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This paper studies decision theoretic properties of benchmarked estimators which are of some importance
in small area estimation problems. Benchmarking is intended to improve certain aggregate properties (such
as study-wide averages) when model based estimates have been applied to individual small areas. We study
decision-theoretic properties of such estimators by reducing the problem to one of studying these problems
in a related derived problem. For certain such problems, we show that unconstrained solutions in the original
(unbenchmarked) problem give unconstrained Bayes and improved estimators which automatically satisfy
the benchmark constraint. Also, dominance properties of constrained empirical Bayes estimators are shown
in the Fay–Herriot model, a frequently used model in small area estimation.
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1. Introduction

This paper studies decision theoretic properties of benchmarked estimators which are of some
importance in small area estimation problems. Benchmarking is intended to improve certain
aggregate properties (such as study-wide averages) when empirical Bayes estimates have been
applied to individual small areas. For example, model based small area estimates are often such
that the average of a particular estimate over all areas may differ substantially from the average
derived from a direct estimate. The reader is referred to the articles of Datta et al. [6] for an
extended discussion of the background and desirability of benchmarking. Also see Frey and
Cressie [10], Ghosh [11] and Pfeffermann and Tiller [16] for related issues. For good accounts
of small area estimation, see Battese, Harter and Fuller [1], Prasad and Rao [17], Ghosh and Rao
[12], Rao [18] and Datta, Rao and Smith [8].

A useful method for benchmarking is the constrained Bayes and empirical Bayes estimator
suggested by Ghosh [11]. Since the constrained Bayes estimator is not a real Bayesian proce-
dure, its decision-theoretic properties like admissibility and minimaxity are interesting questions,
though little has been known about such properties. Another query is whether there exists a prior
distribution which results in the (unconstrained) real Bayes estimator satisfying the constraint.
This paper will address these problems in a decision-theoretic framework.

In Section 2, we begin by explaining the empirical Bayes estimators of small-area means
and their benchmarking in the Fay–Herriot area-level model, and give a motivation as well as
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the setup of the problem. To investigate basic decision-theoretic properties of the constrained
estimator, we decompose the risk function into two pieces; one depends on the risk of the uncon-
strained estimator in a related problem and one depends on the given means and the benchmark
constraint but not the estimator in question. Admissibility considerations and sometimes mini-
maxity are then reduced to the study of these properties in a related problem. Section 2.3 studies
prior distributions in the original problem that result in Bayes estimators which automatically
satisfy the benchmark constraint. In fact, we clarify a condition on such prior distributions and
gives examples. Such prior distributions and the resulting Bayes estimators enable us to study
admissibility. The results in Section 2 are given without assuming normality of the underlying
distribution.

Section 3 assumes the multivariate normal distribution, and provides more detailed properties
for minimaxity, admissibility and inadmissibility of constrained Bayes estimators. In Section 3.2,
we present a prior distribution such that the resulting (generalized) Bayes estimator satisfies
the constraint and is also minimax. Admissibility and minimaxity of such unconstrained Bayes
estimators are discussed based on some preliminary results given in the literature.

As indicated above, benchmarking is useful in the framework of small area estimation. The
Fay–Herriot model is one that is often utilized in small area estimation problems. In Section 4,
we consider this model and investigate conditions under which a constrained empirical Bayes
estimator improves on the constrained uniform-prior generalized Bayes estimator, namely the
constrained direct estimator. Since the Fay–Herriot model has heteroscedastic variances and em-
ploys covariates as regressors, establishing minimaxity of the constrained empirical Bayes es-
timator, while somewhat challenging, seems to be potentially useful. We also consider a prior
distribution which results in an unconstrained empirical Bayes estimator satisfying the constraint
and minimaxity. These constrained and unconstrained empirical Bayes estimators are investi-
gated in terms of their risk performances by simulation as well as in terms of the conditions for
their improvement or minimaxity. Finally, some concluding remarks are given in Section 5.

2. The constrained problem and the dominance property

2.1. The area-level model and the setup of the problem

The Fay–Herriot model has been used as an area-level model in small-area estimation. Let
y1, . . . , yk be the direct estimators of the k small-area means μ1, . . . ,μk . The direct estimator
may be taken to be a crude estimator like a sample mean over the small area. This is modeled as

yi = μi + εi, i = 1, . . . , k, (2.1)

where ε1, . . . , εk are independently distributed as εi ∼ N (0, di). While the values of yi ’s are
reported from government agencies, the values of the variances di ’s, are usually not available,
and we need to get the values by estimation from past data or other methods. In the framework
of small area estimation, the di ’s are treated as known constants. Small area refers to a small
geographical area or a group for which little information is obtained from the sample survey,
and the direct estimator based only on the data from a given small area is likely to be unreliable
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because only a few observations are available from the small area. Also, yi is more unreliable for
larger di . To increase the precision of the estimate, relevant supplementary information such as
data from other related small areas or data on covariates is used through Bayesian models. Fay
and Herriot [9] suggested a Bayesian model for μi in (2.1) with prior distribution of μi given by

μi ∼ N
(
x′
iβ, λ

)
, i = 1, . . . , k, (2.2)

where xi is a p-variate known vector including covariates, β is a p-variate unknown vector and
λ is an unknown variance. The resulting empirical Bayes estimator of μi is

μ̂EB
i = x′

i β̂ + λ̂

λ̂ + di

(
yi − x′

i β̂
)
,

where β̂ and λ̂ are suitable estimators of β and λ. For larger di , μ̂EB
i can shrink yi more toward

the estimator x′
i β̂ , so that it is expected that μ̂EB

i has a higher precision than yi . To measure the
uncertainty of μ̂EB

i , Prasad and Rao [17], Datta and Lahiri [7] and Datta, Rao and Smith [8]
derived a second-order approximation of the mean squared error (MSE) of μ̂EB

i for large k under
the unconditional model of (2.1) and (2.2), namely, yi ∼ N (x′

iβ, λ+ di). Since the second-order
approximation of the MSE is smaller in a large parameter space than that of the direct estimator,
μ̂EB

i has been used practically. However, it is not guaranteed analytically that μ̂EB
i has a uniformly

smaller MSE than the direct estimator in terms of minimizing the second-order approximation,
much less the exact MSE. This point will be demonstrated in Section 4.1.

We can consider the uncertainty of an estimator μ̂i through the two kinds of MSE: the condi-
tional MSE E[(μ̂i − μi)

2|μi] given μi and the unconditional MSE E[(μ̂i − μi)
2]. The uncon-

ditional MSE is measured based on the unconditional (marginal) distribution of (2.1) and (2.2),
and it is interpreted as a Bayesian measure from a Bayesian perspective. The conditional MSE
is a measure supported by a frequentist, and it is stronger since it does not assume a distribution
for μi . In the framework of the conditional MSE, it is known that yi is admissible in the estima-
tion of the individual mean μi , namely, μ̂EB

i does not improve on yi uniformly in terms of the
conditional MSE. However, in simultaneous estimation of the small area means μi , i = 1, . . . , k,
μ̂EB

i improves on the direct estimator yi for k ≥ 3 due to the Stein effect (Stein [22]). Thus, the
framework of simultaneous estimation can justify the improvement of μ̂EB

i theoretically.
In this paper, we consider simultaneous estimation of the small-area means. It is conve-

nient to handle the problem in matricial form. Let y = (y1, . . . , yk)
′, μ = (μ1, . . . ,μk)

′ and
ε = (ε1, . . . , εk)

′. Then, the model (2.1) is written as

y = μ + ε, (2.3)

where ε ∼ Nk(0,D) for D = diag(d1, . . . , dk), the k × k diagonal matrix. When we estimate μ
by μ̂ = μ̂(y) = (μ̂1, . . . , μ̂k)

′ based on y, the estimator is evaluated in terms of the conditional
risk function given μ,

R(μ, μ̂) = E
[
L(μ, μ̂;Q)|μ]

,

relative to weighted squared error loss

L(μ, μ̂;Q) = (μ̂ − μ)′Q(μ̂ − μ), (2.4)
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where Q is a positive definite matrix. In a decision-theoretic framework, the set of direct estima-
tors y is minimax, but inadmissible by the so-called Stein effect for k ≥ 3, namely, there exist
shrinkage or empirical Bayes estimators which have uniformly smaller risks than y for large k.
Since a goal in small area estimation is the derivation of estimators having high precisions, de-
sirable estimators should satisfy at lease the requirement that they have uniformly smaller risks
than y. This corresponds to the derivation of estimators which are minimax or improve on y in
terms of R(μ, μ̂). It is noted that if an estimator improves on y in terms of the conditional risk
R(μ, μ̂), then it improves on y relative to the unconditional risk

RU(π, μ̂) = Eπ
[
E

[
L(μ, μ̂;Q)|μ]]

,

where π(μ) is a distribution of μ. The unconditional risk is treated for the Fay–Herriot model in
Section 4.

As indicated in Section 1, a drawback of the empirical Bayes estimator μ̂EB
i ’s is that the

weighted sum
∑k

i=1 wiμ̂
EB
i is not equal to

∑k
i=1 wiyi , which, for example, corresponds to the

total sample mean over the whole area, where wi ’s are nonnegative constants. In the literature,
several methods have been proposed in order to benchmark an estimator μ̂ so as to satisfy the
constraint

∑k
i=1 wiμ̂i = ∑k

i=1 wiyi . Of these, Ghosh [11] suggested the constrained Bayes esti-
mator to satisfy the constraint. In this paper, we consider the general constraint given by

W′μ̂ = t(y), (2.5)

where W is a k × m matrix with rank m, m < k, and t = t(y) is a function from Rk to Rm.
Typical examples of t(y) are t (y) = ∑k

i=1 wiyi and t (y) = t0, a constant. Denote the class of
benchmarked estimators by

�B = {
μ̂ ∈ �|W′μ̂ = t(y)

}
,

where � is the class of estimators with second moments given by � = {μ̂|E[μ̂′μ̂|μ] < ∞}.
When a prior distribution π is assumed for μ, the constrained Bayes estimator is defined as the
estimator μ̂ which minimizes the posterior risk function Eπ [(μ̂ − μ)′Q(μ̂ − μ)|y] subject to
μ̂ ∈ �B , where Eπ [·|y] denotes a posterior expectation given y. Noting that

Eπ
[
(μ̂ − μ)′Q(μ̂ − μ)|y] = Eπ

[(
μ̂B − μ

)′Q
(
μ̂B − μ

)|y] + (
μ̂ − μ̂B

)′Q
(
μ̂ − μ̂B

)
for the Bayes estimator μ̂B = Eπ [μ|y], Datta et al. [6] showed that the constrained Bayes esti-
mator is given by

μ̂CB = μ̂B + Q−1W
(
W′Q−1W

)−1{t(y) − W′μ̂B
}
,

Motivated by the constrained Bayes estimator, we can construct the following constrained esti-
mator based on any given estimator μ̂:

μ̂C(μ̂, t) = μ̂ + Q−1W
(
W′Q−1W

)−1{t(y) − W′μ̂
}
, (2.6)

and denote the class by

�C = {
μ̂C(μ̂, t)|μ̂ ∈ �

}
.
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It is seen that

�C ⊂ �B ⊂ �.

Since y is the generalized Bayes estimator of μ against the uniform prior, the constrained gener-
alized Bayes estimator against the uniform prior is expressed as

μ̂CM(t) = y + Q−1W
(
W′Q−1W

)−1{t(y) − W′y
}
. (2.7)

It is noted that the direct estimator y satisfies the constraint when the constraint is that t(y) =
W′y.

Since the constrained Bayes estimator is not necessarily the Bayes estimator among all es-
timators in �, we have several interesting questions from a decision-theoretic perspective. For
example, are the properties of minimaxity and inadmissibility of y inherited by the constrained
estimator μ̂CM? Can one construct an empirical Bayes estimator improving on y or μ̂CM? Such
issues have not been studied in the literature to our knowledge. The aim of this paper is to inves-
tigate such decision-theoretic properties for the constrained estimators.

2.2. Basic properties of a constrained estimator

In this subsection, we investigate basic properties of minimaxity and admissibility of the con-
strained estimator under the constraint (2.5) in the model (2.3), where normality of ε is not
assumed in this and the next subsections. We begin by decomposing the risk function, which will
be useful for investigating the basic properties. Let

PW = Q−1W
(
W′Q−1W

)−1W′.

Then the constrained estimator (2.6) is expressed as

μ̂C(μ̂, t) = (I − PW)μ̂ + Q−1W
(
W′Q−1W

)−1t(y). (2.8)

To evaluate the risk of μ̂C(μ̂, t), note that W′(I − PW) = 0,

μ̂C(μ̂, t) − μ = (I − PW)(μ̂ − μ) + Q−1W
(
W′Q−1W

)−1{t(y) − W′μ
}
,

(I − PW)′Q(I − PW) = Q − W
(
W′Q−1W

)−1W′ = Q(I − PW).

Then the conditional risk function of μ̂C(μ̂, t) relative to the loss (2.4) can be decomposed into
two parts as given in the following lemma.

Lemma 2.1. Assume that μ̂ ∈ �. It follows that the conditional risk function of μ̂C(μ̂, t) relative
to the loss L(μ, μ̂;Q) is expressed as

R
(
μ, μ̂C(μ̂, t)

) = R1(μ, μ̂) + R2(μ, t), (2.9)
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where R1(μ, μ̂) = E[(μ̂ − μ)′Q(I − PW)(μ̂ − μ)|μ] and

R2(μ, t) = E
[(

t(y) − W′μ
)′(W′Q−1W

)−1(t(y) − W′μ
)|μ]

.

Since t(y) is a given function and R2(μ, t) does not depend on the estimator μ̂, the problem
of finding improved estimators (in the original benchmark problem) can be reduced to that of
finding superior estimators μ̂ in terms of the risk function R1(μ, μ̂) relative to the loss function
L(μ, μ̂;Q(I − PW)).

Proposition 2.1. For two estimators μ̂1 and μ̂2 in �, and the corresponding constrained es-
timators μ̂C(μ̂1, t) and μ̂C(μ̂2, t) in �C , μ̂C(μ̂1, t) dominates μ̂C(μ̂2, t) relative to the loss
L(μ, μ̂;Q) if and only if μ̂1 dominates μ̂2 relative to the loss L(μ, μ̂;Q(I − PW)).

This proposition implies the following proposition concerning admissibility.

Proposition 2.2. Assume that μ̂ ∈ �. Then the constrained estimator μ̂C(μ̂, t) is admissible in
�C in terms of the risk R(μ, μ̂C) if and only if μ̂ is admissible in � in terms of the risk R1(μ, μ̂).

The above propositions show that dominance properties and admissibility of a constrained
estimator μ̂C(μ̂, t) can be reduced to those of the estimator μ̂ in terms of the risk R1(μ, μ̂).

Concerning minimaxity, on the other hand, it is seen that the estimator μ̂C(μ̂∗, t) is minimax
within the class �C if and only if infμ̂∈�C

supμ R(μ, μ̂) = supμ R(μ, μ̂∗), or

inf
μ̂∈�

sup
μ

{
R1(μ, μ̂) + R2(μ, t)

} = sup
μ

{
R1

(
μ, μ̂∗) + R2(μ, t)

}
.

This condition is satisfied if there exists a sequence of prior distributions {πn(μ)}n=1,2,... such
that

sup
μ

{
R1

(
μ, μ̂∗) + R2(μ, t)

} ≤ lim sup
n→∞

∫ {
R1(μ, μ̂n) + R2(μ, t)

}
πn(μ)dμ, (2.10)

where μ̂n is the corresponding Bayes estimator relative to the risk
∫

R(μ, μ̂)πn(μ)dμ. This
condition follows from Theorem 6.5.2 in Zacks [23].

Proposition 2.3. If μ̂∗ satisfies the condition (2.10), then the estimator μ̂C(μ̂∗, t) is minimax
within �C .

In particular, under the following condition, the minimaxity problem for the conditional risk
R(μ, μ̂C) reduces to that of the risk R1(μ, μ̂).

(A1) Assume that R2(μ, μ̂) does not depend on the unknown μ.

Proposition 2.4. Assume the condition (A1). Then the constrained estimator μ̂C(μ̂∗, t) is mini-
max within �C if and only if μ̂∗ is minimax in terms of the risk R1(μ, μ̂) in �.
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Condition (A1) is satisfied for two typical examples of t(y):
Case 1: t(y) = W′y. In this case, it typically happens that R2(μ, t) is independent of μ under

the distributional assumption of a location family, and the condition (A1) holds.
Case 2: t(y) = t0, a constant. In this case, we need to restrict the space of μ to {μ|W′μ = t0}.

Then it is clear that R2(μ, t0) = 0 on the restricted space.

2.3. Unconstrained Bayes estimators satisfying the constraint

In the previous subsections, we studied shrinkage estimators induced from the constrained Bayes
estimator and investigated their decision-theoretic properties within the class of constrained es-
timators. In some cases, however, we can derive constrained Bayes estimators without direct
consideration of the constraint. In this subsection, we find a condition on prior distributions such
that the resulting unconstrained generalized Bayes estimators satisfy the constraint automatically,
where the normality of ε is not assumed.

Assume a prior distribution π for μ. According to the expression in (2.8), we decompose μ as
μ = (I − PW)μ + PWμ, which implies that the Bayes estimator of μ̂B can be expressed as

μ̂B = (I − PW)Eπ [μ|y] + PWEπ [μ|y].

Comparing this expression and the constrained estimator (2.8), we can see that the unconstrained
Bayes estimator μ̂B belongs to the class �C if the prior distribution satisfies the equation

PWEπ [μ|y] = Q−1W
(
W′Q−1W

)−1t(y).

It follows from the definition of PW that this equality is simplified as

W′Eπ [μ|y] = t(y). (2.11)

Since the condition (2.11) means that the posterior expectation of W′μ is t(y), the following
transformation is convenient for investigating prior distributions satisfying (2.11). Let H be a
k × k orthogonal matrix such that

HQ−1/2W
(
W′Q−1W

)−1W′Q−1/2H′ =
(

0k−m 0
0 Im

)
. (2.12)

Let H′ = (H′
1,H′

2) for the k × (k − m) matrix H1. Also, let ξ = HQ1/2μ and ξ i = HiQ1/2μ

for i = 1,2. Then, PW = Q−1/2H′
2H2Q1/2 and I − PW = Q−1/2H′

1H1Q1/2. It is noted that
H1Q−1/2W = 0, since H1Q−1/2W = H1H′

1H1Q−1/2W = Q1/2(I − PW)Q−1W = 0. Thus, μ

and the constrained estimator (2.8) are written as

μ = Q−1/2HH′Q1/2μ = Q−1/2H′
1ξ1 + Q−1/2H′

2ξ2,
(2.13)

μ̂C(μ̂, t) = Q−1/2H′
1H1Q1/2μ̂ + Q−1W

(
W′Q−1W

)−1t(y),
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which shows that the unconstrained Bayes estimator belongs to �C if

H′
2E

π [ξ2|y] = Q−1/2W
(
W′Q−1W

)−1t(y). (2.14)

Noting that Q−1/2W = (H′
1H1 + H′

2H2)Q−1/2W = H′
2H2Q−1/2W, we see that the equa-

tion (2.14) holds if

Eπ [ξ2|y] = H2Q−1/2W
(
W′Q−1W

)−1t(y).

For example, consider the case that the constraint is given by t(y) = W′Q−1/2s(y) for a k-variate
vector s(y) of functions of y. In this case, we have that

H2Q−1/2W
(
W′Q−1W

)−1W′Q−1/2H′Hs(y) = H2s(y),

so that the condition (2.14) may be simplified as Eπ [ξ2|y] = H2s(y). Thus, we summarize the
condition in the following.

(A2) Assume that W′Eπ [μ|y] = t(y), or that Eπ [ξ2|y] = H2Q−1/2W(W′Q−1W)−1t(y). The
latter condition is simplified as Eπ [ξ2|y] = H2s(y) when t(y) = W′Q−1/2s(y).

Proposition 2.5. The unconstrained Bayes estimators belong to the class �C , namely they au-
tomatically satisfy the constraint W′μ̂ = t(y) if the posterior expectation Eπ [μ|y] or Eπ [ξ2|y]
satisfies the condition (A2).

Case 1: t(y) = W′y. In this case, the condition (A2) is W′Eπ [μ|y] = W′y or Eπ [ξ2|y] =
H2Q1/2y for ξ2 = H2Q1/2μ. As explained in the next section, it suffices that we assume the
uniform prior for ξ2 under normality of ε.

Case 2: t(y) = t0, a constant. In this case, the condition (A2) is Eπ [ξ2|y] = H2Q−1/2W ×
(W′Q−1W)−1t0, which suggests that ξ2 should take a point mass at ξ2 = H2Q−1/2W ×
(W′Q−1W)−1t0. Since W′Q−1/2H′

1 = 0, it is verified that this restriction satisfies W′μ = t0.

3. Properties under normality and conditional risk

In this section, we further investigate minimaxity and admissibility properties for the benchmark
problem in the model (2.3), where normality of ε is assumed.

3.1. Constrained Bayes estimator

We begin by deriving the canonical form of the model (2.3) with y having a multivariate nor-
mal distribution Nk(μ,D). For the matrix H defined by (2.12), let zi = HiQ1/2y and Vij =
HiQ1/2DQ1/2H′

j for i, j = 1,2. Then, z = (z′
1, z′

2)
′ is distributed as

(
z1
z2

)
∼ Nk

((
ξ1
ξ2

)
,

(
V11 V12
V21 V22

))
, (3.1)
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where ξ i = HiQ1/2μ, i = 1,2, for Hi defined in (2.12). The problem of finding a constrained
Bayes estimator may be expressed as the minimization of Eπ [(̂ξ1 − ξ1)

′(̂ξ1 − ξ1)|z] subject
to W′Q−1/2H′

2̂ξ2 = t(y), since W′Q−1/2H′
1 = 0. The constrained estimators given in (2.6) and

(2.7) are rewritten as

μ̂C(μ̂, t) = Q−1/2H′
1̂ξ1 + Q−1W

(
W′Q−1W

)−1t(y) ≡ μ̂C∗(̂ξ1, t),

μ̂CM(t) = Q−1/2H′
1z1 + Q−1W

(
W′Q−1W

)−1t(y) ≡ μ̂C∗(z1, t).

For ξ̂1 = H1Q1/2μ̂, and the conditional risk R1(μ, μ̂) given in (2.9) is written as

R1(μ, μ̂) = E
[‖̂ξ1 − ξ1‖2|ξ1

] = R∗(ξ1, ξ̂1),

where ‖̂ξ1 − ξ1‖2 = (̂ξ1 − ξ1)
′(̂ξ1 − ξ1). Hence from Proposition 2.2, we get the following

proposition.

Proposition 3.1. If ξ̂1 is admissible in terms of R∗(ξ1, ξ̂1), then μ̂ is admissible within the class

�C . In particular, if ξ̂1 is the Bayes estimator for a proper prior on ξ1, then μ̂ is admissible
within �C . If ξ̂1 is inadmissible in terms of the risk R∗(ξ1, ξ̂1), then μ̂ is inadmissible.

Also, from Propositions 2.4 and 3.1 and the well-known results of James and Stein [13] and
Brown [5], the next proposition follows.

Proposition 3.2. The constrained generalized Bayes estimator μ̂CM(t) for the uniform prior has
the following decision-theoretic properties:

(1) μ̂CM(t) is minimax within �C under the condition (A1).
(2) μ̂CM(t) is admissible within �C when k − m is one or two.
(3) μ̂CM(t) is inadmissible within �C when k − m ≥ 3.

Proposition 3.2(3) implies that there exist shrinkage estimators like empirical Bayes estimators
which improve on μ̂CM(t) for large k. One of such improved estimators is given in Section 4.
Noting that z1 ∼ Nk−m(ξ1,V11), from the result in Berger [2], we can get an admissible and

minimax estimator, denoted by ξ̂
GB
1 (z1,V11), based on (z1,V11) relative to the risk R∗(ξ1, ξ̂1).

This leads to the constrained generalized Bayes estimator

μ̂C
(
μ̂GB, t

) = Q−1/2H′
1̂ξ

GB
1 (z1,V11) + Q−1W

(
W′Q−1W

)−1t(y),

which is admissible within the class �C and improves on μ̂CM(t) when k − m ≥ 3.

3.2. Unconstrained Bayes estimators

We now construct unconstrained Bayes estimators satisfying the constraint automatically in the
two cases t(y) = W′y and t(y) = t0, a constant. To this end, the following decomposition is
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useful: (
z3
z2

)
∼ N

((
ξ3
ξ2

)
,

(
V11.2 0

0 V22

))
, (3.2)

where z3 = z1 − V12V−1
22 z2, ξ3 = ξ1 − V12V−1

22 ξ2 and V11.2 = V11 − V12V−1
22 V21. Note that

z1 = z3 + V12V−1
22 z2 and that z3 is independent of V12V−1

22 z2.
Case 1: t(y) = W′y. Consider the decomposition (3.2). Note that from (2.13), μ is written as

μ = Q−1/2H′
1ξ3 + Q−1/2(H′

2 + H′
1V12V−1

22

)
ξ2.

Assume a prior distribution π(ξ3) for ξ3 and the uniform prior π(ξ2) = 1 for ξ2. Then, the
resulting generalized Bayes estimator is

μ̂GB1 = Q−1/2H′
1̂ξ

GB
3 (z3,V11.2) + Q−1/2(H′

2 + H′
1V12V−1

22

)
z2

(3.3)
= Q−1/2H′

1

{̂
ξ

GB
3 (z3,V11.2) + V12V−1

22 z2
} + Q−1/2H′

2z2,

where ξ̂
GB
3 = ξ̂

GB
3 (z3,V11.2) is the generalized Bayes estimator of ξ3 which can be con-

structed via the model z3|ξ3 ∼ Nk−m(ξ3,V11.2) and ξ3 ∼ π(ξ3). Note that the conditional risk
R(μ, μ̂GB1) = E[(μ̂GB1 − μ)′Q(μ̂GB1 − μ)|μ] is evaluated as

E
[{̂

ξ
GB
3 − ξ3 + V12V−1

22 (z2 − ξ2)
}′H1H′

1

{̂
ξ

GB
3 − ξ3 + V12V−1

22 (z2 − ξ2)
}]

+ E
[
(z2 − ξ2)

′H2H′
2(z2 − ξ2)

]
= E

[∥∥̂ξ
GB
3 − ξ3

∥∥2] + E
[
(z2 − ξ2)

′V−1
22 V21V12V−1

22 (z2 − ξ2)
]

(3.4)

+ E
[‖z2 − ξ2‖2]

= R∗(ξ3, ξ̂
GB
3

) + tr
[
V12V−1

22 V21
] + tr[V22],

where R∗(ξ3, ξ̂3) = E[‖̂ξ3 − ξ3‖2|ξ3]. If R∗(ξ3, ξ̂
GB
3 ) ≤ R∗(ξ3, z3), then R(μ, μ̂GB1) ≤

tr[V11 + V22] = tr[DQ], since R∗(ξ3, z3) = tr[V11.2]. Since tr[DQ] is the minimax risk, the
unconstrained Bayes estimator μ̂GB1 is minimax in �. Noting that z3 ∼ Nk−m(ξ3,V11.2), from
the result in Berger [2], we can get an admissible and minimax estimator based on (z3,V11.2)

relative to the risk R∗(ξ3, ξ̂3).

Proposition 3.3. Assume the uniform prior for ξ2. Then the generalized Bayes estimator μ̂GB1

satisfies the constraint, namely μ̂GB1 ∈ �C .

(1) If R∗(ξ3, ξ̂
GB
3 ) ≤ R∗(ξ3, z3), then μ̂GB1 is minimax in �.

(2) If ξ̂
GB
3 is admissible in terms of the risk R∗(ξ3, ·), then μ̂GB1 is admissible within the

constrained class �C .
(3) When m ≥ 3, μ̂GB1 is not admissible in the unconstrained problem even if ξ̂

GB
3 is admis-

sible in terms of the risk R∗(ξ3, ·).
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Case 2: t(y) = t0, a constant. Assume that W′Q−1/2H′
2 is non-singular. Since W′μ =

W′Q−1/2H′
2ξ2 = t0, we can define ξ0 by ξ0 = (W′Q−1/2H′

2)
−1t0. Let z4 = z1 − V12V−1

22 (z2 −
ξ0) and ξ4 = ξ1 − V12V−1

22 (ξ2 − ξ0). Then from the decomposition (3.2), the joint distribution
of (z4, z2) follows that (

z4
z2

)
∼ N

((
ξ4
ξ2

)
,

(
V11.2 0

0 V22

))
. (3.5)

Assume a prior distribution π(ξ4) for ξ4 and P π [ξ2 = ξ0] = 1 for ξ2. Then from (3.3), the
resulting generalized Bayes estimator is

μ̂GB2 = Q−1/2H′
1

{̂
ξ

GB
4 (z4,V11.2) + V12V−1

22 ξ0
} + Q−1/2H′

2ξ0, (3.6)

where ξ̂
GB
4 = ξ̂

GB
4 (z4,V11.2) is the generalized Bayes estimator of ξ4 which can be constructed

via the model z4|ξ4 ∼ Nk−m(ξ4,V11.2) and ξ4 ∼ π(ξ4). It also follows from (3.4) that the risk
function of μ̂GB2 is

R
(
μ, μ̂GB2) = R∗(ξ4, ξ̂

GB
4

) + (ξ0 − ξ2)
′{V−1

22 V21V12V−1
22 + Im

}
(ξ0 − ξ2),

so that the admissibility of μ̂GB2 is inherited from that of ξ̂
GB
4 . If the space of μ is restricted to

{μ|W′μ = t0}, and if R∗(ξ4, ξ̂
GB
4 ) ≤ R∗(ξ4, z4), then R(μ, μ̂GB2) ≤ tr[V11.2]. Since tr[V11.2] is

the minimax risk under the restriction, the unconstrained Bayes estimator μ̂GB2 is minimax in �

when μ is restricted.

Proposition 3.4. Assume the point mass prior for ξ2. Then the generalized Bayes estimator
μ̂GB2 satisfies the constraint, namely μ̂GB2 ∈ �C .

(1) If the estimator ξ̂
GB
4 of ξ4 is admissible in terms of the risk R∗(ξ4, ξ̂

GB
4 ), then μ̂GB2 is

admissible in � (and also �C).

(2) If R∗(ξ4, ξ̂
GB
4 ) ≤ R∗(ξ4, z4), then μ̂GB2 is minimax within the class �C . Further, it is

minimax in � when μ is restricted to W′μ = t0 or ξ2 = ξ0.

4. Benchmarking in the Fay–Herriot model

As mentioned in the introduction and as explained in Datta et al. [6] benchmarking is useful in the
framework of small area estimation. The Fay–Herriot model is often utilized in such problems.
In this section, we develop a constrained empirical Bayes estimator for this model and investigate
the dominance properties.

4.1. Constrained empirical Bayes estimator

The Fay–Herriot model given in (2.1) and (2.2) can be described in matricial form as

y|μ ∼ Nk(μ,D), D = diag(d1, . . . , dk), μ ∼ Nk(Xβ, λI),
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where X = (x1, . . . ,xk)
′ is a k × p matrix of explanatory variables with rank p, β is a p ×

1 unknown vector of regression coefficients and λ is an unknown scalar. Suppose that d1 ≥
· · · ≥ dk without any loss of generality. Consider estimation of μ in terms of the conditional risk
R(μ, μ̂) = E[(μ̂ − μ)′Q(μ̂ − μ)|μ] and the unconditional risk RU(π, μ̂) = E[(μ̂ − μ)′Q(μ̂ −
μ)] where π denotes the distribution of μ. The Bayes estimator (under the assumption of known
β and λ) is given by

μ̂B = Xβ + (D/λ + I)−1(y − Xβ) = y − D(D + λI)−1(y − Xβ).

For estimation of λ, several estimators are known including the Prasad–Rao estimator given by
Prasad and Rao [17], the Fay–Herriot estimator suggested by Fay and Herriot [9], the maximum
likelihood estimator (MLE) and the restricted maximum likelihood estimator (REML). For the
MLE and REML, see Searle, Casella and McCulloch [19] and Kubokawa [14], for example.
Denoting an estimator of λ by λ̂, we get the empirical Bayes estimator μ̂EB(λ̂) = y − D(D +
λ̂I)−1(y − Xβ̂(λ̂)), where β̂(λ̂) = {X′V(λ̂)−1X}−1X′V(λ̂)−1y for V(λ) = D + λI. The empirical
Bayes estimator is called the empirical best linear unbiased predictor (EBLUP) in the framework
of the linear mixed model, namely the unconditional model (4.1). Define A(λ) by

A(λ) = V(λ)−1 − V(λ)−1X
(
X′V(λ)−1X

)−1X′V(λ)−1.

Then, the empirical Bayes estimator can be rewritten as

μ̂EB(λ̂) = y − DA(λ̂)y. (4.1)

Now consider the benchmark constraint W′μ̂ = t(y). The constrained empirical Bayes estimator
(CEB) based on μ̂EB(λ̂) (as constructed in 2.8) is given by

μ̂CEB(λ̂, t) = (I − PW)μ̂EB(λ̂) + Q−1W
(
W′Q−1W

)−1t(y). (4.2)

Concerning the estimation of λ, we here treat the Fay–Herriot estimator λ̂ given by λ̂ =
max{λ∗,0} where λ∗ is the solution of the equation

y′A
(
λ∗)y = k − p. (4.3)

1. Conditional risk. A sufficient condition for μ̂CEB(λ̂, t) to improve on μ̂CM(t) in terms of
the conditional risk is given in the following proposition which will be proved in the Appendix.

Proposition 4.1. The constrained empirical Bayes estimator μ̂CEB(λ̂, t) with λ̂ given in (4.3)

improves on μ̂CM(t) given in (2.7) in terms of the conditional risk if the following inequality
holds:

min
λ>0

{
tr[DQWDA(λ)]

Chmax(DQWDA(λ))

}
≥ k − p

2
+ 2, (4.4)

where QW = Q − W(W′Q−1W)−1W′, and Chmax(C) denotes the maximum eigenvalue of the
matrix C. If the constraint is given by t(y) = W′y, then the estimator μ̂CEB(λ̂, t) is minimax
under the condition (4.4).
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To derive explicit sufficient conditions, it is noted that

tr
[
DQWDA(λ)

] = tr
[
DQWD(D + λI)−1]

− tr
[{

X′(D + λI)−1X
}−1X′(D + λI)−1DQWD(D + λI)−1X

]
≥ 1

d1 + λ
tr
[
D2QW

] − d1p

d1 + λ
Chmax(DQW),

Chmax
(
DQWDA(λ)

) ≤ Chmax
(
DQWD(D + λI)−1) ≤ d1

d1 + λ̂
Chmax(DQW),

where d1 ≥ · · · ≥ dk . Then,

tr[DQWDA(λ)]/Chmax
(
DQWDA(λ)

) ≥ tr
[
D2QW

]
/
{
d1 Chmax(DQW)

} − p.

Similarly, it is observed that

tr
[
DQWDA(λ)

] ≥ dk

dk + λ
tr[DQW] − p

dk + λ
Chmax

(
D2QW

)
,

Chmax
(
DQWDA(λ)

) ≤ 1

dk + λ̂
Chmax

(
D2QW

)
,

which implied that tr[DQWDA(λ)]/Chmax(DQWDA(λ)) ≥ dk tr[DQW]/Chmax(D2QW) − p.
These provide the following sufficient condition.

Proposition 4.2. The constrained empirical Bayes estimator μ̂CEB(λ̂, t) improves on μ̂CM(t) in
terms of the conditional risk if the following condition holds:

max

{
tr[D2QW]

d1 Chmax(DQW)
,

dk tr[DQW]
Chmax(D2QW)

}
≥ p + 2 + k − p

2
. (4.5)

When d1 = · · · = dk and Q = Im, the condition (4.5) is written as k − p ≥ 2(m + 2), and
improvement is guaranteed for large k. However, those sufficient conditions for the improvement
are restrictive in the case of different di ’s with large d1 and small dk .

2. Unconditional risk. We next investigate the dominance property relative to the unconditional
risk. Let �U = RU(π, μ̂CEB(λ̂, t))−RU(π, μ̂CM(t)). Since it is hard to evaluate �U exactly, we
shall approximate �U/k up to O(k−3/2) for large k.

Proposition 4.3. Assume that the elements of X and W are uniformly bounded and X′V−1(λ) ×
X/k is positive definite and converges to a positive definite matrix. Assume also that di ’s
are bounded above and bounded away from zero. Then, �U/k is approximated as �U/k =
�APR(λ)/k + O(k−3/2), where

�APR(λ) = − tr
[
DQWDV−1(λ)

] + tr
[(

X′V−1(λ)X
)−1X′V−1(λ)DQWDV−1(λ)X

]
(4.6)

+ tr
[
DQWDV−3(λ)

] 2k

(tr[V−1(λ)])2
.
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A necessary condition for �APR(λ) ≤ 0 is given by

tr[DQW] ≥ tr
[(

X′D−1X
)−1X′QWX

] + tr
[
QWD−1] 2k

(tr[D−1])2
. (4.7)

A sufficient condition for �APR(λ) ≤ 0 is that

min
λ>0

{
tr[DQWDV−1(λ)]

Chmax(DQWDV−1(λ))

}
≥ p + 2

k tr[D−2]
(tr[D−1])2

. (4.8)

The proof is given in the Appendix. The approximation (4.6) was derived by Datta, Rao and
Smith [8]. When �APR(λ) ≤ 0 for any λ > 0, it is said that μ̂CEB(λ̂, t) improves on μ̂CM(t) in
terms of the second-order approximation of the unconditional risk. Using the same arguments as
in (4.5), it follows from (4.8) that the inequality �APR(λ) ≤ 0 holds if

max

{
tr[D2QW]

d1 Chmax(DQW)
,

dk tr[DQW]
Chmax(D2QW)

}
≥ p + 2

k tr[D−2]
(tr[D−1])2

. (4.9)

The necessary condition (4.7) is useful in the sense that if the condition (4.7) is violated, then
μ̂CEB(λ̂, t) does not improve on μ̂CM(t) in terms of the second-order approximation of the un-
conditional risk. This means that μ̂CEB(λ̂, t) should satisfy the condition (4.7) at least.

Remark 4.1. Propositions 4.1, 4.2 and 4.3 give us the conditions for the improvement by the
constrained empirical Bayes estimator (4.2). By replacing QW with Q, these propositions can
provide the conditions under which the empirical Bayes estimator given in (4.1) improves on y.

4.2. Unconstrained empirical Bayes estimator satisfying constraints

In this subsection, we set up a prior distribution which results in an unconstrained empiri-
cal Bayes and minimax estimator satisfying the constraint in the Fay–Herriot model with het-
eroscedastic variances and covariates as regressors.

Case 1: t(y) = W′y. Recall the arguments as in Case 1 of Section 3.2. Since ξ3 = (H1 −
V12V−1

22 H2)Q1/2μ and we set up the linear regression structure Xβ for μ, it may be reasonable to
assume the prior distribution ξ3|λ ∼ Nk−m(X3β, λIk−m) for ξ3 and to assume the uniform prior
for ξ2, where X3 = (H1 − V12V−1

22 H2)Q1/2X, which is assumed to be of rank p. Combining the
contents in Sections 3.2 and 4.1, we get the empirical Bayes estimator given by

μ̂EB1 = Q−1/2H′
1

{̂
ξ

EB
3 (z3) + V12V−1

22 z2
} + Q−1/2H′

2z2.

Here the empirical Bayes estimator ξ̂
EB
3 (z3) is given as follows: Note that z3|ξ3 ∼ Nk−m(ξ3,

V11.2) and ξ3 ∼ Nk−m(X3β, λI). According to the arguments in Section 4.1, we estimate λ by
λ̂ = max{λ∗,0}, where λ∗ is the solution of the equation z′

3A3(λ
∗)z3 = k − m − p for A3(λ) =

V−1
3 − X3(X′

3V−1
3 X3)

−1X′
3V−1

3 for V3 = V11.2 + λI. Then, the empirical Bayes estimator of ξ3
is written by

ξ̂
EB
3 (z3) = z3 − V11.2(V11.2 + λ̂Ik−m)−1{z3 − X3β̂3(λ̂)

}
(4.10)
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for β̂3(λ) = (X′
3V−1

3 X3)
−1X′

3V−1
3 z3.

Clearly, μ̂EB1 satisfies the constraint, namely, W′μ̂EB1 = W′y. Since QW and D in Section 4.1
correspond to Ik−m and V11.2, respectively. The dominance results for μ̂EB1 follow from Propo-
sitions 4.2 and 4.3.

Proposition 4.4. The unconstrained empirical Bayes estimator μ̂EB1 satisfies the constraint
W′μ̂EB1 = W′y. It is also minimax in � in terms of the conditional risk if

max

{
tr[V2

11.2]
{Chmax(V11.2)}2

,
Chmin(V11.2)

Chmax(V11.2)
tr[V11.2]

}
≥ p + 2 + k − p

2
. (4.11)

In the sense of the second-order approximation relative to the unconditional risk, a sufficient
condition for μ̂EB1 to improve on y is

max

{
tr[V2

11.2]
{Chmax(V11.2)}2

,
Chmin(V11.2)

Chmax(V11.2)
tr[V11.2]

}
≥ p + 2

k tr[V−2
11.2]

(tr[V−1
11.2])2

, (4.12)

and a necessary condition for the improvement is given by

tr[V11.2] ≥ tr
[(

X′
3V−1

11.2X3
)−1X′

3X3
] + 2k/ tr

[
V−1

11.2

]
. (4.13)

Case 2: t(y) = t0. Recall the arguments as in Case 2 of Section 3.2. If we assume the
prior distribution that ξ2 = ξ0 with probability one for ξ0 = (W′Q−1/2H′

2)
−1t0, it is seen

that ξ4 = ξ1. Since ξ1 = H1Q1/2μ, it is reasonable to assume the prior distribution ξ1|λ ∼
Nk−m(H1Q1/2Xβ, λIk−m) for ξ1. Then from (3.6), the generalized Bayes estimator is given
by

μ̂EB2 = Q−1/2H′
1̂ξ

EB
1 (z4) + Q−1/2H′

2ξ0, (4.14)

where ξ̂
EB
1 (z4) has the same form as ξ̂

EB
3 (z3) given in (4.10) except replacing z3 and X3 with z4

and H1Q1/2X, respectively. It is assumed that H1Q1/2X is of rank p.
Clearly, μ̂EB2 satisfies the constraint, namely, W′μ̂EB2 = t0. The improvement of μ̂EB2 follows

from Propositions 4.1 and 4.4. When μ is restricted to W′μ = t0 or ξ2 = ξ0, μ̂EB2 is minimax in
� from Proposition 3.4.

Proposition 4.5. The unconstrained empirical Bayes estimator μ̂EB2 satisfies the constraint
W′μ̂EB2 = t0 and dominates the estimator Q−1/2H′

1z4 + Q−1/2H′
2ξ0 in terms of the conditional

risk if the condition (4.11) holds. This implies the minimaxity of μ̂EB2 within �C . When μ is
restricted on W′μ = t0, μ̂EB2 is minimax in � under the condition (4.11).

In the sense of the second-order approximation relative to the unconditional risk, a sufficient
condition for μ̂EB2 to improve on y is given by (4.12), and a necessary condition for the improve-
ment is given by

tr[V11.2] ≥ tr
[(

X′
4V−1

11.2X4
)−1X′

4X4
] + 2k/ tr

[
V−1

11.2

]
(4.15)

for X4 = H1Q1/2X.
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4.3. Simulation study

We investigate the unconditional risk behaviors of the constrained estimators by simulation. We
consider the Fay–Herriot model (4.1) with k = 15, λ = 1 and four di -patterns: (a) 0.5, 0.5, 0.4,
0.3, 0.3; (b) 0.7, 0.6, 0.5, 0.4, 0.3; (c) 2.0, 0.6, 0.5, 0.4, 0.2; (d) 4.0, 0.6, 0.5, 0.4, 0.1. Patterns
(b)–(d) are treated by Datta, Rao and Smith [8], and pattern (a) is less variable in di -values,
while pattern (d) has larger variability. There are five groups G1, . . . ,G5 and three small areas
in each group. The sampling variances di are the same for areas within the same group. For
the matrix of covariates X, the column vectors of X′ are generated as random vectors from
Np(0, (1 − 0.2)I + 0.2jkj′k) where jk is the k-dimensional vector with all the elements ones.
Each element of β is generated as 1 + 4u where u ∼ U(0,1), the uniform distribution on (0,1).

In this simulation, we treat the case that W = D−1jk , t0 = 3W′Xjk and Q = I,D−1 for m = 1
and p = 2. We compare the unconditional risks RU(π, μ̂) for the five estimators of μ: the crude
estimator y, the empirical Bayes estimator EB given in (4.1), the constrained empirical Bayes
estimator CB in (4.2), the unconstrained empirical Bayes estimator UC1 in (4.10) for Case 1 and
the unconstrained empirical Bayes estimator UC2 in (4.14) for Case 2, where Case 1 and Case 2
denote the constraints t(y) = W′y and t(y) = t0, respectively. The unconditional risks of these
estimators are computed as average values based on 10,000 simulation runs, and those values are
reported in Table 1, where Case 2∗ treats the unconditional risks for μ restricted to W′μ = t0. It
is noted that y and EB do not satisfy the constraints. The values of the column of y correspond
to the minimax risks for Case 1 and Case 2∗, and it is revealed that EB, CB, UC1 and UC2 have
smaller risks than y. For Case 1, the risks of the estimators CB and UC1 with the constraints are
slightly larger than those of EB . It is interesting to note that the difference between Case 2 and
Case 2∗ supports Proposition 2.4, namely, CB and UC2 improve on y when μ is restricted to
W′μ = t0, while their maximum risks are beyond the risks of y without the restriction.

We next investigate whether the conditions for the improvement derived in Sections 4.1 and 4.2
are satisfied or not. Table 2 reports this investigation where + is marked if the condition is
satisfied, otherwise, − is marked. For improvement by CB, the sufficient condition relative to
the conditional risk is (4.5), denoted by SR, and the sufficient and necessary conditions in terms

Table 1. Values of unconditional risks of the constrained estimators for λ = 1

Case 1 Case 2 Case 2∗

Q di y EB CB UC1 CB UC2 CB UC2

Q = I (a) 6.00 4.76 4.84 4.88 9.24 9.40 4.48 4.64
(b) 7.51 5.53 5.63 5.70 9.68 9.90 5.22 5.45
(c) 11.05 6.40 6.45 6.65 7.22 7.41 6.15 6.34
(d) 16.88 6.60 6.61 7.26 14.60 19.92 6.47 11.79

Q = D−1 (a) 14.93 11.92 12.02 12.28 38.88 39.14 11.02 11.28
(b) 14.99 11.49 11.72 11.87 13.17 13.31 10.74 10.89
(c) 14.99 10.90 11.05 11.76 13.47 14.17 10.09 10.80
(d) 14.99 10.57 10.68 12.07 26.91 28.30 9.70 11.09
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Table 2. Whether the conditions for the improvement are satisfied or not? When the condition is satisfied,
+ is marked, and otherwise, − is marked

EB CB UC1 UC2

Q di SR SRU NRU SR SRU NRU SR SRU NRU SR SRU NRU

Q = I (a) − + + − + + − + + − + +
(b) − + + − + + − + + − + +
(c) − − + − − + − − + − − +
(d) − − + − − + − − + − − +

Q = D−1 (a) + + + − + + + + + + + +
(b) − + + − + + + + + + + +
(c) − − + − − + + + + + + +
(d) − − + − − + + + + + + +

of the second-order approximation relative to the unconditional risk are given by (4.9) and (4.7),
respectively, denoted by SRU and NRU . As noted in Remark 4.1, similar conditions for EB can be
given by SR, SRU and NRU by replacing QW with Q. SR and SRU are given by (4.11) and (4.12)
for the improvement by UC1 and UC2. The necessary conditions NRU for UC1 and UC2 are
given by (4.13) and (4.15), respectively. As seen from Table 2, the sufficient conditions SR under
the conditional risks for EB and CB are very restrictive in both cases of Q = I and Q = D−1, and
AR for UC1 and UC2 are also restrictive for Q = I. That is, the conditions SR are not satisfied
in most cases. It should be noted that this does not imply that those estimators do not improve on
y, because the necessary conditions NRU are always satisfied. For the estimators UC1 and UC2,
all the conditions for the improvement are satisfied relative to the loss (μ̂ − μ)′D−1(μ̂ − μ) for
Q = D−1.

5. Concluding remarks

Benchmarking has been recognized as an important issue in small area problems, and constrained
Bayesian estimators have been studied in the literature. However, little has been known about
decision-theoretic properties such as admissibility and minimaxity for constrained generalized
Bayes estimators. In this paper, we have clarified admissibility, minimaxity and dominance prop-
erties of constrained estimators by decomposing the conditional risk function into two pieces:
one depends on the estimator, but the other does not depend on the estimator. In the context of a
multivariate normal population, we have provided a canonical form, which allows us to establish
admissibility and inadmissibility of the constrained uniform-prior generalized Bayes estimator.
We have also derived a condition on the prior distribution such that the resulting unconstrained
generalized Bayes estimator automatically satisfies the constraint. Finally, we have provided con-
strained empirical Bayes and improved estimators in the Fay–Herriot model.

Although a constrained empirical Bayes estimator is treated in Section 4, it is not admissible.
To develop admissible and minimax estimators, we would need to consider hierarchical prior
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distributions and to investigate admissibility and minimaxity of the resulting hierarchical gener-
alized Bayes estimators. Berger and Robert [3], Berger and Strawderman [4] and Kubokawa and
Strawderman [15] have studied the admissibility and minimaxity of hierarchical Bayes estima-
tors. The extension of their results to the setup of this paper seems a reasonable goal and is one
that we plan to study.

Appendix: Proofs

Proof of Proposition 4.1. We first prove Proposition 4.1 which give us the sufficient condition
for the constrained empirical Bayes estimator μ̂CEB(λ̂, t) to improve on the constrained uniform-
prior generalized Bayes estimator μ̂CM(t). The arguments as in Shinozaki and Chang ([20,21])
are useful for the proof. The conditional risk difference of the two estimators is written as

� = E
[(

μ̂CEB(λ̂, t) − μ
)′Q

(
μ̂CEB(λ̂, t) − μ

)|μ] − E
[(

μ̂CM(t) − μ
)′Q

(
μ̂CM(t) − μ

)|μ]
= E

[(
μ̂EB(λ̂) − μ

)′QW
(
μ̂EB(λ̂) − μ

)|μ] − E
[
(y − μ)′QW(y − μ)|μ]

,

where QW = Q − W(W′Q−1W)−1W′. It is noted that QW is of rank k − m and that E[(y −
μ)′QW(y − μ)|μ] = tr[DQW] = tr[DQ] − tr[W′DW(W′Q−1W)−1]. The risk difference is writ-
ten as

� = −2E
[
(y − μ)′QWDA(λ̂)y|μ] + E

[
y′A(λ̂)DQWDA(λ̂)y|μ]

. (A.1)

Using the Stein identity given in Stein [22], we can rewrite the cross product term as

E
[
(y − μ)′QWDA(λ̂)y|μ] = E

[∇′{DQWDA(λ̂)y
}|μ]

.

Let G(λ̂) = (gij (λ̂)) = DQWDA(λ̂). Then

∇′{G(λ̂)y
} =

∑
i,j

∂

∂yi

{
gij (λ̂)yj

}

=
∑

i

gii(λ̂) +
∑
i,j

yj

{
d

dλ
gij (λ)

∣∣∣∣
λ=λ̂

}
∂λ̂

∂yi

= tr
[
DQWDA(λ̂)

] + y′
{

d

dλ
A(λ)

∣∣∣∣
λ=λ̂

}
DQWD(∇λ̂),

since gij (λ̂) depends on y through λ̂. Differentiating A(λ) with respect to λ for A(λ) given
in (4.1), we can see that

d

dλ
A(λ) = −A2(λ), (A.2)



2218 T. Kubokawa and W.E. Strawderman

which can be used to get the expression � = E[�̂|μ] where

�̂(λ̂) = −2 tr
[
DQWDA(λ̂)

] + 2y′A2(λ̂)DQWD(∇λ̂)

+ y′A(λ̂)DQWDA(λ̂)y

for ∇ = (∂/∂y1, . . . , ∂/∂yk)
′.

Differentiating y′A(λ̂)y = k − p with respect to y and using the implicit function theorem, we
get the equation 2A(λ̂)y − y′A2(λ̂)y∇λ̂ = 0 in the case of 0 < λ̂, or

∇λ̂ = 2

y′A2(λ̂)y
A(λ̂)yI (0 < λ̂).

Thus, �̂ is expressed as

�̂(λ̂) = −2 tr
[
DQWDA(λ̂)

] + 4
y′A2(λ̂)DQWDA(λ̂)y

y′A2(λ̂)y
I (0 < λ̂)

+ y′A(λ̂)DQWDA(λ̂)y,

where I (A) is the indicator function such that I (A) = 1 if A is true, and otherwise, I (A) = 0. It
is observed that

y′A(λ̂)DQWDA(λ̂)y ≤ y′A(λ̂)y sup
x

{
x′A(λ̂)DQWDA(λ̂)x

x′A(λ̂)x

}

≤ (k − p) × Chmax
(
DQWDA(λ̂)

)
,

y′A2(λ̂)DQWDA(λ̂)y

y′A2(λ̂)y
I (λ̂ > 0) ≤ sup

x

{
x′A2(λ̂)DQWDA(λ̂)x

x′A2(λ̂)x

}

= Chmax
(
DQWDA(λ̂)

)
.

Hence,

�̂(λ̂) ≤ −2 tr
[
DQWDA(λ̂)

] + (k − p + 4)Chmax
(
DQWDA(λ̂)

)
, (A.3)

which proves Proposition 4.1. �

Proof of Proposition 4.3. We next prove Proposition 4.3. The unconditional risk difference can
be written from (A.1) as

�U = RU
(
π, μ̂CEB(λ̂, t)

) − RU
(
π, μ̂CM(t)

)
= −2E

[(
y − E[μ|y])′QWDA(λ̂)y

] + E
[
y′A(λ̂)DQWDA(λ̂)y

]
.

Noting that E[μ|y] = y − DV(λ)−1(y − Xβ) and A(λ̂)X = 0, we see that

�U = −2E
[
u′V(λ)−1DQWDA(λ̂)u

] + E
[
u′A(λ̂)DQWDA(λ̂)u

]
, (A.4)
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where u is a random variable having Nk(0,V(λ)). We shall derive the second order approxima-
tion of �U/k up to O(k−1). To this end, A(λ̂) is approximated by the Taylor series expansion
as

A(λ̂) = A(λ) + A(1)(λ)(λ̂ − λ) + 2−1A(2)(λ)(λ̂ − λ)2 + [
O

(
k−3/2)]

k×k
,

where A(i)(λ) = ∂iA(λ)/∂λi , i = 1,2, and [O(k−3/2)]k×k means that all elements of the matrix
are of O(k−3/2). Then

E
[
u′A(λ̂)DQWDA(λ̂)u

]
= E

[
u′A(λ)DQWDA(λ)u + 2u′A(λ)DQWDA(1)(λ)u(λ̂ − λ)

+ u′A(λ)DQWDA(2)(λ)u(λ̂ − λ)2 + u′A(1)(λ)DQWDA(1)(λ)u(λ̂ − λ)2] + O
(
k−1/2)

= tr
[
DQWDA(λ)

] − tr
[(

X′V−1(λ)X
)−1X′V−1(λ)DQWDA(λ)X

]
+ E

[
2u′V−1(λ)DQWDA(1)(λ)u(λ̂ − λ) + u′V−1(λ)DQWDA(2)(λ)u(λ̂ − λ)2

+ u′V−2(λ)DQWDV−2(λ)u(λ̂ − λ)2] + O
(
k−1/2),

since u′A(λ)Cu = u′V−1(λ)Cu − u′V−1(λ)X(X′V−1(λ)X)−1X′V−1(λ)Cu = u′V−1(λ)Cu +
Op(1) for a matrix C = [O(1)]k×k , and A(1)(λ) = −A2(λ). Similarly,

−2E
[
u′V(λ)−1DQWDA(λ̂)u

]
= −2 tr

[
DQWDA(λ)

] − 2E
[
u′V−1(λ)DQWDA(1)(λ)u(λ̂ − λ)

]
− E

[
u′V−1(λ)DQWDA(2)(λ)u(λ̂ − λ)2] + O

(
k−1/2).

Since E[u′V−2(λ)DQWDV−2(λ)u(λ̂−λ)2] = E[u′V−2(λ)DQWDV−2(λ)u]Var(λ̂)+ O(k−1/2)

and A(λ)X = 0, it follows that

�U = − tr
[
DQWDA(λ)

] + tr
[
V−3(λ)DQWD

]
Var(λ̂) + O

(
k−1/2).

It is noted that Var(λ̂) = 2k/(tr[V−1(λ)])2 + O(k−1/2) from Datta, Rao and Smith [8]. Hence,
�U/k can be approximated as �U/k = �APR(λ)/k + O(k−3/2), where �APR(λ) is given
in (4.6). A necessary condition for �APR(λ) ≤ 0 is that �APR(0) ≤ 0, which is given in
(4.7). To derive a sufficient condition, note that tr[(X′V−1(λ)X)−1X′V−1(λ)DQWDV−1(λ)X] ≤
p Chmax(DQWDV−1(λ)) and that tr[DQWDV−3(λ)] ≤ Chmax(DQWDV−1(λ)) tr[V−2(λ)]. By
making the differentiation, it can be verified that tr[V−2(λ)]/(tr[V−1(λ)])2 is decreasing in λ, so
that tr[V−2(λ)]/(tr[V−1(λ)])2 ≤ tr[D−2]/(tr[D−1])2. Thus,

�APR(λ) ≤ − tr
[
DQWDV−1(λ)

] + Chmax
(
DQWDV−1(λ)

){
p + 2k tr

[
D−2]/(tr

[
D−1])2}

,

which is expressed as (4.8). Therefore, we get Proposition 4.3. �
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