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Stationary ergodic processes with finite alphabets are estimated by finite memory processes from a sample,
an n-length realization of the process, where the memory depth of the estimator process is also estimated
from the sample using penalized maximum likelihood (PML). Under some assumptions on the continuity
rate and the assumption of non-nullness, a rate of convergence in d̄-distance is obtained, with explicit con-
stants. The result requires an analysis of the divergence of PML Markov order estimators for not necessarily
finite memory processes. This divergence problem is investigated in more generality for three information
criteria: the Bayesian information criterion with generalized penalty term yielding the PML, and the nor-
malized maximum likelihood and the Krichevsky–Trofimov code lengths. Lower and upper bounds on the
estimated order are obtained. The notion of consistent Markov order estimation is generalized for infinite
memory processes using the concept of oracle order estimates, and generalized consistency of the PML
Markov order estimator is presented.

Keywords: finite memory estimator; infinite memory; information criteria; Markov approximation;
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1. Introduction

This paper is concerned with the problem of estimating stationary ergodic processes with finite
alphabet from a sample, an observed length n realization of the process, with the d̄-distance
being considered between the process and the estimated one. The d̄-distance was introduced by
Ornstein [26] and became one of the most widely used metrics over stationary processes. Two
stationary processes are close in d̄-distance if there is a joint distribution whose marginals are
the distributions of the processes such that the marginal processes are close with high probability
(see Section 5 for the formal definition). The class of ergodic processes is d̄-closed and entropy
is d̄-continuous, which properties do not hold for the weak topology [34].

Ornstein and Weiss [27] proved that for stationary processes isomorphic to i.i.d. processes, the
empirical distribution of the k(n)-length blocks is a strongly consistent estimator of the k(n)-
length parts of the process in d̄-distance if and only if k(n) ≤ (logn)/h, where h denotes the
entropy of the process.

Csiszár and Talata [13] estimated the n-length part of a stationary ergodic process X by a
Markov process of order kn. The transition probabilities of this Markov estimator process are
the empirical conditional probabilities, and the order kn → +∞ does not depend on the sample.
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They obtained a rate of convergence of the Markov estimator to the process X in d̄-distance,
which consists of two terms. The first one is the bias due to the error of the approximation of the
process by a Markov chain. The second term is the variation due to the error of the estimation of
the parameters of the Markov chain from a sample.

In this paper, the order kn of the Markov estimator process is estimated from the sample. For
the order estimation, penalized maximum likelihood (PML) with general penalty term is used.
The resulted Markov estimator process finds a tradeoff between the bias and the variation as it
uses shorter memory for faster memory decays of the process X. If the process X is a Markov
chain, the PML order estimation recovers its order asymptotically with a wide range of penalty
terms.

Not only an asymptotic rate of convergence result is obtained but also an explicit bound on
the probability that the d̄-distance of the above Markov estimator from the process X is greater
than ε. It is assumed that the process X is non-null, that is, the conditional probabilities of the
symbols given the pasts are separated from zero, and that the continuity rate of the process X is
summable and the restricted continuity rate is uniformly convergent. These conditions are usually
assumed in this area [6,17,18,25]. The summability of the continuity rate implies that the process
is isomorphic to an i.i.d. process [4].

The above result on statistical estimation of stationary ergodic processes requires a non-
asymptotic analysis of the Markov order estimation for not necessarily finite memory processes.
In this paper, this problem is also investigated in more generality: under milder conditions than
it would be needed for the above bound and not only for the PML method.

A popular approach to the Markov order estimation is the minimum description length (MDL)
principle [3,28]. This method evaluates an information criterion for each candidate order based
on the sample and the estimator takes the order for which the value is minimal. The normalized
maximum likelihood (NML) [36] and the Krichevsky–Trofimov (KT) [23] code lengths are nat-
ural information criteria because the former minimizes the worst case maximum redundancy for
the model class of k-order Markov chains, while the latter does so, up to an additive constant,
with the average redundancy. The Bayesian information criterion (BIC) [33] can be regarded as
an approximation of the NML and KT code lengths. The PML is a generalization of BIC; special
settings of the penalty term yield the BIC and other well-known information criteria, such as the
Akaike information criterion (AIC) [1]. There are other methods for Markov order estimation,
see [19] and references there, and the problem can also be formulated in the setting of hypothesis
testing [29].

If a process is a Markov chain, the NML and KT Markov order estimators are strongly consis-
tent if the candidate orders have an upper bound o(logn) [9]. Without such a bound, they fail to
be consistent [11]. The BIC Markov order estimator is strongly consistent without any bound on
the candidate orders [11]. If a process has infinite memory, the Markov order estimators are ex-
pected to tend to infinity as n → +∞. The concept of context trees of arbitrary stationary ergodic
processes is a model more complex than Markov chains. Recent results [12] in that area imply
that this expectation holds true for the BIC and KT Markov order estimators but they provide no
information about the asymptotics of the divergence.

In this paper, the divergence of the PML, NML and KT Markov order estimators for not
necessarily finite memory processes is investigated. Not only asymptotic rates of divergence
are obtained but also explicit bounds on the probability that the estimators are greater and less,
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respectively, than some order. Instead of the usual assumption of non-nullness, it is assumed only
that the conditional probabilities of one of the symbols given the pasts are separated from zero.
This property is called weakly non-nullness and is “noticeably weaker” than non-nullness [7].

First, the process is assumed to be weakly non-null and α-summable. The α-summability
[14,15,21,24] is a condition weaker than the summability of the continuity rate. Under these
conditions, a bound on the probability that the estimators are greater than some order is obtained,
that yields an O(logn) upper bound on the estimated order eventually almost surely as n → +∞.

Then, a bound on the probability that the estimators are less than some order is obtained
assuming that the process is weakly non-null and the decay of its continuity rates is in some
exponential range. This bound implies that the estimators satisfying the conditions attain a c logn

divergence rate eventually almost surely as n → +∞, where the coefficient c depends on the
range of the continuity rates. The class of processes with exponentially decaying continuity rate is
considered in various problems [17,20]. Fast divergence rate of the estimators are expected only
for a certain range of continuity rates. Clearly, the estimators do not have a fast divergence rate
if the memory decay of the process is too fast. On the other hand, too slow memory decay is also
not favored to a fast divergence rate because then the empirical probabilities do not necessarily
converge to the true probabilities.

To provide additional insight into the asymptotics of Markov order estimators, the notion of
consistent Markov order estimation is generalized for infinite memory processes. A Markov order
estimator is compared to its oracle version, which is calculated based on the true distribution of
the process instead of the empirical distribution. The oracle concept is used in various problems,
see, for example, [2,5,16,22]. If the decay of the continuity rate of the process is faster than
exponential, the ratio of the PML Markov order estimator with sufficiently large penalty term to
its oracle version is shown to converge to 1 in probability.

The structure of the paper is the following. In Section 2, notation and definitions are in-
troduced for stationary ergodic processes with finite alphabets. In Section 3, the PML, NML
and KT information criteria are introduced. Section 4 contains the results on divergence of the
information-criterion based Markov order estimators. In Section 5, the problem of estimating
stationary ergodic process in d̄-distance is formulated and our results are presented. The results
require bounds on empirical entropies, which are stated in Section 4 and are proved in Section 6.
Section 7 contains the proof of the divergence results, and Section 8 the proof of the process
estimation results.

2. Finite and infinite memory processes

Let X = {Xi,−∞ < i < +∞} be a stationary ergodic stochastic process with finite alpha-
bet A. We write X

j
i = Xi, . . . ,Xj and x

j
i = xi, . . . , xj ∈ Aj−i+1 for j ≥ i. If j < i, x

j
i is

the empty string. For two strings xi
1 ∈ Ai and y

j

1 ∈ Aj , xi
1y

j

1 denotes their concatenation
x1, . . . , xi, y1, . . . , yj ∈ Ai+j . Write

P
(
x

j
i

) = Pr
(
X

j
i = x

j
i

)
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and, if P(x−1−m) > 0,

P
(
a|x−1−m

) = Pr
(
X0 = a|X−1−m = x−1−m

)
.

For m = 0, P(a|x−1−m) = P(a).
The process X is called weakly non-null if

α0 =
∑
a∈A

inf
x−1−∞∈A∞

P
(
a|x−1−∞

)
> 0.

Letting

αk = min
y−1
−k ∈Ak

∑
a∈A

inf
x−1−∞∈A∞:x−1

−k =y−1
−k

P
(
a|x−1−∞

)
, k = 1,2, . . . ,

we say that the process X is α-summable if

α =
+∞∑
k=0

(1 − αk) < +∞.

The continuity rates of the process X are

γ̄ (k) = sup
x−1−∞∈A∞

∑
a∈A

∣∣P (
a|x−1

−k

) − P
(
a|x−1−∞

)∣∣

and

¯
γ (k) = inf

x−1−∞∈A∞

∑
a∈A

∣∣P (
a|x−1

−k

) − P
(
a|x−1−∞

)∣∣.
Obviously,

¯
γ (k) ≤ γ̄ (k). If

∑∞
k=1 γ̄ (k) < +∞, then the process X is said to have summable

continuity rate.

Remark 2.1. Since for any x−1
−k ∈ Ak and z−k−1−m ∈ Am−k , m ≥ k,

inf
x−k−1−∞

P
(
a|x−1−∞

) ≤ P
(
a|z−k−1−m x−1

−k

) ≤ sup
x−k−1−∞

P
(
a|x−1−∞

)
,

the above definition of continuity rate is equivalent to

γ̄ (k) = sup
i>k

max
x−1
−i ∈Ai

∑
a∈A

∣∣P (
a|x−1

−k

) − P
(
a|x−1

−i

)∣∣.
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Remark 2.2. The process is α-summable if it has summable continuity rate because

1 − αk ≤ 1 − max
y−1
−k ∈Ak

∑
a∈A

P
(
a|y−1

−k

)

+ max
y−1
−k ∈Ak

∑
a∈A

sup
x−1−∞∈A∞:x−1

−k =y−1
−k

(
P

(
a|y−1

−k

) − P
(
a|x−1−∞

))
≤ |A|γ̄ (k).

The k-order entropy of the process X is

Hk = −
∑

ak
1∈Ak

P
(
ak

1

)
logP

(
ak

1

)
, k ≥ 1,

and the k-order conditional entropy is

hk = −
∑

ak+1
1 ∈Ak+1

P
(
ak+1

1

)
logP

(
ak+1|ak

1

)
, k ≥ 0.

Logarithms are to the base 2. It is well known for stationary processes [8,10] that the conditional
entropy hk is a non-negative decreasing function of k, therefore its limit exists as k → +∞. The
entropy rate of the process is

H̄ = lim
k→+∞hk = lim

k→+∞
1

k
Hk.

Note that hk − H̄ ≥ 0 for any k ≥ 0.
The process X is a Markov chain of order k if for each n > k and xn

1 ∈ An

P
(
xn

1

) = P
(
xk

1

) n∏
i=k+1

P
(
xi |xi−1

i−k

)
, (2.1)

where P(xk
1 ) is called initial distribution and {P(a|ak

1), a ∈ A,ak
1 ∈ Ak} is called transition prob-

ability matrix. The case k = 0 corresponds to i.i.d. processes. The process X is of infinite memory
if it is not a Markov chain for any order k < +∞. For infinite memory processes, hk − H̄ > 0
for any k ≥ 0.

In this paper, we consider statistical estimates based on a sample Xn
1 , an n-length part of the

process. Let Nn(a
k
1) denote the number of occurrences of the string ak

1 in the sample Xn
1

Nn

(
ak

1

) = ∣∣{i : Xi+k
i+1 = ak

1,0 ≤ i ≤ n − k
}∣∣.

For k ≥ 1, the empirical probability of the string ak
1 is

P̂
(
ak

1

) = Nn(a
k
1)

n − k + 1
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and the empirical conditional probability of ak+1 ∈ A given ak
1 is

P̂
(
ak+1|ak

1

) = Nn(a
k+1
1 )

Nn−1(a
k
1)

.

For k = 0, P̂ (ak+1|ak
1) = P̂ (ak+1). The k-order empirical entropy is

Ĥk

(
Xn

1

) = −
∑

ak
1∈Ak

P̂
(
ak

1

)
log P̂

(
ak

1

)
, 1 ≤ k ≤ n,

and the k-order empirical conditional entropy is

ĥk

(
Xn

1

) = −
∑

ak+1
1 ∈Ak+1

P̂
(
ak+1

1

)
log P̂

(
ak+1|ak

1

)
, 0 ≤ k ≤ n − 1.

The likelihood of the sample Xn
1 with respect to a k-order Markov chain model of the process

X with some transition probability matrix {Q(ak+1|ak
1), ak+1 ∈ A,ak

1 ∈ Ak}, by (2.1), is

P ′(Xn
1

) = P ′(Xk
1

) ∏
ak+1

1 ∈Ak+1

Q
(
ak+1|ak

1

)Nn(ak+1
1 )

.

For 0 ≤ k < n, the maximum likelihood is the maximum in Q(ak+1|ak
1) of the second factor

above, which equals

MLk

(
Xn

1

) =
∏

ak+1
1 ∈Ak+1

P̂
(
ak+1|ak

1

)Nn(ak+1
1 )

.

Note that log MLk(X
n
1 ) = −(n − k)ĥk(X

n
1 ).

3. Information criteria

An information criterion assigns a score to each hypothetical model (here, Markov chain order)
based on a sample, and the estimator will be that model whose score is minimal.

Definition 3.1. For an information criterion

ICXn
1
(·) : N → R

+,

the Markov order estimator is

k̂IC
(
Xn

1

) = arg min
0≤k<n

ICXn
1
(k).
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Remark 3.2. Here, the number of candidate Markov chain orders based on a sample is finite,
therefore the minimum is attained. If the minimizer is not unique, the smallest one will be taken
as arg min.

We consider three, the most frequently used information criteria, namely, the Bayesian in-
formation criterion and its generalization, the family of penalized maximum likelihood (PML)
[11,33], the normalized maximum likelihood (NML) code length [36], and the Krichevsky–
Trofimov (KT) code length [23].

Definition 3.3. Given a penalty function pen(n), a non-decreasing function of the sample size n,
for a candidate order 0 ≤ k < n the PML criterion is

PMLXn
1
(k) = − log MLk

(
Xn

1

) + (|A| − 1
)|A|k pen(n)

= (n − k)ĥk

(
Xn

1

) + (|A| − 1
)|A|k pen(n).

The k-order Markov chain model of the process X is described by the conditional probabilities
{Q(ak+1|ak

1), ak+1 ∈ A,ak
1 ∈ Ak}, and (|A| − 1)|A|k of these are free parameters.

The second term of the PML criterion, which is proportional to the number of free parameters
of the k-order Markov chain model, is increasing in k. The first term, for a given sample, is known
to be decreasing in k. Hence, minimizing the criterion yields a tradeoff between the goodness of
fit of the sample to the model and the complexity of the model.

Remark 3.4. If pen(n) = 1
2 logn, the PML criterion is called Bayesian information criterion

(BIC), and if pen(n) = 1, Akaike information criterion (AIC).

The minimum description length (MDL) principle minimizes the length of a code of the sam-
ple tailored to the model class. Strictly speaking, the information criterion would have an additive
term, the length of a code of the structure parameter. This additional term, the length of a code
of k, is omitted since it does not affect the results.

Definition 3.5. For a candidate order 0 ≤ k < n, the NML criterion is

NMLXn
1
(k) = − logPNML,k

(
Xn

1

)
,

where

PNML,k

(
Xn

1

) = MLk(X
n
1 )

�(n, k)
with �(n, k) =

∑
xn

1 ∈An

MLk

(
xn

1

)

is the k-order NML-probability of Xn
1 .

Remark 3.6. Writing

NMLXn
1
(k) = − log MLk

(
Xn

1

) + log�n,k,

the NML criterion can be regarded as a PML criterion in a broader sense.
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Definition 3.7. For a candidate order 0 ≤ k < n, the KT criterion is

KTXn
1
(k) = − logPKT,k

(
Xn

1

)
,

where

PKT,k

(
Xn

1

) = 1

|A|k
∏

ak
1∈Ak :

Nn−1(a
k
1 )≥1

∏
ak+1:Nn(ak+1

1 )≥1[(Nn(a
k+1
1 ) − 1/2)(Nn(a

k+1
1 ) − 3/2) · · · (1/2)]

(Nn−1(a
k
1) − 1 + |A|/2)(Nn−1(a

k
1) − 2 + |A|/2) · · · (|A|/2)

is the k-order KT-probability of Xn
1 . (For k = 0, Nn−1(a

k
1) = n.)

Remark 3.8. The k-order KT-probability of the sample is equal to a mixture of the probabilities
of the sample with respect to all k-order Markov chains with uniform initial distribution, where
the mixture distribution over the transition probability matrices {Q(ak+1|ak

1), ak+1 ∈ A,ak
1 ∈ Ak}

is independent for the rows Q(·|ak
1), ak

1 ∈ Ak , and has Dirichlet ( 1
2 , . . . , 1

2 ) distribution in the
rows. Hence, the KT Markov order estimator can be regarded as a Bayes (maximum a posteriori)
estimator.

Remark 3.9. The k-order NML and KT coding distributions are nearly optimal among
the k-order Markov chains, in the sense that the code lengths �− logPNML,k(X

n
1 )	 and

�− logPKT,k(X
n
1 )	 minimize the worst case maximum and average, respectively, redundancy

for this class (up to an additive constant in the latter case).

4. Divergence of Markov order estimators

The BIC Markov order estimator is strongly consistent [11], that is, if the process is a Markov
chain of order k, then k̂BIC(Xn

1 ) = k eventually almost surely as n → +∞. “Eventually almost
surely” means that with probability 1, there exists a threshold n0 (depending on the infinite
realization X∞

1 ) such that the claim holds for all n ≥ n0. Increasing the penalty term, up to cn,
where c > 0 is a sufficiently small constant, does not affect the strong consistency. It is not known
whether or not the strong consistency holds for smaller penalty terms but it is known that if the
candidate orders are upper bounded by c logn, where c > 0 is a sufficiently small constant, that is,
the estimator minimizes the PML over the orders 0 ≤ k ≤ c logn only, then pen(n) = C log logn

still provides the strong consistency, where C > 0 is a sufficiently large constant [35].
The NML and KT Markov order estimators fail to be strongly consistent because for i.i.d.

processes with uniform distribution, they converge to infinity at a rate O(logn) [11]. However,
if the candidate orders are upper bounded by o(logn), the strong consistency holds true [9].

If the process is of infinite memory, the BIC and KT Markov order estimators diverge to
infinity [12]. In this section, results on the divergence rate of the PML, NML and KT Markov
order estimators are presented. Bounds on the probability that the estimators are greater and
less, respectively, than some order are obtained, with explicit constants. The first implies that
under mild conditions, the estimators do not exceed the O(logn) rate eventually almost surely as
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n → +∞. The second bound implies that the rate O(logn) is attained eventually almost surely
as n → +∞ for the processes whose continuity rates decay in some exponential range.

At the end of the section, the notion of consistent Markov order estimation is generalized for
infinite memory processes. If the continuity rates decay faster than exponential, the PML Markov
order estimator is shown to be consistent with the oracle-type order estimate.

The proofs use bounds on the simultaneous convergence of empirical entropies of orders in an
increasing set. These bounds are obtained for finite sample sizes n with explicit constants under
mild conditions so they are of independent interest and are also presented here.

Theorem 4.1. For any weakly non-null and α-summable stationary ergodic process, for any
0 < ε < 1/2

Pr

(
max

1≤k≤(ε logn)/(4 log |A|)
∣∣Ĥk

(
Xn

1

) − Hk

∣∣ >
1

n1/2−ε

)
≤ exp

(
− c1ε

3

logn
nε/2

)

and

Pr

(
max

0≤k≤(ε logn)/(4 log |A|)
∣∣ĥk

(
Xn

1

) − hk

∣∣ >
1

n1/2−ε

)
≤ exp

(
− c2ε

3

logn
nε/2

)
,

where c1, c2 > 0 are constants depending only on the distribution of the process.

Proof. The proof including the explicit expression of the constants is in Section 6. �

Remark 4.2. The convergence of Ĥkn(X
n
1 ) and ĥkn(X

n
1 ), kn → ∞, to the entropy rate H̄ of the

process could be investigated using Theorem 4.1. However, good estimates of the entropy rate
are known from the theory of universal codes. In particular, mixtures of the KT distributions
over all possible orders provide universal codes in the class of all stationary ergodic processes
[29–31], therefore the corresponding code length is a suitable estimate of the entropy rate.

An application of the Borel–Cantelli lemma in Theorem 4.1 yields the following asymptotic
result.

Corollary 4.3. For any weakly non-null and α-summable stationary ergodic process, for any
0 < ε < 1/2 ∣∣Ĥk

(
Xn

1

) − Hk

∣∣ ≤ 1

n1/2−ε
and

∣∣ĥk

(
Xn

1

) − hk

∣∣ ≤ 1

n1/2−ε

simultaneously for all k ≤ ε logn
4 log |A| , eventually almost surely as n → +∞.

Remark 4.4. By [20], under much stronger conditions on the process, the convergence rate of
Ĥk(X

n
1 ) and ĥk(X

n
1 ) to H̄ is n−1/2 for some fixed k = O(logn). Hence, the rate in Theorem 4.1

cannot be improved significantly.

The first divergence result of the paper is the following.
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Theorem 4.5. For any weakly non-null and α-summable stationary ergodic process there exist
λ1, λ2 > 0 depending only on the distribution of the process, such that for the Markov order
estimator k̂IC(Xn

1 )

Pr
(
k̂IC

(
Xn

1

)
> kn

) ≤ 2λ1+2 logn−λ2kn

for any sequence kn, n ∈ N, where IC is either the PML with arbitrary pen(n) or the NML or the
KT criterion.

Proof. The proof including the explicit expression of the constants is in Section 7. �

An application of the Borel–Cantelli lemma in Theorem 4.5 yields the following asymptotic
result.

Corollary 4.6. For any weakly non-null and α-summable stationary ergodic process there exists
a constant C > 0 such that for the Markov order estimator k̂IC(Xn

1 )

k̂IC
(
Xn

1

) ≤ C logn

eventually almost surely as n → +∞, where IC is either the PML with arbitrary pen(n) or the
NML or the KT criterion.

The second divergence result is the following.

Theorem 4.7. For any weakly non-null stationary ergodic process with continuity rates γ̄ (k) ≤
δ12−ζ1k and

¯
γ (k) ≥ δ22−ζ2k for some ζ1, ζ2, δ1, δ2 > 0 (ζ2 ≥ ζ1), if

6 log |A|
ζ1

≤ ε <
1

2
,

the Markov order estimator k̂IC(Xn
1 ) satisfies that

Pr

(
k̂IC

(
Xn

1

) ≤ 1

2ζ2

(
1

2
− ε

)
logn − c3

)
≤ exp

(
− c2ε

3

logn
nε/2

)
,

if n ≥ n0, where IC is either the PML with pen(n) ≤ O(
√

n) or the NML or the KT criterion, and
c2, n0 > 0, c3 ∈ R are constants depending only on the distribution of the process and pen(n).

Proof. The proof including the explicit expression of the constants is in Section 7. �

An application of the Borel–Cantelli lemma in Theorem 4.7 yields the following asymptotic
result.

Corollary 4.8. For any weakly non-null stationary ergodic process with continuity rates γ̄ (k) ≤
δ12−ζ1k and

¯
γ (k) ≥ δ22−ζ2k for some ζ1, ζ2, δ1, δ2 > 0 with ζ2 ≥ ζ1 > 12 log |A|, the Markov
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order estimator k̂IC(Xn
1 ) satisfies that

k̂IC
(
Xn

1

) ≥ C′ logn

eventually almost surely as n → +∞, where IC is either the PML with pen(n) ≤ O(
√

n) or the
NML or the KT criterion, and C′ > 0 is a constant depending only on the distribution of the
process.

The section concludes with the consistency result.

Definition 4.9. For a candidate order 0 ≤ k < n the oracle PML criterion is

PMLo,n(k) = (n − k)hk + (|A| − 1
)|A|k pen(n),

and the oracle PML Markov order estimator is

kPML,n = arg min
0≤k<n

PMLo,n(k).

Remark 4.10. For Markov chains of order k, kPML,n = k if n is sufficiently large, with any
pen(n) = o(n).

Theorem 4.11. For any weakly non-null stationary ergodic process with

log γ̄ (k)

k
→ −∞, k → ∞,

the PML Markov order estimator k̂PML(Xn
1 ) with pen(n) = nκ , 1

2 < κ < 1, is consistent in the
sense that

k̂PML(Xn
1 )

kPML,n

→ 1

in probability as n → +∞.

Proof. The proof is in Section 7. �

5. Statistical estimation of processes

In the results of this section, the divergence rate of Markov order estimators will play a cen-
tral role. The problem of statistical estimation of stationary ergodic processes by finite memory
processes is considered, and the following distance is used. The per-letter Hamming distance
between two strings xn

1 and yn
1 is

dn

(
xn

1 , yn
1

) = 1

n

n∑
i=1

I(xi �= yi) where I(a �= b) =
{

1, if a �= b,
0, if a = b,
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and the d̄-distance between two random sequences Xn
1 and Yn

1 is defined by

d̄
(
Xn

1 , Y n
1

) = min
P

EPdn

(
X̃n

1 , Ỹ n
1

)
,

where the minimum is taken over all the joint distributions P of X̃n
1 and Ỹ n

1 whose marginals are
equal to the distributions of Xn

1 and Yn
1 .

The process X is estimated by a Markov chain of order k = kn from the sample in the following
way.

Definition 5.1. The empirical k-order Markov estimator of a process X based on the sample Xn
1

is the stationary Markov chain, denoted by X̂[k], of order k with transition probability matrix
{P̂ (ak+1|ak

1), ak+1 ∈ A,ak
1 ∈ Ak}. If the initial distribution of a stationary Markov chain with

these transition probabilities is not unique, then any of these initial distributions can be taken.

In the previous section, weakly non-nullness is assumed for the process. In this section the
process X is assumed to be non-null, that is,

pinf = min
a∈A

inf
x−1−∞∈A∞

P
(
a|x−1−∞

)
> 0.

Remark 5.2. For any non-null stationary ergodic process, P(ak
1) ≤ (1 − pinf)

k for any ak
1 ∈ Ak .

Hence, Theorem 4.5 holds with λ1 = 0 and λ2 = |log(1 − pinf)|, see the proof of the theorem.

The assumption of non-nullness allows us to use the following quantity instead of
¯
γ (k). The

restricted continuity rate of the process X is

γ̄ (k|m) = max
x−1−m∈Am

∑
a∈A

∣∣P (
a|x−1

−k

) − P
(
a|x−1−m

)∣∣, k < m.

Similarly to Remark 2.1, note that the above definition is equivalent to

γ̄ (k|m) = max
k<i≤m

max
x−1
−i ∈Ai

∑
a∈A

∣∣P (
a|x−1

−k

) − P
(
a|x−1

−i

)∣∣.
Hence, limm→+∞ γ̄ (k|m) = γ̄ (k) for any fixed k. We say that the process X has uniformly con-
vergent restricted continuity rate with parameters θ1, θ2, kθ if

γ̄ (k)θ1 ≤ γ̄
(
k|�θ2k	) if k ≥ kθ , for some θ1 ≥ 1, θ2 > 1.

The order k of the empirical Markov estimator X̂[k] is estimated from the sample, using the
PML criterion. The estimated order needs to be bounded to guarantee an accurate assessment of
the memory decay of the process.

Definition 5.3. For an information criterion IC, the Markov order estimator bounded by rn < n,
rn ∈ N, is

k̂IC
(
Xn

1 |rn
) = arg min

0≤k≤rn
ICXn

1
(k).
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The optimal order can be smaller than the upper bound if the memory decay of the process is
sufficiently fast. Define

Kn

(
rn, γ̄ , f (n)

) = min
{�rn, k ≥ 0 : γ̄ (k) < f (n)

}
,

where f (n) ↘ 0 and rn ↗ ∞. Since γ̄ is a decreasing function, Kn increases in n but does not
exceed rn. It is less than rn if γ̄ vanishes sufficiently fast, and then the faster γ̄ vanishes, the
slower Kn increases.

The process estimation result of the paper is the following.

Theorem 5.4. For any non-null stationary ergodic process with summable continuity rate and
uniformly convergent restricted continuity rate with parameters θ1, θ2, kθ , and for any μn > 0,
the empirical Markov estimator of the process with the order estimated by the bounded PML
Markov order estimator k̂n = k̂PML(Xn

1 |η logn), η > 0, with 1
2 logn ≤ pen(n) ≤ O(

√
n) satisfies

Pr

(
d̄
(
Xn

1 , X̂[k̂n]n1
)
>

β2

p2
inf

max

{
γ̄

(⌊
η

θ2
logn

⌋)
, n−(1−4η log(|A|4/pinf))/(4θ1)

}
+ 1

n1/2−μn

)

≤ exp
(−c44μn logn−| logpinf|(Kn(η logn,γ̄ ,c pen(n)/n)+log logn/log |A|))

+ exp

(
− c5η

3

logn
nη2 log |A|

)
+ 2−sn pen(n),

if n ≥ n0, where c > 0 is an arbitrary constant, sn → ∞ and β2, c4, c5, n0 > 0 are constants
depending only on the distribution of the process.

Proof. The proof including the explicit expression of the constants is in Section 8. �

Remark 5.5. If the process X is a Markov chain of order k, then the restricted continuity rate is
uniformly convergent with parameters θ1 = 1, θ2 > 1 arbitrary (arbitrarily close to 1), kθ = k+1,
and if n is sufficiently large, Kn = k and

max

{
γ̄

(⌊
η

θ2
logn

⌋)
, n−(1−4η log(|A|4/pinf))/(4θ1)

}
= n−(1−4η log(|A|4/pinf))/(4θ1).

An application of the Borel–Cantelli lemma in Theorem 5.4 yields the following asymptotic
result.

Corollary 5.6. For any non-null stationary ergodic process with summable continuity rate and
uniformly convergent restricted continuity rate with parameters θ1, θ2, kθ , the empirical Markov
estimator of the process with the order estimated by the bounded PML Markov order estimator
k̂n = k̂PML(Xn

1 |rn) with 1
2 logn ≤ pen(n) ≤ O(

√
n) and

5 log logn

2 log |A| ≤ rn ≤ o(logn)
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satisfies

d̄
(
Xn

1 , X̂[k̂n]n1
) ≤ β2

p2
inf

max

{
γ̄

(⌊
rn

θ2

⌋)
, n−1/(4θ1)

}

+ (logn)c6

√
n

2| logpinf|Kn(rn,γ̄ ,c pen(n)/n)

eventually almost surely as n → +∞, where c > 0 is an arbitrary constant, and β2, c6 > 0 are
constants depending only on the distribution of the process.

Remark 5.7. If the memory decay of the process is slow, the first term in the bound in Corol-
lary 5.6, the bias, is essentially γ̄ (�rn/θ2), and the second term, the variance, is maximal. If the
memory decay is sufficiently fast, then the rate of the estimated order k̂n and the rate of Kn are
smaller, therefore the variance term is smaller, while the bias term is smaller as well. The result,
however, shows the optimality of the PML Markov order estimator in the sense that it selects an
order which is small enough to allow the variance to decrease but large enough to keep the bias
below a polynomial threshold.

6. Empirical entropies

In this section, we consider the problem of simultaneous convergence of empirical entropies of
orders in an increasing set, and prove the following theorem that formulates Theorem 4.1 with
explicit constants.

Theorem 6.1. For any weakly non-null and α-summable stationary ergodic process, for any
0 < ε < 1/2

Pr

(
max

1≤k≤(ε logn)/(4 log |A|)
∣∣Ĥk

(
Xn

1

) − Hk

∣∣ >
1

n1/2−ε

)

≤ 6e1/e exp

(
− 7α0ε

3

32e(α + α0)

nε/2

logn
+ ε

4
logn

)

and

Pr

(
max

0≤k≤(ε logn)/(4 log |A|)
∣∣ĥk

(
Xn

1

) − hk

∣∣ >
1

n1/2−ε

)

≤ 12e1/e exp

(
− 7α0ε

3

256e(α + α0)

nε/2

logn
+ ε

4
logn

)
.

First, we show the following bounds.
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Proposition 6.2. For any weakly non-null and α-summable stationary ergodic process, for any
1 ≤ m ≤ n and u, ν > 0,

Pr
(

max
1≤k≤m

∣∣Ĥk

(
Xn

1

) − Hk

∣∣ > u
)

≤ 6e1/e|A|m exp

(
α0

8e(α + α0)

−(n − m + 1)u2(1+ν)

m|A|2m

× min 2
{(

e

2(1 + ν−1)

)1+ν

,
u−ν log e

2m log |A| ,
u−ν

e

})

and

Pr
(

max
0≤k≤m−1

∣∣ĥk

(
Xn

1

) − hk

∣∣ > u
)

≤ 12e1/e|A|m exp

(
α0

8e(α + α0)

−(n − m + 1)(u/2)2(1+ν)

m|A|2m

× min 2
{(

e

2(1 + ν−1)

)1+ν

,
(u/2)−ν log e

2m log |A| ,
(u/2)−ν

e

})
.

Proof. Fix 1 ≤ k ≤ m. Applying Lemma A.1 in the Appendix to the distributions Pk =
{P(ak

1), ak
1 ∈ Ak} and P̂k = {P̂ (ak

1), ak
1 ∈ Ak},

∣∣Ĥk

(
Xn

1

) − Hk

∣∣ ≤ 1

log e

[
k log |A| − logdTV(P̂k,Pk)

]
dTV(P̂k,Pk), (6.1)

if dTV(P̂k,Pk) ≤ 1/e. For any ν > 0, the right of (6.1) can be written as

k log |A|
log e

dTV(P̂k,Pk)

+ 1 + ν

ν log e
d

1/(1+ν)
TV (P̂k,Pk)

[−d
ν/(1+ν)
TV (P̂k,Pk) logd

ν/(1+ν)
TV (P̂k,Pk)

]
(6.2)

≤ k log |A|
log e

dTV(P̂k,Pk) + 1

e

1 + ν

ν
d

1/(1+ν)
TV (P̂k,Pk),

where we used the bound −x logx ≤ e−1 log e, x ≥ 0.
By [21], for any string ak

1 ∈ Ak and t > 0,

Pr
(∣∣Nn

(
ak

1

) − (n − k + 1)P
(
ak

1

)∣∣ > t
) ≤ e1/e exp

( −cαt2

k(n − k + 1)

)
, (6.3)

where

cα = α0

8e(α + α0)
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is positive for any weakly non-null and α-summable stationary ergodic process. (6.3) implies
that

Pr
(
dTV(P̂k,Pk) > t

) ≤ Pr

(
max
ak

1∈Ak

∣∣P̂ (
ak

1

) − P
(
ak

1

)∣∣ >
t

|A|k
)

(6.4)

≤ e1/e|A|k exp

(−cα(n − k + 1)t2

k|A|2k

)
.

Applying (6.4) to (6.2),

Pr
(∣∣Ĥk

(
Xn

1

) − Hk

∣∣ > u
)

≤ Pr

(
k log |A|

log e
dTV(P̂k,Pk) + 1

e

1 + ν

ν
d

1/(1+ν)
TV (P̂k,Pk) > u

)

+ Pr
(
dTV(P̂k,Pk) > 1/e

)
≤ Pr

(
dTV(P̂k,Pk) >

u log e

2k log |A|
)

+ Pr

(
d

1/(1+ν)
TV (P̂k,Pk) >

νeu

2(1 + ν)

)

+ Pr
(
dTV(P̂k,Pk) > 1/e

)
≤ 3e1/e|A|k exp

(−cα(n − k + 1)u2(1+ν)

k|A|2k

× min 2
{(

e

2(1 + ν−1)

)1+ν

,
u−ν log e

2k log |A| ,
u−ν

e

})
.

This completes the proof of the first claimed bound as

Pr
(

max
1≤k≤m

∣∣Ĥk

(
Xn

1

) − Hk

∣∣ > u
)

≤
∑

1≤k≤m

Pr
(∣∣Ĥk

(
Xn

1

) − Hk

∣∣ > u
)

≤ 3e1/e
( ∑

1≤k≤m

|A|k
)

× exp

(−cα(n − m + 1)u2(1+ν)

m|A|2m
min 2

{(
e

2(1 + ν−1)

)1+ν

,
u−ν log e

2m log |A| ,
u−ν

e

})
.

The second claimed bound follows using ĥ0(X
n
1 ) − h0 = Ĥ1(X

n
1 ) − H1 and

∣∣ĥk

(
Xn

1

) − hk

∣∣ ≤ ∣∣Ĥk+1
(
Xn

1

) − Hk+1
∣∣ + ∣∣Ĥk

(
Xn

1

) − Hk

∣∣, k ≥ 1,



862 Zs. Talata

as

Pr
(

max
0≤k≤m−1

∣∣ĥk

(
Xn

1

) − hk

∣∣ > u
)

≤ Pr

(
max

1≤k≤m

∣∣Ĥk

(
Xn

1

) − Hk

∣∣ >
u

2

)
+ Pr

(
max

1≤k≤m−1

∣∣Ĥk

(
Xn

1

) − Hk

∣∣ >
u

2

)

≤ 2 Pr

(
max

1≤k≤m

∣∣Ĥk

(
Xn

1

) − Hk

∣∣ >
u

2

)
. �

Now, the theorem follows from the proposition with special settings.

Proof of Theorem 6.1. We use Proposition 6.2 setting u = n−1/2+ε , ν = ε, and m = �(ε logn)/

(4 log |A|). Then, in the exponent of the first inequality of the proposition,

u2(1+ν)

|A|2m
> nε/2−1+2ε2

,

n − m + 1

m
> n

7

logn
,

min

{(
e

2(1 + ν−1)

)1+ν

,
u−ν log e

2m log |A| ,
u−ν

e

}
> n−ε2

(
2ε

3

)3/2

> n−ε2 ε3/2

2
,

where we used that 0 < ε < 1/2. This gives the lower bound

− 7α0ε
3

32e(α + α0)

nε/2

logn

on the exponent and completes the proof of the first claimed bound. The second claimed bound
follows similarly from the second inequality of the proposition with the same settings. �

7. Divergence bounds proofs

In this section, we consider the divergence of the PML, NML and KT Markov order estimators
and prove Theorems 4.5, 4.7 and 4.11.

Proof of Theorem 4.5. By [21], any weakly non-null and α-summable process is φ-mixing with
a coefficient related to α0 > 0 and α < +∞. Namely, there exists a sequence ρi , i ∈ N, satisfying

∞∑
i=0

ρi ≤ 1 + 2α

α0
,
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such that for each k, m, l and each ak
1 ∈ Ak , bm

1 ∈ Am, with P(bm
1 ) > 0,

∣∣Pr
(
Xm+l+k

m+l+1 = ak
1 |Xm

1 = bm
1

) − P
(
ak

1

)∣∣ ≤
l+k−1∑

i=l

ρi .

This implies that for any d ≥ 1

Pr
(
Xm+l+k

m+l+1 = ak
1 |Xm

1 = bm
1

)
≤ Pr

(
Xm+l+id = aid ,1 ≤ i ≤ �k/d|Xm

1 = bm
1

)

=
�k/d∏
i=1

Pr
(
Xm+l+id = aid |Xm+l+jd = ajd,1 ≤ j < i,Xm

1 = bm
1

)

≤
�k/d∏
i=1

(
P(aid) + ρd−1

)

≤
(

max
a∈A

P (a) + ρd−1

)�k/d
.

Since maxa∈A P (a) < 1 and ρd → 0, maxa∈A P (a) + ρd−1 < 1 for sufficiently large d . Then

max
l,ak

1 ,bm
1

Pr
(
Xm+l+k

m+l+1 = ak
1 |Xm

1 = bm
1

) ≤ 2λ1−λ2k

holds with λ1 = − log(maxa∈A P (a)+ρd−1) > 0 and λ2 = − log(maxa∈A P (a)+ρd−1)
1/d > 0.

Thus, for any k,

Pr
(
Nn

(
ak

1

) ≥ 2 for some ak
1

)
= Pr

(
Xi+k−1

i = X
j+k−1
j for some 1 ≤ i < j ≤ n − k + 1

)
≤

∑
1≤i<j≤n−k+1

Pr
(
Xi+k−1

i = X
j+k−1
j

)
(7.1)

=
∑

1≤i<j≤n−k+1

E
{
Pr

(
X

j+k−1
j = Xi+k−1

i |Xj−1
1

)}

≤ n22λ1−λ2k.

For any information criterion IC, we can write{
k̂IC

(
Xn

1

)
> kn

}
⊆ {

ICXn
1
(m) < ICXn

1
(kn) for some m > kn

}
(7.2)

⊆ {
ICXn

1
(m) < ICXn

1
(kn) for some m > kn

} ∩ {
Nn

(
a

kn

1

) ≤ 1 for all a
kn

1

}
∪ {

Nn

(
a

kn

1

) ≥ 2 for some a
kn

1

}
.
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Here, Nn(a
kn

1 ) ≤ 1 for all a
kn

1 ∈ Akn implies that Nn(a
m
1 ) ≤ 1 for all am

1 ∈ Am for all m ≥ kn,
which further implies that for all m > kn (i) ĥm(Xn

1 ) = 0 and therefore PMLXn
1
(m) = (|A| −

1)|A|m pen(n) and NMLXn
1
(m) = �n,m and (ii) KTXn

1
(m) = |A|−n. Then all the three informa-

tion criteria do not depend on the sample and are non-decreasing in m. Hence, in (7.2){
ICXn

1
(m) < ICXn

1
(kn) for some m > kn

} ∩ {
Nn

(
a

kn

1

) ≤ 1 for all a
kn

1

}
is an empty set. Thus, (7.2) gives

Pr
(
k̂IC

(
Xn

1

)
> kn

) ≤ Pr
(
Nn

(
a

kn

1

) ≥ 2 for some a
kn

1

)
and using (7.1) completes the proof. �

To prove Theorem 4.7, first we show the following bounds.

Proposition 7.1. For any weakly non-null and α-summable stationary ergodic process with hk −
H̄ ≤ δ2−ζk for some δ, ζ > 0, if

4 log |A|
ζ

≤ ε <
1

2
,

(i) the PML Markov order estimator k̂PML(Xn
1 ) satisfies that

Pr
(
k̂PML

(
Xn

1

)
< kn

) ≤ 12e1/e exp

(
− 7α0ε

3

256e(α + α0)

nε/2

logn
+ ε

4
logn

)
,

if n ≥ (δ2ζ )2, where

kn = min

{
k ≥ 0 :hk − H̄ <

4 max(
√

n, (|A| − 1)pen(n))

n1−ε

}
;

(ii) the Markov order estimator k̂IC(Xn
1 ), where IC is either NML or KT, satisfies that

Pr
(
k̂IC

(
Xn

1

)
< kn

) ≤ 12e1/e exp

(
− 7α0ε

3

256e(α + α0)

nε/2

logn
+ ε

4
logn

)
,

if n ≥ max2{√24(log2 e)(|A| − 1)2,2CKT, δ2ζ }, where

kn = min

{
k ≥ 0 :hk − H̄ <

4

n1/2−ε

}
.

Remark 7.2. For Markov chains of order k, in Proposition 7.1 kn = k if n is sufficiently large.

Proof of Proposition 7.1. Let 0 < ε < 1/2 be arbitrary and

Bn

(
ε logn

4 log |A|
)

=
{

max
0≤k≤(ε logn)/(4 log |A|)

∣∣ĥk

(
Xn

1

) − hk

∣∣ ≤ 1

n1/2−ε

}
. (7.3)
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For any information criterion IC, we can write for any kn ≤ ε logn
4 log |A|

{
k̂IC

(
Xn

1

)
< kn

}
⊆

{
ICXn

1
(m) ≤ ICXn

1

(⌊
ε logn

4 log |A|
⌋)

for some m < kn

}
(7.4)

⊆
({

ICXn
1
(m) ≤ ICXn

1

(⌊
ε logn

4 log |A|
⌋)

for some m < kn

}
∩ Bn

(
ε logn

4 log |A|
))

∪ Bn

(
ε logn

4 log |A|
)

.

(i) If IC = PML, by the definition of the PML information criterion, see Definition 3.3,

{
PMLXn

1
(m) ≤ PMLXn

1

(⌊
ε logn

4 log |A|
⌋)

for some m < kn

}
∩ Bn

(
ε logn

4 log |A|
)

⊆
{
(n − m)ĥm

(
Xn

1

) −
(

n −
⌊

ε logn

4 log |A|
⌋)

ĥ�(ε logn)/(4 log |A|)
(
Xn

1

)

≤ (|A| − 1
)(|A|�(ε logn)/(4 log |A|) − |A|m)

pen(n) for some m < kn

}
∩ Bn

(
ε logn

4 log |A|
)

⊆
{
ĥm

(
Xn

1

) − ĥ�(ε logn)/(4 log |A|)
(
Xn

1

)
(7.5)

≤ (|A| − 1
)|A|�(ε logn)/(4 log |A|) pen(n)

n − �(ε logn)/(4 log |A|) for some m < kn

}

∩ Bn

(
ε logn

4 log |A|
)

⊆
{
hm − h�(ε logn)/(4 log |A|) ≤ (|A| − 1)|A|(ε logn)/(4 log |A|) pen(n)

n − (ε logn)/(4 log |A|) + 2

n1/2−ε

for some m < kn

}
.

Since for any 0 < ε < 1/2

|A|(ε logn)/(4 log |A|)

n − (ε logn)/(4 log |A|) <
1

n1−ε
, (7.6)

we have

(|A| − 1)|A|(ε logn)/(4 log |A|) pen(n)

n − (ε logn)/(4 log |A|) + 2

n1/2−ε
<

3 max(
√

n, (|A| − 1)pen(n))

n1−ε
. (7.7)
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Now, let ε and kn be as in the claim of the proposition. Using the conditions hk − H̄ ≤ δ2−ζk

and ε ≥ (4 log |A|)/ζ ,

h�(ε logn)/(4 log |A|) − H̄ ≤ δ exp

{
−ζ

(
ε logn

4 log |A| − 1

)}
≤ 1√

n
if n ≥ (

δ2ζ
)2

. (7.8)

Thus, if n ≥ (δ2ζ )2, it follows that kn ≤ ε logn
4 log |A| , and for any m < kn

hm − h�(ε logn)/(4 log |A|) ≥ (hkn−1 − H̄ ) − (h�(ε logn)/(4 log |A|) − H̄ )
(7.9)

≥ (hkn−1 − H̄ ) − 1√
n

≥ 3 max(
√

n, (|A| − 1)pen(n))

n1−ε
,

where we used that hk is non-increasing. Comparing (7.9) to (7.7), the right of (7.5) is an empty
set, and (7.4) yields

Pr
(
k̂PML

(
Xn

1

)
< kn

) ≤ Pr

(
Bn

(
ε logn

4 log |A|
))

≤ 12e1/e exp

(
− 7α0ε

3

256e(α + α0)

nε/2

logn
+ ε

4
logn

)
,

if n ≥ (δ2ζ )2, according to Theorem 6.1.
(ii) If IC = NML, by the definition of the NML information criterion, see Definition 3.5,

{
NMLXn

1
(m) ≤ NMLXn

1

(⌊
ε logn

4 log |A|
⌋)

for some m < kn

}
∩ Bn

(
ε logn

4 log |A|
)

⊆
{
(n − m)ĥm

(
Xn

1

) −
(

n −
⌊

ε logn

4 log |A|
⌋)

ĥ�(ε logn)/(4 log |A|)
(
Xn

1

)

≤ log�

(
n,

⌊
ε logn

4 log |A|
⌋)

− log�(n,m) for some m < kn

}
∩ Bn

(
ε logn

4 log |A|
)

⊆
{
ĥm

(
Xn

1

) − ĥ�(ε logn)/(4 log |A|)
(
Xn

1

)
<

log�(n, �(ε logn)/(4 log |A|))
n − �(ε logn)/(4 log |A|)

(7.10)

for some m < kn

}

∩ Bn

(
ε logn

4 log |A|
)

⊆
{
hm − h�(ε logn)/(4 log |A|) <

log�(n, �(ε logn)/(4 log |A|))
n − (ε logn)/(4 log |A|) + 2

n1/2−ε

for some m < kn

}
,
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where in the second relation we used that �(n,m) > 1 for any m ≥ 0. By Lemma A.2 in the
Appendix,

MLk

(
Xn

1

) ≤ PKT,k

(
Xn

1

)
exp

(
CKT|A|k + |A| − 1

2
|A|k log

n

|A|k
)

that gives the upper bound

log�(n, k) ≤ CKT|A|k + |A| − 1

2
|A|k log

n

|A|k . (7.11)

Using (7.11) and (7.6),

log�(n, �(ε logn)/(4 log |A|))
n − (ε logn)/(4 log |A|)

<

(
CKT + |A| − 1

2
log

n

|A|�(ε logn)/(4 log |A|)

)
1

n1−ε

<

(
CKT + |A| − 1

2
logn

)
1

n1−ε
.

Using ex ≥ x2/2 + x4/4!, x ≥ 0, it follows that (|A|− 1) logn ≤ √
n if n ≥ 24(log4 e)(|A|− 1)4,

which implies that

CKT + |A| − 1

2
logn ≤ √

n if n ≥ max
{
24

(
log4 e

)(|A| − 1
)4

,4C2
KT

}
.

Thus, the expression in (7.10) can be bounded as

log�(n, �(ε logn)/(4 log |A|))
n − (ε logn)/(4 log |A|) + 2

n1/2−ε

(7.12)

<
3

n1/2−ε
if n ≥ max

{
24

(
log4 e

)(|A| − 1
)4

,4C2
KT

}
.

Now, let ε and kn be as in the claim of the proposition. Then the conditions hk − H̄ ≤ δ2−ζk and
ε ≥ (4 log |A|)/ζ imply (7.8), thus, if n ≥ (δ2ζ )2, it follows that kn ≤ ε logn

4 log |A| , and for any m < kn

hm − h�(ε logn)/(4 log |A|) ≥ (hkn−1 − H̄ ) − (h�(ε logn)/(4 log |A|) − H̄ )

≥ (hkn−1 − H̄ ) − 1√
n

(7.13)

≥ 3

n1/2−ε
,
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where we used that hk is non-increasing. Comparing (7.13) to (7.12), the right of (7.10) is an
empty set, and (7.4) yields

Pr
(
k̂NML

(
Xn

1

)
< kn

) ≤ Pr

(
Bn

(
ε logn

4 log |A|
))

≤ 12e1/e exp

(
− 7α0ε

3

256e(α + α0)

nε/2

logn
+ ε

4
logn

)
,

if n ≥ max{24(log4 e)(|A| − 1)4,4C4
KT, (δ2ζ )2}, according to Theorem 6.1.

(iii) If IC = KT, by the definition of the KT information criterion, see Definition 3.7, and using
that PKT,m(Xn

1 ) ≤ MLm(Xn
1 ) for any 0 ≤ m < n,{

KTXn
1
(m) ≤ KTXn

1

(⌊
ε logn

4 log |A|
⌋)

for some m < kn

}
∩ Bn

(
ε logn

4 log |A|
)

⊆
{
(n − m)ĥm

(
Xn

1

) −
(

n −
⌊

ε logn

4 log |A|
⌋)

ĥ�(ε logn)/(4 log |A|)
(
Xn

1

)

≤ log ML�(ε logn)/(4 log |A|)
(
Xn

1

) − logPKT,�(ε logn)/(4 log |A|)
(
Xn

1

)
for some m < kn

}

∩ Bn

(
ε logn

4 log |A|
)

⊆
{
ĥm

(
Xn

1

) − ĥ�(ε logn)/(4 log |A|)
(
Xn

1

)

≤ log ML�(ε logn)/(4 log |A|)(Xn
1 ) − logPKT,�(ε logn)/(4 log |A|)(Xn

1 )

n − �(ε logn)/(4 log |A|) (7.14)

for some m < kn

}

∩ Bn

(
ε logn

4 log |A|
)

⊆
{
hm − h�(ε logn)/(4 log |A|)

≤ log ML�(ε logn)/(4 log |A|)(Xn
1 ) − logPKT,�(ε logn)/(4 log |A|)(Xn

1 )

n − (ε logn)/(4 log |A|) + 2

n1/2−ε

for some m < kn

}
.

By Lemma A.2 in the Appendix,

log ML�(ε logn)/(4 log |A|)
(
Xn

1

) − logPKT,�(ε logn)/(4 log |A|)
(
Xn

1

)
≤ CKT|A|(ε logn)/(4 log |A|) + |A| − 1

2
|A|(ε logn)/(4 log |A|) log

n

|A|�(ε logn)/(4 log |A|) ,

and the proof continues in the same way as in the NML case (ii). �
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Now, we are ready to prove Theorem 4.7. We prove the following theorem that formulates
Theorem 4.7 with explicit constants.

Theorem 7.3. For any weakly non-null stationary ergodic process with continuity rates γ̄ (k) ≤
δ12−ζ1k and

¯
γ (k) ≥ δ22−ζ2k for some ζ1, ζ2, δ1, δ2 > 0 (ζ2 ≥ ζ1), if

6 log |A|
ζ1

≤ ε <
1

2
,

(i) the PML Markov order estimator k̂PML(Xn
1 ) satisfies that

Pr
(
k̂PML

(
Xn

1

) ≤ kn

) ≤ 12e1/e exp

(
− 7α0ε

3

256e(α + α0)

nε/2

logn
+ ε

4
logn

)
,

if n ≥ (36δ
4/3
1 2(4ζ1)/3 log2 |A|)/(log2 e), where

kn = 1

2ζ2

(
2 log δ2 − 3 +

(
1

2
− ε

)
logn − log max

{
1,

(|A| − 1
)pen(n)√

n

})
;

(ii) the Markov order estimator k̂IC(Xn
1 ), where IC is either NML or KT, satisfies that

Pr
(
k̂IC

(
Xn

1

) ≤ kn

) ≤ 12e1/e exp

(
− 7α0ε

3

256e(α + α0)

nε/2

logn
+ ε

4
logn

)
,

if n ≥ max2{√24(log2 e)(|A| − 1)2,2CKT, (6δ
2/3
1 2(2ζ1)/3 log |A|)/(log e)}, where

kn = 1

2ζ2

(
2 log δ2 − 3 +

(
1

2
− ε

)
logn

)
.

[Here, CKT is the constant in the well-known bound of log MLk(X
n
1 ) − logPKT,k(X

n
1 ), see

Lemma A.2 in the Appendix.]

Proof. By Remark 2.2,
∑+∞

k=0 γ̄ (k) ≤ ∑+∞
k=0 δ12−ζ1k < +∞ implies the α-summability. The de-

viation of the conditional entropies from the entropy rate will also be controlled by the continuity
rates of the process, and Proposition 7.1 will yield the claim of the theorem.

First, for any k ≤ m,

hk − hm

=
∑
a∈A

∑
am
m−k+1∈Ak

(
−P

(
am
m−k+1a

)
log

P(am
m−k+1a)

P (am
m−k+1)

−
∑

am−k
1 ∈Am−k

−P
(
am

1 a
)

log
P(am

1 a)

P (am
1 )

)
(7.15)
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=
∑
a∈A

∑
am
m−k+1∈Ak

(
−P

(
am
m−k+1

) ∑
am−k

1 ∈Am−k

P (am
1 )

P (am
m−k+1)

(
P(am

m−k+1a)

P (am
m−k+1)

log
P(am

m−k+1a)

P (am
m−k+1)

)

− P
(
am
m−k+1

) ∑
am−k

1 ∈Am−k

− P(am
1 )

P (am
m−k+1)

(
P(am

1 a)

P (am
1 )

log
P(am

1 a)

P (am
1 )

))

=
∑

am
m−k+1∈Ak

−P
(
am
m−k+1

) ∑
am−k

1 ∈Am−k

P (am
1 )

P (am
m−k+1)

×
∑
a∈A

(
P(am

m−k+1a)

P (am
m−k+1)

log
P(am

m−k+1a)

P (am
m−k+1)

− P(am
1 a)

P (am
1 )

log
P(am

1 a)

P (am
1 )

)
.

On the right of (7.15), the difference of entropies of the conditional distributions {P(a|am
m−k+1),

a ∈ A} and {P(a|am
1 ), a ∈ A} appears. By Remark 2.1, the total variation of these conditional

distributions can be upper bounded as

dTV
(
P

(·|am
m−k+1

)
,P

(·|am
1

)) =
∑
a∈A

∣∣P (
a|am

m−k+1

) − P
(
a|am

1

)∣∣ ≤ γ̄ (k).

Hence, applying Lemma A.1 in the Appendix it follows, similar to the bound (6.1) and (6.2) in
the proof of Proposition 6.2, that∣∣∣∣∑

a∈A

P
(
a|am

m−k+1

)
logP

(
a|am

m−k+1

) −
∑
a∈A

P
(
a|am

1

)
logP

(
a|am

1

)∣∣∣∣
≤ log |A|

log e
dTV

(
P

(·|am
m−k+1

)
,P

(·|am
1

)) + 1

e

1 + ν

ν
d

1/(1+ν)
TV

(
P

(·|am
m−k+1

)
,P

(·|am
1

))
(7.16)

≤ log |A|
log e

γ̄ (k) + 1

e

1 + ν

ν
γ̄ (k)1/(1+ν)

≤ 2 log |A|
log e

1 + ν

ν
γ̄ (k)1/(1+ν)

for any ν > 0, if γ̄ (k) ≤ 1/e. Setting ν = 1/2, combining (7.16) with (7.15) and taking m → +∞
yield the bound

hk − H̄ ≤ 6 log |A|
log e

γ̄ (k)2/3, (7.17)

if γ̄ (k) ≤ 1/e. Since hk − H̄ ≤ hk ≤ log |A|, the bound (7.17) is trivial if γ̄ (k) > 1/e. Hence,
using the assumption γ̄ (k) ≤ δ12−ζ1k of the theorem,

hk − H̄ ≤ 6 log |A|
log e

δ
2/3
1 2−2ζ1k/3, (7.18)
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and the assumption hk − H̄ ≤ δ2−ζk of Proposition 7.1 is satisfied with

δ = 6 log |A|
log e

δ
2/3
1 and ζ = 2ζ1

3
.

Thus, the constraint ε ≥ (4 log |A|)/ζ in Proposition 7.1 becomes ε ≥ (6 log |A|)/ζ1, and n ≥
(δ2ζ )2 becomes

n ≥ 36 log2 |A|
log2 e

δ
4/3
1 2(4ζ1)/3.

Next, for any k < +∞,

hk − H̄

=
∑

x−1
−k ∈Ak

∑
a∈A

−P
(
x−1
−k a

)
logP

(
a|x−1

−k

)

+
∫

A∞

∑
a∈A

P
(
a|x−1−∞

)
logP

(
a|x−1−∞

)
dP

(
x−1−∞

)
(7.19)

=
∫

A∞

∑
a∈A

P
(
a|x−1−∞

)
log

P(a|x−1−∞)

P (a|x−1
−k )

dP
(
x−1−∞

)

=
∫

A∞
D

(
P

(·|x−1−∞
)‖P (·|x−1

−k

))
dP

(
x−1−∞

)
,

where D(·‖·) denotes the Kullback–Leibler divergence. Using Pinsker’s inequality [8,10], (7.19)
can be lower bounded by

∫
A∞

1

2

(∑
a∈A

∣∣P (
a|x−1−∞

) − P
(
a|x−1

−k

)∣∣)2

dP
(
x−1−∞

) ≥ 1

2 ¯
γ (k)2 ≥ δ2

22−2ζ2k−1, (7.20)

where in the last inequality we used the assumption
¯
γ (k) ≥ δ22−ζ2k of the theorem. Hence, in

case (i)

min

{
k ≥ 0 :hk − H̄ <

4 max(
√

n, (|A| − 1)pen(n))

n1−ε

}

≥ min

{
k ≥ 0 : δ2

22−2ζ2k−1 <
4 max(

√
n, (|A| − 1)pen(n))

n1−ε

}

= min

{
k ≥ 0 : k >

1

2ζ2

(
2 log δ2 − 3 + (1 − ε) logn − log max

(√
n,

(|A| − 1
)

pen(n)
))}

= 1 +
⌊

1

2ζ2

(
2 log δ2 − 3 +

(
1

2
− ε

)
logn − log max

{
1,

(|A| − 1
)pen(n)√

n

})⌋
,
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while in case (ii)

min

{
k ≥ 0 :hk − H̄ <

4

n1/2−ε

}

≥ min

{
k ≥ 0 : δ2

22−2ζ2k−1 <
4

n1/2−ε

}

= min

{
k ≥ 0 : k >

1

2ζ2

(
2 log δ2 − 3 +

(
1

2
− ε

)
logn

)}

= 1 +
⌊

1

2ζ2

(
2 log δ2 − 3 +

(
1

2
− ε

)
logn

)⌋
,

and the proof is completed. �

Finally, we prove the following proposition that directly implies Theorem 4.11.

Proposition 7.4. For any weakly non-null stationary ergodic process with continuity rate γ̄ (k) ≤
δ2−ζk , ζ, δ > 0, and for any ξ > 0, if ε > 0 is so small and ζ > 0 is so large that

1

2
+ ε < κ < 1 − ε

4

and

6 log |A|
ζ

≤ ε

1 − κ
< 2ξ,

the PML Markov order estimator k̂PML(Xn
1 ) with pen(n) = nκ satisfies that

Pr

(∣∣∣∣ k̂PML(Xn
1 )

kPML,n

− 1

∣∣∣∣ > ξ

)
≤ exp

(
− c′

2ε
3

logn
nε/2

)
,

if n is sufficiently large, where c′
2 > 0 is a constant depending only on the distribution of the

process.

Proof. The proof of Theorem 7.3 begins with the observation that the summability of the con-
tinuity rate implies the α-summability. Hence, the conditions of Theorem 6.1 are satisfied now.
Moreover, according to (7.18), γ̄ (k) ≤ δ2−ζk also implies that

hk − H̄ ≤ 6 log |A|
log e

δ2/32−2ζk/3. (7.21)

Set ξ , ε and κ as in the conditions of the proposition, and define a sequence kn ∈ N such that for
sufficiently large n

(i) h�(1−ξ/2)kn − hkn ≥ |A|n−1+κ+ε/4,
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(ii) hkn − H̄ ≤ 1

2

(|A| − 1
)2

n−1+κ ,

(iii) kn ≤ ε logn

4 log |A| .

Due to (7.21), such a sequence exists. Since hk − H̄ is non-negative decreasing, it is sufficient to
show this when hk − H̄ = 6 log |A|

log e δ2/32−2ζk/3. Then, writing kn in the form kn = ν logn,

h�(1−ξ/2)kn − hkn ≥ 1

2

6 log |A|
log e

δ2/3n−2ζ (1−ξ/2)ν/3 and hkn − H̄ = 6 log |A|
log e

δ2/3n−2ζν/3,

if n is sufficiently large, that implies (i) and (ii) if

1 − κ <
2ζν

3
<

(
1 − κ − ε

4

)
1

1 − ξ/2
.

Such ν > 0 exists because it follows from the condition ε/(1 − κ) < 2ξ that 1 − κ < (1 − κ −
ε/4)/(1 − ξ/2). Moreover, the condition ε/(1 − κ) ≥ (6 log |A|)/ζ implies ν ≤ ε/(4 log |A|)
satisfying (iii).

First, recall the definition of Bn(
ε logn

4 log |A| ) in (7.3) in the proof of Proposition 7.1. Similar to
(7.4) and (7.5), we can write that

{
k̂PML

(
Xn

1

)
< (1 − ξ/2)kn

} ∩ Bn

(
ε logn

4 log |A|
)

(7.22)

⊆ {
PMLXn

1
(m) ≤ PMLXn

1
(kn) for some m < (1 − ξ/2)kn

} ∩ Bn

(
ε logn

4 log |A|
)

= {
PMLo,n(m) + (n − m)

(
ĥm

(
Xn

1

) − hm

) ≤ PMLo,n(kn) + (n − kn)
(
ĥkn

(
Xn

1

) − hkn

)
for some m < (1 − ξ/2)kn

} ∩ Bn

(
ε logn

4 log |A|
)

⊆
{

PMLo,n(m) − 2n

n1/2−ε
≤ PMLo,n(kn) for some m < (1 − ξ/2)kn

}
(7.23)

⊆
{
(n − m)hm − (n − kn)hkn ≤ (|A| − 1

)(|A|kn − |A|m)
pen(n) + 2n

n1/2−ε

for some m < (1 − ξ/2)kn

}

⊆
{
hm − hkn ≤ (|A| − 1)|A|(ε logn)/(4 log |A|) pen(n)

n − (ε logn)/(4 log |A|) + 2

n1/2−ε
for some m < (1 − ξ/2)kn

}

⊆ {
h�(1−ξ/2)kn − hkn < |A|n−1+κ+ε/4} (7.24)
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that is empty set by (i), if n is large enough and kn ≤ ε logn
4 log |A| . The latter is satisfied because

of (iii). On the other hand,

{
k̂PML

(
Xn

1

)
> (1 + ξ/2)kn

} ∩ Bn

(
ε logn

4 log |A|
)

∩
{
k̂PML

(
Xn

1

) ≤ ε logn

4 log |A|
}

(7.25)

⊆
{

PMLXn
1
(m) < PMLXn

1
(kn) for some (1 + ξ/2)kn < m ≤ ε logn

4 log |A|
}

∩ Bn

(
ε logn

4 log |A|
)

⊆
{

PMLo,n(m) − 2n

n1/2−ε
< PMLo,n(kn) for some m > (1 + ξ/2)kn

}
(7.26)

⊆
{(|A| − 1

)(|A|m − |A|kn
)

pen(n) − 2n

n1/2−ε
< (n − kn)hkn − (n − m)hm

for some m > (1 + ξ/2)kn

}

⊆
{(|A| − 1

)(|A|m − |A|kn
)pen(n)

n
− 2

n1/2−ε
< hkn −

(
1 − m

n

)
hm

for some m > (1 + ξ/2)kn

}

⊆
{(|A| − 1

)(|A|m − |A|kn
)pen(n)

n
− 2

n1/2−ε
− m

n
H̄

< (hkn − H̄ ) −
(

1 − m

n

)
(hkn − H̄ )

for some m > (1 + ξ/2)kn

}

⊆
{
hkn − H̄ >

(|A| − 1)2

2
n−1+κ

}
(7.27)

that is empty set by (ii), if n is large enough.
Observe that

1 + ξ/2

1 + ξ
kn ≤ kPML,n ≤ 1 − ξ/2

1 − ξ
kn, (7.28)

if n is sufficiently large. Indeed, on indirect way the following sequence of implications can be
written

kPML,n <
1 + ξ/2

1 + ξ
kn ⇒ kPML,n < 1 − ξ/2

1 + ξ
kn ⇒ kPML,n < (1 − ξ/2)kn

⇒ PMLo,n(m) < PMLo,n(kn) for some m < (1 − ξ/2)kn
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⇒ PMLo,n(m) − 2n

n1/2−ε
< PMLo,n(kn)

for some m < (1 − ξ/2)kn

that does not hold by (7.23) and (7.24) if n is large enough, and

kPML,n >
1 − ξ/2

1 − ξ
kn ⇒ kPML,n > 1 + ξ/2

1 − ξ
kn ⇒ kPML,n > (1 + ξ/2)kn

⇒ PMLo,n(m) < PMLo,n(kn) for some m > (1 + ξ/2)kn

⇒ PMLo,n(m) − 2n

n1/2−ε
< PMLo,n(kn)

for some m > (1 + ξ/2)kn

that does not hold either by (7.26) and (7.27) if n is large enough.
Finally, using (7.28), we get

Pr

(∣∣∣∣ k̂PML(Xn
1 )

kPML,n

− 1

∣∣∣∣ > ξ

)

= Pr
(
k̂PML

(
Xn

1

)
< (1 − ξ)kPML,n

) + Pr
(
k̂PML

(
Xn

1

)
> (1 + ξ)kPML,n

)
≤ Pr

(
k̂PML

(
Xn

1

)
< (1 − ξ/2)kn

) + Pr
(
k̂PML

(
Xn

1

)
> (1 + ξ/2)kn

)
≤ Pr

({
k̂PML

(
Xn

1

)
< (1 − ξ/2)kn

} ∩ Bn

(
ε logn

4 log |A|
))

+ Pr

({
k̂PML

(
Xn

1

)
> (1 + ξ/2)kn

} ∩ Bn

(
ε logn

4 log |A|
)

∩
{
k̂PML

(
Xn

1

) ≤ ε logn

4 log |A|
})

+ 2 Pr

(
Bn

(
ε logn

4 log |A|
))

+ Pr

(
k̂PML

(
Xn

1

)
>

ε logn

4 log |A|
)

,

where the first two terms are zero if n is large enough by (7.22)–(7.24) and (7.25)–(7.27). Using
Proposition 8.3 with rn = n − 1, kn = � ε logn

4 log |A|  and mn = � ε logn
6 log |A| ,

Pr

(
k̂PML

(
Xn

1

)
>

ε logn

4 log |A|
)

≤ exp
(−O

(
nκ+ε/4)),

because

nγ̄ (mn) ≤ nδ2ζ exp

(
−ζ

ε logn

6 log |A|
)

= δ2ζ n1−ζε/(6 log |A|),

but 1 − ζε/(6 log |A|) < κ + ε/4 according to the condition ε/(1 − κ) ≥ (6 log |A|)/ζ . Then the
claim of the proposition follows from Theorem 6.1. �
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8. Process estimation proofs

In this section, we consider the estimation of stationary ergodic processes by finite memory
processes. First, define

β1 = 1∏+∞
j=1(1 − 2γ̄ (j))

and

β2 = sup
k≥1

2|A| 1 − (1 − 2|A|γ̄ (k))k

kγ̄ (k)
∏+∞

j=1(1 − 2|A|γ̄ (j))2
.

Clearly, if
∑∞

k=1 γ̄ (k) < +∞, then β1, β2 < +∞.
Now we prove the following theorem that formulates Theorem 5.4 with explicit constants.

Theorem 8.1. For any non-null stationary ergodic process with summable continuity rate and
uniformly convergent restricted continuity rate with parameters θ1, θ2, kθ , for any μn > 0, the
empirical Markov estimator of the process with the order estimated by the bounded PML Markov
order estimator k̂PML(Xn

1 |η logn), η > 0, with penalty function pen(n) ≤ O(
√

n) satisfies

Pr

(
d̄
(
Xn

1 , X̂
[
k̂PML

(
Xn

1 |η logn
)]n

1

)
>

β2

p2
inf

gn + 1

n1/2−μn

)

≤ 2e1/e|A|Kn+hn+2 exp

{
− p2

inf

16e|A|3(α + pinf)(β1 + 1)2

(n − Kn − hn)

(1 + Kn + hn)n

× 4−(Kn+hn)| logpinf|
[

4μn logn − (Kn + hn)| logpinf|(β1 + 1)2

2

]}

+ 12e1/e exp

(
−7α0(log |A|)3η3

4e(α + α0)

nη2 log |A|

logn
+ (

η log |A|) logn

)

+ exp

(
−(|A| − 1

)|A|Kn+hn+1

× pen(n)

[
1 − 1

|A|1+hn
− 1

2 pen(n)

(
logn − (Kn + hn) log |A|)]

+ c pen(n)

pinf/ log e
+ |A|Kn+hn+1CKT + log(η logn)

)
,

if n is so large that

min

{⌊
η

θ2
logn

⌋
, k ≥ 0 : γ̄ (k) <

(
6 max(

√
n, (|A| − 1)pen(n))

pinfn1−η log(|A|4/pinf)

)1/(2θ1)
}

≥ kθ , (8.1)
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where

gn = max

{
γ̄

(⌊
η

θ2
logn

⌋)
,

(
6 max(1, (|A| − 1)(pen(n))/

√
n)

pinfn1/2−η log(|A|4/pinf)

)1/(2θ1)
}
,

Kn = Kn

(
rn, γ̄ ,

c

n
pen(n)

)
,

and c > 0 is an arbitrary constant and hn ∈ N is an arbitrary sequence.

The proof is based on the following two propositions.

Proposition 8.2. For any non-null and α-summable stationary ergodic process with uniformly
convergent restricted continuity rate with parameters θ1, θ2, kθ ,

(i) the bounded PML Markov order estimator k̂PML(Xn
1 |η logn) with penalty function

pen(n) ≤ O(
√

n) satisfies that

Pr
(
k̂PML

(
Xn

1 |η logn
)
< kn

) ≤ 12e1/e exp

(
−7α0(log |A|)3η3

4e(α + α0)

nη2 log |A|

logn
+ (

η log |A|) logn

)
,

if n is so large that kn ≥ kθ , where

kn = min

{⌊
η

θ2
logn

⌋
, k ≥ 0 : γ̄ (k) <

(
6 max(

√
n, (|A| − 1)pen(n))

pinfn1−η log(|A|4/pinf)

)1/(2θ1)
}
;

(ii) the bonded Markov order estimator k̂IC(Xn
1 |η logn), where IC is either NML or KT, sat-

isfies that

Pr
(
k̂IC

(
Xn

1 |η logn
)
< kn

) ≤ 12e1/e exp

(
−7α0(log |A|)3η3

4e(α + α0)

nη2 log |A|

logn
+ (

η log |A|) logn

)
,

if n is so large that kn ≥ kθ and n ≥ max2{√24(log2 e)(|A| − 1)2,2CKT}, where

kn = min

{⌊
η

θ2
logn

⌋
, k ≥ 0 : γ̄ (k) <

(
6

pinfn1/2−η log(|A|4/pinf)

)1/(2θ1)
}
.

Proof. First, define Bn(η logn) similar to (7.3) in the proof of Proposition 7.1. Similar to (7.4)–
(7.7), we can write for any kn ≤ (η/θ2) logn that

Pr
(
k̂PML

(
Xn

1 |η logn
)
< kn

)
≤ Pr

(
hm − h�η logn <

3 max(
√

n, (|A| − 1)pen(n))

n1−η4 log |A| for some m < kn

)
(8.2)

+ Pr
(
Bn(η logn)

)
.
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Now, the difference hm − h�η logn in (8.2) is controlled as follows. For any m ≤ k,

hm − hk

=
∑
a∈A

∑
ak

1∈Ak

(−P
(
ak

1a
)

logP
(
a|ak

k−m+1

) + P
(
ak

1a
)

logP
(
a|ak

1

))
(8.3)

=
∑

ak
1∈Ak

P
(
ak

1

)∑
a∈A

P
(
a|ak

1

)
log

P(a|ak
1)

P (a|ak
k−m+1)

=
∑

ak
1∈Ak

P
(
ak

1

)
D

(
P

(·|ak
1

)‖P (·|ak
k−m+1

))
.

Using Pinsker’s inequality [8,10], (8.3) can be lower bounded by

∑
ak

1∈Ak

P
(
ak

1

)1

2

(∑
a∈A

∣∣P (
a|ak

1

) − P
(
a|ak

k−m+1

)∣∣)2

≥ 1

2
γ̄ (m|k)2 min

ak
1∈Ak

P
(
ak

1

)
(8.4)

≥ 1

2
γ̄ (m|k)2pk

inf.

Using (8.4) and the assumption γ̄ (k)θ1 ≤ γ̄ (k|�θ2k	) if k ≥ kθ (θ1 ≥ 1, θ2 > 1), it follows that

hk − h�θ2k	 ≥ 1
2 γ̄

(
k|�θ2k	)2

p
�θ2k	
inf ≥ 1

2 γ̄ (k)2θ1p
θ2k+1
inf if k ≥ kθ .

Hence, we can write

min

{
k ≥ kθ :hk − h�θ2k	 <

3 max(
√

n, (|A| − 1)pen(n))

n1−η4 log |A|

}

≥ min

{
k ≥ kθ : γ̄ (k) <

(
6 max(

√
n, (|A| − 1)pen(n))

n1−η4 log |A| 2−(θ2k+1) logpinf

)1/(2θ1)
}

(8.5)

≥ min

{
k ≥ kθ : γ̄ (k) <

(
6 max(

√
n, (|A| − 1)pen(n))

pinfn1−η log(|A|4/pinf)

)1/(2θ1)
}
.

Let kn be as in the claim of the proposition and suppose that kn ≥ kθ . Then, since hk is non-
increasing, for any m < kn ≤ (η/θ2) logn

hm − h�η logn ≥ hkn−1 − h�θ2(kn−1)	 ≥ 3 max(
√

n, (|A| − 1)pen(n))

n1−η4 log |A| . (8.6)
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Applying (8.6) to (8.2), the first term on the right in (8.2) equals zero, therefore

Pr
(
k̂PML

(
Xn

1

)
< kn

) ≤ Pr
(
Bn(η logn)

)
≤ 12e1/e exp

(
−7α0(log |A|)3η3

4e(α + α0)

nη2 log |A|

logn
+ (

η log |A|) logn

)

by Theorem 6.1 with ε = η4 log |A|.
In cases IC = NML and IC = KT, the proofs deviate from the above similar to as (ii) and (iii)

deviate from (i) in the proof of Proposition 7.1. Now, instead of (7.12) we have

log�(n, �η logn)
n − η logn

+ 2

n1/2−η4 log |A|

<
3

n1/2−η4 log |A| if n ≥ max
{
24

(
log4 e

)(|A| − 1
)4

,4C2
KT

}
. �

Proposition 8.3. For any non-null stationary ergodic process, the bounded PML Markov order
estimator k̂PML(Xn

1 |rn) satisfies that

Pr
(
k̂PML

(
Xn

1 |rn
)
> kn

)
≤ exp

(
log(rn − kn) + (n − mn)γ̄ (mn)

pinf/ log e
+ (|A| − 1

)|A|mn pen(n)

+ |A|kn+1
[
CKT + |A| − 1

2
log

n

|A|kn+1
− (|A| − 1

)
pen(n)

])

for any 0 ≤ mn ≤ kn ≤ rn ≤ n.

Proof. For any m ≥ 0,

P
(
xn

1

) = P
(
xm

1

) n∏
i=m+1

P
(
xi |xi−1

1

) ≤
(

n∏
i=m+1

P
(
xi |xi−1

i−m

)) n∏
i=m+1

P(xi |xi−1
1 )

P (xi |xi−1
i−m)

. (8.7)

Using P(xi |xi−1
1 ) ≤ P(xi |xi−1

i−m) + γ̄ (m) and P(xi |xi−1
i−m) ≥ pinf, (8.7) can be upper bounded by

(
n∏

i=m+1

P
(
xi |xi−1

i−m

))(
1 + γ̄ (m)

pinf

)n−m

≤ MLm

(
xn

1

)(
1 + γ̄ (m)

pinf

)n−m

. (8.8)

Now, let Cn,k = {k̂PML(Xn
1 |rn) = k}. By the definition of the PML information criterion, see

Definition 3.3, for any 0 ≤ mn,k ≤ rn

log MLmn

(
Xn

1

) ≤ log MLk

(
Xn

1

) − (|A| − 1
)|A|k pen(n)

(8.9)
+ (|A| − 1

)|A|mn pen(n) if Xn
1 ∈ Cn,k.
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By Lemma A.2 in the Appendix,

MLk

(
Xn

1

) ≤ PKT,k

(
Xn

1

)
exp

(
CKT|A|k + |A| − 1

2
|A|k log

n

|A|k
)

. (8.10)

Combining (8.8), (8.9) and (8.10),

P
(
Xn

1

) ≤ PKT,k

(
Xn

1

)(
1 + γ̄ (mn)

pinf

)n−mn

× exp

(
CKT|A|k + |A| − 1

2
|A|k log

n

|A|k

− (|A| − 1
)|A|k pen(n) + (|A| − 1

)|A|mn pen(n)

)
if Xn

1 ∈ Cn,k,

that implies

P(Cn,k) ≤
(

1 + γ̄ (mn)

pinf

)n−mn

× exp

(
CKT|A|k + |A| − 1

2
|A|k log

n

|A|k

− (|A| − 1
)|A|k pen(n) + (|A| − 1

)|A|mn pen(n)

)
(8.11)

≤ exp

(
(n − mn)γ̄ (mn)

pinf/ log e
+ (|A| − 1

)|A|mn pen(n)

+ |A|k
[
CKT + |A| − 1

2
log

n

|A|k − (|A| − 1
)

pen(n)

])
,

where in the last inequality we used log(1 + x) ≤ x log e, x ≥ 0. In the exponent of (8.11), it may
be assumed that |A|k is multiplied by a negative number otherwise the bound is trivial. Then, the
claim of the lemma follows from (8.11) as

Pr
(
k̂PML

(
Xn

1 |rn
)
> kn

) ≤
rn∑

k=kn+1

P(Cn,k) ≤ (rn − kn)P (Cn,kn+1).
�

Now, we are ready to prove Theorem 8.1.

Proof of Theorem 8.1. Letting

Gn = {
γ̄
(
k̂PML

(
Xn

1 |η logn
)) ≤ gn

}
and

Hn = {
k̂PML

(
Xn

1 |η logn
) ≤ kn

}
,
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write

Pr

(
d̄
(
Xn

1 , X̂
[
k̂PML

(
Xn

1 |η logn
)]n

1

)
>

β2

p2
inf

gn + 1

n1/2−μn

)

≤ Pr

({
d̄
(
Xn

1 , X̂
[
k̂PML

(
Xn

1 |η logn
)]n

1

)
>

β2

p2
inf

gn + 1

n1/2−μn

}
∩ Gn ∩ Hn

)

+ Pr(Ḡn) + Pr(H̄n) (8.12)

≤ Pr

({
d̄
(
Xn

1 , X̂
[
k̂PML

(
Xn

1 |η logn
)]n

1

)
>

β2

p2
inf

γ̄
(
k̂PML

(
Xn

1 |η logn
)) + 1

n1/2−μn

}
∩ Hn

)

+ Pr(Ḡn) + Pr(H̄n).

The three terms on the right of (8.12) is bounded as follows.
Since the process is non-null with summable continuity rate, Lemma A.3 in the Appendix with

μ = μn, ν logn = kn and k = k̂PML(Xn
1 |η logn) gives

Pr

({
d̄
(
Xn

1 , X̂
[
k̂PML

(
Xn

1 |η logn
)]n

1

)
>

β2

p2
inf

γ̄
(
k̂PML

(
Xn

1 |η logn
)) + 1

n1/2−μn

}
∩ Hn

)

≤ 2e1/e|A|kn+2 exp

{
− p2

inf

16e|A|3(α + pinf)(β1 + 1)2

(n − kn)4−kn| logpinf|

(1 + kn)n
(8.13)

×
[

4μn logn − kn| logpinf|(β1 + 1)2

2

]}
.

By Remark 2.2, the summability of the continuity rate implies the α-summability. Hence, for the
non-null process with summable continuity rate and uniformly convergent restricted continuity
rate with parameters θ1, θ2, kθ , Proposition 8.2 implies that

Pr(Ḡn) ≤ 12e1/e exp

(
−7α0(log |A|)3η3

4e(α + α0)

nη2 log |A|

logn
+ (

η log |A|) logn

)
, (8.14)

if (8.1) holds because

Pr
(
γ̄
(
k̂PML

(
Xn

1 |η logn
)) ≥ gn

)
= Pr

(
k̂PML

(
Xn

1 |η logn
)

≤ min

{⌊
η

θ2
logn

⌋
, k ≥ 0 : γ̄ (k) <

(
6 max(

√
n, (|A| − 1)pen(n))

pinfn1−η log(|A|4/pinf)

)1/(2θ1)
})

.

Applying Proposition 8.3 with rn = η logn,

mn = min

{
�η logn, k ≥ 0 : γ̄ (k) <

c pen(n)

n

}
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and kn = hn + mn, it follows that

Pr(H̄n) ≤ exp

(
−(|A| − 1

)|A|kn+1

× pen(n)

[
1 − 1

|A|1+hn
− 1

2 pen(n)

(
logn − kn log |A|)] (8.15)

+ c pen(n)

pinf/ log e
+ |A|kn+1CKT + log(η logn)

)
.

Finally, applying the bounds (8.13), (8.14) and (8.15) to the right of (8.12), the proof is com-
plete. �

Appendix

Lemma A.1. For two probability distributions P1 and P2 on Ak ,

∣∣H(P1) − H(P2)
∣∣ ≤ 1

log e

[
k log |A| − logdTV(P1,P2)

]
dTV(P1,P2),

if dTV(P1,P2) ≤ 1/e, where

H(Pi) = −
∑

ak
1∈Ak

Pi

(
ak

1

)
logPi

(
ak

1

)

is the entropy of Pi , i = 1,2, and

dTV(P1,P2) =
∑

ak
1∈Ak

∣∣P1
(
ak

1

) − P2
(
ak

1

)∣∣
is the total variation distance of P1 and P2.

Proof. See Lemma 3.1 of [32]. �

Lemma A.2. There exists a constant CKT depending only on |A|, such that for any 0 ≤ k < n

log MLk

(
Xn

1

) − logPKT,k

(
Xn

1

) ≤ CKT|A|k + |A| − 1

2
|A|k log

n

|A|k .

Proof. The bound, see, for example, (27) in [9],∣∣∣∣logPKT,k

(
Xn

1

) + k log |A| − log MLk

(
Xn

1

) + |A| − 1

2

∑
ak

1∈Ak :
Nn−1(a

k
1 )≥1

logNn−1
(
ak

1

)∣∣∣∣

≤ C′
KT|A|k,
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where C′
KT depends only on |A|, implies the claim using

∑
ak

1∈Ak :
Nn−1(a

k
1 )≥1

logNn−1
(
ak

1

) ≤ |A|k log
n

|A|k ,

see Proof of Theorem 6 in [9]. �

Lemma A.3. Let X be a non-null stationary ergodic process with summable continuity rate.
Then, for any μ > 0 and k ≤ ν logn, ν > 0, the empirical k-order Markov estimator of the
process satisfies

Pr

{
d̄
(
Xn

1 , X̂[k]n1
)
> β2p

−2
inf γ̄ (k) + 1

n1/2−μ

}

≤ 2e1/e|A|2+ν logn

× exp

{
− p2

inf

16e|A|3(α + pinf)(β1 + 1)2

(n − ν logn)n−2ν| logpinf|

(1 + ν logn)n

×
[
n2μ − ν| logpinf|(β1 + 1)2 logn

2

]}
.

Proof. See the proof of Theorem 2 and Lemma 3 in [13]. �
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