemp, MSEth and MSEth,emp for several values of k. The values of MSEth and
MSEth,emp are decomposed into square bias and variance. We can see that the values are close.
The three MSE criteria are convex, and we notice moreover that the square bias decreases and
the variance increases as k increases, as expected.

4. Mathematical derivations

In the sequel, the generic notation C stands for a constant which does not depend on k, n or S.
All our results are related to the decomposition given below:

Ŝn = S�n�
†
n + Un�

†
n = S�̂k + 1

n

n∑
i=1

εi ⊗ �†
nXi. (11)

It is plain that a bias–variance decomposition is exhibited just above. The random projection
�̂k is not a satisfactory term and we intend to remove it and to replace it with its non-random
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Table 3. Means and standard deviations of MSEemp, MSEth and MSEth,est, computed on N = 500 re-
peated simulations. The values of MSEth and MSEth,est are decomposed into square bias and variance

Value of k 3 4 5 6 7 8 9 10

Mean of MSEemp × 103 15.849 12.779 11.135 10.365 9.977 9.873 9.929 10.110
(4.041) (3.637) (3.233) (2.829) (2.424) (1.213) (1.616) (2.021)

Mean of MSEth × 103 15.707 12.665 11.035 10.272 9.887 9.785 9.840 10.019
(3.985) (3.587) (3.188) (2.790) (2.391) (1.196) (1.594) (1.993)

Square bias 13.802 10.125 7.860 6.462 5.442 4.705 4.125 3.669
for MSEth × 103

Variance for MSEth × 103 1.905 2.540 3.175 3.810 4.445 5.080 5.715 6.350

Mean of MSEth,est × 103 15.723 12.678 11.047 10.283 9.898 9.795 9.850 10.030
(4.017) (3.616) (3.214) (2.812) (2.410) (1.206) (1.607) (2.009)

Square bias 13.816 10.135 7.869 6.469 5.448 4.710 4.129 3.673
for MSEth,est × 103

Variance 1.907 2.543 3.178 3.814 4.450 5.085 5.721 6.357
for MSEth,est × 103

counterpart. When turning to the predictor, (11) may be enhanced:

Ŝn(Xn+1) − S(Xn+1) = S(�k − I )(Xn+1) + S[�̂k − �k](Xn+1)
(12)

+ 1

n

n∑
i=1

εi

〈
�†

nXi,Xn+1
〉
,

where �k is defined in the same way as we defined �̂k previously, that is, the projection on the
k first eigenvectors of �.

In terms of mean square error, the following easily stems from E(εi |X) = 0:

E
∥∥Ŝn(Xn+1) − S(Xn+1)

∥∥2 = E
∥∥S�̂k(Xn+1) − S(Xn+1)

∥∥2 + E

∥∥∥∥∥1

n

n∑
i=1

εi

〈
�†

nXi,Xn+1
〉∥∥∥∥∥

2

.

We prove below that:

E
∥∥S[�̂k − �k](Xn+1)

∥∥2 = o

(
E

∥∥∥∥∥1

n

n∑
i=1

εi

〈
�†

nXi,Xn+1
〉∥∥∥∥∥

2)
, (13)

and that the two terms that actually influence the mean square error are the first and the third
in line (12). The first term S(�k − I )(Xn+1) is the bias term and the third a variance term (see
line (9)).

The proofs are split into two parts. In the first, part we provide some technical lemmas which
are collected there to enhance the reading of the second part devoted to the proof of the main
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results. In all the sequel, the sequence k = kn depends on n even if this index is dropped. We
assume that all the assumptions mentioned earlier in the paper hold; they will be however recalled
when addressing crucial steps. We assume once and for all that (k logk)2/n → 0. The rate of
convergence to 0 of (k logk)2/n will be tuned when dealing with weak convergence.

4.1. Preliminary material

All along the proofs, we will make an intensive use of perturbation theory for bounded operators.
It may be useful to have basic notions about spectral representation of bounded operators and per-
turbation theory. We refer to Kato [15] and Dunford and Schwartz ([11], Chapter VII.3) for an
introduction to functional calculus for operators related with Riesz integrals. Roughly speaking,
several results mentioned below and throughout the article may be easily understood by con-
sidering the formula of residues for analytic functions on the complex plane (see Rudin [20])
and extending it to functions still defined on the complex plane but with values in the space of
operators.

Let us denote by Bj the oriented circle of the complex plane with center λj and radius δj /2
where δj = min{λj −λj+1, λj−1 −λj } = λj −λj+1, the last equality coming from the convexity
associated to the λj ’s. Let us define Ck =⋃k

j=1 Bj . The open domain whose boundary is Ck is
not connected but we can apply the functional calculus for bounded operators (see Dunford–
Schwartz, Section VII.3, Definitions 8 and 9). With this formalism at hand, it is easy to prove the
following formulas:

�kn = 1

2πι

∫
Ck

(zI − �)−1 dz, �† = 1

2πι

∫
Ck

1

z
(zI − �)−1 dz. (14)

The same is true with the random �n, but the contour Ck must be replaced by its random coun-
terpart Ĉk = ⋃kn

j=1 B̂j where each B̂j is a random ball of the complex plane with center λ̂j

and, for instance, a radius δ̂j /2 with plain notations. Then �̂kn = 1
2πι

∫
Ĉk

(zI − �n)
−1 dz and

�
†
n = 1

2πι

∫
Ĉk

1
z
(zI − �n)

−1 dz. This first lemma is based on convex inequalities. In the sequel,
much depends on the bounds derived in this lemma.

Lemma 12. Consider two large enough positive integers j and k such that k > j . Then

jλj ≥ kλk, λj − λk ≥
(

1 − j

k

)
λj ,

∑
j≥k

λj ≤ (k + 1)λk,

(15)∑
j≥1,j �=k

λj /|λk − λj | ≤ Ck logk.

Besides, E supz∈Bj
‖(zI − �)−1/2(� − �n)(zI − �)−1/2‖2

2 ≤ C(j log j)2/n.

The proof of this lemma will be found in Cardot, Mas and Sarda [7], pages 339–342. We
introduce the event An = {∀j ∈ {1, . . . , kn}, |̂λj − λj |/δj < 1/2} which describes the way the
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estimated eigenvalues concentrate around the population ones: the higher the index j the closer
are the λ̂j ’s to the λj ’s.

Proposition 13. If (k logk)2/n → 0, P(lim sup An) = 0.

Proof. We just check that the Borel–Cantelli lemma holds
∑+∞

n=1 P(An) < +∞ where

P(An) ≤
k∑

j=1

P
(|̂λj − λj |/λj > δj /(2λj )

)≤
k∑

j=1

P
(|̂λj − λj |/λj > 1/2(j + 1)

)
.

Now, applying the results proved in Bosq [4] at pages 122–124, we see that the asymptotic
behaviour of P(|̂λj − λj |/λj > 1

2j
) is the same as P(| 1

n

∑n
i=1〈�n(ej ), ej 〉 − λj | >

λj

2(j+1)
). We

apply Bernstein’s exponential inequality – which is possible due to assumption (6) – to the latter,
and we obtain (for the sake of brevity, j + 1 was replaced by j in the right-hand side of the
probability but this does not change the final result):

P

(∣∣∣∣∣1

n

n∑
i=1

〈Xi, ej 〉2 − λj

∣∣∣∣∣> λj

2j

)
≤ 2 exp

(
− n

j2

1

8c + 1/(6j)

)
≤ 2 exp

(
−C

n

j2

)
and then

∑k
j=1 P(|̂λj −λj | > λj/2j) ≤ 2k exp(−Cn/k2). Now it is plain from (k logk)2/n → 0

that k exp(−C n

k2 ) ≤ 1/n1+ε for some ε > 0 which leads to checking that
∑

n kn exp(−C n

k2
n
) <

+∞, and to the statement of Proposition 13 through Borel–Cantelli’s lemma. �

Corollary 14. We may write

�̂kn = 1

2πι

∫
Ck

(zI − �n)
−1 dz, �†

n = 1

2πι

∫
Ck

1

z
(zI − �n)

−1 dz a.s.,

where this time the contour is Ck hence no more random.

Proof. The formulae above easily stem from Proposition 13 and perturbation theory (see
Kato [15], Dunford and Schwartz [11], e.g.). �

4.2. Proofs of the main results

We denote (zI − �)−1 = �(z). We start with proving (13) as announced in the foreword of this
section. What we give here is nothing but the term An in Theorem 2.

Proposition 15. The following bound holds E‖S(�̂k − �k)(Xn+1)‖2 ≤ Ck2λk‖S‖2/n.

Proof. We start with noting that

E
∥∥S(�̂k − �k)(Xn+1)

∥∥2 =
+∞∑
j=1

+∞∑
	=1

E
〈
S(�̂k − �k)�

1/2(ej ), e	

〉2
.
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By Corollary 14, we have

�̂k − �k = 1

2πι

k∑
m=1

∫
Bm

{
(zI − �n)

−1 − (zI − �)−1}dz =
k∑

m=1

Tm,n, (16)

where Tm,n = (1/2πι)
∫

Bm
(zI − �n)

−1(� − �n)(zI − �)−1 dz. To go ahead now, we ask the
reader to accept momentaneously that for all m ≤ k, the asymptotic behaviour of Tm,n is the
same as T ∗

m,n = (1/2πι)
∫

Bm
�(z)(� − �n)�(z)dz, where the random (zI − �n)

−1 was re-

placed by the non-random (zI − �)−1 and that studying �̂k − �k comes down to studying
(1/2πι)

∑k
m=1

∫
Bm

�(z)(� − �n)�(z)dz. The proof that this switch is allowed is postponed to
Lemma 16. We go on with

〈
S(�̂k − �k)�

1/2(ej ), e	

〉= √
λj

2πι

k∑
m=1

∫
Bm

〈
�(z)(� − �n)(ej ), S

∗e	

〉 dz

z − λj

,

where S∗ is the adjoint operator of S. We obtain∫
Bm

〈
�(z)(� − �n)(ej ), S

∗e	

〉 dz

z − λj

=
∫

Bm

+∞∑
j ′=1

〈(� − �n)(ej ), ej ′ 〉〈S∗e	, ej ′ 〉
(z − λj )(z − λj ′)

dz.

We deduce that

〈
S(�̂k − �k)�

1/2(ej ), e	

〉= √
λj

2πι

+∞∑
j ′=1

〈
(� − �n)(ej ), ej ′

〉〈
S∗e	, ej ′

〉
Ik,j,j ′

with

Ik,j,j ′ =
k∑

m=1

∫
Bm

dz

(z − λj )(z − λj ′)
=
⎧⎨⎩

0, if j, j ′ > m, and if j, j ′ ≤ m,
(λj − λj ′)−1, if j ′ > m,j ≤ m,
(λj ′ − λj )

−1, if j ′ ≤ m,j > m.

Then
∑+∞

j=1〈S(�̂k − �k)�
1/2(ej ), e	〉2 = A + B where

A = 1

4π2

k∑
j=1

λj

[ +∞∑
j ′=k+1

〈(� − �n)(ej ), ej ′ 〉
(λj − λj ′)

〈
S∗e	, ej ′

〉]2

,

B = 1

4π2

+∞∑
j=k+1

λj

[
k∑

j ′=1

〈(� − �n)(ej ), ej ′ 〉
(λj ′ − λj )

〈
S∗e	, ej ′

〉]2

.

We first compute EA. We develop the series under the square and take expectations to obtain

E

[ +∞∑
j ′=k+1

〈(� − �n)(ej ), ej ′ 〉
(λj − λj ′)

〈
S∗e	, ej ′

〉]2

≤ C
λj

n

( +∞∑
j ′=k+1

√
λj ′

(λj − λj ′)

〈
S∗e	, ej ′

〉)2

.
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We split the series
∑+∞

j ′=k+1

√
λj ′

(λj −λj ′ ) 〈S∗e	, ej ′ 〉 into two terms and get

EA ≤ C

n

k∑
j=1

λ2
j λk+1

(λj − λk+1)2

(
2k∑

j ′=k+1

∣∣〈S∗e	, ej ′
〉∣∣)2

+ Ck

n

( +∞∑
j ′=2k+1

√
λj ′
∣∣〈S∗e	, ej ′

〉∣∣)2

. (17)

The second term above is bounded by C(k2/n)λk

∑+∞
j ′=2k+1 |〈S∗e	, ej ′ 〉|2 because, by Lem-

ma 12, we have
∑+∞

j ′=2k+1 λj ′ ≤ (2k + 1)λ2k+1 ≤ kλk . We focus on the other term on line (17)
and get

k∑
j=1

λ2
j λk+1

(λj − λk+1)2

(
2k∑

j ′=k+1

∣∣〈S∗e	, ej ′
〉∣∣)2

≤ λk+1

k∑
j=1

[(
k + 1

k + 1 − j

)2
(

2k∑
j ′=k+1

∣∣〈S∗e	, ej ′
〉∣∣)2]

≤
(

2k∑
j ′=k+1

∣∣〈S∗e	, ej ′
〉∣∣2)(k + 1)2λk+1

k∑
j=1

1

j2

≤ C

(
2k∑

j ′=k+1

∣∣〈S∗e	, ej ′
〉∣∣2)k2λk+1,

hence EA ≤ C
n
(
∑+∞

j ′=k+1 |〈S∗e	, ej ′ 〉|2)k2λk . A similar bound may be proven for B . The method
is given because it is significantly distinct but sketched. Denote �x� the largest integer smaller
than x and 〈S∗e	, ej ′ 〉 = s	,j ′ . Here we bound (λj /n)

∑k
j ′=1

√
λj ′ 〈S∗e	, ej ′ 〉/(λj ′ − λj ), hence

λj

n

(
k∑

j ′=1

√
λj ′

(λj ′ − λj )
s	,j ′

)
≤ λj

n

[(�k/2�∑
j ′=1

√
λj ′

λj ′ − λj

|s	,j ′ |
)2

+
(

k∑
j ′=�k/2�

√
λj ′

λj ′ − λj

|s	,j ′ |
)2]

≤ C
k

n

k∑
j ′=1

s2
	,j ′ + k

n

(
j

j − k

)2 k∑
j ′=�k/2�

s2
	,j ′ .

From the definition of B , we get finally

EB ≤ C
k

n

(
k∑

j ′=1

s2
	,j ′

) +∞∑
j=k+1

λj +
(

k∑
j ′=�k/2�

s2
	,j ′

)
k

n

+∞∑
j=k+1

λj

(
j

j − k

)2

.
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It is plain that, for sufficiently large k,
∑k

j ′=�k/2�〈S∗e	, ej ′ 〉2 ≤ C/k (otherwise
∑

j ′ 〈S∗e	, ej ′ 〉2

cannot converge), whence(
k∑

j ′=�k/2�

〈
S∗e	, ej ′

〉2) k

n

+∞∑
j=k+1

λj

(
j

j − k

)2

≤ C

n

[
2k∑

j=k+1

λj

(
j

j − k

)2

+ 4
+∞∑
j=2k

λj

]
.

Denoting κk = supk+1≤j≤2k(j log jλj ), we get at last
∑2k

j=k+1 λj
j2

(j−k)2 ≤ Ckκk , and conse-

quently EB ≤ C k
n
κk(

∑k
j ′=1 |〈S∗e	, ej ′ 〉|2), with κk → 0. Finally:

+∞∑
j=1

+∞∑
	=1

〈
S(�̂k − �k)�

1/2(ej ), e	

〉2 ≤ C
k

n
κk

+∞∑
j=1

+∞∑
	=1

∣∣〈S∗e	, ej

〉∣∣2.
This last bound almost concludes the proof of Proposition 15. It remains to ensure that switching
T ∗

m,n and Tm,n as announced just below line (16) is possible. �

Lemma 16. We have

E

+∞∑
j=1

+∞∑
	=1

〈
S(�̂k − �k)�

1/2(ej ), e	

〉2 ∼ E

+∞∑
j=1

+∞∑
	=1

k∑
m=1

〈
ST ∗

m,n�
1/2(ej ), e	

〉2
.

In other words, switching T ∗
m,n and Tm,n is possible in line (16).

Proof. The proof of this lemma is close to the control of second order term at pages 351 and 352
of Cardot, Mas and Sarda [7] and we will give a sketch of it. We start from:

Tm,n = 1

2πι

∫
Bm

(zI − �)−1/2Rn(z)(zI − �)−1/2(� − �n)�(z)dz

with Rn(z) = (zI − �)1/2(zI − �n)
−1(zI − �)1/2. Besides, as can be seen from Lemma 4 in

Cardot, Mas and Sarda [7] [I +(zI −�)−1/2(�−�n)(zI −�)−1/2]Rn(z) = I . Denoting Sn(z) =
(zI − �)−1/2(� − �n)(zI − �)−1/2, it is plain that when ‖Sn(z)‖ ≤ 1 for all z ∈ Ck , we have
Rn(z) = [I + Sn(z)]−1 := I + R0

n(z) with ‖R0
n(z)‖∞ ≤ C‖Sn(z)‖∞ for all z ∈ Ck . Turning back

to our initial equation, we then get:

Tm,n − T ∗
m,n = 1

2πι

∫
Bm

(zI − �)−1/2R0
n(z)(zI − �)−1/2(� − �n)(zI − �)−1 dz,

and we confine to considering only the first term in the development of R0
n(z) which writes

(2πι)−1
∫

Bm

(zI − �)−1/2S2
n(z)(zI − �)−1/2 dz.
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Now, if we denote J = {supz∈Ck
‖Sn(z)‖2

2 < τnkn/n} where τn will be tuned later, then we can
write S(�̂k − �k)�

1/2 = S(�̂k − �k)�
1/21J + S(�̂k − �k)�

1/21J . We have:

E
∥∥S(�̂k − �k)�

1/21J
∥∥2

2 ≤ 4
∥∥S�1/2

∥∥2
2P(J ) (18)

and recalling the notation (zI − �)−1 = �(z)∥∥∥∥∥S
[
�̂k − �k −

k∑
m=1

T ∗
m,n

]
�1/21J

∥∥∥∥∥
2

≤ 1

2π

∥∥∥∥∥
k∑

m=1

∫
Bm

S�1/2(z)S2
n(z)�1/2(z)�1/2 dz1J

∥∥∥∥∥
2

≤ τ 2
n k2

n

2πn2

k∑
m=1

δm sup
z∈Bm

{∥∥�1/2(z)�1/2
∥∥∞

∥∥S�1/2(z)
∥∥∞

}

≤ ‖S‖∞
τ 2
n k2

n

2πn2

k∑
m=1

√
δmm.

Now from
∑+∞

m=1 mδm < +∞ we get
√

δmm ≤ c/
√

m logm hence τ 2
n k2

n

n2

∑k
m=1

√
δmm =

o(
√

kn/n) whenever k4
nτ

4
n /n3 → 0.

The last step consists in controlling the right-hand side of (18). In Cardot, Mas and Sarda
[7] this is done by classical Markov moment assumptions under the condition that k5

n log4 n/n

tends to zero. Here, Bernstein’s exponential inequality yields a tighter bound and ensures that
P(J ) = o(kn/n) when k2

n log2 kn/n tends to zero. The method of proof is close in spirit though
slightly more intricate than Proposition 13. �

Proposition 17. Let Tn = 1
n

∑n
i=1 εi〈�†

nXi,Xn+1〉, then E‖Tn‖2 = σ 2
ε

n
k + tr[�E(�

†
n − �†)]/n.

Remark 18. We see that the right-hand side in the line above matches the decomposition in (9)
and tr[�E(�

†
n − �†)]/n is precisely Bn in Theorem 2.

Proof of Proposition 17. We have

‖Tn‖2 = 1

n2

n∑
i=1

‖εi‖2〈�†
nXi,Xn+1

〉2 + 1

n2

n∑
i �=i′

〈εi, εi′ 〉
〈
�†

nXi,Xn+1
〉〈
�†

nXi′,Xn+1
〉
.

We take expectations in the line above and we note that the distribution of each member of
the first series on the right-hand side does not depend on n or i and, due to linearity of ex-
pectation and E(εi |Xi) = 0, the expectation of the second series is null, hence E‖Tn‖2 =
1
n
E[‖ε1‖2|X1]E〈�†

n��
†
nX1,X1〉. We focus on E〈�†

n��
†
nX1,X1〉 = E[tr�†

n��
†
n · (Xi ⊗ Xi)] =

tr[�E�
†
n]. At last, we get E〈�†

n��
†
nX1,X1〉 = tr[��†]+ tr[�E(�

†
n−�†)] = k+ tr[�E(�

†
n−�†)].

From Lemma 19 just below, we deduce that tr[�E(�
†
n −�†)] = o(k), which finishes the proof of

Proposition 17. �
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Lemma 19. We have tr[�E(�
†
n − �†)] ≤ Ck2(logk)2/n, where C does not depend on S, n or k.

The preceding bound is an o(k) when k(logk)2/n → 0.

Proof. Here we slightly change the contour Cn and take the rectangle with left vertice z =
λk − δk + ix x ∈ [−2λ1,2λ1]. We focus on(
�†

n −�†)= −
∫

Cn

1

z
�(z)(�n −�)�(z)dz −

∫
Cn

1

z
(zI −�n)

−1(�n −�)�(z)(�n −�)�(z)dz.

But E
∫
Cn

1
z
�(z)(�n −�)�(z)dz = ∫

Cn

1
z
�(z)E(�n −�)�(z)dz = 0 so we consider the second

term above Rn = ∫
Cn

1
z
(zI − �)−1/2Tn(z)An(z)An(z)(zI − �)−1/2 dz where

Tn(z) = (zI − �)1/2(zI − �n)
−1(zI − �)1/2,

An(z) = (zI − �)−1/2(�n − �)(zI − �)−1/2,

whence | tr[�Rn]| = | ∫
Cn

z−1 tr[�−1(z)�Tn(z)A
2
n(z)]dz| and

∣∣tr[�Rn]
∣∣ ≤ sup

z∈Cn

∥∥Tn(z)
∥∥∞ sup

z∈Cn

∥∥An(z)
∥∥2

2

∫
Cn

|z|−1
∥∥�−1(z)�

∥∥∞ dz

≤ c sup
z∈Cn

∥∥An(z)
∥∥2

2,

because ∫
Cn

|z|−1
∥∥�−1(z)�

∥∥∞ dz =
∫ 2λ1

0
|λk − δk + ix|−1λk/|δk + ix|dx ≤ C

and supz∈Cn
‖Tn(z)‖∞ is almost surely bounded. Now, by Lemma 12, we can write

E supz∈Cn
‖An(z)‖2

2 ≤ C(k logk)2/n, and consequently E| tr[�Rn]| ≤ C(k logk)2/n. Finally,

| tr[�E(�
†
n − �†)]| ≤ Ck2(log2 k)/n and we proved Lemma 19 because (k log2 k)/n → 0. We

turn to Theorem 2. �

Proof of Theorem 2. From equation (12), we obtain

E
∥∥Sn(Xn+1) − S(Xn+1)

∥∥2 = E
∥∥S�̂k(Xn+1) − S(Xn+1)

∥∥2 + E

∥∥∥∥∥(1/n)

n∑
i=1

εi

〈
�†

nXi,Xn+1
〉∥∥∥∥∥

2

.

From Proposition 17 followed by Lemma 19, the second term is σ 2
ε k/n + Bn. Proposition 15

and basic calculus yield E‖S�̂k(Xn+1) − S(Xn+1)‖2 = E‖S(�k − I )(Xn+1)‖2 + An where An

matches the bound of the theorem. Lastly E‖S(�k − I )(Xn+1)‖2 = ∑
j≥k+1 λj‖Sej‖2 which

finishes the proof. �

Proof of Theorem 6. Our proof follows the lines of Cardot and Johannes [6] through a
modified version of Assouad’s lemma. To simplify notations, we set k∗

n = kn. Take Sθ =
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j=1 ηiωiei ⊗ e1 where ωi ∈ {−1,1} and θ = [ω1, . . . ,ωk] and ηi ∈ R
+ will be fixed

later such that Sθ ∈ L2(ϕ,C) for all θ . Denote θ−i = [ω1, . . . ,−ωi, . . . ,ωk] and Pθ :=
Pθ [(Y1,X1), . . . , (Yn,Xn)] denote the distribution of the data when S = Sθ . Let ρ stand for
Hellinger’s affinity, ρ(P0,P1) = ∫ √

dP0 dP1 and KL(P0,P1) for Küllback–Leibler divergence
then ρ(P0,P1) ≥ (1 − 1

2 KL(P0,P1)).
Note that considering models based on Sθ above comes down to projecting the model on a one-

dimensional space. We are then faced with a linear model with real output and finally confine
ourselves to proving that the optimal rate is unchanged (see Hall and Horowitz [14]):

Rn(Tn) = sup
S∈L2(ϕ,C)

E
∥∥(Tn − S)�1/2

∥∥2
2 ≥ 1

2k

∑
ω∈{−1,1}k

kn∑
i=1

λiEθ

〈(
Tn − Sθ

)
ei, e1

〉2

= 1

2k

∑
ω∈{−1,1}k

1

2

kn∑
i=1

λi

[
Eθ

〈(
Tn − Sθ

)
ei, e1

〉2 + Eθ−i

〈(
Tn − Sθ−i

)
ei, e1

〉2]

≥ 1

2k

∑
ω∈{−1,1}k

kn∑
i=1

λiη
2
i ρ

2(Pθ ,Pθ−i
).

The last line was obtained by a slight variant of the bound (A.9) in Cardot and Johannes [6],
page 405, detailed below:

ρ(Pθ ,Pθ−i
) ≤

∫ 〈(Tn − Sθ )ei, e1〉
|〈(Sθ−i − Sθ )ei, e1〉|

√
dP0 dP1 +

∫ 〈(Tn − Sθ−i )ei , e1〉
|〈(Sθ−i − Sθ )ei, e1〉|

√
dP0 dP1

≤ 1

2ηi

(∫ 〈(
Tn − Sθ

)
ei, e1

〉2 dPθ

)1/2

+
(∫ 〈(

Tn − Sθ−i
)
ei, e1

〉
Pθ−i

)1/2

by Cauchy–Schwarz inequality and since |〈(Sθ−i − Sθ )ei, e1〉| = 2ηi . Then

2η2
i ρ

2(Pθ ,Pθ−i
) ≤ Eθ

〈(
Tn − Sθ

)
ei, e1

〉2 + Eθ−i

〈(
Tn − Sθ−i

)
ei, e1

〉2
yields Rn(Tn) ≥ infω∈{−1,1}k infi ρ(Pθ ,Pθ−i

)
∑

i λiη
2
i . We show below that KL(Pθ ,Pθ−i

) ≤
4nλiη

2
i /σ

2
1 . Choosing ηi = σ1/2

√
nλi for 1 ≤ i ≤ kn gives Sθ ∈ L2(ϕ,1) and supω,i KL(Pθ ,

Pθ−i
) ≤ 1, infω,i ρ(Pθ ,Pθ−i

) ≤ 1/2 and Rn(Tn) ≥∑kn

i=1 λiη
2
i /2 = kn/2n whatever the choice of

the estimate Tn. This proves the lower bound:

lim sup
n→+∞

ϕ−1
n inf

Tn

sup
S∈L2(ϕ,C)

E
∥∥(Tn − S)�1/2

∥∥2
>

1

2
,

and the theorem stems from this last line.
We finish by proving that KL(Pθ ,Pθ−i

) ≤ 4nλiη
2
i /σ

2
1 . It suffices to notice that KL(Pθ ,Pθ−i

) =∫
log(dPθ |X/dPθ−i |X)dPθ where Pθ |X stand for the likelihood of Y conditionally to X. In this
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Hilbert setting we must clarify the existence of this likelihood ratio. It suffices to prove that
Pθ |X(Y ) � P0|X(Y ) which in turn is true when SθX belongs to the RKHS associated to ε (see

Lifshits [16]). With other words, we need that almost surely �
−1/2
ε SθX is finite where �ε is the

covariance operator of the noise. But �
−1/2
ε Sθ = Sθ/σ1. Set ω′

l = ωl if l �= i with ω′
i = −ωi :

log
dPθ |X(Y )

dPθ−i |X(Y )
= −2ωiηi

〈X,ei〉
σ 2

1

(
2〈ε, e1〉 + 2ωiηi〈X,ei〉

)
and Eθ [log dPθ |X(Y )/dPθ−i |X(Y )] = 4η2

i Eθ 〈X,ei〉2/σ 2
1 = 4η2

i λi/σ
2
1 . �

Now we focus on the problem of weak convergence.

Proof of Theorem 8. Consider (11). We claim that weak convergence of Sn will depend on
the series (1/n)

∑n
i=1 εi ⊗ �

†
nXi . This fact can be checked by inspecting the proof of The-

orem 2. We are going to prove that (1/n)
∑n

i=1 εi ⊗ �†Xi cannot converge for the classical
(supremum) operator norm. We replace the random �

†
n by the non-random �†. It is plain that

non-convergence of the second series implies non-convergence of the first. Suppose that for
some sequence αn ↑ +∞ the centered series (αn/n)

∑n
i=1 εi ⊗ �†Xi

w→ Z, in operator norm,
where Z is a fixed random operator (not necessarily Gaussian). Then for all fixed x and y in
H , αn

n

∑n
i=1〈εi, y〉〈�†Xi, x〉 w→ 〈Zx,y〉, as real random variables. First, take x in the domain

of �−1. From ‖�−1x‖ < +∞, we see that E〈εi, y〉2〈�†Xi, x〉2 < +∞ implies that αn = √
n

(and Z is Gaussian since we apply the central limit theorem for independent random variables).
Now take a x such that ‖�−1x‖ = +∞, then E〈ε1, y〉2〈�†X1, x〉2 = E〈ε1, y〉2

E〈�†x, x〉, and
it is easily seen from the definition of �† that E〈�†x, x〉 – which is positive and implicitly de-
pends on n through k – tends to infinity. Consequently, (1/

√
n)
∑n

i=1 εi ⊗�†Xi cannot converge
weakly anymore since the margins related to the x’s do not converge in distribution. This proves
the theorem. �

We recall that Tn = 1
n

∑n
i=1 εi〈�†

nXi,Xn+1〉 and this series is the crucial term that determines
weak convergence. The following lemma is close to Lemma 8, page 355, in Cardot, Mas and
Sarda [7] and will not be proved.

Lemma 20. The random sequence
√

kn

n
Tn is flatly concentrated and uniformly tight. In fact, if

Pm is the projection operator on the m first eigenvectors of �ε and η > 0 is a real number

lim sup
m→+∞

sup
n

P
(∥∥√n/kn(I − Pm)Tn

∥∥> η
)= 0.

Besides for all fixed x in H ,
√

n/kn〈Tn, x〉 w→ N (0, σ 2
ε,x), where σ 2

ε,x = E〈εk, x〉2.

Proof of Theorem 9. We only prove the second part of the theorem: weak convergence
with no bias. The first part follows immediately. We start again from the decomposition
(12). As announced just above, the two first terms vanish with respect to convergence in
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distribution. For S[�̂k − �k](Xn+1), we invoke Proposition 15 to claim that, whenever
k2 log2 k/n → 0, (n/k)E‖S[�̂k − �k](Xn+1)‖2 → 0 and we just have to deal with the first
term, related to bias: S(�k − I )(Xn+1). Assume first that the mean square of the latter reminder,
(n/k)

∑+∞
j=k+1 λj‖S(ej )‖2, decays to zero. Then the proof of the theorem is immediate from

Lemma 20. The sequence
√

n/knTn is uniformly tight and its finite-dimensional distributions (in
the sense of “all finite-dimensional projections of

√
n/knTn”) converge weakly to N (0, σ 2

ε,x).
This is enough to claim that Theorem 9 holds. We refer, for instance, to Araujo and Giné [3] for
checking the validity of this conclusion.

It remains to prove limn→+∞(n/k)
∑+∞

j=k+1 λj‖S(ej )‖2 = 0 when tightening conditions on

the sequence kn. First, we know by previous remarks (since λj and ‖S(ej )‖2 are convergent
series) that λj‖S(ej )‖2 = τj (j

2 log2 j), where τj tends to zero. Taking as in the first part of the

theorem n = k2 log2 k/
√

γk , we can focus on limk+∞ k log2 k√
γk

∑+∞
j=k+1 τj /(j

2 log2 j). We know
that for a sufficiently large k and for all j ≥ k, 0 ≤ τj ≤ ε where ε > 0 is fixed. Then

1√
γk

+∞∑
j=k+1

τj

k log2 k

j2 log2 j
= 1√

γk

+∞∑
m=1

km+k∑
j=km+1

τj

k log2 k

j2 log2 j
≤ 1√

γk

(
sup
k≤j

τj

) +∞∑
m=1

1

m2
= C

√
γk → 0,

which removes the bias term and is the desired result. �

Acknowledgements

We are grateful to the Associate Editor and two anonymous referees for valuable comments that
helped us to improve the paper.

References

[1] Aguilera, A., Ocaña, F. and Valderrama, M. (2008). Estimation of functional regression models for
functional responses by wavelet approximation. In Functional and Operatorial Statistics (S. Dabo-
Niang and F. Ferraty, eds.). Contrib. Statist. 15–21. Heidelberg: Springer. MR2478482

[2] Antoch, J., Prchal, L., De Rosa, M. and Sarda, P. (2010). Electricity consumption prediction with
functional linear regression using spline estimators. J. Appl. Stat. 37 2027–2041. MR2740138

[3] Araujo, A. and Giné, E. (1980). The Central Limit Theorem for Real and Banach Valued Random
Variables. New York: Wiley. MR0576407

[4] Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Applications. Lecture Notes in
Statistics 149. New York: Springer. MR1783138

[5] Cardot, H., Crambes, C., Kneip, A. and Sarda, P. (2007). Smoothing splines estimators in functional
linear regression with errors-in-variables. Comput. Statist. Data Anal. 51 4832–4848. MR2364543

[6] Cardot, H. and Johannes, J. (2010). Thresholding projection estimators in functional linear models.
J. Multivariate Anal. 101 395–408. MR2564349

[7] Cardot, H., Mas, A. and Sarda, P. (2007). CLT in functional linear regression models. Probab. Theory
Related Fields 138 325–361. MR2299711

[8] Chiou, J.M., Müller, H.G. and Wang, J.L. (2004). Functional response models. Statist. Sinica 14 675–
693. MR2087968

http://www.ams.org/mathscinet-getitem?mr=2478482
http://www.ams.org/mathscinet-getitem?mr=2740138
http://www.ams.org/mathscinet-getitem?mr=0576407
http://www.ams.org/mathscinet-getitem?mr=1783138
http://www.ams.org/mathscinet-getitem?mr=2364543
http://www.ams.org/mathscinet-getitem?mr=2564349
http://www.ams.org/mathscinet-getitem?mr=2299711
http://www.ams.org/mathscinet-getitem?mr=2087968


Functional linear regression with functional outputs 2651

[9] Crambes, C., Kneip, A. and Sarda, P. (2009). Smoothing splines estimators for functional linear re-
gression. Ann. Statist. 37 35–72. MR2488344

[10] Cuevas, A., Febrero, M. and Fraiman, R. (2002). Linear functional regression: The case of fixed design
and functional response. Canad. J. Statist. 30 285–300. MR1926066

[11] Dunford, N. and Schwartz, J.T. (1988). Linear Operators, Vols. I & II. New York: Wiley.
[12] Engl, H.W., Hanke, M. and Neubauer, A. (1996). Regularization of Inverse Problems. Mathematics

and Its Applications 375. Dordrecht: Kluwer Academic. MR1408680
[13] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice.

Springer Series in Statistics. New York: Springer. MR2229687
[14] Hall, P. and Horowitz, J.L. (2007). Methodology and convergence rates for functional linear regres-

sion. Ann. Statist. 35 70–91. MR2332269
[15] Kato, T. (1976). Perturbation Theory for Linear Operators, 2nd ed. Grundlehren der Mathematischen

Wissenschaften 132. Berlin: Springer. MR0407617
[16] Lifshits, M.A. (1995). Gaussian Random Functions. Mathematics and Its Applications 322. Dor-

drecht: Kluwer Academic. MR1472736
[17] Malfait, N. and Ramsay, J.O. (2003). The historical functional linear model. Canad. J. Statist. 31

115–128. MR2016223
[18] Ramsay, J.O. and Dalzell, C.J. (1991). Some tools for functional data analysis. J. R. Stat. Soc. Ser. B

Stat. Methodol. 53 539–572. With discussion and a reply by the authors. MR1125714
[19] Ramsay, J.O. and Silverman, B.W. (2005). Functional Data Analysis, 2nd ed. Springer Series in Statis-

tics. New York: Springer. MR2168993
[20] Rudin, W. (1987). Real and Complex Analysis, 3rd ed. New York: McGraw-Hill. MR0924157
[21] Stone, C.J. (1982). Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10

1040–1053. MR0673642
[22] Tikhonov, A.N. and Arsenin, V. Y. (1977). Solutions of Ill-Posed Problems. New York: Wiley.

MR0455365
[23] Yao, F., Müller, H.G. and Wang, J.L. (2005). Functional linear regression analysis for longitudinal

data. Ann. Statist. 33 2873–2903. MR2253106

Received February 2011 and revised June 2012

http://www.ams.org/mathscinet-getitem?mr=2488344
http://www.ams.org/mathscinet-getitem?mr=1926066
http://www.ams.org/mathscinet-getitem?mr=1408680
http://www.ams.org/mathscinet-getitem?mr=2229687
http://www.ams.org/mathscinet-getitem?mr=2332269
http://www.ams.org/mathscinet-getitem?mr=0407617
http://www.ams.org/mathscinet-getitem?mr=1472736
http://www.ams.org/mathscinet-getitem?mr=2016223
http://www.ams.org/mathscinet-getitem?mr=1125714
http://www.ams.org/mathscinet-getitem?mr=2168993
http://www.ams.org/mathscinet-getitem?mr=0924157
http://www.ams.org/mathscinet-getitem?mr=0673642
http://www.ams.org/mathscinet-getitem?mr=0455365
http://www.ams.org/mathscinet-getitem?mr=2253106

	Introduction
	The model
	Estimation
	Identifiability, inverse problem and regularization issues
	Assumptions

	Asymptotic results
	Mean square prediction error and optimality
	Weak convergence
	Comparison with existing results - Conclusion

	Practical implementation
	Estimation of the variance of the noise
	Empirical illustration of a theoretical result

	Mathematical derivations
	Preliminary material
	Proofs of the main results

	Acknowledgements
	References

