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We provide existence results and comparison principles for solutions of backward stochastic difference
equations (BS�Es) and then prove convergence of these to solutions of backward stochastic differential
equations (BSDEs) when the mesh size of the time-discretizaton goes to zero. The BS�Es and BSDEs
are governed by drivers f N(t,ω, y, z) and f (t,ω, y, z), respectively. The new feature of this paper is that
they may be non-Lipschitz in z. For the convergence results it is assumed that the BS�Es are based on
d-dimensional random walks WN approximating the d-dimensional Brownian motion W underlying the
BSDE and that f N converges to f . Conditions are given under which for any bounded terminal condition
ξ for the BSDE, there exist bounded terminal conditions ξN for the sequence of BS�Es converging to ξ ,
such that the corresponding solutions converge to the solution of the limiting BSDE. An important special
case is when f N and f are convex in z. We show that in this situation, the solutions of the BS�Es converge
to the solution of the BSDE for every uniformly bounded sequence ξN converging to ξ . As a consequence,
one obtains that the BSDE is robust in the sense that if (WN, ξN ) is close to (W, ξ) in distribution, then the
solution of the N th BS�E is close to the solution of the BSDE in distribution too.

Keywords: backward stochastic difference equations; backward stochastic differential equations;
comparison principle; convergence; robustness

1. Introduction

The aim of this paper is to obtain general convergence results of solutions of stochastic back-
ward equations in discrete time (BS�Es) to solutions of stochastic backward equations in con-
tinuous time (BSDEs). The discrete equations are governed by drivers f N(t,ω, y, z), N ∈ N,
and the continuous one by f (t,ω, y, z). The new feature of this paper is that f N and f may be
non-Lipschitz in z. We assume that the BS�Es are based on d-dimensional random walks WN

converging to the d-dimensional Brownian motion W underlying the BSDE and that f N tends
to f . Convergence results for Lipschitz drivers have been obtained by Briand et al. [4,5] as well
as Toldo [28,29]. In these papers, existence and uniqueness of solutions follow from a Picard
iteration argument. Using results on convergence of filtrations from Coquet et al. [12], it can be
shown that the Picard sequences approach each other asymptotically, which yields general con-
vergence results. In the case of non-Lipschitz drivers this approach does not work, and neither
the existence of solutions of BS�Es nor their convergence to their counterparts in continuous
time are clear.
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In this paper, we start with a careful analysis of BS�Es. Central to our approach is Theo-
rem 4.2 which provides a comparison principle for BS�Es. It requires drivers that can grow
faster than linearly but strictly less than quadratically in z. Kobylanski [21] showed existence,
comparison and uniqueness of solutions to BSDEs with general bounded terminal conditions and
drivers of quadratic growth in z. However, in discrete time the situation is different. Example 4.1
shows that neither a general comparison principle nor convergence of solutions for diminishing
step sizes can hold for BS�Es if the drivers grow quadratically in z. Our main convergence re-
sults are Theorems 5.9 and 6.2. Theorem 5.9 shows that if f N and f grow less than quadratically
in z, then for any bounded terminal condition ξ for the BSDE, there exist bounded terminal con-
ditions ξN for the BS�Es such that the corresponding solutions YN converge to the solution Y

of the BSDE in the following sense:

sup
0≤t≤T

∣∣YN
t − Yt

∣∣→ 0 in L2 when N → ∞. (1.1)

Furthermore, if ξ is of the form ξ = ϕ(Ws1, . . . ,Wsn) for a bounded, uniformly continuous func-
tion ϕ, then the ξN can be chosen as ξN = ϕ(WN

s1
, . . . ,WN

sn
). In Theorem 6.2, we prove that if the

drivers f N are convex in z, then (1.1) holds for every sequence of uniformly bounded ξN con-
verging to ξ in L2. As a corollary one obtains that if (WN, ξN) is close to (W, ξ) in distribution,
then YN is close to Y in distribution too.

Discrete schemes for the approximation of solutions of BSDEs have been studied by a number
of authors; see for instance, Ma et al. [23], Douglas et al. [15], Bally [1], Chevance [9], Coquet
et al. [11], Ma et al. [22], Zhang and Zheng [31], Zhang [30], Bouchard and Touzi [3], Gobet et
al. [18] and Otmani [17]. However, in all these papers the drivers are assumed to be Lipschitz.
Recently, Imkeller and Reis [20] as well as Richou [27] have obtained results on the convergence
of solutions of discretized BSDEs with drivers of quadratic growth under regularity assumptions
on the terminal conditions and for specially chosen discrete-time drivers f N . In Cheridito and
Stadje [8] convergence results are shown for convex drivers and terminal conditions that are
Lipschitz continuous in the underlying Brownian motion. Our results hold for general terminal
conditions and general drivers f N converging to f . But they need subquadratic growth of f N

in z. Comparison results for BS�Es have also been studied in Cohen and Elliott [10] but under
different assumptions than here.

The structure of the paper is as follows: In Section 2, we introduce the notation and provide
some background material. Then we give an example showing that BS�Es with non-Lipschitz
drivers need not converge if the terminal conditions are not uniformly bounded. In Section 3,
we show that BS�Es admit solutions under very mild assumptions if the time-discretization is
fine enough. Section 4 starts with an example showing two facts about BS�Es with drivers of
quadratic growth: (a) a general comparison principle cannot hold and (b) solutions of BS�Es can
explode if the step-size goes to zero even if the terminal conditions are uniformly bounded and
converge to zero in L2. We then prove a general comparison principle for subquadratic BS�Es.
Section 5 gives convergence results of solutions of general BS�Es to solutions of BSDEs, and
in Section 6 we prove convergence results for drivers that are convex in z.
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2. Notation and setup

We fix a finite time horizon T ∈ R+. As underlying process for the BSDE, we take a d-
dimensional Brownian motion (Wt )t∈[0,T ] on a probability space (�, F ,P) and denote by
(Ft )t∈[0,T ] the augmented filtration generated by (Wt )t∈[0,T ]. Equalities and inequalities between
random variables will, as usual, be understood in the P-almost sure sense. As approximating
processes we consider a sequence (WN

t )t∈[0,T ], N ∈ N, of d-dimensional square-integrable mar-
tingales on (�, F ,P) starting at 0 with independent increments satisfying the following three
conditions:

(C1) For every N there exists a finite sequence 0 = tN0 < tN1 < · · · < tNiN
= T such that

lim
N→∞ sup

i

∣∣tNi+1 − tNi

∣∣= 0

and WN
t is constant on each of the intervals [tNi , tNi+1).

(C2)

�
〈
WN,k
〉
tNi

= �
〈
WN,l
〉
tNi

> 0 for all i and 1 ≤ k, l ≤ d.

(C3)

lim
N→∞E

[
sup

0≤t≤T

∣∣WN
t − Wt

∣∣2]= 0,

where | · | denotes the standard Euclidean norm on R
d : |x| := (

∑d
i=1 x2

i )1/2.

Let (F N
t ) be the filtration generated by (WN

t ) and define 〈WN 〉t := 〈WN,k〉t . Since WN has
independent increments, 〈WN 〉t = 〈WN,k〉t is equal to E[(WN,k

t )2], and it follows from (C3)
that

sup
0≤t≤T

∣∣〈WN
〉
t
− t
∣∣= sup

0≤t≤T

∣∣E[(WN,k
t

)2 − (Wk
t

)2]∣∣→ 0 for N → ∞. (2.1)

In particular,

lim
N→∞ max

i

∣∣�〈WN
〉
tNi

∣∣= 0.

Our standard example for the approximating processes WN will be d-dimensional Bernoulli
random walks.

Example 2.1. Let

tNi = i
T

N
and W̃

N,k

tNi
=
√

T

N

i∑
j=1

X
N,k
j
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for i.i.d. random variables X
N,k
j on a probability space (�̃, F̃ , P̃) with distribution P̃[XN,k

j =
±1] = 1/2. Extend (W̃N

t ) to [0, T ] such that it is constant on the intervals [tNi , tNi+1). Then con-
ditions (C1) and (C2) are satisfied. To fulfill (C3), one must transfer the random walks to another
probability space. Since they converge to d-dimensional Brownian motion in distribution, there
exists a probability space (�, F ,P) with a d-dimensional Brownian motion (Wt) and random
walks (WN

t ) having the same distributions as (W̃N
t ) such that

sup
0≤t≤T

∣∣WN
t − Wt

∣∣→ 0 almost surely as N → ∞; (2.2)

see, for instance, Theorem I.2.7 in Ikeda and Watanabe [19]. It can be shown that the sequence
sup0≤t≤T |WN

t −Wt |2 is uniformly integrable. Therefore, the convergence (2.2) also holds in L2,
and condition (C3) is satisfied.

The driver of the BSDE is a P ⊗ B(R) ⊗ B(Rd)-measurable function

f : [0, T ] × � × R × R
d → R,

where P denotes the predictable σ -algebra on [0, T ] × � with respect to (Ft ) and B(R) and
B(Rd) are the Borel σ -algebras on R and R

d , respectively. We will assume throughout the paper
that for fixed (t,ω), f (t,ω, y, z) is continuous in (y, z). Then P ⊗ B(R)⊗ B(Rd)-measurability
of f is equivalent to (t,ω) 	→ f (t,ω, y, z) being predictable for all fixed (y, z).

The approximating BS�Es have drivers

f N : [0, T ] × � × R × R
d → R

that are continuous in (y, z), constant on the intervals (tNi , tNi+1] and such that ω 	→ f N(tNi+1,ω,

y, z) is F N

tNi
-measurable. As usual, we henceforth suppress the dependence of f and f N on ω in

the notation.
The terminal conditions for the BSDE and BS�Es are given by random variables ξ , ξN that

are measurable with respect to FT and F N
T , respectively.

A solution of the BSDE consists of a pair of predictable processes (Yt ,Zt ) with values in
R × R

d such that

E

[
sup

0≤t≤T

Y 2
t

]
< ∞, E

[(∫ T

0
|Zs |2 ds

)1/2]
< ∞,

and

Yt = ξ +
∫ T

t

f (s, Ys,Zs)ds −
∫ T

t

Zs dWs, 0 ≤ t ≤ T . (2.3)

In contrast to (Wt), the approximating processes (WN
t ) do in general not have the predictable

representation property. Therefore, a solution of the N th BS�E is a triple of (F N
t )-adapted

processes (YN
t ,ZN

t ,MN
t ) taking values in R×R

d ×R such that (YN
t ) is constant on the intervals
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[tNi , tNi+1), (ZN
t ) is constant on the intervals (tNi , tNi+1], (MN

t ) is a square-integrable martingale
starting at 0 and orthogonal to (WN

t ) that is constant on the intervals [tNi , tNi+1) and

YN
t = ξN +

∫
(t,T ]

f N
(
s, YN

s−,ZN
s

)
d
〈
WN
〉
s
−
∫

(t,T ]
ZN

s dWN
s − (MN

T − MN
t

)
. (2.4)

Due to the particular form of (YN
t ,ZN

t ,MN
t ), (2.4) is equivalent to

YN

tNi
= YN

tNi+1
+ f N
(
tNi+1, Y

N

tNi
,ZN

tNi+1

)
�
〈
WN
〉
tNi+1

− ZN

tNi+1
�WN

tNi+1
− �MN

tNi+1
, (2.5)

YN
T = ξN . (2.6)

Note that if (WN
t ) is a one-dimensional Bernoulli random walk, it has the predictable represen-

tation property and the orthogonal martingale terms in (2.4) and (2.5) disappear.
It is well known that if the driver f is Lipschitz-continuous in (y, z) and the terminal condition

ξ is in L2, the BSDE (2.3) admits a unique solution (Y,Z); see, for instance, Pardoux and Peng
[25] or the survey paper by El Karoui et al. [16]. Concerning the approximation of BSDEs with
Lipschitz drivers, we recall the following result from Briand et al. [5]. Their assumptions are
slightly different. But the result also holds in our setup.

Theorem 2.2 (Briand et al. [5]). Assume ξN → ξ in L2 and there exists a constant K ∈ R+
such that for all N ∈ N, y, y′ ∈ R and z, z′ ∈ R

d the following four conditions hold:

(i) E[supt f (t,0,0)2] < ∞;
(ii) |f (t, y, z) − f (t, y′, z′)| ≤ K(|y − y′| + |z − z′|);

(iii) |f N(t, y, z) − f N(t, y′, z′)| ≤ K(|y − y′| + |z − z′|);
(iv) supt |f N(t, y, z) − f (t, y, z)| → 0 in L2 as N → ∞.

Then, for N large enough, the N th BSDE has a unique solution (YN ,ZN,MN), and

sup
t

(∣∣YN
t − Yt

∣∣+ ∣∣∣∣
∫ t

0
ZN

s dWN
s −
∫ t

0
Zs dWs

∣∣∣∣+ ∣∣MN
t

∣∣) (N→∞)→ 0 in L2

as well as

sup
t

(
d∑

k=1

∣∣∣∣
∫ t

0
ZN,k

s d
〈
WN
〉
s
−
∫ t

0
Zk

s ds

∣∣∣∣
2

+
∣∣∣∣
∫ t

0

∣∣ZN
s

∣∣2 d
〈
WN
〉
s
−
∫ t

0
|Zs |2 ds

∣∣∣∣
)

(N→∞)→ 0 in L1,

where (Y,Z) is the unique solution of the BSDE (2.3).

Remark 2.3. Two special cases of terminal conditions satisfying ξN → ξ in L2 are:

(a) ξ = ϕ(WT ) and ξN = ϕ(WN
T ) for a continuous function ϕ : Rd → R such that ϕ2(WN

T ),
N ∈ N, is uniformly integrable.
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(b) ξ ∈ L2(FT ) general and ξN = E[ξ |F N
T ].

The aim of this paper is to obtain similar convergence results for non-Lipschitz drivers. How-
ever, the following example shows that we cannot hope for general results under the sole assump-
tion ξN → ξ in L2.

Example 2.4. Consider a one-dimensional Bernoulli random walk with T = 1, tNi = i/N and
P[�WN

tNi
= ±√

1/N ] = 1/2. Then

�
〈
WN
〉
tNi

= E
[(

�WN

tNi

)2]= 1/N.

Fix q ∈ (1,2) and a sequence of constants aN ≥ 2N(1−q/2)/(q−1). Consider the BS�Es

YN

tNi
= YN

tNi+1
+ ∣∣ZN

tNi+1

∣∣q�
〈
WN
〉
tNi+1

− ZN

tNi+1
�WN

tNi+1
, YN

T = aN1{WN
tN

=√
N}.

It can easily be checked that

ZN

tNN
=

√
N

2
aN 1{WN

tN
N−1

=(N−1)/
√

N} and YN

tNN−1
= aN

tNN−1
1{WN

tN
N−1

=(N−1)/
√

N}

for

aN

tNN−1
= aN

2
+ 2−qNq/2−1(aN

)q ≥ aN .

Continuing this way one gets

ZN

tNN−1
=

√
N

2
aN

tNN−1
1{WN

tN
N−2

=(N−2)/
√

N} and YN

tNN−2
= aN

tNN−2
1{WN

tN
N−2

=(N−2)/
√

N}

with

aN

tNN−2
= aN

tN−1

2
+ 2−qNq/2−1(aN

tNN−1

)q ≥ aN

tNN−1
,

and so on. In particular,

YN
0 ≥ aN ≥ 2N(1−(q/2))/(q−1) → ∞ for N → ∞.

Note that for aN = 2N(1−q/2)/(q−1), one has ξN → 0 in Lp for all p ∈ (0,∞) but not in L∞.

The example shows that in the case of super-linear growth of f N in z one cannot expect
convergence of the discrete-time solutions if the terminal conditions are uniformly Lp-bounded
and converge in Lp for p < ∞. This is not unexpected since in the literature on BSDEs with
non-Lipschitz drivers it is usually required that the terminal condition be in L∞ or sufficiently
well exponentially integrable (see Kobylanski [21], or Briand and Hu [6]). Consequently, in this
paper, we will always assume:
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(C4)

sup
N

∥∥ξN
∥∥∞ < ∞ and ‖ξ‖∞ < ∞.

We shortly summarize the notation and assumptions that have been introduced in this section:

• WN , N ∈ N, is a sequence of discrete-time martingales approximating the d-dimensional
Brownian motion W .

• f and ξ are the driver and terminal condition of the BSDE (2.3). A solution to (2.3) will be
denoted by (Y,Z).

• f N and ξN are the drivers and terminal conditions of the BS�Es (2.4). Solutions will be
denoted by (YN ,ZN,MN).

• We always assume (C1)–(C4).

3. Solutions of BS�Es

In this section, we present two results on solutions of BS�Es that will be needed later in the
paper. Their proofs are straightforward and therefore, given in the Appendix.

Lemma 3.1. If a solution (YN ,ZN,MN) of the N th BS�E exists, one has

YN

tNi
− f N
(
tNi+1, Y

N

tNi
,ZN

tNi+1

)
�
〈
WN
〉
tNi+1

= E
[
YN

tNi+1
|F N

tNi

]
, (3.1)

and the pair (ZN,MN) is uniquely determined by YN through

Z
N,k

tNi+1
=

E[YN

tNi+1
�W

N,k

tNi+1
|F N

tNi
]

�〈WN 〉tNi+1

, (3.2)

�MN

tNi+1
= YN

tNi+1
− E
[
YN

tNi+1
|F N

tNi

]− ZN

tNi+1
�WN

tNi+1
. (3.3)

Concerning the existence of solutions to BS�Es, one has the following result. For the special
case where WN is a one-dimensional Bernoulli random walk, see Peng [26].

Proposition 3.2. Assume there exists a constant K ∈ R+ and a locally bounded function
g : Rd → R+ such that∣∣f N(t, y, z)

∣∣≤ K
(
1 + |y| + g(z)

)
and max

i
�
〈
WN
〉
tNi

< 1/K.

Then the N th BS�E has a solution (YN ,ZN,MN) such that YN and ZN are bounded. If WN

is bounded, then so is MN .

Remark 3.3. For maxi �〈WN 〉tNi ≥ 1/K a solution of the N th BS�E might not exist. For

example, let W 1 be a one-dimensional Bernoulli random walk with t1
0 = 0, t1

1 = 1 = T ,
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P[�W 1
1 = ±1] = 1/2, ξ1 = 1 and f 1(t, y, z) = y. Since the terminal condition is determinis-

tic, one must choose Z1
1 = 0, and (A.2) becomes

Y 1
0 − Y 1

0 = 1,

an equation without solution.

4. Comparison principle for BS�Es

Our main tool to derive convergence results will be a comparison principle for BS�Es of the
following form: Let f N

1 , f N
2 be drivers and ξN

1 , ξN
2 terminal conditions such that f N

1 (t, y, z) ≥
f N

2 (t, y, z) for all t, y, z and ξN
1 ≥ ξN

2 . Then the corresponding solutions satisfy YN
1,t ≥ YN

2,t for
all t .

The next example shows that if the drivers grow quadratically in z, a general comparison
principle for BS�Es cannot hold.

Example 4.1. As in Example 2.4, let WN be a one-dimensional Bernoulli random walk with
T = 1, tNi = i/N and P[�WN

tNi
= ±√

1/N ] = 1/2. Consider the BS�Es

YN

tNi
= YN

tNi+1
+ (ZN

tNi+1

)2
�
〈
WN
〉
tNi+1

− ZN

tNi+1
�WN

tNi+1
, (4.1)

YN
T = a1{WN

tN
N

=√
N} (4.2)

for a constant a > 2 and define ε > 0 by a = 2(1 + 2ε). Then

ZN

tNN
=

√
N

2
a1{WN

tN
N−1

=(N−1)/
√

N}, YN

tNN−1
= aN

tNN−1
1{WN

tN
N−1

=(N−1)/
√

N},

where

aN

tNN−1
= a

2
+
(

a

2

)2

= a(1 + ε)

and

ZN

tNN−1
=

√
N

2
aN

tNN−1
1{WN

tN
N−2

=(N−2)/
√

N}, YN

tNN−2
= aN

tNN−2
1{WN

tN
N−2

=(N−2)/
√

N}

for

aN
tN−2

= aN
tN−1

2
+
(

aN
tN−1

2

)2

≥ aN
tN−1

2

(
1 + a

2

)
= aN

tN−1
(1 + ε).

Continuing this computation, one obtains

YN
0 ≥ a(1 + ε)N → ∞ as N → ∞.



BS�Es and BSDEs with non-Lipschitz drivers 1055

Note that the terminal conditions YN
T are uniformly L∞-bounded in N and YN

T → 0 in Lp for
all p < ∞. But the solutions YN

t explode as N → ∞. We also point out that for fixed N , the
solutions to equation (4.1) are not monotone in the terminal condition. Indeed, (Ỹ N

t , Z̃N
t ) ≡ (a,0)

is a solution of equation (4.1) with terminal condition Ỹ N
T = a ≥ YN

T . However, Ỹ N
0 < YN

0 . In
particular, the comparison principle is violated.

In view of Example 4.1, we restrict ourselves in the next theorem to drivers that grow less than
quadratically in z. We need the following assumption on the increments of WN :

(W1) There exists a constant q ∈ [1,2) such that limN→∞ maxi,k

‖�W
N,k

tN
i

‖∞

�〈WN 〉q/4

tN
i

= 0.

Note that the standard Bernoulli random walks of Example 2.1 satisfy (W1) for all q ∈ [1,2).
The subsequent theorem establishes a comparison result for BS�Es governed by non-Lipschitz
drivers.

Theorem 4.2. Let C,K,L ∈ R+ and assume (W1) holds for some q ∈ [1,2). Then there exists
N0 ∈ N such that for every N ≥ N0, all drivers f N

1 ≥ f N
2 and terminal conditions ξN

1 ≥ ξN
2

satisfying

(i) ‖ξN
m ‖∞ ≤ C,

(ii) |f N
m (t, y, z)| ≤ K(1 + |y| + |z|q) for all (t, y, z) ∈ [0, T ] × R

d+1,
(iii) |f N

m (t, y1, z) − f N
m (t, y2, z)| ≤ L(1 + |z|q)|y1 − y2| for all (t, y1, y2, z) ∈ [0, T ] × R

d+2

such that |y1|, |y2| ≤ (C + 1) exp(KT ),
(iv) |f N

m (t, y, z1) − f N
m (t, y, z2)| ≤ L(1 + (|z1| ∨ |z2|)q/2)|z1 − z2| for all (t, y, z1, z2) ∈

[0, T ] × R
2d+1 such that |y| ≤ (C + 1) exp(KT ),

the BS�Es with parameters (f N
m , ξN

m ) have unique solutions (YN
m ,ZN

m ,MN
m ), m = 1,2, and

(C + 1) exp
(
K(T − t)

)≥ YN
1,t ≥ YN

2,t ≥ −(C + 1) exp
(
K(T − t)

)
for all t ∈ [0, T ].

To prove Theorem 4.2, we need the following two lemmas, whose proofs can be found in
the Appendix. The first one provides a comparison principle under stronger assumptions than
Theorem 4.2. The second one gives conditions under which the YN are uniformly bounded in N .

Lemma 4.3. Let C,K ∈ R+ and assume (W1) holds for some q ∈ [1,2). Then there exists
N0 ∈ N such that for every N ≥ N0, all drivers f N

1 ≥ f N
2 and terminal conditions ξN

1 ≥ ξN
2

satisfying conditions (i) and (ii) of Theorem 4.2 as well as

(iii) |f N
m (t, y1, z)−f N

m (t, y2, z)| ≤ K(1 +|z|q)|y1 −y2| for all (t, y1, y2, z) ∈ [0, T ]×R
d+2,

(iv) |f N
m (t, y, z1) − f N

m (t, y, z2)| ≤ qK(1 + (|z1| ∨ |z2|)q/2)|z1 − z2| for all (t, y, z1, z2) ∈
[0, T ] × R

2d+1,

the BS�Es with parameters (f N
m , ξN

m ) have unique solutions (YN
m ,ZN

m ,MN
m ), m = 1,2, and

(C + 1) exp
(
K(T − t)

)≥ YN
1,t ≥ YN

2,t ≥ −(C + 1) exp
(
K(T − t)

)
for all t ∈ [0, T ]. (4.3)
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Lemma 4.4. Let C,K ∈ R+ and assume (W1) holds for some q ∈ [1,2). Then there exists
N0 ∈ N such that for every N ≥ N0, all drivers f N and terminal conditions ξN satisfying

(i) ‖ξN‖∞ ≤ C,
(ii) |f N(t, y, z)| ≤ K(1 + |y| + |z|q) for all t ∈ [0, T ], y ∈ R and z ∈ R

d ,

every solution (YN ,ZN,MN) of the N th BS�E satisfies∣∣YN
t

∣∣≤ (C + 1) exp
(
K(T − t)

)
for all t ∈ [0, T ]. (4.4)

We now are ready for the proof.

Proof of Theorem 4.2. It follows from Proposition 3.2 and Lemma 4.4 that there exists
an N1 such that for all N ≥ N1, the N th BS�E has a solution (YN ,ZN,MN) for all f N

and ξN satisfying conditions (i) and (ii) of Theorem 4.2, and every such solution satisfies
|YN

t | ≤ (C + 1) exp(K(T − t)), 0 ≤ t ≤ T . Now choose N0 ≥ N1 such that Lemma 4.3 holds
for K̃ = K ∨ L instead of K and fix N ≥ N0. If f N

1 ≥ f N
2 and ξN

1 ≥ ξN
2 are drivers and ter-

minal conditions satisfying conditions (i)–(iv) of Theorem 4.2, then there exist corresponding
solutions (YN

m ,ZN
m ,MN

m ), m = 1,2, both of which satisfy |YN
m,t | ≤ (C + 1) exp(K(T − t)). So

one can change the drivers f N
m for |y| > (C + 1) exp(KT ) such that they satisfy the conditions

of Lemma 4.3, and it follows that YN
1,t ≥ YN

2,t . In particular, both solutions are unique. �

5. Convergence results for drivers with subquadratic growth

With a slight abuse of notation, the discrete-time drivers can be written as f N(t,WN,y, z). By
predictability, f N(tNi+1,W

N,y, z) only depends on WN

tN1
, . . . ,WN

tNi
. Let q ∈ [1,2) and consider

the following conditions on the drivers f N : There exists a constant K > 0 such that

(f1) For all N ∈ N, w ∈ R
d×iN and (t, y, z) ∈ [0, T ] × R

d+1,∣∣f N(t,w,y, z)
∣∣≤ K
(
1 + |y| + |z|q).

(f2) For all N ∈ N, w ∈ R
d×iN and (t, y1, y2, z) ∈ [0, T ] × R

d+2,∣∣f N(t,w,y1, z) − f N(t,w,y2, z)
∣∣≤ K|y1 − y2|.

(f3) For every a ∈ R+ there exists b ∈ R+ such that for all N ∈ N, t ∈ [0, T ], y ∈ [−a, a],
w ∈ R

d×iN and z1, z2 ∈ R
d ,∣∣f N(t,w,y, z1) − f N(t,w,y, z2)

∣∣≤ b
(
1 + (|z1| ∨ |z2|

)q/2)|z1 − z2|.
(f4) For all N ∈ N, i = 0, . . . , iN − 1, w1,w2 ∈ R

d×iN and (y, z) ∈ R
d+1,∣∣f N

(
tNi+1,w1, y, z

)− f N
(
tNi+1,w2, y, z

)∣∣≤ K sup
0≤t≤tNi

∣∣w1(t) − w2(t)
∣∣.
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(f5) For all (y, z) ∈ R
d+1,

sup
0≤t≤T

∣∣f N(t, y, z) − f (t, y, z)
∣∣→ 0 in L2 as N → ∞.

For a measurable function g : [0, T ] × � × R
d+1 → R, denote

‖g‖∞ = ess sup
ω

sup
t,y,z

∣∣g(t,ω, y, z)
∣∣.

The following lemma shows that the solutions of the BS�Es are stable in the terminal condition
and the driver function. The proof relies on Theorem 4.2 and can be found in the Appendix.

Lemma 5.1. Let C,K ∈ R+ and assume condition (W1) holds for some q ∈ [1,2). Then there
exists N0 ∈ N and a constant D ∈ R+ such that for all N ≥ N0, all terminal conditions ξN

1 , ξN
2

bounded by C and drivers f N
1 , f N

2 satisfying (f1)–(f3) as well as ‖f N
1 −f N

2 ‖∞ ≤ K , the BS�Es
with parameters (f N

m , ξN
m ) have unique solutions (YN

m ,ZN
m ,MN

m ), m = 1,2, and

sup
0≤t≤T

∣∣YN
1,t − YN

2,t

∣∣≤ D
(∥∥f N

1 − f N
2

∥∥∞ + ∥∥ξN
1 − ξN

2

∥∥∞).
The next lemma shows that for Lipschitz-continuous terminal conditions, the ZN are uni-

formly bounded. This will be a key ingredient in the proofs of our convergence results. The
proof is given in the Appendix.

Lemma 5.2. Assume (W1) and (f1)–(f4) hold for some q ∈ [1,2) and the ξN are of the form
ξN = ϕ(WN

s1
, . . . ,WN

sn
) for fixed n ∈ N, 0 ≤ s1 < · · · < sn ≤ T , and a bounded Lipschitz-

continuous function ϕ : Rd×n → R. Then there exists an N0 ∈ N such for all N ≥ N0, the N th
BS�E has a unique solution (YN ,ZN) and supN≥N0

‖ supt |ZN
t |‖∞ < ∞.

Remark 5.3. In general supN≥N0
‖ supt |ZN

t |‖∞ < ∞ does not hold if ϕ is not Lipschitz-
continuous. For example, consider one-dimensional Bernoulli random walks WN with T = 1,
tNi = i/N and P[�WN

tNi
= ±√

1/N ] = 1/2. Let the terminal conditions be of the form

ξN =
⎧⎨
⎩
√

WN
1 ∧ 1, if WN

1 ≥ 0,

−
√

−WN
1 ∨ −1, if WN

1 < 0.

On the set {WN
(N−1)/N = 0} one has ξN = sign(�WN

1 )

√
|�WN

1 |, and hence, by Lemma 3.1,

ZN
1 = E[ξN�WN

1 |WN
(N−1)/N = 0]

�〈WN 〉1
= N1/4.

In particular, ZN
1 → ∞ as N → ∞ on the set {WN

(N−1)/N = 0}.
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Before we prove convergence of solutions of BS�Es to solutions of BSDEs, we recall the
following result on quadratic BSDEs, which follows from Theorems 2.5–2.7 of Morlais [24].

Theorem 5.4 (Morlais [24]). Let K ∈ R+ such that

∣∣f (t, y, z)
∣∣ ≤ K
(
1 + |y| + |z|2), (5.1)∣∣f (t, y1, z) − f (t, y2, z)

∣∣ ≤ K|y1 − y2| for all y1, y2 ∈ R, (5.2)

and for every a ∈ R+ there exists b ∈ R+ such that

∣∣f (t, y, z1) − f (t, y, z2)
∣∣≤ b
(
1 + (|z1| ∨ |z2|

))|z1 − z2| (5.3)

for all t ∈ [0, T ], y ∈ [−a, a] and z1, z2 ∈ R
d . Then the BSDE (2.3) has a unique solution (Y,Z)

such that Y is bounded. Furthermore, for bounded terminal conditions ξ1 ≥ ξ2 and drivers f1 ≥
f2 fulfilling (5.1)–(5.3), the corresponding solutions satisfy Y1,t ≥ Y2,t for all t .

Remark 5.5. Actually, Morlais [24] makes slightly different assumptions. In her paper, the un-
derlying noise process is continuous but does not have to be a Brownian motion, and condi-
tion (5.3) is assumed to hold for a constant b independent of a. However, existence of a so-
lution (Y,Z) with bounded Y already follows from (5.1), and if Y is bounded by a constant
a ∈ R+, the driver f (t, y, z) only matters for y ∈ [−a, a] and can be modified so that it satis-
fies (5.3) for a constant b independent of a. Hence, assumptions (5.1)–(5.3) are sufficient for
Theorem 5.4.

Proposition 5.6. Assume there exists a q ∈ [1,2) such that (W1) and (f1)–(f5) hold. If ξ and
ξN are of the form ξ = ϕ(Ws1, . . . ,Wsn) and ξN = ϕ(WN

s1
, . . . ,WN

sn
) for fixed n ∈ N, 0 ≤ s1 <

· · · < sn ≤ T , and a bounded Lipschitz-continuous function ϕ : Rd×n → R, then there exists an
N0 ∈ N such that for all N ≥ N0, the N th BS�E has a unique solution (YN,ZN,MN) satisfying
supN≥N0

‖ supt |ZN
t |‖∞ < ∞, the BSDE (2.3) has a unique solution (Y,Z) with bounded Y ,

and

sup
t

(∣∣YN
t − Yt

∣∣+ ∣∣∣∣
∫ t

0
ZN

s dWN
s −
∫ t

0
Zs dWs

∣∣∣∣+ ∣∣MN
t

∣∣) (N→∞)→ 0 in L2

as well as

sup
t

(
d∑

k=1

∣∣∣∣
∫ t

0
ZN,k

s d
〈
WN
〉
s
−
∫ t

0
Zk

s ds

∣∣∣∣
2

+
∣∣∣∣
∫ t

0

∣∣ZN
s

∣∣2 d
〈
WN
〉
s
−
∫ t

0
|Zs |2 ds

∣∣∣∣
)

(N→∞)→ 0 in L1.

In particular, there exists a constant R ∈ R+ such that |Z| ≤ R ν ⊗ P-almost everywhere, where
ν denotes Lebesgue measure on [0, T ].
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Proof. It follows from (f1)–(f5) that the driver f satisfies (5.1)–(5.3). So one obtains from
Theorem 5.4 that the BSDE (2.3) has a unique solution (Y,Z) such that Y is bounded. By
Lemma 5.2, there exists N0 ∈ N such that for all N ≥ N0, the N th BS�E has a unique solu-
tion (YN ,ZN,MN) and supN≥N0

‖ supt |ZN
t |‖∞ ≤ R for some constant R ∈ R+. Define

f̃ N (t, y, z) =
{

f N(t, y, z), for |z| ≤ R,
f N
(
t, y,Rz/|z|), for |z| > R

and

f̃ (t, y, z) =
{

f (t, y, z), for |z| ≤ R,
f
(
t, y,Rz/|z|), for |z| > R.

Then the f̃ N are uniformly Lipschitz in (y, z) and

sup
0≤t≤T

∣∣f̃ N (t, y, z) − f̃ (t, y, z)
∣∣→ 0 in L2 as N → ∞.

So it follows that f̃ N and f̃ fulfill the conditions of Theorem 2.2. Denote by (Ỹ N , Z̃N , M̃N) the
solution to the N th BS�E with parameters (f̃ N , ξN) and by (Ỹ , Z̃) the solution of the BSDE
corresponding to (f̃ , ξ). Since the ZN are bounded by R, (YN ,ZN,MN) is also a solution of
the BS�E corresponding to (f̃ N , ξN). So it follows from Theorem 4.2 that for N large enough,
(YN ,ZN,MN) = (Ỹ N , Z̃N , M̃N), and we may apply Theorem 2.2 to conclude that

sup
t

(∣∣YN
t − Ỹt

∣∣+ ∣∣∣∣
∫ t

0
ZN

s dWN
s −
∫ t

0
Z̃s dWs

∣∣∣∣+ ∣∣MN
t

∣∣) (N→∞)→ 0 in L2, (5.4)

and

sup
t

(
d∑

k=1

∣∣∣∣
∫ t

0
ZN,k

s d
〈
WN
〉
s
−
∫ t

0
Z̃k

s ds

∣∣∣∣
2

+
∣∣∣∣
∫ t

0

∣∣ZN
s

∣∣2 d
〈
WN
〉
s
−
∫ t

0
|Z̃s |2 ds

∣∣∣∣
)

(5.5)
(N→∞)→ 0

in L1. It follows from (5.5) that |Z̃| ≤ R ν ⊗ P-almost everywhere. So (Ỹ , Z̃) is also a solution
of the original BSDE corresponding to (f, ξ), and it follows from Theorem 5.4 that it is equal to
(Y,Z). This completes the proof. �

Another result that we need below is the following proposition.

Proposition 5.7 (Briand and Hu [6]). Let (ξm)m∈N be a sequence of FT -measurable random
variables such that supm ‖ξm‖∞ < ∞ and ξm → ξ almost surely. Furthermore assume that f

satisfies (5.1). Let (Ym,Zm) and (Y,Z) be solutions of the BSDEs corresponding to (f, ξm) and
(f, ξ), respectively, such that Ym and Y are bounded. If Ym is increasing (or decreasing) in m,
then

sup
t

|Ym,t − Yt | → 0 a.s. and E

[∫ T

0
|Zm,s − Zs |2 ds

]
→ 0 for m → ∞.
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Remark 5.8. Note that if f satisfies (5.1)–(5.3), then Proposition 5.7 holds without the assump-
tion that Ym is increasing or decreasing in m. Indeed, by Theorem 5.4 one has Y(ξ1) ≥ Y(ξ2)

for ξ1 ≥ ξ2 (where Y(ξ) denotes the solution of the BSDE with driver f and terminal con-
dition ξ ). Define ξ̂m = supn≥m ξn and ξ̃m = infn≥m ξn. Then one obtains from Proposition

5.7 that supt |Yt (ξ̂m) − Yt (ξ)| → 0 and supt |Yt (ξ̃m) − Yt (ξ)| → 0 a.s., and therefore also
supt |Yt (ξm) − Yt (ξ)| → 0 a.s. The convergence of Z(ξm) to Z(ξ) now follows exactly as in
the proof of Proposition 2.4 in Kobylanski [21].

The next theorem shows that for any continuous-time terminal condition there exists a se-
quence of discrete-time terminal conditions such that the corresponding solutions of the BS�Es
converge to their counterparts in continuous time.

Theorem 5.9. Assume there exists a q ∈ [1,2) such that (W1) and (f1)–(f5) are satisfied. Then
for every ξ ∈ L∞(FT ), there exist F N

T -measurable ξ̃N bounded by ‖ξ‖∞ such that for N large
enough, the N th BS�E with terminal condition ξ̃N has a unique solution (Ỹ N , Z̃N , M̃N) and

sup
t

(∣∣Ỹ N
t − Yt

∣∣+ ∣∣∣∣
∫ t

0
Z̃N

s dWN
s −
∫ t

0
Zs dWs

∣∣∣∣+ ∣∣M̃N
t

∣∣) (N→∞)→ 0 in L2 (5.6)

as well as

sup
t

(
d∑

k=1

∣∣∣∣
∫ t

0
Z̃N,k

s d
〈
WN
〉
s
−
∫ t

0
Zk

s ds

∣∣∣∣
2

+
∣∣∣∣
∫ t

0

∣∣Z̃N
s

∣∣2 d
〈
WN
〉
s
−
∫ t

0
|Zs |2 ds

∣∣∣∣
)

(5.7)
(N→∞)→ 0 in L1,

where (Y,Z) is the unique solution of the BSDE (2.3) with bounded Y . Moreover, if ξ =
ϕ(Ws1, . . . ,Wsn) and ξN = ϕ(WN

s1
, . . . ,WN

sn
) for a bounded, uniformly continuous function

ϕ : Rd×n → R, then

sup
t

∣∣YN
t − Yt

∣∣→ 0 in L2 as N → ∞,

where (YN ,ZN,MN) solves the N th BS�E with terminal condition ξN .

Proof. Given a random variable ξ ∈ L∞(FT ), there exists a sequence nm, m ∈ N, of posi-
tive integers together with times 0 ≤ sm

1 < · · · < sm
nm

≤ T and Lipschitz-continuous functions
ϕm : Rd×nm → R bounded by ‖ξ‖∞ such that the random variables ξm := ϕm(Ws1, . . . ,Wsnm

)

converge to ξ almost surely. It follows from (f1)–(f5) that the driver f satisfies (5.1)–(5.3). So one
obtains from Theorem 5.4 that there exist unique solutions (Y,Z) and (Ym,Zm) to the BSDEs
corresponding to (f, ξ) and (f, ξm), respectively, such that Y and Ym are bounded. Since for fixed
m, ϕm is bounded and Lipschitz-continuous, one can apply Proposition 5.6 and choose Nm ∈ N
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increasing in m such that for all N ≥ Nm, one has

E

[
sup

t

(∣∣YN
m,t − Ym,t

∣∣2 +
∣∣∣∣
∫ t

0
ZN

m,s dWN
s −
∫ t

0
Zm,s dWs

∣∣∣∣
2

+ ∣∣MN
m,t

∣∣2

+
d∑

k=1

∣∣∣∣
∫ t

0
ZN,k

m,s d
〈
WN
〉
s
−
∫ t

0
Zk

m,s ds

∣∣∣∣
2

+
∣∣∣∣
∫ t

0

∣∣ZN
m,s

∣∣2 d
〈
WN
〉
s
−
∫ t

0
|Zm,s |2 ds

∣∣∣∣
)]

≤ 1

m
,

where (YN
m ,ZN

m ,MN
m ) is the unique solution to the N th BS�E with driver f N and ter-

minal condition ξN
m := ϕm(WN

s1
, . . . ,WN

snm
). Now set ξ̃N := ξN

mN
and (Ỹ N , Z̃N , M̃N) :=

(YN
mN

,ZN
mN

,MN
mN

), where for given N , mN is the largest m satisfying Nm ≤ N . Then
limN→∞ mN = ∞, and therefore,

E

[
sup

t

(∣∣Ỹ N
t − YmN,t

∣∣2 +
∣∣∣∣
∫ t

0
Z̃N

s dWN
s −
∫ t

0
ZmN,s dWs

∣∣∣∣
2

+ ∣∣M̃N
t

∣∣2

+
d∑

k=1

∣∣∣∣
∫ t

0
Z̃N,k

s d
〈
WN
〉
s
−
∫ t

0
Zk

mN,s ds

∣∣∣∣
2

+
∣∣∣∣
∫ t

0

∣∣Z̃N
s

∣∣2 d
〈
WN
〉
s
−
∫ t

0
|ZmN,s |2 ds

∣∣∣∣
)]

(N→∞)→ 0.

In particular,

sup
t∈[0,T ]

∣∣M̃N
t

∣∣ (N→∞)→ 0 in L2.

Moreover, it follows from Proposition 5.7 and Remark 5.8 that

sup
t

|YmN,t − Yt | → 0 a.s. and E

[∫ T

0
|ZmN,s − Zs |2 ds

]
→ 0.

This implies (5.6)–(5.7).
If

ξ = ϕ(Ws1, . . . ,Wsn) and ξN = ϕ
(
WN

s1
, . . . ,WN

sn

)
for a bounded, uniformly continuous function ϕ : Rd×n → R, there exist Lipschitz-continuous
functions ϕm : Rd×N → R bounded by ‖ϕ‖∞ such that supx∈Rd×n |ϕm(x)−ϕ(x)| ≤ 1/m. Choose
mN as in the first part of the proof and set

ξ̃N := ϕmN

(
WN

s1
, . . . ,WN

sn

)
.
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One then obtains as above that

sup
t

∣∣Ỹ N
t − Yt

∣∣→ 0 in L2 as N → ∞.

By Lemma 5.1, there exists an N0 ∈ N and a constant D ∈ R+ such that for N ≥ N0,

sup
t

∣∣YN
t − Ỹ N

t

∣∣≤ D
∥∥ξN − ξ̃N

∥∥∞.

Hence,

sup
t

∣∣YN
t − Ỹ N

t

∣∣→ 0 in L2 for N → ∞,

and one can conclude that

sup
t

∣∣YN
t − Yt

∣∣→ 0 in L2 for N → ∞. �

In the following corollary, we denote by Cd [0, T ] the set of all continuous functions from
[0, T ] to R

d and assume that the driver f is of the form

f (t, y, z) = f̃ (t,W,y, z) (5.8)

for a measurable function f̃ : [0, T ] × Cd [0, T ] × R × R
d → R that is left-continuous in t and

for which there exists a q ∈ [1,2) such that conditions (5.9)–(5.12) are satisfied:∣∣f̃ (t,w,y, z)
∣∣ ≤ K
(
1 + |y| + |z|q) for all t,w,y, z, (5.9)∣∣f̃ (t,w,y1, z) − f̃ (t,w,y2, z)

∣∣ ≤ K|y1 − y2| for all t,w,y1, y2, z. (5.10)

For every a ∈ R+ there exists b ∈ R+ such that∣∣f̃ (t,w,y, z1) − f̃ (t,w,y, z2)
∣∣≤ b
(
1 + (|z1| ∨ |z2|

)q/2)|z1 − z2| (5.11)

for all t ∈ [0, T ], y ∈ [−a, a] and z1, z2 ∈ R
d .

There exists a constant L ∈ R+ such that∣∣f̃ (t,w1, y, z) − f̃ (t,w2, y, z)
∣∣≤ L sup

s≤t

∣∣w1(s) − w2(s)
∣∣ for all t,w1,w2, y, z. (5.12)

We also assume that the discrete-time drivers f N are of the form

f N
(
t,WN,y, z

)= f̃
(
tNi+1,W

N,c, y, z
)

for tNi < t ≤ tNi+1, (5.13)

where WN,c is the following continuous approximation of WN : Set hN = supi |tNi − tNi−1| and

W
N,c
t =

⎧⎪⎨
⎪⎩

0, for t ≤ hN ,

WN

tNi−1
+ t − (tNi−1 + hN)

tNi − tNi−1

(
WN

tNi
− WN

tNi−1

)
, for tNi−1 + hN ≤ t ≤ tNi + hN .
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Note that WN,c is adapted to the filtration (F N
t ) and f N(tNi+1,W

N,y, z) only depends on
WN

tN1
, . . . ,WN

tNi
.

Corollary 5.10. Assume the WN fulfill (C1), (C2) and (W1) for some q ∈ [1,2), but instead of
(C3) they converge to W in distribution and satisfy supN E[supt |WN

t |2+ε] < ∞ for some ε > 0.
Furthermore, suppose f and f N are of the form (5.8) and (5.13), respectively. Then for every
ξ ∈ L∞(FT ), there exists a sequence of F N

T -measurable random variables ξ̃N bounded by ‖ξ‖∞
such that for N large enough, the N th BS�E with terminal condition ξ̃N has a unique solution
(Ỹ N , Z̃N , M̃N) and

sup
t

∣∣Ỹ N
t − Yt

∣∣→ 0 in distribution for N → ∞,

where (Y,Z) is the unique solution of the BSDE (2.3) with bounded Y . In the special case,
where ξ = ϕ(Ws1, . . . ,Wsn) for a uniformly continuous function ϕ : Rd×n → R, one can choose
ξ̃N = ϕ(WN

s1
, . . . ,WN

sn
).

Proof. It can be shown as in Example 2.1 that there exists a probability space (�̃, F̃ , P̃) support-
ing a d-dimensional Brownian motion W̃ and random walks W̃N with the same distributions as
WN such that E[supt |W̃N

t − W̃t |2] → 0 for N → ∞. Then

sup
t

∣∣f̃ (t, W̃N,c, y, z
)− f̃ (t, W̃ , y, z)

∣∣→ 0 in L2 for N → ∞

and it follows from Theorem 5.9 that for every ξ̃ ∈ L∞(F̃T ) one can choose F N
T -measurable ter-

minal conditions ξ̃N bounded by ‖ξ‖∞ such that the corresponding solutions satisfy supt |Ỹ N
t −

Ỹt | → 0 in L2 as N → ∞. Furthermore, if ξ̃ is of the form ξ̃ = ϕ(W̃s1, . . . , W̃sn) for a uni-
formly continuous function ϕ : Rd×n → R, one can choose ξ̃N = ϕ(W̃N

s1
, . . . , W̃N

sn
). This proves

the corollary. �

Example 5.11. In the setting of Corollary 5.10, let ξ = ϕ(WT ) and ξN = ϕ(WN
T ) for

ϕ(x) =
{√

x ∧ 1, if x ≥ 0,
−√−x ∨ −1, if x < 0.

Then for every function f̃ satisfying (5.9)–(5.12) the corresponding solutions YN converge to Y

in distribution. Let us illustrate this result for the example

f̃ (t,w,y, z) = K1y + K2|z|3/2.

Let T = 1 and WN be the Bernoulli random walks from Example 2.1. Then the discrete equations
can numerically be solved using formulas (3.1)–(3.2).

Figure 1(a) and (b) show the convergence of YN
0 for different values of K1 and K2. It can be

seen that for (K1,K2) = (1,1), YN
0 converges rather fast. Already for N = 20, it is close to the

limit value. On the other hand, for (K1,K2) = (1,5), the convergence is much slower.
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(a) (b)

Figure 1. (a) YN
0 corresponding to K1 = 1 and K2 = 1. (b) YN

0 corresponding to K1 = 1 and K2 = 5.

6. Convergence results for convex drivers

In this section, we consider BS�Es with drivers that are convex in z and use convex duality to
derive stronger convergence results than in Section 5. For the case where f does not depend on
y it has been shown in Barrieu and El Karoui [2], Delbaen et al. [14] and Delbaen et al. [13]
that BSDEs with convex drivers admit a convex dual representation. Here, we establish convex
dual representations for solutions of BS�Es and use them to show convergence. We need the
following stronger version of condition (W1) on the approximating processes WN :

(W2) E[�W
N,k

tNi
�W

N,l

tNi
] = 0 for all N ∈ N, i = 1, . . . , iN , k �= l and

sup
N,i,k

‖�W
N,k

tNi
‖∞√

�〈WN 〉tNi
< ∞.

Note that this implies (W1) for all q ∈ [1,2). In the following, we assume that the drivers f N are
convex in z and define

gN(t, y,μ) := ess sup
z

{
μz − f N(t, y, z)

}
, μ ∈ R

d .

Let μN be an R
d -valued (F N

t )-adapted process that is constant on the intervals (tNi−1, t
N
i ] and

satisfies

μN

tNi
�WN

tNi
> −1 for all i. (6.1)
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Then

dP
μN

dP
=

iN∏
i=1

(
1 + μN

tNi
�WN

tNi

)
(6.2)

defines a probability measure P
μN

equivalent to P under which the processes

W
N,μN,k

tNi
= W

N,k

tNi
−

i∑
j=1

μk

tNj
�
〈
WN
〉
tNj

, k = 1, . . . , d,

are martingales. The following proposition gives an implicit dual representation of solutions of
BS�Es. Its proof can be found in the Appendix.

Proposition 6.1. Assume (W2) and let C,K,L ∈ R+, q ∈ [1,2) be constants such that all ter-
minal conditions ξN and drivers f N fulfill the following conditions:

(i) ‖ξN‖∞ ≤ C;
(ii) f N is convex in z;

(iii) |f N(t, y, z)| ≤ K(1 + |y| + |z|q) for all (t, y, z) ∈ [0, T ] × R
d+1;

(iv) |f N(t, y1, z) − f N(t, y2, z)| ≤ L|y1 − y2| for all (t, y, z) ∈ [0, T ] × R
d+1;

(v) |f N(t, y, z1) − f N(t, y, z2)| ≤ L(1 + (|z1| ∨ |z2|)q/2)|z1 − z2| for all (t, y, z1, z2) ∈
[0, T ] × R

2d+1 such that |y| ≤ (C + 1) exp(KT ).

Then there exists N0 ∈ N such that for every N ≥ N0, the N th BS�E has a unique solution
(YN ,ZN,MN) and YN can be represented as

YN

tNi
= ess sup

μN

E
μN

[
ξN −

iN∑
j=i+1

gN
(
tNj , YN

tNj−1
,μN

tNj

)
�
〈
WN
〉
tNj

∣∣∣F N

tNi

]
, (6.3)

where the essential supremum is taken over all R
d -valued (F N

t )-adapted processes μN that are
constant on the intervals (tNi−1, t

N
i ] and satisfy (6.1). Moreover, there exists a constant R ∈ R+

such that for each N ≥ N0, (6.3) admits a maximizer μ̂N satisfying

E
μ̂N

[
iN∑

j=i+1

|μ̂tNj
|2�〈WN

〉
tNj

∣∣∣F N

tNi

]
≤ R for all i ≤ iN − 1. (6.4)

We are now ready to prove our convergence result for convex drivers. It states that for any
sequence of bounded discrete-time terminal conditions converging to ξ and every sequence of
discrete-time drivers converging to f the discrete-time solutions YN converge to the continuous-
time solution Y .

Theorem 6.2. Assume (W2), the f N(t, y, z) are convex in z and one has supN ‖ξN‖∞ < ∞ as
well as ξN → ξ in L2. Moreover, suppose the f N satisfy (f1)–(f5). Then for N large enough, the
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N th BS�E has a unique solution (YN ,ZN,MN) and

sup
t

∣∣YN
t − Yt

∣∣→ 0 in L2 for N → ∞,

where (Y,Z) is the unique solution of the BSDE (2.3) with bounded Y .

Proof. By Theorem 5.9, there exist F N
T -measurable terminal conditions ξ̃N bounded by C :=

supN ‖ξN‖∞ such that the corresponding solutions satisfy

sup
t

∣∣Ỹ N
t − Yt

∣∣→ 0 in L2.

Choose b ∈ R+ such that condition (f3) holds for a = (C + 1) exp(KT ). Then the conditions of
Theorem 4.2 and Proposition 6.1 are satisfied with L = K ∨ b. Hence, there exists N0 ∈ N such
that for all N ≥ N0, supt |YN

t | and supt |Ỹ N
t | are bounded by (C + 1) exp(KT ) and

YN

tNi
= ess sup

μ
E

μ

[
ξN −

iN∑
j=i+1

gN
(
tNj , YN

tNj−1
,μtNj

)
�
〈
WN
〉
tNj

∣∣∣F N

tNi

]

= E
μ̂N

[
ξN −

iN∑
j=i+1

gN
(
tNj , YN

tNj−1
, μ̂N

tNj

)
�
〈
WN
〉
tNj

∣∣∣F N

tNi

]

as well as

Ỹ N

tNi
= ess sup

μ
E

μ

[
ξ̃N −

iN∑
j=i+1

gN
(
tNj , Ỹ N

tNj−1
,μtNj

)
�
〈
WN
〉
tNj

∣∣∣F N

tNi

]

= E
μ̃N

[
ξ̃N −

iN∑
j=i+1

gN
(
tNj , Ỹ N

tNj−1
, μ̃N

tNj

)
�
〈
WN
〉
tNj

∣∣∣F N

tNi

]
.

If we can show

sup
t

∣∣Ỹ N
t − YN

t

∣∣→ 0 in L2,

we get

sup
t

∣∣YN
t − Yt

∣∣→ 0 in L2,

and the theorem is proved. As the supremum of K-Lipschitz functions, gN is again K-Lipschitz
in y. Hence, since |max{a1, a2}−max{b1, b2}| ≤ max{|a1 −b1|, |a2 −b2|} for a1, a2, b1, b2 ∈ R,
and

YN

tNi
= max

μ∈{μ̂N ,μ̃N }
E

μ

[
ξN −

iN∑
j=i+1

gN
(
tNj , YN

tNj−1
,μtNj

)
�
〈
WN
〉
tNj

∣∣∣F N

tNi

]
,
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Ỹ N

tNi
= max

μ∈{μ̂N ,μ̃N }
E

μ

[
ξ̃N −

iN∑
j=i+1

gN
(
tNj , Ỹ N

tNj−1
,μtNj

)
�
〈
WN
〉
tNj

∣∣∣F N

tNi

]
,

one obtains

∣∣Ỹ N

tNi
− YN

tNi

∣∣ ≤ max
μ∈{μ̂N ,μ̃N }

E
μ

[∣∣ξ̃N − ξN
∣∣+ K

iN∑
j=i+1

∣∣Ỹ N

tNj−1
− YN

tNj−1

∣∣�〈WN
〉
tNj

∣∣∣F N

tNi

]

≤ E
μ̂N

[∣∣ξ̃N − ξN
∣∣+ K

iN∑
j=i+1

∣∣Ỹ N

tNj−1
− YN

tNj−1

∣∣�〈WN
〉
tNj

∣∣∣F N

tNi

]

+ E
μ̃N

[∣∣ξ̃N − ξN
∣∣+ K

iN∑
j=i+1

∣∣Ỹ N

tNj−1
− YN

tNj−1

∣∣�〈WN
〉
tNj

∣∣∣F N

tNi

]
.

From Proposition 6.1, we know that there exists a constant R ∈ R+ such that

E
μ̂N

[
iN∑

j=i+1

∣∣μ̂N

tNj

∣∣2�〈WN
〉
tNj

∣∣∣F N

tNi

]
≤ R for all N ≥ N0 and i = 0, . . . , iN − 1.

Consequently, we obtain from Lemma A.3 in the Appendix that there exists a constant R̃ such
that

E

[
ϕ

(
iN∏

j=i+1

(
1 + μ̂N

tNj
�WN

tNj

))∣∣∣F N

tNi

]
≤ R̃ for all N ≥ N0 and i = 0, . . . , iN − 1,

where ϕ(x) = x log(x) ∨ 1. Fix ε > 0 and set D = 2[C + (C + 1) exp(KT )K supN≥N0
〈WN 〉T ].

Since ϕ(x)/x ↑ ∞, there exists B ∈ R+ such that for all x > B ,

x

ϕ(x)
≤ ε

R̃D
.

Introduce the sets EN
i+1 = {∏iN

j=i+1(1 + μ̂N

tNj
�WN

tNj
) > B}. Then

sup
N≥N0,0≤i≤iN−1

E

[
1EN

i+1

iN∏
j=i+1

(
1 + μ̂N

tNj
�WN

tNj

)∣∣∣F N

tNi

]

= sup
N≥N0,0≤i≤iN−1

E

[
1EN

i+1

∏iN
j=i+1(1 + μ̂N

tNj
�WN

tNj
)

ϕ(
∏iN

j=i+1(1 + μ̂N

tNj
�WN

tNj
))

(6.5)
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× ϕ

(
iN∏

j=i+1

(
1 + μ̂N

tNj
�WN

tNj

))∣∣∣F N

tNi

]

≤ ε

R̃D
sup

N≥N0,0≤i≤iN−1
E

[
ϕ

(
iN∏

j=i+1

(
1 + μ̂N

tNj
�WN

tNj

))∣∣∣F N

tNi

]
≤ ε

D
.

This yields for all N ≥ N0,

E
μ̂N

[∣∣ξ̃N − ξN
∣∣+ K

iN∑
j=i+1

∣∣Ỹ N

tNj−1
− YN

tNj−1

∣∣�〈WN
〉
tNj

|F N

tNi

]

= E

[
iN∏

j=i+1

(
1 + μ̂N

tNj
�WN

tNj

)(∣∣ξ̃N − ξN
∣∣+ K

iN∑
j=i+1

∣∣Ỹ N

tNj−1
− YN

tNj−1

∣∣�〈WN
〉
tNj

)∣∣∣F N

tNi

]

= E

[
1EN

i+1

iN∏
j=i+1

(
1 + μ̂N

tNj
�WN

tNj

)(∣∣ξ̃N − ξN
∣∣+ K

iN∑
j=i+1

∣∣Ỹ N

tNj−1
− YN

tNj−1

∣∣�〈WN
〉
tNj

)∣∣∣F N

tNi

]

+ E

[
1
E

N,c
i+1

iN∏
j=i+1

(
1 + μ̂N

tNj
�WN

tNj

)(∣∣ξ̃N − ξN
∣∣+ K

iN∑
j=i+1

∣∣Ỹ N

tNj−1
− YN

tNj−1

∣∣�〈WN
〉
tNj

)∣∣∣F N

tNi

]

≤ DE

[
1EN

i+1

iN∏
j=i+1

(
1 + μ̂N

tNj
�WN

tNj

)|F N

tNi

]

+ E

[
1
E

N,c

tN
i+1

iN∏
j=i+1

(
1 + μ̂N

tNj
�WN

tNj

)

×
(∣∣ξ̃N − ξN

∣∣+ K

iN∑
j=i+1

∣∣Ỹ N

tNj−1
− YN

tNj−1

∣∣�〈WN
〉
tNj

)∣∣∣F N

tNi

]

≤ ε + BE

[∣∣ξ̃N − ξN
∣∣+ K

iN∑
j=i+1

∣∣Ỹ N

tNj−1
− YN

tNj−1

∣∣�〈WN
〉
tNj

∣∣∣F N

tNi

]
.

In the first inequality, we used that the random variables |ξ̃N − ξN | + K
∑iN

j=i+1 |Ỹ N

tNj−1
−

YN

tNj−1
|�〈WN 〉tNj are uniformly bounded by D. In the second inequality, we used (6.5) and the

definition of the sets EN
i+1. Using the same estimate for μ̃N instead of μ̂N gives

∣∣Ỹ N

tNi
− YN

tNi

∣∣≤ 2ε + 2BE

[∣∣ξ̃N − ξN
∣∣+ K

iN∑
j=i+1

∣∣Ỹ N

tNj−1
− YN

tNj−1

∣∣�〈WN
〉
tNj

∣∣∣F N

tNi

]
. (6.6)
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Taking expectations, one gets

E
[∣∣Ỹ N

tNi
− YN

tNi

∣∣]≤ 2ε + 2BE
[∣∣ξ̃N − ξN

∣∣]+ K

iN∑
j=i+1

E
[∣∣Ỹ N

tNj−1
− YN

tNj−1

∣∣]�〈WN
〉
tNj

.

Since ε > 0 was arbitrary, one obtains from a discrete version of Gronwall’s lemma (see
Lemma A.4 in the Appendix) that

sup
t

E
[∣∣Ỹ N

t − YN
t

∣∣]→ 0 as N → ∞,

and since YN and Ỹ N are both bounded by (C + 1) exp(KT ), also

sup
t

E
[∣∣Ỹ N

t − YN
t

∣∣2]→ 0 as N → ∞. (6.7)

It remains to show that supt can be taken inside of the expectation in (6.7). To do this, note that
(6.6) gives

sup
i

∣∣Ỹ N

tNi
− YN

tNi

∣∣≤ 2ε + 2B
(

sup
i

E
[∣∣ξ̃N − ξN

∣∣|F N

tNi

]+ K sup
i

AN

tNi

)

for the nonnegative martingale

AN

tNi
= E

[
iN∑

j=1

∣∣Ỹ N

tNj−1
− YN

tNj−1

∣∣�〈WN
〉
tNj

∣∣∣F N

tNi

]
, i = 0, . . . , iN .

Since ε was arbitrary, and supi E[|ξ̃N − ξN ||F N

tNi
] (N→∞)→ 0 in L2 by Doob’s maximal inequality,

the only thing left to show is supi A
N

tNi

(N→∞)→ 0 in L2. Applying Doob’s maximal inequality to

AN yields

E

[
sup

i

∣∣AN

tNi

∣∣2] ≤ 2E

[(
iN∑

j=1

∣∣Ỹ N

tNj−1
− YN

tNj−1

∣∣�〈WN
〉
tNj

)2]

≤ 2
〈
WN
〉
T

E

[
iN∑

j=1

∣∣Ỹ N

tNj−1
− YN

tNj−1

∣∣2�〈WN
〉
tNj

]

≤ 2
(〈
WN
〉
T

)2 sup
t

E
[∣∣Ỹ N

t − YN
t

∣∣2]→ 0 as N → ∞,

where we used Jensen’s inequality for the second inequality and (6.7) for the convergence in the
last line. This proves the theorem. �
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If one has convergence of (WN, ξN) to (W, ξ) in distribution instead of L2 together with

sup
N

E

[
sup

t

∣∣WN
t

∣∣2+ε
]

< ∞ and sup
N

∥∥ξN
∥∥∞ < ∞,

one can show as in Example 2.1 that there exists a probability space (�̃, F̃ , P̃) carrying (W̃N , ξ̃N )

distributed as (WN, ξN) and (W̃ , ξ̃ ) distributed as (W, ξ) such that

E

[
sup

t

∣∣W̃N
t − W̃t

∣∣2]→ 0 and E
[∣∣ξ̃N − ξ̃

∣∣2]→ 0 for N → ∞.

In the case where the drivers f and f N are given as in (5.8) and (5.13), the following holds.

Corollary 6.3. Assume the WN fulfill (C1), (C2) and (W2), but instead of (C3), (WN, ξN) con-
verges in distribution to (W, ξ) and one has supN E[supt |WN

t |2+ε] < ∞ for some ε > 0 and
supN ‖ξN‖∞ < ∞. Furthermore, suppose f and f N are of the form (5.8) and (5.13), respec-
tively. Then for N large enough, the N th BS�E has a unique solution (YN,ZN,MN) and

sup
t

∣∣YN
t − Yt

∣∣→ 0 in distribution for N → ∞,

where (Y,Z) is the unique solution of the BSDE (2.3) with bounded Y .

Appendix

A.1. Proofs of Section 3

Proof of Lemma 3.1. If (YN ,ZN,MN) is a solution of the N th BS�E, then

YN

tNi
− f N
(
tNi+1, Y

N

tNi
,ZN

tNi+1

)
�
〈
WN
〉
tNi+1

+ ZN

tNi+1
�WN

tNi+1
+ �MN

tNi+1
= YN

tNi+1
. (A.1)

Taking conditional expectations on both sides with respect to F N

tNi
gives (3.1). Multiplying both

sides of (A.1) with �W
N,k

tNi+1
and taking conditional expectations with respect to F N

tNi
yields (3.2).

Finally, (3.3) is a consequence of (3.1) and (A.1). �

Proof of Proposition 3.2. We prove the proposition by backwards induction. Set YN
T = ξN ,

which by assumption (C4) is bounded. Now assume that there exist i and (YN
t ,ZN

t ,MN
t ) solving

the BS�E (2.4) for t ∈ [tNi+1, T ] such that (YN
t ) and (ZN

t ) are bounded. By Lemma 3.1, Z
N,k

tNi+1
must be of the form

Z
N,k

tNi+1
=

E[YN

tNi+1
�W

N,k

tNi+1
|F N

tNi
]

�〈WN 〉tNi+1

.
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Since by induction hypothesis, YN

tNi+1
is bounded, Z

N,k

tNi+1
is well-defined and bounded. Next, we try

to find YN

tNi
∈ L∞(F N

tNi
) such that

YN

tNi
− f N
(
tNi+1, Y

N

tNi
,ZN

tNi+1

)
�
〈
WN
〉
tNi+1

= E
[
YN

tNi+1
|F N

tNi

]
. (A.2)

To do that, we introduce the mapping A(ω,y) := y − f (tNi+1, y,ZN

tNi+1
)�〈WN 〉tNi+1

. It is F N

tNi
-

measurable in ω and continuous in y. Moreover, it satisfies

y − κ
(
1 + |y| + g

(
ZN

tNi+1

))≤ A(ω,y) ≤ y + κ
(
1 + |y| + g

(
ZN

tNi+1

))
(A.3)

for κ = K maxi �〈WN 〉tNi < 1. So it follows from Lemma A.1 below that there exists an F N

tNi
⊗

B(R)-measurable function B :� × R → R such that A(ω,B(ω,y)) = y for all (ω, y) ∈ � × R.
Thus,

YN

tNi
= B
(
ω,E
[
YN

tNi+1
|F N

tNi

]) ∈ L0(F N

tNi

)
solves (A.2), and since YN

tNi+1
and ZN

tNi+1
are bounded, it follows from the estimate (A.3) that the

same is true for YN

tNi
. Finally, MN

0 = 0 and

�MN

tNi+1
= �YN

tNi+1
+ f N
(
tNi+1, Y

N

tNi
,ZN

tNi+1

)
�
〈
WN
〉
tNi+1

− ZN

tNi+1
�WN

tNi+1

= YN

tNi+1
− E
[
YN

tNi+1
|F N

tNi

]− ZN

tNi+1
�WN

tNi+1

defines a square-integrable martingale MN orthogonal to WN which is bounded if WN is so.
This completes the proof. �

Lemma A.1. Let G be a sub-σ -algebra of F and A :�×R → R a function that is G -measurable
in ω ∈ � and continuous in y ∈ R. Assume that for every ω ∈ �, the set {y ∈ R: A(ω,y) ∈ C} is
nonempty and bounded for each nonempty bounded subset C of R. Then there exists a G ⊗ B(R)-
measurable function B :� × R → R such that A(ω,B(ω,x)) = x for all x ∈ R.

Proof. For all k, l ∈ N,

bkl(ω) = inf
{
y ∈ R: A(ω,y) ∈ ((k − 1)2−l , k2−l

]}
is a G -measurable mapping from � to R and

Bl(ω,x) =
∑
k∈Z

bkl(ω)1{(k−1)2−l<x≤k2−l}

a G ⊗ B(R)-measurable map from � × R to R such that

Bl(ω,x) → B(ω,x) as l → ∞
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for a G ⊗ B(R)-measurable function B : � × R → R. Since y 	→ A(ω,y) is continuous for all
ω ∈ �, one obtains

A
(
ω,B(ω,x)

)= A
(
ω, lim

l→∞Bl(ω,x)
)

= lim
l→∞A

(
ω,Bl(ω, x)

)= x

for all x ∈ R. �

A.2. Proofs of Lemmas 4.3 and 4.4

To prove Lemmas 4.3 and 4.4, we need the following lemma.

Lemma A.2. Assume the N th driver and terminal condition are of the special form

f N(t, y, z) = K
(
1 + |y| + g(z)

)
and ξN = C

for constants C,K ∈ R+ and a measurable function g : Rd → R with g(0) = 0. Then for all
N ∈ N such that maxi �〈WN 〉tNi < 1/K , the N th BS�E has a unique solution (YN ,ZN,MN)

given by

YN
T = C, YN

tNi
=

YN

tNi+1
+ K�〈WN 〉tNi+1

1 − K�〈WN 〉tNi+1

, ZN

tNi
= 0, MN

tNi
= 0. (A.4)

In particular, YN is deterministic and for N → ∞, converges uniformly to the function

(C + 1) exp
(
K(T − t)

)− 1.

Proof. Since the terminal condition and the increments �〈WN 〉tNi are deterministic, ZN and

MN are both zero and YN solves

YN

tNi
= YN

tNi+1
+ K
(
1 + ∣∣YN

tNi

∣∣)�〈WN
〉
tNi+1

, YN
T = C. (A.5)

This shows (A.4). Moreover, since (A.5) are deterministic difference equations with Lipschitz
coefficients, one obtains from Theorem 2.2 that their solutions converge uniformly to the solution
of the ordinary differential equation

y′(t) = −K
(
1 + ∣∣y(t)

∣∣), y(T ) = C,

given by

y(t) = (C + 1) exp
(
K(T − t)

)− 1. �

Proof of Lemma 4.3. Since maxi �〈WN 〉tNi < 1/K for N large enough, it follows from
Lemma A.2 that there exists an N1 ≥ 1 such that for all N ≥ N1, the BS�E with driver
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f̂ N (t, y, z) = K(1 + |y| + |z|q) and terminal condition ξ̂N = C has a deterministic solution
Ŷ N that is bounded by (C + 1) exp(K(T − t)). Set D = 2(C + 1) exp(KT ). Since q < 2, one
obtains from condition (C5) that there exists N0 ≥ N1 such that

sup
N≥N0

max
i

K
(
1 + dq/2Dq

[
�
〈
WN
〉
tNi

]−q/2)
�
〈
WN
〉
tNi

< 1 (A.6)

and

sup
N≥N0

max
i,k

dqK
(
1 + dq/4Dq/2[�〈WN

〉
tNi

]−q/4)∥∥�W
N,k

tNi

∥∥∞ ≤ 1. (A.7)

Fix N ≥ N0 and let f N
1 ≥ f N

2 be drivers and ξN
1 ≥ ξN

2 terminal conditions satisfying assumptions
(i)–(iv) of Lemma 4.3. By Proposition 3.2, both BS�Es have a solution (YN

m ,ZN
m ,MN

m ), m =
1,2, and (4.3) clearly holds at the final time T . We now go backwards in time and assume (4.3)
is true on [ti+1, T ]. Then

(C + 1) exp
(
K
(
T − tNi+1

))≥ YN

1,tNi+1
≥ YN

2,tNi+1
≥ −(C + 1) exp

(
K
(
T − tNi+1

))
. (A.8)

By Lemma 3.1, one has

Z
N,k

m,tNi+1
=

E[YN

m,tNi+1
�W

N,k

tNi+1
|F N

tNi
]

�〈WN 〉tNi+1

, (A.9)

and

YN

m,tNi
= E
[
YN

m,tNi+1
|F N

tNi

]+ f N
m

(
tNi+1, Y

N

m,tNi
,ZN

m,tNi+1

)
�
〈
WN
〉
tNi+1

.

Set

YN
t := YN

1,t − YN
2,t , ZN

t := ZN
1,t − ZN

2,t .

By (A.8), YN

1,tNi+1
, YN

2,tNi+1
and YN

tNi+1
are bounded by D and

YN

tNi
= E
[
YN

tNi+1
|F N

tNi+1

]+ (α + YN

tNi
β + ZN

tNi+1
γ
)
�
〈
WN
〉
tNi+1

for

α = f N
1

(
tNi+1, Y

N

2,tNi
,ZN

2,tNi+1

)− f N
2

(
tNi+1, Y

N

2,tNi
,ZN

2,tNi+1

)
,

β = 1

YN

tNi

(
f N

1

(
tNi+1, Y

N

1,tNi
,ZN

2,tNi+1

)− f N
1

(
tNi+1, Y

N

2,tNi
,ZN

2,tNi+1

))
,

γ k = 1

Z
N,k
ti+1

(
f N

1

(
tNi+1, Y

N

1,tNi
,Z

N,1
1,tNi+1

, . . . ,Z
N,k

1,tNj+1
,Z

N,k+1
2,tNj+1

, . . . ,Z
N,d

2,tNj+1

)

− f N
1

(
tNi+1, Y

N

1,tNi
,Z

N,1
1,tNi+1

, . . . ,Z
N,k−1
1,tNi+1

,Z
N,k

2,tNi+1
, . . . ,Z

N,d

2,tNi+1

))
.
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It can be seen from (A.9) that for m = 1,2,

∣∣ZN

m,tNi+1

∣∣2 =
d∑

k=1

(
Z

N,k

m,tNi+1

)2 ≤
d∑

k=1

E[(YN

m,tNi+1
)2|F N

tNi
]E[(�W

N,k

tNi+1
)2]

(�〈WN 〉tN
tN
i+1

)2
≤ dD2

�〈WN 〉tNi+1

. (A.10)

So by assumption (iii) and (A.6),∣∣β�
〈
WN
〉
tNi+1

∣∣ ≤ K
(
1 + ∣∣ZN

2,tNi+1

∣∣q)�〈WN
〉
tNi+1

≤ K
(
1 + dq/2Dq

[
�
〈
WN
〉
tNi+1

]−q/2)
�
〈
WN
〉
tNi+1

< 1.

Hence,

YN

tNi
=

E[YN

tNi+1
|F N

tNi
] + (α + ZN

tNi+1
γ )�〈WN 〉tNi+1

1 − β�〈WN 〉tNi+1

. (A.11)

From assumption (iv) and (A.10) one obtains

|γ | ≤ d1/2qK
(
1 + (∣∣ZN

1,tNi+1

∣∣∨ ∣∣ZN

2,tNi+1

∣∣)q/2)≤ d1/2qK
(
1 + dq/4Dq/2(�〈WN

〉
tNi+1

)−q/4)
and from (A.9),

∣∣ZN

tNi+1

∣∣≤ d1/2 max
k

‖�W
N,k

tNi+1
‖∞

�〈WN 〉tNi+1

E
[∣∣YN

tNi+1

∣∣|F N

tNi

]
.

By (A.7), this yields∣∣ZN

tNi+1
γ
∣∣�〈WN

〉
tNi+1

≤ ∣∣ZN

tNi+1

∣∣|γ |�〈WN
〉
tNi+1

≤ dqK
(
1 + dq/4Dq/2(�〈WN

〉
tNi+1

)−q/4)max
k

∥∥�W
N,k

tNi+1

∥∥∞E
[∣∣YN

tNi+1

∣∣|F N

tNi

]
≤ E
[∣∣YN

tNi+1

∣∣|F N

tNi

]
.

Since YN

tNi+1
≥ 0 and α ≥ 0, it follows from (A.11) that YN

1,tNi
−YN

2,tNi
= YN

tNi
≥ 0. Now observe that

f̂ N satisfies assumptions (ii)–(iv). So the same argument applied to the equations corresponding
to (f̂ N ,C) and (f N

1 , ξN) gives

(C + 1) exp
(
K
(
T − tNi

))≥ Ŷ N

tNi
≥ YN

1,tNi
.

Analogously, one deduces

YN

2,tNi
≥ (C + 1) exp

(
K
(
T − tNi

))
,

and the induction step is complete. �
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Proof of Lemma 4.4. For N large enough, one has

max
i

�
〈
WN
〉
tNi

< 1/K. (A.12)

So it follows from Lemma A.2 that there exists N1 ∈ N such that for all N ≥ N1, the BS�E
with driver f̂ N (t, y, z) = K(1 + |y| + |z|q) and terminal condition ξ̂N = C has a deterministic
solution Ŷ N dominated by (C + 1) exp(K(T − t)). Choose N0 ≥ N1 such that for all N ≥ N0,
the statement of Lemma 4.3 holds for all terminal conditions bounded by (C + 1) exp(KT ) and
drivers satisfying conditions (ii)–(iv) of Lemma 4.3. Now fix N ≥ N0 and assume (YN ,ZN,MN)

is a solution corresponding to ξN and f N satisfying conditions (i) and (ii) of Lemma 4.4. Since
Ŷ N

t ≤ (C + 1) exp(K(T − t)), it is enough to show that

Ŷ N

tNi
≥ YN

tNi
≥ −Ŷ N

tNi
for all i. (A.13)

By condition (i), (A.13) holds for t = T . For t < T we argue by backwards induction. So let us
assume that (A.13) holds for t = tNi+1. We will only show Ŷ N

tNi
≥ YN

tNi
. The second inequality in

(A.13) follows analogously. From Lemma 3.1, we know that

Z
N,k

tNi+1
=

E[YN

tNi+1
�W

N,k

tNi+1
|F N

tNi
]

�〈WN 〉tNi+1

and

A
(
ω,YN

tNi

)= E
[
YN

tNi+1
|F N

tNi

]
,

where A(ω,y) = y − f (tNi+1, y,ZN

tNi+1
)�〈WN 〉tNi+1

. Consider the BS�E with driver

f̃ N
(
tNj , y, z

)= {K
(
1 + |y| + |z|q), for j = i + 1,

0, for j �= i + 1

and terminal condition YN

tNi+1
. By Lemma 4.3, it has a unique solution (Ỹ N , Z̃N , M̃N), and it

is easy to see that Ỹ N

tNi+1
= YN

tNi+1
. Due to (A.12), the mapping Ã(ω, y) = y − f̃ (tNi+1, y,ZN

tNi+1
)×

�〈WN 〉tNi+1
is strictly increasing in y and since f̃ N (tNi+1, · , ·) ≥ f N(tNi+1, · , ·), one has

Ã
(
ω, ỸN

tNi

)= E
[
YN

tNi+1
|F N

tNi

]= A
(
ω,YN

tNi

)≥ Ã
(
ω,YN

tNi

)
.

This shows Ỹ N

tNi
≥ YN

tNi
. To conclude the proof, consider the solution Ȳ N of the BS�E with driver

f̃ N and terminal condition Ŷ N

tNi+1
. Then Ȳ N

tNi
= Ŷ N

tNi
and Lemma 4.3 yields Ȳ N

tNi
≥ Ỹ N

tNi
. Conse-

quently,

Ŷ N

tNi
= Ȳ N

tNi
≥ Ỹ N

tNi
≥ YN

tNi
,

which completes the induction step. �
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A.3. Remaining proofs of Section 5

Proof of Lemma 5.1. Set C̃ = 3C and K̃ = 2K(2C+K +1)(exp(KT )+1)(T +1). Choose b ∈
R+ such that condition (f3) holds for a = (C̃ + 1) exp(K̃T ). It follows from (2.1) that

∏iN
i=1(1 −

K�〈WN 〉tNi ) → exp(−KT ) for N → ∞. So there exists N0 ∈ N such that for all N ≥ N0,

iN∏
i=1

(
1 − K�

〈
WN
〉
tNi

)−1 ≤ exp(KT ) + 1,
〈
WN
〉
T

≤ T + 1

and the statement of Theorem 4.2 holds for C̃ instead of C, K̃ instead of K and L = K ∨ b.
Set D = (exp(KT ) + 1)(T + 1) and fix N ≥ N0 as well as terminal conditions ξN

1 , ξN
2 bounded

by C and drivers f N
1 , f N

2 satisfying (f1)–(f3) such that ‖f N
1 − f N

2 ‖∞ ≤ K . Then the parameter
pairs (f N

m , ξN
m ), m = 1,2, and (f̃ N , ξ̃N ), where f̃ N = f N

2 + ‖f N
1 − f N

2 ‖∞ and ξ̃N = ξN
2 +

‖ξN
1 − ξN

2 ‖∞, satisfy the conditions of Theorem 4.2 for C̃ instead of C, K̃ instead of K and
L = K ∨ b. Therefore, the corresponding BS�Es have unique solutions, which, since f̃ N ≥ f N

1
and ξ̃N ≥ ξN

1 , satisfy Ỹ N
t ≥ YN

1,t for all t . Note that the solution of the deterministic BS�E

Ŷ N

tNi
= Ŷ N

tNi+1
+ (∥∥f N

1 − f N
2

∥∥∞ + KŶN

tNi

)
�
〈
WN
〉
tNi+1

,

(A.14)
Ŷ N

T = ∥∥ξN
1 − ξN

2

∥∥∞,

is given by

Ŷ N

tNi
= ‖ξN

1 − ξN
2 ‖∞∏iN

j=i+1(1 − K�〈WN 〉tNj )
+ ∥∥f N

1 − f N
2

∥∥∞
iN∑

j=i+1

�〈WN 〉tNj∏j

l=i+1(1 − K�〈WN 〉tNl )
.

In particular, Ŷ N
t is positive and decreasing in t , and it satisfies

Ŷ N

tNi
≤

‖ξN
1 − ξN

2 ‖∞ + ‖f N
1 − f N

2 ‖∞
∑iN

j=i+1 �〈WN 〉tNj∏iN
j=i+1(1 − K�〈WN 〉tNj )

.

Hence, by the choice of the constant D, one obtains the estimate

sup
t

Ŷ N
t = Ŷ N

0 ≤ D
(∥∥ξN

1 − ξN
2

∥∥∞ + ∥∥f N
1 − f N

2

∥∥∞). (A.15)

In particular, since ‖ξN
1 − ξN

2 ‖∞ ≤ 2C and ‖f N
1 − f N

2 ‖∞ ≤ K , it follows from (A.15) that

sup
t

Ŷ N
t ≤ (2C + K)

(
exp(KT ) + 1

)
(T + 1). (A.16)

Next, notice that the process

Ȳ N
t := YN

2,t + Ŷ N
t
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satisfies

Ȳ N

tNi
= Ȳ N

tNi+1
+ {f N

2

(
tNi+1,W

N,YN

2,tNi
,ZN

2,tNi+1

)+ ∥∥f N
1 − f N

2

∥∥∞ + KŶN

tNi

}
�
〈
WN
〉
tNi+1

− ZN

2,tNi+1
�WN

tNi+1
− �MN

2,tNi+1
,

Ȳ N
T = ξN

2 + ∥∥ξN
1 − ξN

2

∥∥∞,

and since f N
2 is K-Lipschitz in y, one has

f N
2

(
tNi+1,W

N, ȲN

tNi
,ZN

2,tNi+1

)≤ f N
2

(
tNi+1,W

N,YN

2,tNi
,ZN

2,tNi+1

)+ KŶN

tNi
.

Hence,

αtNi
= f N

2

(
tNi+1,W

N,YN

2,tNi
,ZN

2,tNi+1

)− f N
2

(
tNi+1,W

N, ȲN

tNi
,ZN

2,tNi+1

)+ KŶN

tNi
≥ 0

and Ȳ N satisfies the BS�E

Ȳ N

tNi
= Ȳ N

tNi+1
+ {f N

2

(
tNi+1,W

N, ȲN

tNi
,ZN

2,tNi+1

)+ ∥∥f N
1 − f N

2

∥∥∞ + αtNi

}
�
〈
WN
〉
tNi+1

− ZN

2,tNi+1
�WN

tNi+1
− �MN

2,tNi+1
, (A.17)

Ȳ N
T = ξN

2 + ∥∥ξN
1 − ξN

2

∥∥∞.

Since f N
2 is K-Lipschitz in y, one obtains from the estimate (A.16) that

‖αtNi
‖∞ ≤ ∥∥f N

2

(
tNi+1,W

N,YN

2,tNi
,ZN

2,tNi+1

)− f N
2

(
tNi+1,W

N, ȲN

tNi
,ZN

2,tNi+1

)∥∥∞ + K
∥∥Ŷ N

tNi

∥∥∞
≤ 2K
∥∥Ŷ N

tNi

∥∥∞ ≤ 2K(2C + K)
(
exp(KT ) + 1

)
(T + 1),

which shows that the BS�E (A.17) satisfies the assumptions of Theorem 4.2 for C̃, K̃ and
L = K ∨ b. Hence, a comparison of Ỹ N to Ȳ N yields

YN
1,t ≤ Ỹ N

t ≤ Ȳ N
t = YN

2,t + Ŷ N
t ≤ YN

2,t + D
(∥∥ξN

1 − ξN
2

∥∥∞ + ∥∥f N
1 − f N

2

∥∥∞)
for all t . By symmetry, one also has

YN
2,t ≤ YN

1,t + D
(∥∥f N

1 − f N
2

∥∥∞ + ∥∥ξN
1 − ξN

2

∥∥∞)
for all t , and the proof is complete. �

Proof of Lemma 5.2. Let C ∈ R+ such that ϕ is bounded by C and |ϕ(w1) − ϕ(w2)| ≤
C sup1≤i≤n |w1(si) − w2(si)| for all w1,w2 ∈ R

d×n. Choose N0 ∈ N and D ∈ R+ such that
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for all N ≥ N0, supi |�WN

tNi
| ≤ 1 and the statement of Lemma 5.1 holds. From Lemma 3.1, we

know that

Z
N,k

tNi
=

E[YN

tNi
�W

N,k

tNi
|F N

tNi−1
]

�〈WN 〉tNi
,

and since YN

tNi
is F N

tNi
-measurable, it can be written as

YN

tNi
= yN

i

(
WN

tN1
, . . . ,WN

tNi

)
for a Borel measurable function yN

i : Rd×i → R. We want to show that yN
i can be chosen

uniformly Lipschitz-continuous in the last argument. To do that, let us condition on WN
tj

=
w(tNj ), j = 1, . . . , i − 1 and WN

tNi
= x. Denote W̃N

t = WN
t − WN

tNi
, t ∈ [tNi , T ], and define r =

max{m: sm ≤ tNi }. Then for tNj ≥ tNi , the conditioned BS�E with solution (YN,x,ZN,x,MN,x)

can be written as

Y
N,x

tNj
= Y

N,x

tNj+1
+ f N
(
tNj+1,w

(
tN1
)
, . . . ,w

(
tNi−1

)
, x + W̃N ,Y

N,x

tNj
,Z

N,x

tNj+1

)
�
〈
W̃N
〉
tNj+1

− Z
N,x

tNj+1
�W̃N

tNj+1
− �M

N,x

tNj+1
, (A.18)

Y
N,x
T = ϕ

(
w(s1), . . . ,w(sr ), x + W̃N

sr+1
, . . . , x + W̃N

sn

)
.

Thus, for t ≥ tNi we he have Y
N,x
t = Ȳ

N,x
t , where Ȳ N,x solves the BS�E driven by the processes

WN with terminal conditions ξN,x = ϕ(w(s1), . . . ,w(sr ), x +WN
sr+1

−WN

tNi
, . . . , x +WN

sn
−WN

tNi
)

and drivers

f̄ N,x
(
t,w
(
tN1
)
, . . . ,w

(
tNi−1

)
,WN,y, z

)
=
{

f N
(
t,w
(
tN1

)
, . . . ,w

(
tNi−1

)
, x + WN − WN

tNi
, y, z
)
, for t > tNi ,

0, for t ≤ tNi .

Clearly, all f̄ N are adapted, left-continuous and satisfy (f1)–(f3). By our Lipschitz assumption
on ϕ and f N , one has, ∥∥ξN,x1 − ξN,x2

∥∥∞ ≤ C|x1 − x2|
and ∥∥f̄ N,x1 − f̄ N,x2

∥∥∞ ≤ K|x1 − x2|
for all x1, x2 ∈ R

d . In particular, ∥∥f̄ N,x1 − f̄ N,x2
∥∥∞ ≤ K
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if |x1 − x2| ≤ 1. So one obtains from Lemma 5.1 that for all x1, x2 ∈ R
d satisfying |x1 − x2| ≤ 1,∣∣YN,x1

tNi
− Y

N,x2

tNi

∣∣ ≤ sup
0≤t≤T

∣∣Ȳ N,x1
t − Ȳ

N,x2
t

∣∣
≤ D
(∥∥ξN,x1 − ξN,x2

∥∥∞ + ∥∥f̄ N,x1 − f̄ N,x2
∥∥∞)

≤ D(C + K)|x1 − x2|.
Note that

E
[
yN

tNi

(
WN

tN1
, . . . ,WN

tNi−1
,WN

tNi−1

)
�
〈
WN
〉
tNi

|F N

tNi−1

]= 0,

and therefore,∣∣ZN,k

tNi

∣∣ = �
〈
WN
〉−1
tNi

∣∣E[YN

tNi
�W

N,k

tNi
|F N

tNi−1

]∣∣
= ∣∣E[(yN

tNi

(
WN

tN1
, . . . ,WN

tNi−1
,WN

tNi−1
+ �WN

tNi

)
− yN

tNi

(
WN

tN1
, . . . ,WN

tNi−1
,WN

tNi−1

))
�W

N,k

tNi
|F N

tNi−1

]∣∣/(�〈WN
〉
tNi

)
≤ E
[∣∣yN

tNi

(
WN

tN1
, . . . ,WN

tNi−1
,WN

tNi−1
+ �WN

tNi

)
− yN

tNi

(
WN

tN1
, . . . ,WN

tNi−1
,WN

tNi−1

)∣∣∣∣�W
N,k

tNi

∣∣|F N

tNi−1

]
/
(
�
〈
WN
〉
tNi

)

≤ D(C + K)

E[|�WN

tNi
||�W

N,k

tNi
||F N

tNi−1
]

�〈WN 〉tNi

≤ D(C + K)

E[|�WN

tNi
||�WN

tNi
||F N

tNi−1
]

�〈WN 〉tNi
= D(C + K)d.

�

A.4. Remaining proofs of Section 6

Proof of Proposition 6.1. Set C̄ = (C + 1) exp(KT ) and denote

a = sup
N,i

‖|�WN

tNi
|‖∞√

�〈WN 〉tNi
< ∞.

Choose N0 ∈ N such that for all N ≥ N0 the conclusion of Theorem 4.2 holds and
√

dLa
(
�
〈
WN
〉
tNi

)1/2 + d(2+q)/4LC̄q/2a
(
�
〈
WN
〉
tNi

)(2−q)/4
< 1. (A.19)

Then it follows from Theorem 4.2 that for fixed N ≥ N0, the N th BS�E has a unique solu-
tion (YN ,ZN,MN) with |YN

t | ≤ C̄ for all t ∈ [0, T ]. Now choose an R
d -valued (F N

t )-adapted
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process μN that is constant on the intervals (tNi−1, t
N
i ] and satisfies (6.1). It follows from the

definition of gN that

YN

tNi
= ξN +

iN∑
j=i+1

f N
(
tNj , YN

tNj−1
,ZN

tNj

)
�
〈
WN
〉
tNj

−
iN∑

j=i+1

ZN

tNj
�WN

tNj
− (MN

T − MN

tNi

)

≥ ξN −
iN∑

j=i+1

gN
(
tNj , YN

tNj−1
,μN

tNj

)
�
〈
WN
〉
tNj

−
iN∑

j=i+1

ZN

tNj
�W

N,μN

tNj
− (MN

T − MN

tNi

)
.

Since MN is orthogonal to WN , its components are still martingales under P μN
, and one obtains

YN

tNi
≥ E

μN

[
ξN −

iN∑
j=i+1

gN
(
tNj , YN

tNj−1
,μN

tNj

)
�
〈
WN
〉
tNj

∣∣∣F N

tNi

]
. (A.20)

On the other hand, it can be shown (see, e.g., Cheridito et al. [7]) that for each i there exists a
μ̂N

tNi
∈ L0(F N

tNi−1
)d such that

f N
(
tNi , YN

tNi−1
,ZN

tNi
+ z
)− f N

(
tNi , YN

tNi−1
,ZN

tNi

)≥ zμ̂N

tNi
for all z ∈ R

d .

Set μ̂N
t = μ̂N

tNi
for t ∈ (tNi−1, t

N
i ]. Then μ̂N is a left-continuous R

d -valued (F N
t )-adapted process

satisfying

f N
(
tNi , YN

tNi−1
,ZN

tNi

)+ gN
(
tNi , YN

tNi−1
, μ̂N

tNi

)= μ̂N

tNi
ZN

tNi
for all i. (A.21)

So if we can show that μ̂N satisfies (6.1) and (6.4), the equality in (A.20) becomes an equality
and the proposition is proved. To see that μ̂N satisfies (6.1), note that it follows from the Cauchy–
Schwarz inequality that

∣∣ZN,k

tNi

∣∣ = ∣∣(�〈WN
〉
tNi

)−1
E
[
YN

tNi−1
�W

N,k

tNi
|F N

tNi−1

]∣∣
≤
∣∣∣(�〈WN

〉
tNi

)−1
√

E
[∣∣YN

tNi−1

∣∣2|F N

tNi−1

]√
E
[∣∣�W

N,k

tNi

∣∣2|F N

tNi−1

]∣∣∣
≤ C̄
(
�
〈
WN
〉
tNi

)−1/2
,

and therefore, ∣∣ZN

tNi

∣∣≤ √
dC̄
(
�
〈
WN
〉
tNi

)−1/2
. (A.22)

From condition (v) one obtains

∣∣μ̂N,k

tNi

∣∣≤ L
(
1 + ∣∣ZN

tNi

∣∣q/2) for all k.



BS�Es and BSDEs with non-Lipschitz drivers 1081

Hence, it follows from estimate (A.22) that

∣∣μ̂N

tNi

∣∣≤ √
dL
(
1 + ∣∣ZN

tNi

∣∣q/2)≤ √
dL + d(2+q)/4LC̄q/2(�〈WN

〉
tNi

)−q/4
.

This gives

∣∣μ̂N

tNi
�WN

tNi

∣∣≤ ∣∣μ̂N

tNi

∣∣∣∣�WN

tNi

∣∣≤ √
dLa
(
�
〈
WN
〉
tNi

)1/2 + d(2+q)/4LC̄q/2a
(
�
〈
WN
〉
tNi

)(2−q)/4
< 1

and shows that μ̂N satisfies condition (6.1).
To show (6.4), we first assume q = 1. Then one has

gN
(
tNj , YN

tNj−1
, μ̂N

tNj

) = ess sup
z

{
μ̂N

tNj
z − f N

(
tNj , YN

tNj−1
, z
)}

≥ ess sup
z

{
μ̂N

tNj
z − K
(
1 + ∣∣YN

tNj−1

∣∣+ |z|)}.
It follows that ∣∣μ̂N,k

tNj

∣∣≤ K for all k = 1, . . . , d,

and it is clear that μ̂N satisfies condition (6.4). If q ∈ (1,2), denote |x|q = (
∑d

i=1 |xi |q)1/q , and
observe that there exist constants C1,C2,C3 > 0 such that

gN
(
tNj , YN

tNj−1
, μ̂N

tNj

) = ess sup
z

{
μ̂N

tNj
z − f N

(
tNj+1, Y

N

tNj
, z
)}

≥ ess sup
z

{
μ̂N

tNj
z − K
(
1 + ∣∣YN

tNj

∣∣+ |z|q)}
(A.23)

≥ −K
(
1 + ∣∣YN

tNj

∣∣)+ ess sup
z

{
μ̂N

tNj
z − C1|z|qq

}
= −K

(
1 + ∣∣YN

tNj

∣∣)+ C2
∣∣μ̂N

tNj

∣∣q/(q−1)

q/(q−1)
≥ −K

(
1 + ∣∣YN

tNj

∣∣)+ C3
(|μ̂tNj

|2 + 1
)
.

Since

YN

tNi
= E

μ̂N

[
ξN −

iN∑
j=i+1

gN
(
tNj , YN

tNj−1
, μ̂N

tNj

)
�
〈
WN
〉
tNj

|F N

tNi

]

and ξN and YN
t are bounded by C and C̄, respectively, one obtains

E
μ̂N

[
iN∑

j=i+1

gN
(
tNj , YN

tNj−1
, μ̂N

tNj

)
�
〈
WN
〉
tNj

|F N

tNi

]
≤ C + C̄.

This together with (A.23) and the uniform boundedness of YN shows that μ̂N fulfills (6.4). �
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Lemma A.3. Let μ be an (F N
t )-adapted process that is constant on the intervals (tNi−1, t

N
i ] and

satisfies (6.1). Then one has

E

[
iN∏

j=i+1

(
1 + μtNj

�WN

tNj

)
log

(
iN∏

j=i+1

(
1 + μtNj

�WN

tNj

))∣∣∣F N

tNi

]

≤ E
μ

[
iN∑

j=i+1

|μtNj
|2�〈WN

〉
tNj

|F N

tNi

]
.

Proof. One can write

E

[
iN∏

j=i+1

(
1 + μtNj

�WN

tNj

)
log

(
iN∏

j=i+1

(
1 + μtNj

�WN

tNj

))∣∣∣F N

tNi

]

=
iN∑

j=i+1

E
μ
[
log
(
1 + μtNj

�WN

tNj

)|F N

tNi

]≤ iN∑
j=i+1

log
(
E

μ
[(

1 + μtNj
�WN

tNj

)|F N

tNi

])
,

where the inequality follows from Jensen’s inequality. The right-hand side can be estimated as
follows:

iN∑
j=i+1

log

{
1 +

d∑
k=1

E
μ
[
μk

tNj
E

μ
[
�W

N,k

tNj
|F N

tNj−1

]|F N

tNi

]}

=
iN∑

j=i+1

log

{
1 +

d∑
k=1

E
μ
[(

μk

tNj

)2
�
〈
WN
〉
tNj

|F N

tNi

]}≤
iN∑

j=i+1

E
μ
[|μtNj

|2�〈WN
〉
tNj

|F N

tNi

]
.

The equality holds because

E
μ
[
�W

N,k

tNj
|F N

tNj−1

]= μk

tNj
�
〈
WN

tNj

〉
.

For the inequality we used log(1 + x) ≤ x. �

Lemma A.4. For all N ∈ N, let hN : [0, T ] → R be a function that is constant on the intervals
[tNi , tNi+1). If there exist constants a, b ∈ R+ such that

∣∣hN(T )
∣∣≤ a and

∣∣hN
(
tNi
)∣∣≤ a +b

iN∑
j=i+1

∣∣hN
(
tNj−1

)∣∣�〈WN
〉
tNj

for all N and i ≤ iN −1,

there exists an N0 ∈ N such that∣∣hN
(
tNi
)∣∣≤ 2a exp

(
b
(
T − tNi

))
for all N ≥ N0 and i = 0, . . . , iN .
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Proof. For N so large that supi �〈WN 〉tNi < 1/b, the function given by

HN(T ) := a and HN(t) := a
∏

j :tNj >t

(
1 − b�

〈
WN
〉
tNj

)−1
, t < T

solves

HN
(
tNi
)= a + b

iN∑
j=i+1

HN
(
tNj−1

)
�
〈
WN
〉
tNj

for all i ≤ iN − 1,

and converges uniformly to a exp(b(T − t)). In particular, there exists an N0 ∈ N such that

HN(t) ≤ 2a exp
(
B(T − t)

)
for all t and N ≥ N0.

So the lemma follows if we can show that |hN(tNi )| ≤ HN(tNi ) for all N ≥ N0 and i = 0, . . . , iN .
For i = iN this is obvious, and if it holds for j ≥ i + 1, then

∣∣hN
(
tNi
)∣∣ ≤ a + b

∑iN
j=i+2 |hN(tNj−1)|�〈WN 〉tNj
1 − b�〈WN 〉tNi+1

≤
a + b
∑iN

j=i+2 |hN(tNj−1)|�〈WN 〉tNj
1 − b�〈WN 〉tNi+1

= HN
(
tNi
)
.

�
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